
1.  Introduction
Rocks commonly contain void space (porosity) in the form of pores and cracks as a result of their formation and 
subsequent deformation. In the Earth's upper crust, this porosity is generally saturated with pressurized fluid 
(e.g., Huenges et al., 1997). The fluid pressure is coupled to the deformation of the crust and evolves due to 
changes in pore volume, either compactant or dilational. At small strain, the rock matrix behaves elastically, so 
that the overall behavior of the rock-fluid system is described by poroelasticity.

The poroelastic coupling between stress, strain and fluid pressure has consequences for the large scale mechani-
cal behavior of the Earth's crust. Following a rapid stress change, the material initially responds in an undrained 
manner, where the fluid is essentially immobile. The fluid pressure then varies in proportion to the elastic volu-
metric strain and the fluid compressibility, characterized by the Skempton coefficient (Cheng, 2016, p. 10). Subse-
quently, any fluid pressure heterogeneity is gradually equilibrated by diffusive flow (drainage). Such undrained 
fluid pressure variations modify the effective stress in the material and thus the propensity for shear failure 
(Lockner & Stanchits, 2002). This mechanism has been shown to control the spatio-temporal distribution of after-
shocks following major crustal earthquakes (e.g., Bosl & Nur, 2002; King et al., 1995). Accurate predictions of 
stress-induced pore pressure changes and their impact on fault mechanics rely on appropriate characterization of 
the poroelastic properties of faulted and fractured rocks, including the Skempton coefficient. In addition, cracked 

Abstract  We measured poroelastic properties of cracked granite under triaxial conditions, at elevated 
confining pressure and a range of differential stresses. Skempton's coefficients and undrained Young's modulus 
and Poisson's ratio were determined directly by recording in situ fluid pressure during rapid cycles of axial 
and radial stress. Drained properties were measured both statically and dynamically at ultrasonic frequencies. 
At a given confining pressure, increasing differential stress leads to the development of elastically transverse 
isotropy, with symmetry axis aligned with the compression axis. Skempton's coefficients are also anisotropic, 
with larger changes in pore pressure in response to radial stress (coefficient Bx) than to axial stress steps (Bz). 
The anisotropy in the Skempton coefficients increases with increasing differential stress, with Bz decreasing 
and Bx slightly increasing. The evolution of static moduli and the Skempton coefficients is well approximated 
by Gassmann's equation using dry moduli obtained from ultrasonic measurements. Simplified predictions of 
the Skempton coefficients based on crack density tensors inverted from dynamic data also shows acceptable 
agreement with direct observations. Perfect quantitative agreement is not reached, due to the imprecision of our 
dynamic measurements, model simplifications, and inherent differences between static moduli obtained using 
stress steps of several MPa stress and dynamic ultrasonic stress oscillations.

Plain Language Summary  Granites are crystalline rocks, almost entirely devoid of holes except 
for thin fissures (also called micro-cracks), which are partially open in stress-free rock and contain a fluid 
such as water. Cracks tend to close in response to application of external loads in a direction perpendicular 
to their surface. When the fluid inside the cracks is not free to entirely escape, crack closing also causes the 
internal water pressure to increase. Here, we carried out experiments wherein we measured certain mechanical 
properties of cylindrical samples of granite while applying different loads on the flat faces of the samples 
and different levels of pressure on the side surface. We observed that the rock response was different when 
measured in the load direction or perpendicular to it. This dependence on direction is called anisotropy. We 
also found that applying an axial load or a lateral pressure caused different sets of cracks to close and therefore 
produced different changes of the internal water pressure. Finally, we validated a theoretical model capable of 
reproducing our experimental observations.
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rocks occurring in fault damage zones can be anisotropic due to pre-existing or stress-induced preferred crack 
orientations (Rempe et al., 2013). Under these conditions, the Skempton coefficient becomes a tensor. However, 
full characterization of undrained poroelastic quantities is challenging (Cheng, 2021), and only scarce meas-
urements of the Skempton tensor exist in the literature (Lockner & Beeler, 2003; Makhnenko & Tarokh, 2018).

The Skempton coefficients capture the pore pressure response to stress under undrained conditions expressed by 
𝐴𝐴 𝐴𝐴 =

1

3
𝐵𝐵𝑖𝑖𝑖𝑖𝜎𝜎𝑖𝑖𝑖𝑖 , where p is pore pressure, and Bij and σij are the Skempton coefficient and stress in the i, j direction, 

respectively. One of the main challenges when measuring poroelastic properties in the laboratory, and specifi-
cally undrained parameters such as the Skempton tensor, is that monitoring pore pressure under truly undrained 
conditions is difficult to achieve. Pore pressure measurements require access to the pore space, which typically 
disturbs the poroelastic response of the material, and special care is needed to minimize this disturbance. There 
has been extensive experimental work that produced measurements of isotropic poroelastic parameters (e.g., 
Berge et  al.,  1993; Green & Wang,  1986; Hart & Wang,  1995,  2001), where only four independent quanti-
ties are sufficient to fully describe the material. For a general anisotropic material the number of independ-
ent poroelastic parameters increases to 28. In the special case of transverse isotropy, relevant to cracked rocks 
under conventional triaxial stress conditions, the number of independent poroelastic parameters reduces to eight. 
Aoki et  al.  (1993) produced results for seven of those eight parameters. Using the theoretical framework of 
Cheng (1997), which provides a complete set of relationships between all anisotropic poroelastic parameters, 
Lockner and Stanchits (2002) and Lockner and Beeler (2003) measured both undrained and drained transversely 
isotropic parameters in Berea sandstone, achieving measurements for the two independent principal components 
of the Skempton tensor. Despite this early success, more systematic measurements remain to be obtained in other 
rock types, especially in cracked crystalline rocks like granite.

To complement direct experimental measurements, theoretical approaches can be used to determine the exact role 
of microstructure in the overall effective poroelastic properties of rocks. Wong (2017) proposed a theory where 
the components of the Skempton tensor are expressed simply as a combination of the elastic moduli of the solid 
matrix, and two principal components of the crack density tensor defined by Sayers and Kachanov (1995). By 
combining this approach with independent measurements of crack densities (e.g., by means of wavespeed meas-
urements, see for instance Sayers and Kachanov (1995)), poroelastic properties could be estimated without need 
of direct laboratory measurements. However, this theory has not yet been thoroughly tested.

