TITLE:

1

ForestGEO: Understanding Forest Diversity and Dynamics through a Global Observatory
 Network

5

AUTHORS:

6 7

Stuart J. Davies*a, Iveren Abiemb, Kamariah Abu Salimc, Salomón Aguilara, David Allend, 8 Alfonso Alonso^e, Kristina Anderson-Teixeira^f, Ana Andrade^g, Gabriel Arellano^h, Peter S. Ashtonⁱ, 9 10 Patrick J. Baker^j, Matthew E. Baker^k, Jennifer L. Baltzer^l, Yves Basset^a, Pulchérie Bissiengou^m, 11 Stephanie Bohlmanⁿ, Norman A. Bourg^o, Warren Y. Brockelman^p, Sarayudh Bunyavejchewin^q, David F.R.P. Burslem^r, Min Cao^s, Dairon Cárdenas^t, Li-Wan Chang^u, Chia-Hao Chang-Yang^v, 12 Kuo-Jung Chao^w, Wei-Chun Chao^x, Hazel Chapman^y, Yu-Yun Chen^z, Ryan Chisholm^{aa}, Chengjin 13 Chu^{ab}, George Chuyong^{ac}, Keith Clay^{ad}, Liza S. Comita^{ae}, Richard Condit^{af}, Susan Cordell^{ag}, 14 Handanakere S. Dattaraja^{ah}, Alexandre Adalardo de Oliveira^{ai}, Jan den Ouden^{aj}, Matteo Detto^{ak}, 15 Christopher Dick^h, Xiaojun Du^{al}, Álvaro Duque^{am}, Sisira Ediriweera^{an}, Erle C. Ellis^k, Nestor 16 Laurier Engone Obiang^m, Shameema Esufali^a, Corneille E.N. Ewango^{ao}, Edwino S. Fernando^{ap, aq}, 17 Jonah Filip^{ar}, Gunter A. Fischer^{as}, Robin Foster^{at}, Thomas Giambelluca^{au}, Christian Giardina^{ag}, 18 19 Gregory S. Gilbert^{av}, Erika Gonzalez-Akre^f, I.A.U.N. Gunatilleke^{aw}, C.V.S. Gunatilleke^{aw}, Zhanqing Hao^{ax}, Billy C.H. Hau^{ay}, Fangliang He^{az}, Hongwei Ni^{ba}, Robert W. Howe^{bb}, Stephen P. 20 Hubbell^{bc}, Andreas Huth^{bd}, Faith Inman-Narahari^{be}, Akira Itoh^{bf}, David Janík^{bg}, Patrick A. Jansen^{aj, bh}, Mingxi Jiang^{bi}, Daniel J. Johnsonⁿ, Andrew Jones^{bj}, Mamoru Kanzaki^{bk}, David 21 22 Kenfack^a, Somboon Kiratiprayoon^{bl}, Kamil Král^{bg}, Lauren Krizel^a, Suzanne Lao^a, Andrew J. 23 Larson^{bm}, Yide Li^{bn}, Xiankun Li^{bo}, Creighton M. Litton^{bp}, Yu Liu^{bq}, Shirong Liu^{br}, Shawn Lum^{bs}, 24 Matthew Luskin^{bt}, James A. Lutz^{bu}, Hong Truong Luu^{bv}, Keping Ma^{al}, Jean Remy Makana^{ao}, 25 Yadvinder Malhi^{bw}, Adam Martin^{bx}, Caly McCarthy^a, Sean M. McMahon^{by}, William J. McShea^o, 26 Hervé Memiaghe^{bz}, Xiangcheng Mi^{al}, David Mitre^a, Mohizah Mohamad^{ca}, Logan Monks^{cb}, Helene 27 Muller-Landau^a, Paul M. Musili^{cc}, Jonathan A. Myers^{cd}, Anuttara Nathalang^p, Kang Min Ngo^{bs}, 28 Natalia Norden^{ce}, Vojtech Novotny^{cf}, Michael J. O'Brien^{cg}, David Orwig^{ch}, Rebecca Ostertag^{ci}, 29 Konstantinos Papathanassiou^{cj}, Geoffrey G. Parker^{ck}, Rolando Pérez^a, Ivette Perfecto^{cl}, Richard P. 30 Phillips^{cm}, Nantachai Pongpattananurak^{cn}, Hans Pretzsch^{co}, Haibo Ren^{al}, Glen Reynolds^{cp}, Lillian 31 J. Rodriguez^{cq}, Sabrina E. Russo^{cr}, Lawren Sack^{bc}, Weiguo Sang^{cs}, Jessica Shue^{by}, Anudeep 32 Singh^a, Guo-Zhang M. Song^{ct}, Raman Sukumar^{cu}, I-Fang Sun^z, Hebbalalu S. Suresh^{cu}, Nathan G. 33 Swenson^{cb}, Sylvester Tan^{ca}, Sean C. Thomas^{cv}, Duncan Thomas^{cw}, Jill Thompson^{cx}, Ben Turner^a, 34 Amanda Uowolo^{ag}, María Uriarte^{cy}, Renato Valencia^{cz}, John Vandermeer^h, Aberto Vicentini^g, 35 Marco Visserak, Tomas Vrskada, Xugao Wangax, Xihua Wangdb, George D. Weiblendc, Timothy 36 J.S. Whitfeld^{dd}, Amy Wolf^{bb}, S. Joseph Wright^a, Han Xu^{bn}, Tze Leong Yao^{de}, Sandra L. Yap^{df}, 37 Wanhui Ye^{dg}, Mingjian Yu^{dh}, Minhua Zhang^{bq}, Daoguang Zhu^{ba}, Li Zhu^{al}, Jess K. Zimmerman^{di}, 38 and Daniel Zuleta^a 39

40 41

42 43 44

*Corresponding author (Stuart J. Davies). daviess@si.edu. +1-202-633-0961. Forest Global

45 Earth Observatory (ForestGEO), Smithsonian Tropical Research Institute, National Museum of

- 46 Natural History, West Loading Dock MRC-166, 10th and Constitution Ave. NW, Washington DC,
- 47 20560

- 49 ^aForest Global Earth Observatory, Smithsonian Tropical Research Institute, Republic of Panama
- 50 bDepartment of Plant Science and Biotechnology, University of Jos, Nigeria
- 51 ^c Universiti Brunei Darussalam, Brunei
- ^d Department of Biology, Middlebury College, Middlebury, VT 05753
- 6 Center for Conservation and Sustainability, Smithsonian Conservation Biology Institute,
- National Zoological Park, Washington, DC 20008
- 55 f Forest Global Earth Observatory, Smithsonian Conservation Biology Institute, National
- 56 Zoological Park, Washington, DC 20008
- 57 g Biological Dynamics of Forest Fragments Project, Coordenação de Dinâmica Ambiental,
- 58 Instituto Nacional de Pesquisas da Amazônia, Brazil
- ^h Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI,
- 60 48109
- 61 ⁱ Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
- 62 02138
- 63 ^j School of Ecosystem and Forest Sciences, University of Melbourne, Australia
- 64 ^k Geography & Environmental Systems, University of Maryland, Baltimore County, Baltimore,
- 65 MD 21250
- 66 Biology Department, Wilfrid Laurier University, Canada
- 67 ^m Herbier National du Gabon, Institut de Pharmacopée et de Médecine Traditionelle, Gabon
- 68 ⁿ School of Forest Resources and Conservation, University of Florida, Gainesville, FL 32611
- 69 ° Conservation Ecology Center, Smithsonian Conservation Biology Institute, National Zoological
- 70 Park, Washington, DC 20008
- 71 P National Biobank of Thailand, National Science and Technology Development Agency, Thailand
- 72 ^q Department of National Parks, Wildlife and Plant Conservation, Ministry of Natural Resources
- 73 and Environment, Thailand
- 74 ^r School of Biological Sciences, University of Aberdeen, United Kingdom
- 75 S CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden,
- 76 Chinese Academy of Sciences, Kunming
- 77 ^t Instituto Amazónico de Investiagciones Científicas Sinchi, Colombia
- 78 ^u Taiwan Forestry Research Institute, Taipei
- 79 V Department of Biological Sciences, National Sun Yat- sen University, Kaohsiung
- 80 W International Master Program of Agriculture, National Chung Hsing University, Taichung
- 81 * Department of Forestry and Natural Resources, National Chiayi University, Chiayi City
- 82 y School of Biological Sciences, University of Canterbury, New Zealand
- 83 ^z Department of Natural Resources and Environmental Studies, National Dong Hwa University,
- 84 Hsinchu
- 85 aa Department of Biological Sciences, National University of Singapore, Singapore

- 86 ab School of Life Sciences, Sun Yat-sen University, Guangzhou
- 87 ac Department of Botany and Plant Physiology, University of Buea, Cameroon
- 88 ad Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118
- 89 ae School of the Environment, Yale University, New Haven, CT 06520
- 90 af Morton Arboretum, Lisle, IL 60532
- 91 ag Institute of Pacific Islands Forestry, USDA Forest Service, Hilo, HI 96720
- 92 ah Centre for Ecological Sciences, Indian Institute of Science, India
- 93 ai Departamento Ecologia, University of São Paulo, Brazil
- 94 aj Department of Environmental Sciences, Wageningen University, Wageningen, The Netherlands
- 95 ak Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
- 96 al State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese
- 97 Academy of Sciences, Beijing
- 98 am Departamento de Ciencias Forestales, Universidad Nacional de Colombia Sede Medellín,
- 99 Colombia
- 100 an Department of Science and Technology, Uva Wellassa University, Sri Lanka
- 101 ao Centre de Formation et de Recherche en Conservation Forestière, Democratic Republic of Congo
- ^{ap} Biodiversity Research Laboratory, Institute of Biology, University of the Philippines Diliman,
- 103 Philippines
- 104 aq Department of Forest Biological Sciences, University of the Philippines Los Baños, Philippines
- 105 ar Binatang Research Center, Papua New Guinea
- 106 as Kadoorie Farm & Botanic Garden Corporation, Hong Kong
- 107 at The Field Museum, Chicago, IL 60605
- 108 au Water Resources Research Center, University of Hawai'i, Mānoa, Honolulu, HI 96822
- 109 av Environmental Studies Department, University of California, Santa Cruz, Santa Cruz, CA 95064
- 110 aw Department of Botany, University of Perdeniya, Sri Lanka
- 111 ax Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese
- 112 Academy of Sciences, Shenyang
- 113 ay School of Biological Sciences, University of Hong Kong, Hong Kong
- 114 az Department of Renewable Resources, University of Alberta, University of Alberta, Edmonton,
- 115 Canada
- 116 ba Institute of Natural Resources, Heilongjiang Academy of Sciences, Heilongjiang
- 117 bb Department of Natural and Applied Sciences, University of Wisconsin-Green Bay, Green Bay,
- 118 WI 54311
- 119 bc Department of Ecology and Evolutionary Biology, University of California, Los Angeles, Los
- 120 Angeles, CA 90095
- 121 bd Department of Ecological Modelling, Helmholtz Centre for Environmental Research UFZ,
- 122 Germany
- 123 be University of Hawai'i Mānoa, Honolulu, HI 96822
- 124 bf Graduate School of Science, Osaka City University, Japan
- 125 bg Department of Forest Ecology, Silva Tarouca Research Institute, Czech Republic

- 126 bh Smithsonian Tropical Research Institute, Republic of Panama
- 127 bi Key Laboratory of Aquatic Botany and Watershed Ecology, Chinese Academy of Sciences,
- 128 Wuhan
- 129 bj Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State
- 130 University, Corvallis, OR 97331
- 131 bk Department of Biology, Osaka City University, Japan
- 132 bl Faculty of Science and Technology, Thammasat University (Rangsit), Thailand
- 133 bm Department of Forest Management, W.A. Franke College of Forestry and Conservation,
- University of Montana, Missoula, MT 59812
- 135 bn Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou
- 136 bo Guangxi Key Laboratory of Plant Conservation and Restoration Ecology in Karst Terrain,
- 137 Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of
- 138 Sciences, Guilin
- 139 bp Department of Natural Resources and Environmental Management, University of Hawai'i,
- 140 Mānoa, Honolulu, HI 96822
- 141 bq East China Normal University, Shanghai
- br Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing
- 143 bs Asian School of the Environment, Nanyang Technological University, Singapore
- 144 bt School of Biological Sciences, University of Queensland, Australia
- 145 bu Wildland Resources Department, Utah State University, Logan, UT 84322
- 146 by Southern Institute of Ecology, Vietnam Academy of Science and Technology, Vietnam
- bw Environmental Change Institute, School of Geography and the Environment, University of
- 148 Oxford, United Kingdom
- bx Department of Physical and Environmental Sciences, University of Toronto Scarborough,
- 150 Canada
- 151 by Forest Global Earth Observatory, Smithsonian Environmental Research Center, Edgewater, MD
- 152 21037
- 153 bz Institut de Recherche en Ecologie Tropicale, Centre National de la Recherche Scientifique et
- 154 Technologique, Gabon
- 155 ^{ca} Forest Department Sarawak, Malaysia
- 156 cb Department of Biology, University of Maryland, College Park, College Park, MD 20742
- 157 cc East African Herbarium, Botany Department, National Museum of Kenya, Kenya
- 158 ^{cd} Department of Biology, Washington University in St. Louis, St. Louis, MO 63130
- 159 ce Programa Ciencias de la Biodiversidad, Instituto de Investigación de Recursos Biológicos
- 160 Alexander von Humboldt, Colombia
- 161 cf Biology Centre, Institute of Entomology, Czech Academy of Sciences, Czech Republic
- 162 ^{cg} Universidad Rey Juan Carlos, Spain
- 163 ^{ch} Harvard Forest, Harvard University, Petersham, MA 01366
- 164 ^{ci} Department of Biology, University of Hawaii, Hilo, HI 96720
- 165 ^{cj} Microwaves and Radar Institute, German Aerospace Centre DLR, Germany

- 166 ck Forest Ecology Group, Smithsonian Environmental Research Center, Edgewater, MD 21037
- 167 cl School of Natural Resources and the Environment, University of Michigan, Ann Arbor, MI
- 168 48109
- 169 cm Department of Biology, Indiana University, Bloomington, IN 47405
- 170 cn Department of Forest Biology, Kasetsart University, Thailand
- 171 co School of Life Sciences, Technical University of Munich, Germany
- 172 cp The Royal Society SEARRP (UK/Malaysia), Malaysia
- 173 ^{cq} Institute of Biology, University of the Philippines Diliman, Philippines
- 174 cr School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska
- 175 Lincoln, Lincoln, NE 68588
- 176 cs Minzu University of China, Beijing
- 177 ct Department of Soil and Water Conservation, National Chung Hsing University, Taichung
- 178 ^{cu} Centre for Ecological Sciences and Divecha Centre for Climate Change, Indian Institute of
- 179 Science, Bangalore, India
- 180 ^{cv} Institute of Forestry and Conservation, University of Toronto, Canada
- 181 cw School of Biological Sciences, Washington State University, Vancouver, WA 98686
- 182 cx UK Centre for Ecology & Hydrology, United Kingdom
- 183 cy Department of Ecology, Evolution, and Environmental Biology, Columbia University, New
- 184 York, NY 10027
- 185 ^{cz} School of Biological Sciences, Pontificia Universidad Católica del Ecuador, Ecuador
- 186 da Department of Forest Ecology, Silva Tarouca Research Institute, Czech Republic
- 187 db Tiantong National Forest Ecosystem Observation and Research Station, School of Ecological
- and Environmental Sciences, East China Normal University, Shanghai
- dc Department of Plant & Microbial Biology, University of Minnesota, St. Paul. MN 55108
- 190 dd Bell Museum, University of Minnesota, St. Paul, MN 55108
- 191 de Forestry and Environment Division, Forest Research Institute Malaysia, Malaysia
- 192 df Institute of Arts and Sciences, Far Eastern University, Philippines
- 193 dg Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South
- 194 China Botanical Garden, Chinese Academy of Sciences, Guangzhou
- 195 dh The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of
- 196 Education, College of Life Sciences, Zhejiang University, Hangzhou
- 197 di Department of Environmental Sciences, University of Puerto Rico, Puerto Rico

Abstract

2

4 5

6

7

8

9

10

11 12

13 14

15

16 17

18 19

20

21

22

23

24

1

ForestGEO is a network of scientists and long-term forest dynamics plots (FDPs) spanning the Earth's major forest types. ForestGEO's mission is to advance understanding of the diversity and dynamics of forests and to strengthen global capacity for forest science research. ForestGEO is unique among forest plot networks in its large-scale plot dimensions, censusing of all stems ≥1 cm in diameter, inclusion of tropical, temperate and boreal forests, and investigation of additional biotic (e.g., arthropods) and abiotic (e.g., soils) drivers, which together provide a holistic view of forest functioning. The 71 FDPs in 27 countries include approximately 7.33 million living trees and about 12,000 species, representing 20% of the world's known tree diversity. With more than 1,300 published papers, ForestGEO researchers have made significant contributions in two fundamental areas: species coexistence and diversity, and ecosystem functioning. Specifically, defining the major biotic and abiotic controls on the distribution and coexistence of species and functional types and on variation in species' demography has led to improved understanding of how the multiple dimensions of forest diversity are structured across space and time and how this diversity relates to the processes controlling the role of forests in the Earth system. Nevertheless, knowledge gaps remain that impede our ability to predict how forest diversity and function will respond to climate change and other stressors. Meeting these global research challenges requires major advances in standardizing taxonomy of tropical species, resolving the main drivers of forest dynamics, and integrating plot-based ground and remote sensing observations to scale up estimates of forest diversity and function, coupled with improved predictive models. However, they cannot be met without greater financial commitment to sustain the long-term research of ForestGEO and other forest plot networks, greatly expanded scientific capacity across the world's forested nations, and increased collaboration and integration among research networks and disciplines addressing forest science.