Here we experimentally measure drained, anisotropic elastic moduli in cracked granite, and make predictions 
of undrained quantities, including the Skempton tensor. Those predictions are tested against direct independent 
measurements of the Skempton tensor. This allows us to directly test the theory developed by Wong  (2017). 
As our test material, we choose Westerly granite, which is to a good approximation elastically isotropic, in the 
undeformed state. We introduce an initial isotropic network of thermal microcracks, and control the crack density 
and anisotropy by changing the macroscopic stress state, which induces closing and opening of cracks along the 
principal stress orientations. The full transversely isotropic stiffness tensor is estimated under dry (equivalent to 
drained) conditions via ultrasonic wave velocity measurements, from which we also invert for the crack density 
tensors. Skempton coefficients are measured using in situ, low volume pore pressure transducers (Brantut, 2020; 
Brantut & Aben, 2021) following step changes in load and confining pressure. A limitation in the method is 
that we are comparing dynamic and static elastic moduli which are known not to be the same (Paterson & 
Wong, 2005); despite this approximation, we show that the main trends observed in direct measurements are well 
captured by predictions based on crack density tensors.

2.  Theoretical Background
In this Section, we briefly summarize key poroelastic relations both in terms of macroscopic (bulk) and micro-
mechanical parameters. The micromechanical relations are also given in terms of the second-order crack density 
tensor using the formulation of Wong (2017).

2.1.  Transversely Isotropic Poroelasticity

Based on Biot's theory, the strain-stress relations for a transversely isotropic poroelastic material can be expressed 
(following Cheng (1997)), with compressive stresses positive, as
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𝜺𝜺 = 𝐒𝐒𝝈𝝈 −
𝛽𝛽𝜎𝜎

3
𝐁𝐁𝑝𝑝𝑝� (1a)

𝜁𝜁 = 𝛽𝛽𝜎𝜎

(

𝑝𝑝 −
1

3
𝐁𝐁

T
𝝈𝝈

)

,� (1b)

where ɛ is the strain tensor, S is the fourth rank compliance matrix, σ is the stress tensor, βσ is the constant stress 
storage coefficient (units Pa −1; denoted by C in Cheng (1997) and by S in Wong (2017)), B T is the transpose of 
the Skempton tensor, p is the pore pressure, and ζ is variation of fluid content (volume of fluid entering solid 
frame per unit volume of solid frame, units m 3/m 3). In the most general case there are 28 independent poroelastic 
parameters describing the material: 21 components of S, six components of B, and βσ. For transversely isotropic 
materials, a set of only eight independent bulk parameters are needed, for instance, where the symmetry axis is 
the vertical direction (index 3 or z axis): {S11, S12, S13, S33, S44, Bx, Bz, βσ} (in Voigt notation). Here, we assumed 
vertical transverse isotropy, where the symmetry axis is taken as the compression axis.

We follow the micromechanical analysis of Cheng (1997) and make the assumptions of micro-homogeneity and 
micro-isotropy of the solid skeleton, which allows us to relate bulk properties to properties of the solid and fluid 
constituents. Specifically, the radial (Bx) and axial (Bz) Skempton coefficients can be expressed respectively as

𝐵𝐵𝑥𝑥 =
3(𝑆𝑆11 + 𝑆𝑆12 + 𝑆𝑆13) − 1∕𝐾𝐾0

𝛽𝛽𝜎𝜎
,� (2)

and

𝐵𝐵𝑧𝑧 =
3(2𝑆𝑆13 + 𝑆𝑆33) − 1∕𝐾𝐾0

𝛽𝛽𝜎𝜎
,� (3)

where Sij are the elements of the compliance matrix (expressed in Voigt notation), and K0 is the bulk modulus of 
the solid. The expression for storage is

𝛽𝛽𝜎𝜎 =
1

𝐾𝐾
+

𝜙𝜙

𝐾𝐾fl

−
1 + 𝜙𝜙

𝐾𝐾0

,� (4)

where K is the bulk modulus of the porous material, Kfl is the bulk modulus of the saturating fluid, and ϕ is the 
porosity. The bulk modulus K is expressed in terms of the compliances

1

𝐾𝐾
= 2𝑆𝑆11 + 2𝑆𝑆12 + 4𝑆𝑆13 + 𝑆𝑆33.� (5)

By expressing the bulk modulus in terms of compliances the transversely isotropic Skempton coefficients are 
given by

𝐵𝐵𝑥𝑥 =
3(𝑆𝑆11 + 𝑆𝑆12 + 𝑆𝑆13) − 1∕𝐾𝐾0

2𝑆𝑆11 + 2𝑆𝑆12 + 4𝑆𝑆13 + 𝑆𝑆33 + 𝜙𝜙∕𝐾𝐾fl − (1 + 𝜙𝜙)∕𝐾𝐾0

,� (6)

and

𝐵𝐵𝑧𝑧 =
3(2𝑆𝑆13 + 𝑆𝑆33) − 1∕𝐾𝐾0

2𝑆𝑆11 + 2𝑆𝑆12 + 4𝑆𝑆13 + 𝑆𝑆33 + 𝜙𝜙∕𝐾𝐾fl − (1 + 𝜙𝜙)∕𝐾𝐾0

.� (7)

2.2.  Relationship to Microstructure

The presence of microcracks increases the compliance of rocks, and a preferential distribution of these cracks 
leads to an anisotropic elastic response to stress. The effect of microcracks on macroscopic, average elastic prop-
erties of materials can be computed using effective medium models. In an homogeneous isotropic elastic material 
containing a population of noninteracting, penny-shaped microcracks with a transversely isotropic distribution 
of crack orientations, the effective compliance matrix Sij can be expressed in terms of isotropic solid material 
Poisson's ratio (ν0) and Young's modulus (E0) and the five independent components of the crack density tensors 
α and β: α11, α33, β1111, β1133, and β3333 (Sayers & Kachanov, 1995).
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The extra compliance due to cracks in rock is given by Sayers and Kachanov (1995) (their Equation 9)

Δ����� =
1
�

∑

�

[

�T

4
(������� + ������� + ������� + �������) + (�N − �T)��������

]�

��,� (8)

where BT and BN are the normal and shear components of the crack compliance tensor, ni is the ith component of 
the crack normal, V is the volume element containing cracks with surfaces Sr.

For a dry circular crack, with radius a,

𝐵𝐵T =
32

(

1 − 𝜈𝜈2
0

)

𝑎𝑎

3𝜋𝜋𝜋𝜋0(2 − 𝜈𝜈0)
� (9)

and

𝐵𝐵𝑁𝑁

𝐵𝐵𝑇𝑇

= 1 −
𝜈𝜈0

2
.� (10)

The change in compliance due to cracks is then

Δ����� =
32

(

1 − �20
)

3�0(2 − �0)

[

1
4
(������ + ������ + ������ + ������) −

�0
2
�����

]

,� (11)

where the second rank crack density tensor αij is defined by

𝛼𝛼𝑖𝑖𝑖𝑖 =
1

𝑉𝑉

∑

𝑚𝑚

(

𝑎𝑎3𝑛𝑛𝑖𝑖𝑛𝑛𝑗𝑗
)(𝑚𝑚)

,� (12)

where a (m) is the mth crack radius, and the fourth rank tensor βijkl is

𝛽𝛽𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =
1

𝑉𝑉

∑

𝑚𝑚

(

𝑎𝑎3𝑛𝑛𝑖𝑖𝑛𝑛𝑗𝑗𝑛𝑛𝑘𝑘𝑛𝑛𝑙𝑙
)(𝑚𝑚)

.� (13)

The α’s depend on the shear crack compliance and the β’s depend on the shear and normal crack compliance in 
such a way that when ν0/2 is much smaller than unity, the contribution of βijkl is small compared to that of αij and 
the change in compliance due to cracks can be described by α11 and α33 only (Sayers & Kachanov, 1995).

By using Sayers and Kachanov  (1995)'s expressions for the effective compliance Sij in Equations  6 and  7; 
Wong (2017) arrives at the following expressions for the Skempton coefficients for cracked materials:

𝐵𝐵𝑥𝑥 ≈
3𝛼𝛼11

2𝛼𝛼11 + 𝛼𝛼33 + 𝜙𝜙

(

1∕𝐾𝐾fl −
3(1−2𝜈𝜈0)

𝐸𝐸0

)

3𝐸𝐸0(2−𝜈𝜈0)

32

(

1−𝜈𝜈2
0

)

,
� (14)

and

𝐵𝐵𝑧𝑧 ≈
3𝛼𝛼33

2𝛼𝛼11 + 𝛼𝛼33 + 𝜙𝜙

(

1∕𝐾𝐾fl −
3(1−2𝜈𝜈0)

𝐸𝐸0

)

3𝐸𝐸0(2−𝜈𝜈0)

32

(

1−𝜈𝜈2
0

)

,
� (15)

where the approximation arises from neglecting terms of the order of ν0/2 compared to unity.

Here, our goal is to estimate the crack density tensor components α11 and α33 by using elastic wave velocity meas-
urements on the dry rock, and comparing the prediction of Equations 14 and 15 to direct measurements under 
undrained conditions.

3.  Experimental Method
3.1.  Sample Material and Preparation

In this experimental study, we used a cylindrical sample of Westerly granite. The sample, 40 mm in diameter 
and 100 mm in length, was cored from a large block, with the ends ground flat and parallel to ensure parallelism 

 21699356, 2023, 11, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2023JB

026909 by U
niversity O

f A
berdeen T

he U
ni, W

iley O
nline L

ibrary on [06/12/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Geophysical Research: Solid Earth

ELSIGOOD ET AL.

10.1029/2023JB026909

5 of 18

within a precision of 0.02 mm. To generate open microcracks in the material, the sample was heat treated at room 
pressure to 600°C (past the α/β phase transition of quartz). The heating rate was 3°C per minute, to minimize 
thermal gradients (Wang et al., 2013). The sample was left at 600°C for 3 hr, after which the temperature was 
decreased by 8°C per minute and then left overnight to cool to room temperature. After thermal treatment, the 
sample expanded from an initial length of 100.00–100.90 mm and from a diameter of 40.08–40.40 mm, repre-
senting a volume change of 2.5%. The porosity of the sample following thermal treatment was 3.2%, measured 
using the triple weighing method. Thin sections highlight the microcracks and grain boundaries in the thermally 
cracked sample (Figure 1).

3.2.  Triaxial Apparatus

The experiment was performed in the large volume triaxial deformation apparatus located in the Rock and Ice 
Physics Laboratory at University College London (Eccles et  al.,  2005). Confining pressure is generated by 
compressing the silicone oil surrounding the jacketed sample using an electric pump, to an accuracy of 0.4 MPa, 
and measured at the inlet to the pressure vessel with a pressure transducer at 0.01 MPa precision. Axial load is 
applied by a piston, driven by a servo-hydraulic ram. Load is measured by an external load cell, and corrected 
for internal friction along the piston seals. Axial displacement is measured by an external Linear Variable Differ-
ential Transformer (LVDT), which is corrected for elastic distortion of the loading column (using a calibrated 
machine stiffness of 480 kNmm −1) in order to obtain sample shortening.

An independent pore fluid pressure is imposed at either the top and/or the bottom of the sample via a 
servo-controlled intensifier with a volume of 44 cm 3. Steel end-caps accommodate pore fluid ports and disks 
distribute the fluid across the surface of each end. The pressure is monitored at both ends by pressure transducers. 
An LVDT measures the position of the piston in the intensifier allowing for the change in volume of the pore 
system to be measured. This is used to calculate the change in pore volume of the sample.

3.3.  Sample Instrumentation

The bottom plug of the pressure vessel, on which the test sample is located, is equipped with high-pressure 
lead-throughs accommodating up to 56 individual connections to be made between individual sensors and exter-
nal recording equipment. Here, we used ultrasonic transducers (both P- and Sh-wave) to measure wave velocities 
(and estimate the sample dynamic compliance Sij), strain gauges to calculate the static elastic moduli, and differ-
ential fluid pressure transducers (Brantut, 2020; Brantut & Aben, 2021) to calculate the pore pressure change 
from a change in stress (the Skempton coefficients, Bx and Bz).

The sample was jacketed in a perforated nitrile sleeve (Figure 2a) and an array of 14 ultrasonic transducers (eight 
of them sensitive to P-waves and six to Sh-waves) was placed and sealed around the sample in a formation allow-
ing for five P-wave and three Sh-wave ray-paths (Figures 2e and 2f) between signal and receiver transducer pairs. 
At repeated time intervals throughout the test, surveys were conducted where a 250 V high frequency pulse was 
sent to each transducer, and transmitted signals on the remaining sensors were amplified to 40 dB and recorded 
at 50 MHz with digital oscilloscopes.

Figure 1.  Combined reflected and transmitted light images of (left) intact and (right) thermally cracked Westerly granite 
prior to deformation. This combination was used to highlight microcracks and grain boundaries.
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Two pairs of axial and radial 350 Ω strain gauges were positioned around the center of the sample 90° apart. To 
ensure a smooth surface for bonding, we applied a base layer of epoxy and then polished the area where the strain 
gauges were glued. The strain gauge signals were amplified, leading to an accuracy of the order of 10 −6.