252627

28

29

30

Keywords: capacity strengthening, demography, forest plots, network science, species diversity, tree growth and mortality, tropical forests.

Introduction

Forests store about half of the world's carbon, take up 25% of all new anthropogenic carbon emissions (Keenan and Williams 2018), and control climatic and hydrological cycles (Immerzeel et al. 2020). They house about 50% of the world's known species, providing medicines, food, and fuel for a huge fraction of humanity. Forests are in the midst of the greatest transformation since the last great extinction through the combined anthropogenic effects of deforestation, forest degradation through overexploitation, the deposition of pollutants, invasive pests, and climate and atmospheric change. How forests respond to the Anthropocene has profound consequences for life on Earth, yet understanding these responses has proved challenging due to the diversity and complexity of forest ecosystems and the long timeframes over which forests develop and change. The current state of knowledge of the underlying processes regulating species distributions, population and community dynamics, and the resistance and resilience of forests to perturbations provides an incomplete basis from which to predict the future of the world's forest biomes. Even the fundamental biology of many forest species is unknown, yet is essential to predicting and mitigating anthropogenic impacts on forests at a global scale.

The diversity, structure and functioning of forests vary across a wide range of spatial and temporal scales and involve a plethora of interacting species beyond trees. In other words, while trees make up forests, forests are more than trees. Tree species can persist across diverse climatic conditions, and forests vary by orders of magnitude in species diversity across the Earth. The same area that supports roughly ten tree species in a Sequoia forest can support over a thousand in Borneo or the Amazon (Lee et al. 2002, Duque et al. 2017). Yet, we remain ignorant of how the ecological niches and demographic characteristics of the vast majority of tree species determine their specific geographic and environmental distributions, which underpin patterns of diversity. The dynamics of tree growth, mortality, and recruitment vary dramatically among forests and through time. Abiotic environmental drivers, like climate, soil, and disturbances, and biotic drivers, involving interactions with other taxa, shape the vital rates of trees, which ultimately determine carbon, water, and nutrient storage and fluxes. Yet, these processes and interactions remain obscure. Nowhere is this more true than in tropical forests, where knowledge of the myriad ways in which animals and microbiota interact with trees, and consequently forests, is in its infancy. A challenge for defining these interaction networks is not only identifying which taxa live in forests, but also quantifying what ecological roles they play and when, and with what impact. Integrating the entire forest biota into a holistic understanding of forest ecosystem function is daunting, yet is key to predicting the resilience or vulnerability of forests to change.

The enormous challenge for forest science is determining the controls on the structure, function, and diversity of forests across large spatial and temporal scales and linking these processes to the functioning of the Earth system. Meeting this challenge requires integration across levels of organization from the molecular to the ecosystem levels using detailed standardized data collected around the world and over decades to centuries. While ambitious, this knowledge is essential for building better predictive models and improving space-borne observation platforms

that can be used to monitor and predict the future of forested biomes globally. Such advances cannot be accomplished by a single research group, institution, or even country, but rather require a distributed network of scientists, representing many disciplines, and engaging in long-term collaborations, who are committed to capacity-strengthening in forest science globally and to seeking long-term financial support for these essential endeavors. The mission of the Forest Global Earth Observatory (ForestGEO) is to advance these fundamental and pressing research and training needs.

ForestGEO

79 80

81

82

83

84

85 86

87

88

89

90

91

92

93 94

95

96

97

98 99

100

101

102

103

104105

106107

108

109

78

71

72

73 74

75

76

77

The Forest Global Earth Observatory (ForestGEO), administered by the Smithsonian Tropical Research Institute (STRI), is a worldwide network of scientists and long-term forest dynamics plots (FDPs) spread across Earth's major forests. ForestGEO is dedicated to understanding the diversity and dynamics of forests and strengthening global capacity for forest science research. Since 1980, the network has grown from a single forest research site in Panama into a collaboration of 71 sites in 27 tropical and temperate countries, including more than 100 partner organizations. ForestGEO collects standardized data on the recruitment, growth, and death of over 7 million trees of 12,000 unique species, approximately 20% of the world's known tree diversity (Table 1, Figure 1). ForestGEO FDPs represent a very wide range of environmental conditions spanning ever-wet tropical to arid to boreal climates (see Figure 1 in Anderson-Teixeira et al. 2015). FDPs are distributed across gradients of soil fertility, topography, rainfall intensity and seasonality, and disturbance regimes. ForestGEO FDPs in the tropics are largely confined to intact "old-growth" forests. In the temperate zone, many ForestGEO FDPs are in regenerating forests of 30-150 years post-disturbance, though several in the western US are in old-growth forests (e.g., Yosemite). ForestGEO FDPs are also representative of global woody plant diversity. A recent analysis of 63 of the 71 FDP species lists found that 59% of all plant families and 35% of all plant genera that contain woody species are found within the network (Figure 2). The sample of families and genera is unbiased with respect to the phylogeny of woody plants (Monks, Davies & Swenson, unpublished data). However, certain woody families are underrepresented by ForestGEO, for example, families constrained to geographical areas not currently sampled by ForestGEO (e.g., Nothofagaceae and Araucariaceae), or primarily herbaceous families (e.g., Caryophyllaceae and Geraniaceae). A future goal of ForestGEO is to expand sampling to underrepresented areas, including Australia, southern Africa, and southern South America.

Each ForestGEO FDP is in a protected area and is led and managed by one or more principal investigators based at host-country partner organizations. Principal scientists in each country lead the regular, long-term data collection, implement all research activities at the sites, and represent their sites in network-wide discussions and collaborative activities. An FDP is a large-scale forest plot with all stems ≥1 cm in diameter measured approximately every five years to obtain longitudinal data on the growth, survival, and recruitment of individual trees. This standardized protocol is essential to addressing a wide range of research questions in ecology,

evolution, and conservation because it captures much of the tree lifespan, as well as temporal variation in the community structure of forests across relatively large contiguous areas that encompass local diversity gradients.

The pivotal strengths of the ForestGEO network are: (1) standardized data and measurement protocols – the core tree data and ancillary data are collected and managed uniformly, facilitating data sharing and comparative analyses among sites; and (2) the strengthening of global scientific capacity – by engaging forest researchers from across all participating nations, the network has been able to train hundreds of scientists and build an integrated, collaborative community of forest ecologists in some of the most diverse and threatened forests in the world. ForestGEO researchers have published more than 1,300 papers that have made significant contributions and novel discoveries in forest science (Figure 3, *Section 5*). In this paper, we provide a brief overview of the ForestGEO network, including a short history, a description of the measurements and protocols implemented in the FDPs, a description of our approach to training, strengthening capacity and creating opportunities for early-career scientists, a brief overview of some of the key scientific achievements of the network, and suggestions for future priorities, opportunities, and challenges in forest science.

1. History

The first large-scale forest dynamics plot was initiated on Barro Colorado Island (BCI) in Panama by Stephen Hubbell and Robin Foster in 1980 (Figure 1). The goals of this novel and ambitious undertaking were clearly stated in the first recensus grant proposal for the BCI 50-ha plot:

"The long-range objectives are: (1) to obtain statistically adequate samples of many tropical trees species for horizontal life table analysis using large cohorts of individually tagged and mapped trees; (2) to document changes in forest composition directly with a sufficient data base to test competing equilibrium and non-equilibrium theories of tropical forest organization and dynamics; and (3) to provide detailed maps of tree populations to other researchers interested in diverse aspects of the biology of tropical tree species."

excerpt from: S.P. Hubbell & R.B. Foster (1982) unpublished NSF proposal "The Structure and Dynamics of a Tropical Forest: A Demographic Analysis."