Two pore pressure transducers were positioned around the center of the sample 90° apart (Figure 2d), opposite 
the strain gauges, in direct contact with the surface of the sample. The transducers comprise a stainless steel stem 
with a 0.2 mm hole connecting the sample surface to a penny-shaped cavity of 3.5 mm radius and 0.2 mm height. 
The hole and penny-shaped cavity have a combined dead volume of 2.89 mm 3 that accesses the pore space of the 
sample but is sealed from the confining medium using an o-ring between the cap and stem, and epoxy around 
the stem and jacket (Figure 2c). A full description of the transducers can be found in Brantut and Aben (2021). 
The pore pressure transducers were individually calibrated for each test by systematically varying pore pressure 
and confining pressure within a range used in the test, with time allowed from equilibration between each step 
(Brantut, 2020; Brantut & Aben, 2021). The output (V) in volts was fitted to a linear combination of confining 
pressure and pore pressure, namely

𝑉𝑉 = 𝑎𝑎𝑎𝑎c + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐� (16)

where Pc is the confining pressure, p is the pore pressure, and a, b, and c are best fitting coefficients calculated 
using the least-square method. The coefficients were then used to calculate the pore pressure from the voltage 
output and measured confining pressure during the test. The relative precision was estimated to be of the order 
of 0.01 MPa.

The volume of the pore pressure transducers (2.89 mm 3) has been designed to be minimized, but it still has the 
potential to dampen the transient pore pressure depending on the diffusivity of the sample (Brantut & Aben, 2021). 
When the pore pressure changes in the sample, the pore pressure within the sensor has to equilibrate with the 
pressure in the sample by fluid flowing in to or out of the sensor. When the diffusivity of the sample is low, it can 
take a substantial amount of time for the fluid to flow between the sensor and the sample and to reach equilibrium. 
Unfortunately, a loose connection on one of the pore pressure transducers led to it only working intermittently. 
For ease of data processing only the transducer that was working throughout was used.

All the mechanical (load, shortening, confining pressure), strain gauge and fluid pressure data were acquired at 
a sampling rate of 1–5 Hz.

3.4.  Protocol

We conducted the experiment at two effective pressures (Pc − p), 30 and 100 MPa, using the following sequence.

The confining pressure of the dry sample was first increased to 30  MPa, and differential (axial) stress was 
increased to 60  MPa at a constant strain rate of 10 −5  s −1 and then decreased back to 0. Confining pressure 
was then increased to 100  MPa, followed by a differential stress cycle up to 200  MPa and down to 0 again 
(Figure 3a). Differential stress was taken to a maximum of only twice the confining pressure to ensure that the 

Figure 2.  (a) A jacketed sample instrumented with ultrasonic and pore pressure transducers, (b) reference frame for the 
transducer positions, (c) schematic of a pore pressure transducer, (d) locations of pore pressure transducers, (e) locations of 
P-wave ultrasonic transducers, and (f) locations of Sh-wave ultrasonic transducers.
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sample remained in the elastic regime, below C′ (Wang et al., 2013). This entire initial sequence was used to 
determine the dry rock properties.

Subsequently, the sample was saturated by imposing 10 MPa pore pressure at one end, and venting the other end. 
After steady flow was established, we considered the sample to be fully saturated. The pore fluid system was 
closed and pore pressure was equilibrated to 10 MPa. Then, confining pressure was cycled in steps from 20 to 
110 MPa (Figure 3b), and permeability was measured (using the constant flow rate method, venting one end of 
the sample, giving a pore pressure difference of 10 MPa between sample ends) at selected pressures.

At 40 MPa confining pressure, differential stress was increased to 60 MPa (Figure 3b) at a constant strain rate 
of 10 −5 s −1 and then decreased back to 0, replicating the stress path of the sample when dry at 30 MPa confining 
pressure. Differential stress was again increased to a maximum of 60 MPa and at selected points axial and radial 
stress were independently cycled. Rapid stress changes induced an undrained response in the sample, where 
pore pressure initially changed linearly with stress due to the Skempton effect until it equilibrated in the sample 
and dead volume (consisting of the pore fluid pipes and distribution disks), the sample was reconnected to the 
pore pressure intensifier so that pressure diffused to the drained conditions. Therefore, each change in stress was 
initially undrained and then became fully drained in a sequence similar to the one used in Hart and Wang (2001).

We then repeated this process at 110 MPa confining pressure and selected differential stress values up to a maxi-
mum of 200 MPa.

3.5.  Measurements of Drained Parameters

We measured axial and radial strain during increases and decreases in axial stress at a constant strain rate whilst 
the sample was under four conditions: (a) dry at 30  MPa confining pressure, (b) dry at 100  MPa confining 
pressure, (c) saturated at 10 MPa pore pressure and 40 MPa confining pressure, and (d) saturated at 10 MPa pore 
pressure and 110 MPa confining pressure.

Drained Young's modulus and Poisson's ratio were calculated for decreasing stress under the four stress condi-
tions. A quadratic fit (least-squares) of both axial strain with axial stress and axial strain with radial strain was 
obtained at each stress condition. Separately, the derivatives of the quadratic fit were taken to give the Young's 
modulus and Poisson's ratio as a function of axial strain.

Figure 3.  A schematic of the stages of the experimental protocol: (a) in the dry sample confining pressure (magenta) was 
cycled, then differential stress (black) was cycled at two confining pressures, this stage took approximately three days; (b) 
in the saturated sample, confining pressure was cycled, then cycles of axial (black circles) and radial (magenta circles) 
stress were cycled at increasing differential stress, this stage took approximately 16 days including saturation. The typical 
magnitude of the rapid stress cycles was 5–8 MPa. Figure 7 shows an example of one rapid axial stress step with the resulting 
pore pressure response.
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3.6.  Measurements of Undrained Parameters

We measured the change in pore pressure and the changes in axial and radial strain under undrained conditions 
during imposed constant rate (ramp) changes in axial and radial stress. By assuming fully undrained conditions, 
the Skempton coefficients were calculated as the linear fit of the pore pressure change with the stress change, 
and undrained static elastic moduli were calculated from the linear fit of strain with stress change. The typical 
magnitude of the stress steps was 5–8 MPa.

At each stress level for each of the constant rate changes in axial stress, the final six data points of the ramp were 
combined together and a linear fit of around 120 points was performed to calculate each value of Bz, 𝐴𝐴 𝐴𝐴u

𝑧𝑧 , and 𝐴𝐴 𝐴𝐴u𝑧𝑧 
(see Figure 6). The last points of the ramp were used to ensure a linear increase in stress after piston seal friction 
was overcome.

In a similar way, for radial stress changes six data points were taken after the stress change was linear (only for 
increasing steps). However, here the first six points were used as piston seal friction was not an issue for initial 
changes in radial stress. A linear fit of around 60 points of radial stress and pore pressure was taken for calculated 
value of Bx.

3.7.  Measurements of Elastic Tensor From Ultrasonic Data

The eight P-wave and six Sh-wave ultrasonic transducers were arranged to give measurements of P- and Sh-wave 
travel times along five and three different propagation angles with respect to the compression axis, respectively. 
We first manually picked absolute arrival times for each pulser-receiver pair on a reference set of transmitted 
waveforms obtained under hydrostatic conditions at the beginning of the experiment. Differences in arrival times 
between this reference and subsequent surveys were obtained by cross-correlation of P- and Sh-wave trains (see 
Brantut (2015)). The arrival times were used to compute P- and Sh-wave velocities along the five and three prop-
agation angles, respectively. Because the rock is anisotropic, these velocities are group velocities (i.e., off axis 
waves are quasi-P and quasi-S), and their relationship with the elastic moduli of the rock is less straightforward 
than that of phase velocities.

Here, we assumed vertical transverse isotropy, where the symmetry axis is taken as the compression axis. 
Our observations consist of eight measured group velocities along eight group angles, and we invert those for 
the elements of the compliance matrix Sij and eight phase angles. In practice, we follow the same approach 
as described in Brantut and Petit  (2022), and solve the inverse problem dobs  =  g(m) using a quasi-Newton 
method (Tarantola, 2005, p. 69), where the model parameters m are the three Thomsen parameters ϵ, δ, and γ 
(Thomsen, 1986), the vertical P- and Sh-wave velocities, and the eight phase angles. The forward model (function 
g) first calculates phase velocities from the input Thomsen parameters (Thomsen, 1986, his Equation 10) at given 
phase angles, and predicts group velocities and group angles (Thomsen, 1986, his Equations 13 and 14).

For the first survey at each confining pressure, a priori model parameters were assumed to be isotropic (Thomsen 
parameters initialized to zero) and vertical P- and Sh-wave velocities were taken equal to those measured along 
the horizontal. For subsequent surveys, we used the Thomsen parameters inverted from the previous survey as 
priors for the inversion, and used the group angles as priors for the phase angles.

The best-fit Thomsen parameters were used to calculate the stiffness matrix (Cijkl), which was then inverted for 
the compliance matrix (Sijkl). The compliances were then used directly to calculate the five crack density param-
eters (α11, α33, β1111, β1133, β3333) by solving the linear system described in Sayers and Kachanov  (1995, their 
Equa tions 16–21). We assumed E0 = 89 GPa and ν0 = 0.22 to match intact P-wave velocity of 6.2 km s −1 and 
intact S-wave velocity of 3.7 km s −1 (Brantut & Petit, 2022).

4.  Results
4.1.  Wave Velocities in the Dry Material

At 100 MPa confining pressure and low differential stress, the sample has minimal anisotropy, with a maximum 
difference of 200 m/s between horizontal wave paths and the most vertical wave paths (28°; Figure 4). There 
was an increase in both P- and Sh-wave velocity at increased differential stress at all angles, but wave velocity 
increased more at angles closer to vertical. Between 10 and 200 MPa differential stress, sub-vertical Sh-wave 
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velocity (28° angle) increased by 2.3% and increased by less than 1% in the 
horizontal direction. Therefore, at increased differential stress there was 
increased anisotropy in the wave velocities.

4.2.  Characterization of Transport Properties Under Saturated 
Conditions

Permeability was measured using the constant flow rate method under 
hydrostatic stress conditions as confining pressure was decreased from the 
maximum of 110 MPa. The permeability at 110 MPa is around 1 × 10 −18 m 2 
increasing to 2 × 10 −17 m 2 at 20 MPa confining pressure (Figure 5).

4.3.  Measurement of Undrained Quantities

We used the linear undrained part of the time-series of the axial and radial 
strains and pore pressure changes during the rapid ramps in confining pres-
sure and differential stress to extract directly undrained quantities. We calcu-
lated undrained poroelastic parameters by measuring pore pressure, axial 
strain, and radial strain during cycles of increasing and decreasing ramp 
changes in stress (Figure 6). As stress is increased, pore pressure increased 
due to the Skempton effect under undrained conditions, as the duration of the 
stress increase is much smaller than the time for the pore pressure to diffuse. 
Stress was then held constant and pore pressure equilibrated within both the 
pore space of the sample and the dead volume of the pore fluid system. We 
then re-connected the sample to the pore pressure intensifier to allow pore 
pressure to equilibrate to the controlled level, producing drained conditions 
(Figure 7). The whole collection of results is shown in Figure 8.

4.3.1.  Axial and Radial Skempton Coefficients

The axial and radial Skempton coefficients were calculated in three ways: (a) Directly using the pore pressure 
measurements using the process outlined in Section 3.6 (Figures 8a and 8b, solid symbols); (b) calculated from 
the compliances using Equations 6 and 7 (Figures 8a and 8b, solid lines), and (c) calculated from the crack densi-
ties using Equations 14 and 15 (Figures 8a and 8b, dashed lines). Fluid compressibility was taken as 0.45 GPa −1 
and porosity was estimated at 1.2% and 0.9% at 30 and 100 MPa effective pressure, respectively. The strain 
gauges were used to calculate volumetric strain. The change in sample volume was considered to be due to both 
the change in the porosity (from an initial 3.2%) and the compression of the solid matrix material.

Overall, Bz decreases and Bx increases with increasing differential stress at 
both 30 and 100 MPa effective pressure (Figures 8a and 8b). The same trend 
is for all methods of measurement even though the absolute values differ. 
Directly measured Bz values (Figures 8a and 8b, triangles) are higher than 
those calculated from Sij (solid lines) from ultrasonic wave speeds by about 
0.1–0.2 units. Directly measured Bx (circles) are within 0.2 of those calculated 
using the Sij, with directly measured values lower at 30 MPa effective pres-
sure and similar at 100 MPa effective pressure. The Skempton coefficients 
calculated using crack densities (dashed lines) are similar to those directly 
measured for Bx at 30 MPa effective pressure and Bz at 100 MPa effective 
pressure, but 0.3–0.4 units higher for Bz at 30 MPa effective pressure and Bx 
at 100 MPa effective pressure.