FDPs in Pasoh Forest Reserve, Malaysia, and Mudumalai Wildlife Sanctuary, India, soon followed through partnerships with the Forest Research Institute of Malaysia and the Indian Institute of Sciences, respectively. In 1989, Peter Ashton, then Professor at the Arnold Arboretum of Harvard University, orchestrated a USAID and NSF-supported meeting of regional forest scientists in Bangkok, Thailand, during which a plan for expanding FDPs across edaphic, rainfall and biogeographic gradients within tropical Asia was discussed (Ashton et al. 1999). Recognizing the rapid transformation of Asian forests going on at that time, a key motivation for the meeting was

to develop the knowledge base needed to improve sustainable forest management of Asia's rapidly dwindling forests (Anon. 1989), or, to:

"design a plan for utilizing the available scientific skills of the region in conducting policyoriented research at the minimum level required for sound policy decision-making, covering the major tropical forest ... ecosystems of the region."

excerpt from: Anon. (1989 unpublished USAID-NSF workshop report). "Funding Priorities for Research Towards Effective Sustainable Management of Biodiversity Resources in Tropical Asia."

Over the next few years, through opportunistic funding successes and the inspired leadership of site principal investigators, FDPs were initiated in Sri Lanka (Sinharaja), Thailand (Huai Kha Khaeng), Singapore (Bukit Timah), the Philippines (Palanan), and an additional site in East Malaysia (Lambir Hills). It was a busy time for plot development, with new sites also being established in Africa and the Neotropics (Figure 4). Researchers in Cameroon (Korup), the Democratic Republic of Congo (Ituri), Puerto Rico (Luquillo) and Ecuador (Yasuní) all initiated FDPs. While international partnerships were important for all of these developments, highly motivated individual researchers were critical to this phase of plot expansion.

In 1990, STRI and the Arnold Arboretum (AA) jointly established the Center for Tropical Forest Science (CTFS) to coordinate the expanding network of FDPs and help advance science and training opportunities among research partners. A series of graduate students working on the newly established plots helped drive the science output – perhaps serendipitously, this turned out to be a key element in the future strength of the network, as many of these students and fellows became future plot PIs and science leaders. In 1993, CTFS established a regional headquarters in Singapore at the National Institute for Education of Nanyang Technological University. The partnership with NTU, now through the recently formed Asian School of the Environment, continues today. Ashton (2014, 2020) provides a thorough overview of research achievements of the CTFS network in Asia in a physical and biogeographic context.

Throughout the 1990s, CTFS expanded, developing new partnerships across the tropics, obtaining funding to establish new plots in southern Thailand and Manaus, Brazil, and to recensus earlier established plots (BCI and Pasoh). An overview of the expanding network was published in 2004 (Losos & Leigh 2004). Despite the progress, the challenge of securing continued funding remained. In 2003, STRI and the Arnold Arboretum, with critical support from the Frank Levinson Family Foundation, signed a new memorandum of understanding in which the institutions would co-fund the expanding CTFS network, with the Arboretum forming the CTFS-AA Asia program based at Harvard, and STRI continuing to lead the global network. Confirmed annual funding led to much greater security for core CTFS staff, continued plot censuses, funds for postdoctoral fellowships and grants to early-career scientists, and supported the implementation of field courses in the Asian tropics, which helped develop further interest in long-term ecological research across that region.

In 2005, the headquarters of CTFS moved from AA to STRI in Panama. With the encouragement and financial support of the Frank Levinson Family Foundation, CTFS embarked on a scientific review. A series of workshops were held with the goal of defining broad new scientific directions for the network. Specifically, the idea was to build on the core tree censuses to transform CTFS into a global forest observatory, providing a more holistic view of all the biotic and abiotic drivers that combine to produce a functioning forest. The idea was that the FDPs had collected a small fraction of the data that were needed to transform forest science into a more predictive endeavor, encompassing interdisciplinary ecology, evolution, conservation, and Earth system functioning. Workshops covered abiotic conditions (e.g., climate and soils), paleobiology, ecosystem processes (including carbon dynamics and functional traits), genetic approaches, and monitoring of several animal groups (e.g., arthropods and vertebrates). Several of these initiatives were rapidly implemented across the network with standardized data collection (*Section 3*). In 2007, the central Smithsonian endorsed the network, and by 2010 helped secure core federal funds from the US government in support of the network's expanding science mission.

Building on a workshop held in Beijing in 2004, ForestGEO also began a formal partnership with the Chinese Forest Biodiversity Monitoring Network (CForBio) in 2008. By this time, several plots in China were already established and participating in the ForestGEO network, including in the far south (Xishuangbanna) and north (Changbaishan). The CForBio team was rapidly building new plots to sample the great diversity of forest types across China (Feng et al. 2016). Matching grants in 2010 from the NSF-US, under the International Research Coordination Networks program, and NSF-China led to a series of analytical workshops in both countries that greatly advanced collaborative activities among participating researchers.

The network expanded beyond the tropics beginning in 2007 (Figure 4). The initial impetus for this expansion was through an initiative called the Global Climate Partnership, led and funded by HSBC Bank, UK. This led to the establishment of seven plots in North America and the UK. Soon after that, the core protocol, designed largely to answer questions about high-biodiversity tropical forests, proved valuable in extra-tropical forests. Long-term forest research employing large plots with measurements of small stems was a new approach in temperate forest monitoring. The initial seven temperate forest sites have grown to more than 25, including some of the highest biomass forests (Western US). Many of these new plots leveraged existing data by colocation with plots or other organized national environmental networks (e.g., NEON and LTER in the US). The expansion also enabled new synthetic investigations comparing forests at the global scale, in which fundamental ecological hypotheses (e.g., the diversity-ecosystem function relationship, the strength of species coexistence mechanisms, and determinants of life history variation), could be tested with comparable data, in many cases for the first time.

The Frank Levinson Family Foundation endowed the directorship of ForestGEO in 2013. This was timely as the Arnold Arboretum decided to end its support of the Asia program. To emphasize its global reach and expanding research scope, the network was renamed the Forest Global Earth Observatory (ForestGEO). Its mission is to build and sustain a global network of large-scale forest dynamics plots and associated research activities to monitor and understand the

ecology, evolution, and conservation of forest biodiversity and its impact on Earth's functioning, to strengthen science capacity globally through professional training, and to develop scientific input for forest policy, conservation and management. Today, the strength of the network is a direct outcome of the dual mission of science and training. The continued commitment to early-career scientists across the world helps ensure continuity of the science and the individual FDPs, but is also the key source of the innovations required to tackle the challenges confronting forests.

2. The ForestGEO Forest Dynamics Plot: core plot methods

228

229

230

231

232

233

234

235236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263264

265

A ForestGEO Forest Dynamics Plot (FDP) consists of a surveyed and mapped grid of typically 16-50 hectares (average = 26 ha) in which all woody stems with a diameter ≥ 1 cm at 1.3 m above the ground (diameter at breast height, DBH) are mapped, measured, and identified to species (Manokaran et al. 1990, Condit 1998). This census is repeated at approximately five-year intervals. during which all prior stems are remeasured or recorded as dead, and all new stems ≥ 1 cm in DBH (recruits) are tagged, mapped, measured, and identified as in the original census. ForestGEO FDPs now collectively cover 1,833 ha (Table 1). In several sites, FDPs are smaller than 16-ha due either to local funding limitations or to constraints on available forest area, however, all other aspects of standardized data collection are followed in these sites. There have been 189 censuses among the 71 plots. The oldest plot, BCI, is in the midst of its ninth census. There are approximately 7.33 million living trees within the FDPs today, and there have been over 21 million tree measurements across the plots. To publicize the core plot data and provide detailed site-specific information on local field protocols, climate and soils, species identification, and other species information, many sites have published books describing the FDPs (Manokaran et al. 1993, Lee et al. 2003, Thomas et al. 2003, Gunatilleke et al. 2004, LaFrankie et al. 2005, Co et al. 2006, Su et al. 2007, Cao et al. 2008, Bunyavejchewin et al. 2009, Chen et al. 2009, Li et al. 2010, Chang et al. 2012, Ding et al. 2013, Cao et al. 2013, Lu et al. 2016, Wang et al. 2016, Xu et al. 2017, Yang et al. 2019). Several online these are also published (https://forestgeo.si.edu/researchprograms/publications/forestgeo-stand-books).