4.3.2.  Young's Modulus

At both 30 and 100  MPa effective pressure, undrained and drained axial 
Young's moduli increase with increasing differential stress (Figures  8c 
and 8d). The dynamic Young's modulus (solid line) is higher than the static 
Young's modulus under both dry (black dotted lines) and saturated (blue 

Figure 4.  Modeled versus measured group velocities while decreasing 
differential stress at 100 MPa confining pressure. Using this we verify that the 
velocities required for the inversion (solid magenta points) are representative 
of the measured velocities (open black points). Note that the scales for the 
P-wave velocity and Sh-wave velocity are not the same.

Figure 5.  Permeability (log scale) measured under hydrostatic conditions at 
selected levels of confining pressure.
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dotted line) conditions, but the difference decreases with increased differential stress, from around 20 to 5 GPa at 
30 MPa effective pressure, and from around 10 to 0 GPa at 100 MPa effective pressure.

There is only a small (less than 3 GPa) difference between the static Young's modulus calculated in the dry 
sample (Figures 8c and 8d; dotted black line) and the static Young's modulus calculated in the saturated sample 
at the same effective pressure (dotted blue line).

4.3.3.  Poisson's Ratio

The drained and undrained axial Poisson's ratios increase with increasing 
differential stress at 30  MPa and remain around the same with increasing 
differential stress at 100  MPa effective pressure (Figures  8e and  8f). The 
static drained Poisson's ratio calculated from strain measurements in the dry 
sample (black dotted line) is similar to that calculated in the saturated sample 
(blue dotted line). The dynamic Poisson's ratio (solid black line) is similar 
to the static at 30 MPa effective pressure, and marginally lower at 100 MPa 
effective pressure. The undrained Poisson's ratio (solid triangles) is higher 
than the drained static Poisson's ratio by 0.10 units at 30 MPa effective pres-
sure, but only slightly higher at 100 MPa effective pressure.

5.  Discussion
5.1.  Assessment of Model Predictions

The model of Wong (2017) provides a relationship between microstructural 
quantities (crack density parameters αij) and macroscopic poroelastic Skemp-
ton coefficients Bx and Bz (Equations 14 and 15), which has the potential to 
simplify considerably the estimation of poroelastic parameters in damaged 
rocks. To validate their model, Wong (2017) calculated crack densities α11 
and α33 from measured values of Bx and Bz, and then used the calculated 
α11 and α33 to determine Biot coefficients, which were compared with meas-
ured values. Here, we were able to obtain direct measurements of Skempton 

Figure 6.  Example strain and pore pressure response during a step in differential stress at 100 MPa effective confining 
pressure and 25 MPa differential stress. (a) Pore pressure as a function of differential stress; (b) pore pressure as a function of 
radial stress; (c) axial strain as a function of axial stress (undrained Young's modulus); (d) radial strain as a function of axial 
strain (undrained Poisson's ratio).

Figure 7.  Example of pore pressure response to a stress step. Left hand axis 
(black) is the controlled stress change, the right hand axis (blue) is the pore 
pressure change which first increases with stress after piston friction has been 
overcome (inset box), then equilibrates within the pore space and pore system 
by diffusing from the sample ends into a closed system, and then following 
the re-connection of the pore fluid system to the intensifier, pore pressure 
equilibrated at the imposed fluid pressure. The axial Skempton coefficient was 
calculated from the linear fit between pore pressure change with axial stress 
change.
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coefficients and independent estimates of crack density parameters (Figure  8), and we observe a reasonable 
general agreement between our data and the model predictions.

An alternative approach to validate the model using our data is to compare our measurements of crack densities 
(α’s) with crack densities calculated from Skempton coefficients (Wong, 2017, their Equation 15). Estimates of 
α11 using the Skempton coefficients are around four to five times higher than the estimates using wave velocities 
(Figure 10, blue vs. black dots). Similarly, estimates of α33 using the Skempton coefficients are around four times 
higher than estimates from wave velocities (Figure 10 blue vs. black triangles). The crack densities estimated 
from the Skempton coefficients appear much larger than what might be expected and show that the discrepancy 
between the model predictions and the experimental data is larger when analyzed in terms of inferred crack 
density than directly in terms of Skempton coefficient.

One of the limitations of the model is that the underlying non-interactive effective medium scheme is only appro-
priate for microstructures dominated by thin microcracks at low concentrations. In Berea sandstone, the crack 
densities calculated from the Skempton coefficients by Wong (2017) are about one order of magnitude higher 
than those inverted from wave velocity measurements in the same rock by Sayers and Kachanov (1995), which is 
around twice the discrepancy seen in our data set on cracked Westerly granite. The high crack densities inferred 
by Wong  (2017) from poroelastic measurements are most likely due to the high porosity of Berea sandstone 
(ϕ = 21%), which contributes to lowering effective elastic properties but is neglected in the model. The low 
absolute values of crack densities inferred by Sayers and Kachanov (1995) are unfortunately not directly compa-
rable to those of Wong (2017) in the same rock: in their inversion, Sayers and Kachanov (1995) used matrix 
elastic properties (E0 and ν0) that already included the contribution of nonclosable (i.e., equant) pores, so that the 

Figure 8.  At 30 and 100 MPa effective pressure: (a) and (b) show the Skempton coefficients Bx and Bz calculated in three 
ways: the triangles (Bz) and circles (Bx) are calculated from direct measurements of pore pressure. The solid lines are 
calculated from the moduli inverted from the wave velocities and dashed lines are calculated from crack densities. (c) and 
(d) shows the Young's modulus (Ez): undrained (solid triangles), drained static (dotted line from stress-strain curve: blue is 
saturated; black is dry), drained dynamic (solid line from wave velocities, dry conditions). (e) and (f) are similar to (c) and (d) 
but for Poisson's ratio.
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resulting crack densities reflect additional variations of elastic moduli around a homogenized porous bulk, rather 
than absolute values. It is likely that both approaches could be reconciled by using an effective medium model 
that includes both the contributions of (possibly oriented) microcracks and equant porosity, such as that of Shafiro 
and Kachanov (1997).