Species identification is one of the key imperatives in the ForestGEO methodology. A core goal of the FDP is to document the population dynamics of as many species as possible, so the FDPs all go to great lengths to identify their constituent species as thoroughly as possible using extensive collections, comparisons with herbarium specimens, and consultation with taxonomists specializing in particular taxonomic groups. While most species can be identified, 10-15% of species, including mostly rare tropical species that account for a small fraction of stems in the tropical FDPs, remain classified as distinct morphospecies but without a confirmed binomial.

(i) Why large plots with the inclusion of small stems?

The ForestGEO FDP methodology pioneered two relatively unique features in forest science: the very large-scale plot dimensions, and the complete censusing of all stems of at least 1 cm DBH.

Previous plot-based studies in tropical forests mostly employed plots of either 1 ha in area using a DBH cut-off of 10 cm, or 0.1 ha with DBH \geq 2.5 cm (e.g., Gentry 1988, Malhi et al. 2002). Both of these methodological innovations have significant logistical and financial consequences: a 50-ha plot including all stems \geq 1 cm DBH may include 250,000-450,000 stems, compared to an average of about 500 stems \geq 10 cm DBH in a typical 1-ha plot. Establishing a 50-ha plot in diverse tropical forest with ~350,000 stems typically takes a team of 15 technicians two years, followed by at least two years for expert plant identification, and data processing and quality control. While measuring, mapping and sampling small stems is straightforward, albeit laborious, the identification of small stems, which are often juveniles of locally occurring adults, can be exceedingly challenging, as trees often undergo dramatic changes in morphology as they grow from the understory to the canopy. However, sampling larger areas and including small stems provides a series of benefits for sampling forest diversity, dynamics, and demography.

The spatial and temporal scale, and intensity of sampling in the ForestGEO FDP is especially valuable for studying population and community ecology in forests. The dynamics of most forests are, barring episodic disturbances, slow. Mortality rates typically range from 1-4% per year among forests, so detecting trends in mortality rates, and especially differential trends among species, size classes or habitats requires lots of individuals to be monitored over long periods (McMahon et al. 2019). Most tropical tree species are rare, so large plots are needed to achieve the goal of building robust demographic data for a large fraction of species at a particular site. Furthermore, a considerable portion of woody plant diversity is present at diameters less than 10 cm, so studying trees down to 1 cm is important for capturing forest diversity (Memiaghe et al. 2016). Large plots are useful for advancing understanding of how disturbances influence the diversity and dynamics of tropical forests since many (though certainly not all) disturbances in tropical forests occur on the scale of 0.25–5 hectares (e.g., tree falls, landslides, lightning, etc.). Large mapped plots provide a valuable resource for exploring the spatial patterns in forests, especially for large-diameter trees that occur at relatively low densities (Lutz et al. 2018, Engone-Obiang et al. 2019). Many of the mechanisms posited to maintain diversity and drive patterns of species turnover are spatial, including abiotic components of edaphic, hydrologic and light variation, and interactions among neighboring con- and heterospecific individuals. The inclusion of small stems (1–10 cm DBH) provides a window into the early life stages of tree species, a stage at which mortality rates are often higher and individuals are more sensitive to competition, disturbance and biotic effects. Finally, large plots have a large footprint and can be more easily "seen" from satellites and other remote observing instruments (Réjou-Méchain et al. 2014).

(ii) Data management & analysis

266

267

268269

270271

272

273

274

275

276

277

278

279

280

281

282

283284

285

286

287

288

289

290

291292

293

294

295

296

297

298

299

300 301

302

303

304

ForestGEO designed and developed a complete data system for storing and managing tree census results for the network. The ForestGEO database model follows theories of data normalization by minimizing data redundancy, which can lead to anomalies during updates and is the source of many common errors (Condit et al. 2014). The database runs on the open-source MySQL server,

with interfaces written in HTML, PHP and JavaScript for online access via web portals. The data entry interface can be configured to mirror the field forms for plots using paper forms. The system screens and uploads data to the MySQL plot database. All data are in a standard format, facilitating sharing of software for data analysis, and fostering comparative data analysis (e.g., LaManna et al. 2017, Lutz et al. 2018). Metadata and version control are maintained to ensure that researchers can reliably reference datasets. A data request system is linked to the database, including descriptions of the terms and conditions for data access, and details for acknowledgement (https://forestgeo.si.edu/explore-data). Several plot datasets are now publicly accessible (e.g., Bourg et al. 2013) and many other FDP data are available following acceptance of the terms and conditions for data sharing, as described on the site pages of the ForestGEO website. To ensure uniform data quality across the partner sites, ForestGEO provides technical support to plot PIs. The protocol for this system is detailed in the "ForestGEO Database Handbook" (https://forestgeo.si.edu/sites/default/files/database handbook-final.pdf).

To facilitate comparative data analysis across FDPs, ForestGEO developed a package of analytical software in the R programming language designed specifically for use with census data from the FDPs (Condit 2012). The package is available as either the "CTFS R package" https://forestgeo.si.edu/explore-data/r-package-0 or the "fgeo" R package https://forestgeo.si.edu/explore-data/r-package. The package includes many tutorials, broadening access to a wide range of data analytical tools and facilitating research by forest scientists with a broad range of levels of experience with analyses of large datasets. Long used in the annual network-wide analytical workshops (Section 4), the CTFS R package has also served as an entry point for many young forest scientists to learn to develop the bespoke statistical analytical code necessary for testing ecological hypotheses within and across the network. Although the functions in the CTFS R package are designed for use with ForestGEO data, the source code for each function is freely available, and can be modified to accommodate any data format, which enables capacity building in forest science beyond the ForestGEO network.

3. ForestGEO as a platform for forest research

The transition from CTFS to ForestGEO was motivated by the idea that a full understanding of the functioning of forests requires an integrated set of observations with greater biotic coverage, coupled with detailed measurements of the abiotic drivers that strongly influence forests. This led to greatly expanded data collection at many ForestGEO FDPs. The focus of the expanded field data collection program included sampling animal and microbial diversity, monitoring life stages from flowering through seedling recruitment, quantifying components of carbon stocks and fluxes, using genome-based approaches to forest diversity and lineage interactions, as well as detailed assessment of climatic and edaphic variation within sites. As with the core plot censuses, protocols for expanded data collection were standardized to facilitate local, regional and global comparative analyses. Here we present some examples of data being collected across the FDPs that are opening new avenues of forest science discovery. Full descriptions of these and other standardized

protocols and their implementation across ForestGEO FDPs are described in Anderson-Teixeira et al. (2015) and available on the ForestGEO website (https://forestgeo.si.edu/protocols; see also).

(i) Arthropods

344

345

346 347

354

355

356 357

358

359

360

361 362

363 364

365

Arthropods influence key forest functions, including nutrient cycling, seed predation and dispersal, herbivory, and pollination. Given recent concerns about global insect decline (Sánchez-Bayo & Wyckhuys 2019; Wagner 2020), high quality data on the population dynamics of tropical arthropods are urgently needed to understand their responses to global changes and the functional implications for their ecosystems (Basset & Lamarre 2019; Wagner 2020). In 2009, ForestGEO developed a standardized protocol (https://forestgeo.si.edu/node/145661/) for monitoring common arthropod species with methods that can be applied consistently across the network. The protocol is now implemented in seven tropical FDPs representing a rare effort to monitor key arthropod assemblages in tropical forests (Lamarre et al. 2020; WWF, 2020). Monitoring data now represent more than 600,000 records, >6,000 species, 14,000 DNA barcoding sequences, and 100,000 vouchered specimens. Taxonomic resolution is improved by building reference collections and DNA barcode libraries (e.g., Basset et al. 2015). Species traits (e.g., thermal tolerance) are being used to delineate functional groups to monitor population trends and overcome the challenge of studying thousands of individual species (Basset et al. 2017, Lamarre et al. 2020). DNA metabarcoding is also being used to monitor community dynamics (Gripenberg et al. 2019). The data are being used for a wide range of monitoring and interactions studies, including responses of insects to climate change (Basset et al. 2013, 2015, 2017; Lucas et al. 2016; Luk et al. 2019), and studies of seed predators (Basset et al. 2018, Gripenberg et al. 2019).