In the derivation of Equations 14 and 15; Wong (2017) used the simplifying assumption that terms of the order of 
ν0/2 could be neglected compared to terms of the order of unity. This assumption simplifies greatly the approxi-
mation of the effect of cracks on elastic compliances, which can be captured by a single second order tensor with 
components αij. For Westerly granite, ν0/2 ≈ 0.11, so errors of the order of 10%–20% would be expected when 
fitting our wave velocity measurements to crack density parameters, and, eventually, to predicted Skempton coef-
ficients. The differences between our calculations using Equations 6 and 7 and predictions using Equations 14 
and 15 are larger than expected (Figures 8a and 8b, solid and dashed lines). At 100 MPa effective pressure, the 
magnitude of β1111 was relatively large at around four times the size of α11 (Figure 9), giving it around 40% of 
the effect of α11 in the change in compliance of S11. Therefore S11 in particular was overestimated (by at least 
three times as much as S12, S13, and S33) which was the cause of the overestimation of Bx. Similarly, at 30 MPa 
effective  pressure, the magnitude of β3333 was also relatively large at around four times the magnitude of α33. 
However,  the magnitude of β1111 was similar to α11 so S11 was not effected as much as the other compliances.

Our estimates of the compliances depend on absolute values of wave velocities that are prone to errors due to the 
manual picking of the master survey. In addition, estimates of the crack density parameters also depend on the 
moduli of the solid skeleton (E0 and ν0) which are not accurately known. Thus, the inverted βijkl are sensitive to 
small absolute errors in their estimation and the discrepancy when neglecting βijkl's can either be due to errors in 
calculating βijkl's or in the model itself.

5.2.  Dynamic Versus Static Parameters

Here we calculated static elastic moduli and poroelastic parameters using direct measurements of stress, strain 
and pore pressure. We compared these to dynamic elastic moduli and poroelastic parameters calculated from the 
relaxed ultrasonic wave velocities.

Figure 9.  Crack densities estimated from the compliances determined from wave velocities at 30 MPa confining pressure 
(left) and 100 MPa (right) assuming dry penny-shaped cracks.
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At both 30 and 100 MPa effective pressure the dynamic Young's modulus is larger than the static Young's modu-
lus by around 10–20 GPa (Figures 8c and 8d, solid line and solid triangles, respectively). At 30 MPa effective 
pressure the dynamic drained Poisson's ratio is similar to the static drained Poisson's ratio. At 100 MPa effective 
pressure the dynamic ratio is lower by less than 0.05 units. The dynamic Young's modulus is expected to be 
higher than the static one in Westerly granite, particularly when thermally cracked, but the expected change in 
the  Poisson's ratio is not known (Blake et al., 2019).

Measurements of static elastic moduli require changes in stress during which cracks progressively close and 
reopen; whilst the opening and closing of cracks is reversible, the distribution of cracks is not the same at the start 
and end of the stress step. This is in contrast to the dynamic measurements, using high-frequency but low ampli-
tude waves, where the small changes in strain mean that the crack fabric can be interpreted as frozen. Therefore, 
during dynamic and static measurements the rock is not in exactly the same microstructural state.

It is difficult to quantify the effect that the differences between static and dynamic moduli have on the calculated 
values of Bx and Bz. Equations 6 and 7 depend non-linearly on the compliances. Relative changes in S11 and S33 
dominate as S12 and S13 are smaller in magnitude by a factor of νx and νz, respectively.

At higher effective pressures the compliances approach that of the intact material and the numerator and denom-
inator of Equations  6 and  7 become smaller. Therefore, Bx and Bz become more sensitive to small absolute 
variations in measurements of compliances. The differences between drained dynamic and static elastic moduli 
suggests that when we calculate Bx and Bz using Equations 6 and 7 using dynamic measurements, we would 
expect a difference from directly measured values.

A decrease in S33 (so increase in Ez) results in a decrease in Bz and an increase in Bx. A decrease in S11 results in 
an increase in Bz and a decrease in Bx. Changes in S11 dominate Bx (for Bx < 1) and changes in S33 dominate Bz 
(when Bz < 1). Dynamic measurements of Ez are greater than static measurements, therefore leading to a smaller 
value of S33. We do not know the difference between dynamic and static measurements of S11 because we cannot 
statically measure S11 in a triaxial apparatus. If we assume that differences between dynamic and static values of 
S11 are the same as those of S33, then this would mean that dynamic measurements underestimate Bx and Bz. This 
is what we see for Bz at both 30 and 100 MPa effective pressure. However, Bx at 30 MPa effective pressure is 
larger using dynamic moduli and for Bx at 100 MPa the dynamic and static measurements are comparable, when 
we might expect the dynamic measurements to be smaller.

As Bx approaches unity, changes in S11 become less dominant relative to changes in S33. The directly measured Bx 
at 30 MPa effective stress is around 0.9. Therefore, if the difference between dynamic and static S11 (not known) 
is not as large as S33 then we would see an increase in Bx compared to the directly measured value.

Another approach to compare dynamic and static measurements is to estimate the compliances using the princi-
pal crack densities estimated from the Skempton coefficients (see Figure 10, blue circles and triangles). These 

Figure 10.  Principal components of the second rank crack density estimated from the compliances determined from wave 
velocities (black) compared with those estimated from directly measured Skempton coefficients (blue) Wong (2017) at 
30 MPa confining pressure (left) and 100 MPa (right).
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estimated compliances can then be compared to those determined from wave velocities and, in the case of the 
vertical direction (S33), strain gauges (see Figure 11). If the theory and measurements directly aligned, we would 
expect that the compliance terms calculated from crack densities determined from wave speeds (Figure 11, black 
dashed lines) and calculated from the Skempton coefficients (Figure 11, blue triangles) to be the same, with a 
small difference from compliances directly determined from wave velocities due to neglecting βijkl's (Figure 11, 
black lines). However, compliances calculated using the Skempton coefficients are much larger. In particular 
at 30  MPa effective pressure, S11 calculated from crack densities estimated from the Skempton coefficients 
(Figure 11a, blue triangles) are around four times as large as S11 calculated from crack densities determined from 
wave velocities (Figure 11a, black dashed line). This discrepancy in S11 is around twice as large at 100 MPa effec-
tive pressure (Figure 11b). S33 estimated using the Skempton coefficients is around twice as large compared with 
estimates using the wave velocities (Figures 11c and 11d).

5.3.  Storage Coefficients

To calculate the Skempton coefficients from the compliances, we required an estimate for storage using

𝛽𝛽𝜎𝜎 = 2𝑆𝑆11 + 2𝑆𝑆12 + 4𝑆𝑆13 + 𝑆𝑆33 + 𝜙𝜙∕𝐾𝐾fl − (1 + 𝜙𝜙)∕𝐾𝐾0.� (17)

The estimated storage capacity decreased with increased differential stress at both 30 and 100 MPa confining 
pressure estimated using compliances and cracks (Figure  12). However, the change in storage was relatively 
small, at around a 10% decrease. Storage capacity estimated at 30 MPa confining pressure was around twice that 
at 100 MPa. The estimated storage capacities was around 1 × 10 −11 Pa −1 higher when estimated using only the 
crack densities (αij's) in place of the compliances (Figures 12a and 12b, dashed lines). The crack densities inverted 
from the directly measured Skempton coefficients were also used to estimate the storage capacity (Figure 10, 
blue dots). Estimates of storage were around two to three times higher using the crack densities from Skempton 
coefficients (Figure 12, blue dots) compared with estimates inverted from wave velocities (Figure 12, solid and 
dashed lines).

Figure 11.  Components of the compliance matrix S11 and S33 calculated directly from wave velocities (solid black lines), 
from wave velocities but ignoring βijkl's (dashed black lines), from principal crack densities calculated from the Skempton 
coefficients (blue triangles), and, for S33 calculated from strain gauges, the inverse of the Young's modulus shown in Figure 8 
(dotted blue line).
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Undrained and drained (axial) Young's modulus are related via the axial Skempton coefficient and the storage 
coefficient

1

𝐸𝐸u

=
1

𝐸𝐸d

−
𝛽𝛽𝜎𝜎

9
𝐵𝐵2

𝑧𝑧 .� (18)

Therefore, it is possible to estimate the storage capacity using the measured Eu, Ed, and Bz (Figure 8). The limita-
tions of this approach are clear by observing the difference between the drained and undrained Young's modulus 
at is not detectable at 30 MPa effective pressure (Figure 8c); implying a storage capacity close to zero. However, 
the qualitative relationship of a decreasing difference between undrained and drained Young's modulus with 
increasing differential stress is consistent with the observed decreasing trend in the axial Skempton coefficient 
(Bz) (Figures 8a and 8b) and estimated storage capacity (Figure 12) with increased differential stress.

5.4.  Effective Pressure

Ultrasonic wave velocity measurements were made on a dry sample at 30 and 100 MPa confining pressure to 
compare with drained measurements at 40 and 110  MPa confining pressure and 10  MPa pore pressure. We 
assume that properties measured under dry and saturated conditions can be compared because they are at the 
same effective pressure: the effective pressure coefficient is equal to unity.

There are different effective pressure coefficients for different processes (Nur & Byerlee, 1971). Here, we are 
comparing elastic wave velocities, porosity, and the crack orientations and distributions at different confining 
pressure and pore pressure combinations. Both porosity and crack closure are governed by an effective pressure 
coefficient which is likely close to unity (Zimmerman et al., 1986).

5.5.  Micromechanical Assumptions

To estimate the Skempton coefficients using Equations 6 and 7 we are following the micromechanical analysis 
of Cheng (1997), which explicitly models the solid, fluid and pores of the material, and makes the assumptions 
of micro-isotropy and micro-homogeneity. The assumptions of micro-isotropy and micro-homogeneity are not 
always valid under isotropic conditions (Cheng,  2021; Hart & Wang,  2010; Pimienta et  al.,  2017). Without 
these assumptions, for transverse isotropy, we would need to measure the five independent unjacketed elastic 
moduli, and the directional variation in pore deformation. Neither of these are easily measurable in an anisotropic 
material.

5.6.  Anisotropic Poroelastic Response

There have been few published results of directly measured anisotropic Skempton pore pressure coefficients. 
Aoki et al. (1993) measured Bx = 0.51 (parallel to bedding plane) and Bz = 0.53 (perpendicular to bedding plane) 

Figure 12.  Estimates of storage capacity at 30 MPa confining pressure (a) and 100 MPa confining pressure (b) using 
Equation 17 using compliances (solid lines) and crack densities (dashed lines) determined from wave velocities. These 
estimates were used to estimate the axial and radial Skempton coefficients. Additionally, the crack densities inverted from the 
Skempton coefficients were used to estimate storage capacity (blue dots).
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from shale cored in two directions. Makhnenko and Tarokh (2018) report anisotropy of Skempton coefficients in 
Berea sandstone but at only one stress state.

The studies which present results for the anisotropic Skempton coefficients as a function of differential stress are 
those of Lockner and Stanchits (2002) and Lockner and Beeler (2003), and Wong (2017) includes some previ-
ously unpublished data from Lockner and Beeler (2003) when validating their model.

We compare the qualitative behavior of Bx and Bz with increasing differential stress at different effective pressures 
in both Berea sandstone and thermally cracked Westerly granite (Figure 13). For both rock types, at all confining 
pressures, Bx increases with increased differential stress, and Bz decreases. At lower confining pressure, the aniso-
tropy in the Skempton coefficients is higher with both Bx higher and Bz lower, and the anisotropy increases more 
rapidly with increased differential stress than at higher confining pressure. The Bx are higher in Westerly granite 
compared with Berea sandstone, even at much higher effective pressures.

At increased differential stress, horizontally aligned cracks close and the vertical compliance decreases whilst the 
horizontal compliance does not change much. This is the case regardless of the rock type or porosity.

6.  Conclusions
Transversely isotropic drained and undrained elastic moduli and poroelastic parameters have been measured in 
Westerly granite under increasing differential stress. Direct measurements of pore pressure on the sample surface 
gave us independent measurements of the two Skempton coefficients. The five independent (dynamic) elastic 
moduli were inverted from elastic wave velocity data, and used to estimate crack density parameters. We then 
checked the consistency between undrained properties measured statically and those predicted from crack density 
parameters in the model of Wong (2017).

The axial Skempton coefficient (Bz) decreases with increased axial stress and the radial coeffi-
cient (Bx) increases, with the vertical transverse isotropy induced predominantly through closure of 
horizontally aligned cracks. The anisotropy in the Skempton coefficients increases with increasing  
differential stress. Our observations in Westerly granite at two effective pressures, follow the same qualitative 
trend as those of previous studies in Berea sandstone at multiple effective pressures (Lockner & Beeler, 2003; 
Wong, 2017).

Figure 13.  Comparison of the axial Skempton coefficient (Bz, triangles) and the radial Skempton coefficient (Bx, circles) for 
(a) Berea sandstone (solid symbols) from Wong (2017) (using data from Lockner and Beeler (2003)) and (b) Westerly granite 
from this experiment. Matching colors on each subfigure are at the same confining pressure which is given by the annotated 
value.
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By making assumptions of micro-homogeneity and micro-isotropy in a micromechanical model (Equations 6 
and 7) we can provide a reasonable consistency with directly measured Skempton coefficients, with differ-
ences between dynamic and static elastic moduli explaining the discrepancies. Furthermore, this qualitative 
behavior can be predicted by using only two principal components of the second-order crack density tensor 
(α11 and α33).

Data Availability Statement
Data are available at Elsigood et al. (2023).
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