(ii) Completing the tree life cycle from reproduction to recruitment

367 368

369

370

371

372

373

374

375

376 377

378

379

380

381

366

The core monitoring program at all ForestGEO FDPs focuses on trees and begins when a tree enters the 1 cm DBH size class and ends when the tree dies. Key aspects of a tree's life-history are overlooked with this protocol. Stems of 1 cm DBH may be decades old (Delissio et al. 2002), key processes affecting individual survival may be most intense in the smallest size classes, and patterns of flowering, fruiting, seed dispersal, germination, and recruitment strongly affect when and where species will occur. In 1987, the collection of data on seed production, seedling recruitment and seedling growth and survival was initiated on BCI to build complete life cycle information for tropical tree species using seedling plots and seed traps (Wright et al. 2005. https://forestgeo.si.edu/research-programs/flowers-seeds-and-seedlings-initiative). implementation of these field protocols, coupled with intensive monitoring of the reproductive status of thousands of individual trees, has led to a new generation of studies that have integrated all life stages from seed to adult to evaluate: (1) relationships between vital rates and functional traits across the tree life cycle (Iida et al. 2014, Visser et al. 2016), (2) costs and benefits of dioecy (Bruijning et al. 2017), (3) the impact of lianas on population growth rates of host trees (Visser et al. 2017), and (4) the processes that underlie liana-tree interactions including colonization, shedding, baseline mortality, and increased lethality (Visser et al. 2018). Today 26 FDPs have established seed/seedling monitoring programs using these standardized protocols (e.g., Chen et al. 2010, Chen et al. 2018, Jin et al. 2018).

Additional seedling plots have been added to many FDPs to improve spatial coverage and sample size for early-life stage demographic analyses (e.g., Comita et al. 2010). Seed traps, by collecting all fallen leaf and reproductive material have also been a source of information on seed dispersal patterns (Hubbell et al. 1999, Du et al. 2009, Marchand et al. 2020), and the phenology of reproduction and tissue turnover (e.g., Detto et al. 2018). Repeated observations of individual trees have also been implemented at ForestGEO FDPs, providing insights into patterns of vegetative and reproductive phenology (e.g., Williams et al. 2008; Kurten et al. 2018).

(iii) Biomass and carbon storage and fluxes

ForestGEO FDP data have provided an excellent resource for quantifying aboveground woody biomass carbon stocks (AGB), woody productivity and woody mortality fluxes. The core ForestGEO FDP carbon measurement is tree diameter at breast height (DBH). These measurements are used in combination with allometric equations and sometimes also measurements of tree height and wood density, to estimate individual tree biomass (Chave et al. 2014, Réjou- Méchain et al. 2017; Gonzalez-Akre et al. *in review*). Individual tree and stem AGB are then summed over area to estimate total AGB stocks per area. Repeat census data together with biomass allometric equations can be used to quantify woody productivity and woody mortality fluxes at the stand level. Numerous studies have quantified biomass stocks and fluxes in ForestGEO plots, and their variation over space and time (Chave et al. 2003, Chave et al. 2008, Valencia et al. 2009, Lin et al. 2012, Yuan et al. 2016, 2019, Zuleta et al. 2017, Ma et al. 2019, Rutishauser et al. 2019). A key advantage of ForestGEO plots for these studies is that their large size reduces sampling errors in these biomass stocks and fluxes, sampling errors which remain substantial even at the 1-ha scale (Wagner et al. 2010, Muller-Landau et al. 2014, Réjou-Méchain et al. 2014).

While woody productivity and mortality can be well characterized with a 5-yearly recensus interval, their responses to short-term environmental fluctuations, including droughts, storms and pest outbreaks require more frequent measurements (Lutz 2015, McMahon et al. 2019). To better characterize the causes and directionality of changes in growth and mortality rates, many ForestGEO plots have implemented annual or subannual measurements of growth and mortality. For growth, plots have subsampled trees with dendrometer bands at temporal frequencies ranging down to weeks (McMahon & Parker 2015) or even minutes (Herrmann et al. 2016), and many have also developed tree-ring chronologies that provide histories of annual growth over decades to centuries (e.g., Šamonil et al. 2013; Sniderhan & Baltzer 2016; Alfaro-Sánchez et al. 2017; Helcoski et al. 2019). For mortality in tropical FDPs, ForestGEO established a protocol for the assessment of tree damage and death (Arellano, Zuleta & Davies, *in review*), complementing

existing surveys in temperate FDPs (Furniss et al. 2020), and currently conducts annual mortality censuses at more than 10 sites.

Because living trees may account for less than half of total ecosystem carbon stocks (Anderson-Teixeira et al. 2018), and their woody productivity can represent <10% of gross primary production (Anderson-Teixeira et al. 2016), many FDPs are also censusing carbon stocks and/or fluxes in soil, fine roots, dead wood and lianas (Ngo et al. 2013, Wright et al. 2015, Gora et al. 2019, Janik et al. 2019). Annual or subannual measurements of litterfall and soil respiration are being used to estimate interannual variation in associated carbon fluxes in numerous plots (Rubio and Detto 2017, Detto et al. 2018).

(iv) Soils and climate

Soils and climate drive many aspects of the diversity and dynamics of forests. ForestGEO has designed protocols to assess their spatial and temporal variation. At the scale of a 50-ha plot there is often dramatic spatial heterogeneity in soil properties driven by variation in underlying parent material, topographic position, and water table depth and flow paths (Figure 5). This edaphic variation impacts spatial variation in carbon and biomass stocks and fluxes, and strongly affects species distributions (*Section 5*). ForestGEO has implemented a standard protocol to measure the physical and chemical properties of soils in over 25 tropical and temperate FDPs (https://forestgeo.si.edu/protocols/soils). Soils are sampled across the entire FDP resulting in maps of soil chemical and physical characteristics (John et al. 2007). Soil carbon is being quantified in FDPs to improve our understanding of factors controlling carbon stocks globally, and how this might change with future shifts in climate. Maps of soils and topography are also being used to investigate demographic patterns of individual tree species (e.g., Russo et al. 2005).

Meteorological data are collected at or near various ForestGEO sites. This information is fully described in Anderson-Teixeira et al. (2015) and is curated in the open-access ForestGEO Climate Data Portal (https://forestgeo.github.io/Climate/; DOI: 10.5281/zenodo.4041609), along with climate records extracted specifically for ForestGEO sites from global databases (e.g., CRU, Harris et al. 2020). The portal also hosts historical records of atmospheric pollution (CO₂, NO_x and SO₂ emissions, Hoesly et al. 2020).

(v) Genome-based approaches to diversity and dynamics

The identification of species remains an impediment to advancing forest science. For trees, the available sample may have no flowers or fruits to enable a confirmed identification. For many other organisms, they may be microscopic (e.g., bacteria, fungi, etc.), they may be taxonomically very poorly known (e.g., many arthropod groups), and in still many cases, they remain unknown to science (Cardoso et al. 2017). By harnessing advances in molecular genetics, sequencing technology, and bioinformatics, DNA barcoding has become a valuable tool for exploring diversity in ForestGEO FDPs and has potential value in tracking changes in biodiversity (Kress et al. 2009).

More than 3,000 tree species in 25 ForestGEO FDPs and 14,000 arthropods in seven FDPs have now been DNA barcoded (Erickson et al. 2014, Basset et al. 2015). These barcodes are being used for the identification of tree roots (Jones et al. 2011) and seed predators (Gripenberg et al. 2019), and to build community-level phylogenies (Swenson et al. 2012, 2013, Erickson et al. 2014).

Metabarcoding, barcoding applied to mixed community samples, is now being widely used in ForestGEO plots to explore plant-animal and plant-microbe interactions, including studies of mycorrhizal symbionts in dipterocarp-dominated FDPs in Malaysia (Peay et al. 2010, 2015), microbial diversity along habitat gradients and in relation to the tree community (Russo et al. 2012, Barberán et al. 2015, Song et al. 2018) and food plant diversity in fecal material of vertebrate herbivores (Erickson et al. 2017, McShea et al. 2019). The potential to explore the functional basis of tree interactions with the environment are being further enhanced through the use of genomic approaches in FDPs (Swenson et al. 2017a), for example, to investigate the genetic basis of drought tolerance differences among tree species (Swenson et al. 2017b).

4. ForestGEO Education and Training Initiatives

Recognizing the global need for strengthening capacity in forest science, ForestGEO is deeply committed to training early-career scientists from all over the world spanning diverse professions in forest science, including researchers, academics, conservation biologists, and managers. By cultivating new skills, gaining research experience, and increasing accessibility to a network of data and shared expertise, ForestGEO's education and training initiatives ensure that benefits derived from the global syntheses are shared among diverse groups. Regular analytical and data workshops, individual research grants, internships, and postdoctoral fellowships are designed to train the next generation of scientists who will be the future stewards of Earth's forests.

For ForestGEO's hundreds of collaborating researchers around the world, dedicated time to meet in-person to share research findings, learn new analytical techniques, and discuss multiplot research is invaluable. ForestGEO's analytical and data workshops bring researchers together to define global-scale science questions, address data gaps and network needs, and expand interdisciplinary collaboration. ForestGEO has convened 17 analytical workshops since 2001, each bringing together scientists from more than 20 countries (Figure 7). Analytical workshops consist of hands-on training, seminars, and discussions for approximately 60 individuals over two to three weeks in a location near a ForestGEO plot. Workshop participants consist of approximately 70% students and early-career scientists who are grouped by research interest with a designated mentor to foster research collaborations and receive direct training and support. These workshops have provided more than 350 early-career scientists with opportunities to gain international research experience, improve writing and editing skills, and expand data analysis expertise. The analytical workshops have resulted in peer-reviewed papers in a wide array of iournals spanning disciplines, with 255 workshop-derived papers published since 2011. Many of the papers are coauthored by participants from multiple plots, reflecting the value of data sharing and analysis that is fostered through the workshops. The connections cultivated at analytical

workshops continue and develop into enduring mentorships and collaborations that allow workshop attendees to be conduits of research mentorship to others in their home institutions, exponentially expanding the network's training impact.

ForestGEO also holds focused data management workshops that cover a range of topics from basic data entry techniques and management utilizing Structured Query Language (SQL), to training in statistical analyses with the R programming language. ForestGEO database staff and scientists provide individual attention and training to plot managers, early-career scientists, and students, who then bring this knowledge back to their local plots and institutions.

To create direct opportunities for graduate students and postdoctoral fellows to conduct research in ForestGEO sites in collaboration with site Principal Investigators, ForestGEO holds an annual research grants program. Small grants enable investigations of a wide range of forest science questions and give opportunities to those who have not previously been involved in the network to build working relationships with senior scientists and begin long-term collaborations. These projects benefit the individual's continued training and education, and at the same time improve the depth of research at individual FDPs. Since 2002, more than 700 researchers have applied for these competitive grants, and ForestGEO has awarded more than \$1.1 million to 183 individuals. These novel projects give ForestGEO the opportunity to fund innovative research that advances the strength of the ForestGEO network as a whole.

In addition to funding short-term grant projects, ForestGEO supports postdoctoral fellowships. These are independent research projects designed to answer a specific research question relevant to ForestGEO's science goals. Between two and five postdoctoral fellows per year conduct research on a variety of topics related to advancing the science of forest structure and dynamics, including plant-water relations and forest function, tree mortality, and above-ground biomass dynamics.

ForestGEO is also committed to training undergraduate students in learning new skills and gaining access to a network of data and shared expertise. In addition to training fellows, ForestGEO offers internships in fieldwork, data analysis, or data management at network sites or at ForestGEO offices. ForestGEO is committed to training interns from countries with developing forest science capacity, stationing them at plots with opportunities to develop their skills and expertise. Strengthening capacity through analytical and data workshops, individual research grants, and internships and fellowships are essential for ensuring network continuity and continued progress in forest science.

5. Advances in Understanding Forest Diversity

The ForestGEO network has made major contributions in two broad areas of forest science: (i) Species coexistence and diversity, and (ii) Ecosystem processes and forest functioning. Other articles in this special issue have addressed many key accomplishments of the long-term tropical forest plot networks in the area of forest functioning and the impacts of altered climatic and atmospheric conditions (e.g., Phillips et al. *this volume*). Anderson-Teixeira et al. (2015) described

how the broad suite of measurements being made at ForestGEO sites is critical for addressing the complex responses of ecosystem processes and forest functioning to diverse global change drivers. What has been covered less are the insights gained from ForestGEO FDPs on the processes regulating species diversity, coexistence and dynamics. Here, we highlight a series of key findings linked to the biology of species and the role they play in forests. These findings are not exclusively attributable to the ForestGEO approach, however in several cases it is clear that the unique large-scale sampling of the FDP has provided critical insights in these areas. The following selection is also not intended to be comprehensive with respect to the diversity of topics addressed using the ForestGEO plots. Key areas of species diversity research conducted using ForestGEO FDPs that are not covered below include: geographical patterns of diversity among plots (e.g., Ren et al. 2013, Ricklefs & He 2016, Sreekar et al. 2018, Chu et al. 2018), patterns of phylogenetic diversity (e.g., Mi et al. 2012), and relationships between biodiversity and ecosystem function (e.g., Chisholm et al. 2013). A complete list of ForestGEO publications is available (https://forestgeo.si.edu/research-programs/publications;

https://scholar.google.com/citations?user=RFULppIAAAAJ&hl=en).

(i) Spatial distribution of tree species and functional types with respect to habitat

ForestGEO FDPs have demonstrated that forests consist of highly spatially structured assemblages of species. The majority of tree species have strongly aggregated spatial distributions. Analyses across many ForestGEO plots have shown that 30-75% of species in any one plot have spatial distributions significantly aggregated with respect to soil nutrients, topographic position, moisture availability, and the history of local disturbance (e.g., Figure 6). This finding, first documented on BCI and several plots in Asia (Condit et al. 2000, Harms et al. 2001), has now been confirmed in many plots across the network (Davies et al. 2005, Gunatilleke et al. 2006, Lai et al. 2009, Chuyong et al. 2011, Lan et al. 2012, Bunyavejchewin et al. 2019). With the obvious exception of the distribution of pioneer species in relation to light gaps, the details of what specific resource requirements, e.g., water availability, soil nutrients, wind exposure, constrain species distributions across these topographic and edaphic gradients remains poorly understood, as many factors covary (John et al. 2007, Baldeck et al. 2013, Kupers et al. 2019). However, recent studies in BCI and across the Isthmus of Panama demonstrate the key roles played by soil moisture and phosphorus availability (Condit et al. 2013, Zemunik et al. 2018). It is an area where experimentation needs to be coupled with long-term monitoring (Engelbrecht et al. 2007, Baltzer et al. 2008). In addition to having fundamental consequences for the theories of species diversity in forests, the observation of pervasive habitat associations in tropical tree species has direct importance for forest conservation and management. Species-site matching remains an important requirement for successful ecological restoration by tree planting (Shono et al. 2007).

The patchy distribution of species across edaphic and topographic gradients is reflected in functional differences of the constituent species. Analyses of functional trait variation in species across many FDPs show strong relationships with underlying edaphic and hydrological conditions.

For example, within the extremely diverse 25-ha plot at Yasuní, Ecuador, species with lower average specific leaf area, smaller leaves and heavier seeds were more common on ridges (Valencia 2004, 2009, Kraft et al. 2008). Analogous patterns have been observed in many other large FDPs around the world (e.g., Katabuchi et al. 2012, Liu et al. 2013, Yang et al. 2014). Patterns of species-level functional trait covariance across habitat gradients provides a way of pooling hundreds of species into a smaller number of life-history types that can be more easily parameterized in Earth System Models (Scheiter et al. 2013, Fisher et al. 2015, Koven et al. 2020).

(

(ii) Seed dispersal, seedling recruitment and patterns of spatial aggregation

Seed dispersal controls the ability of plants to reach preferred regeneration sites and to colonize new habitats. The seed trapping program implemented at many ForestGEO FDPs has demonstrated that mean seed dispersal distance varies by more than an order of magnitude among coexisting tree species (Muller-Landau et al. 2008). Life-history tradeoffs involving seed dispersal and fecundity can contribute to species niche differentiation and coexistence (Muller-Landau 2008, Muller-Landau 2010, Bin et al. 2019). Species dispersal strategies vary not only in distance distributions but also in directionality, efficacy in reaching canopy gaps, and clumping (Muller-Landau & Hardesty 2005, Wright et al. 2008, Puerta-Piñero et al. 2013, van Putten et al. 2012). Limited seed dispersal distances and clumped seed dispersal, often combined with low adult abundance, mean that many species fail to arrive in any given regeneration site (Hubbell et al. 1999; Li et al. 2012; Chen et al. 2014), which can make overall community dynamics more stochastic (Hurtt & Pacala 1995).

Since most seeds of most species fall close to the mother tree (Marchand et al. 2020), species-level spatial aggregation at local scales is in large part attributable to limited seed dispersal and is associated with seed dispersal syndromes (Condit et al. 2000, Seidler & Plotkin et al. 2006, Shen et al. 2009, Shen et al. 2013, Detto & Muller-Landau 2013, Clark et al. 2017, Wang et al. 2018), which are often phylogenetically conserved (Russo et al. 2007). This has significant consequences for subsequent seedling recruitment and survival (Janzen 1970, Beckman et al. 2012). While habitat suitability may be higher close to a parent tree, high conspecific seedling density and proximity to a conspecific adult may increase intraspecific competition and exposure to pest pressure, shifting seedling distributions farther from adults (Janzen 1970, Uriarte et al. 2005, Murphy et al. 2017). Seed dispersal and seedling recruitment dynamics play important roles in regulating the diversity of tree communities.

(iii) Neighborhood composition and the impacts on individual performance

Given that most tree species exhibit spatially clumped distributions (Condit et al. 2000), ultimately owing to limited seed dispersal (Clark et al. 2017), tree local neighborhoods have enormous effects on recruitment, growth, and survival. Such neighborhood effects are not only mediated by competitive interactions with other plants, but also strongly by interactions with natural enemies

and mutualists. This is particularly the case when trees are surrounded by conspecifics or close relatives, which are more likely to share natural enemies (Gilbert 2002, Janzen 1970, Connell 1971). Tropical forests are notorious for their long-tailed species rank-abundance distributions (Whittaker 1965), with most species being rare. A key focus of ForestGEO research has been the identification of possible mechanisms that facilitate a "rare species advantage", ensuring no single tree species can "take over the world" or at least a local tree community on the scale of a 50-ha plot (Wills et al. 2006). In theory, this occurs when all species have positive invasion growth rates (Chesson 2000), a condition that is met when each species density affects itself more than it affects other species (Broekman et al. 2019). Although it has proven challenging to robustly measure such conspecific density effects (Detto et al. 2019), evidence of conspecific negative density dependence (CNDD) has been reported in many tropical, subtropical and temperate FDPs for growth and survival (e.g., Hubbell & Condit 1990, Harms et al. 2000, Uriarte et al. 2004, Jia et al. 2020). In addition, rare species in at least one tropical FDP have been found to have stronger negative effects on their own growth or survival than common species, suggesting the hypothesis that rare species are rare at least in part because they suffer more from intraspecific competition or species-specific natural enemies (Comita et al. 2010, Mangan et al. 2010). However, results from manipulation studies on the prevalence of negative density dependence are mixed (Song et al. in review) and the hypothesis that species suffer more CNDD when rare has been challenged in other forests (e.g., Liu et al. 2015).

There is clearly much to learn regarding how species' populations are regulated and thereby prevent dominance. For example, soil microorganisms, including fungal and oomycete pathogens, are thought to be principal mediators of conspecific density dependence (Bever et al. 2015), but plant-soil feedback studies have shown that being near close relatives is not always bad, particularly for tree species hosting ectomycorrhizal fungi (Segnitz et al. 2020). While numerous factors contribute to variation in species' abundances in space and time, the prevalence of negative density dependence and interspecific variation in its strength has profound consequences for the maintenance of diversity in forests (Johnson et al. 2012, Stump & Comita 2018, Chisholm & Fung 2020, Comita & Stump 2020).

(iv) Tree life-histories: demographic variation within- and among- forests

The balance between growth, recruitment and mortality largely determines the variation in carbon, water, and nutrient cycles, affects above and belowground trophic interactions, and underpins the coexistence and abundance of species. Quantifying how demographic rates vary within- and among- sites and through time is therefore important for predicting the future of Earth's forests and their role in regulating the Earth system. The ForestGEO FDPs have enabled the characterization of growth, mortality, and recruitment rates for thousands of tree species across the world's forests (e.g., Rüger et al. 2011, Johnson et al. 2018, Russo et al. 2020). Analyses of many plots have found an interspecific trade-off between a tree species' ability to grow fast in high resource conditions versus to survive in low resource conditions due to species' differences in

allocation (Russo et al. 2008, Wright et al. 2010, Rüger et al. 2018, Medeiros et al. 2019). The strength of this trade-off varies among edaphic habitats within a forest, reinforcing resource-based species' distribution patterns (Russo et al. 2008). The trade-off, however, is not equally strong in all forests. Although it was observed across tropical forests at the global scale, it was not observed in some forests where the local disturbance regime (e.g., frequent hurricane exposure) appears to have restricted the adaptive resource allocation strategies to a narrow range of those possible (Russo et al. 2020). While the growth-mortality trade-off can promote species' coexistence, the range of species' growth and mortality rates in a forest does not explain the massive differences in species richness of forests across the tropics: species-rich tropical forests actually have a narrower range of demographic variation and finer demographic niches than species-poor forests (Condit et al. 2006).

Analysis of the BCI FDP in Panama revealed an additional demographic trade-off contributing to tree species coexistence, a 'stature-recruitment' trade-off distinguishing between small-statured species with high recruitment success and large-statured species with low recruitment success (Rüger et al. 2018). In combination, the growth-mortality and stature-recruitment trade-offs have been used to accurately predict basal area and compositional changes during forest succession at BCI (Rüger et al. 2020), illustrating the importance of demographic data collected in ForestGEO plots for understanding and predicting consequences of human impacts on forest ecosystems.

The extensive demographic data from ForestGEO FDPs offer an alternative route to simplifying the challenge of high species diversity in dynamic vegetation models (e.g., Koven et al. 2020). These models typically rely on trait data to characterize plant functional types, a task that can be challenging in species-rich forests. Tree species across ForestGEO FDPs have been shown to cluster into demographic groups based on variation in size-dependent growth and survival. At least for survival, the relative abundance of these demographic groups varies among plots and is associated with climatic variation (Johnson et al. 2018). Size-structured demographic groupings are also likely to prove useful for extrapolating demography across unsampled forest regions to predict ecosystem processes, such as biomass change and response to climate (Johnson et al. 2018; Needham et al. 2018).

(v) Neutral Theory and the maintenance of species diversity in tropical forests

Observations from ForestGEO FDPs and other tropical forests inspired the neutral theory of biodiversity (Hubbell 1979a, 1979b, 2001), which makes the bold assertion that many observed patterns in nature can be explained without invoking species differences. An initial wave of enthusiasm for neutral theory stemmed from its successful explanation of empirical patterns such as species abundance distributions (Volkov et al. 2003) and species—area relationships (Rosindell & Chisholm 2020). But this enthusiasm waned upon discovery that other predictions of neutral theory were less accurate, in particular its predictions of temporal change on both ecological and

evolutionary timescales (Nee 2005, Leigh 2007, Chisholm & O'Dwyer 2014). A study of 12 ForestGEO sites revealed that fluctuations in the abundance of common tree species over timescales of 6–28 years were orders of magnitude larger than neutral predictions (Chisholm et al. 2014).

These latter limitations of neutral theory are perhaps not surprising, given the lack of evidence for the species equivalence assumption. Nevertheless, neutral theory has played a valuable role in ecology in several ways. First, it serves as a null model for detecting when important non-neutral processes are operating. Second, it provides a rigorous mathematical framework for making falsifiable predictions about biodiversity patterns—a framework into which other processes, including non-neutral processes, can be incorporated. Lastly, neutral theory has shown that diversity of local communities, specifically tree communities in ForestGEO plots, can easily be maintained by immigration from beyond the plot boundaries, without invoking local niche stabilizing mechanisms (Condit et al. 2012). This latter point, though often overlooked, transcends the theory's assumptions about species equivalence and is arguably its greatest contribution to our understanding of forest dynamics—one that only emerged from the interplay of theory with ForestGEO data.

(vi) Temporal change in the species composition of old-growth tropical forests

The idea that the species composition of old-growth tropical forests is stable over time has been comprehensively refuted by the unique long-term data of ForestGEO plots. Forests are surprisingly dynamic with large changes due to annual mortality rates ranging from 1-4% per year (see Wright, this volume). Analyzing the dynamics of over 4,000 species in 12 ForestGEO FDPs, the largest and most comprehensive sample of species-level population dynamics from tropical forests across Africa, Asia and the Americas, Chisholm et al. (2014) found that the abundance of a majority of species is increasing or decreasing more than expected under a neutral model of community change. Natural disturbances, including fires, landslides, droughts, and hurricanes are a major cause of temporal fluctuations in species composition on decadal timescales in many tropical forests (Hubbell & Foster 1992, Hogan et al. 2018, Bunyavejchewin et al. 2019). Species-level studies across many ForestGEO FDPs have demonstrated differential sensitivity to drought (e.g., Condit et al. 1995, Engelbrecht et al. 2007, Itoh et al. 2012, Zuleta et al. 2017). On century time scales, dendrochronological studies provide increasing evidence that current community composition of some ForestGEO FDPs reflects historical disturbance events (e.g., Baker et al. 2005). Despite these cases, in many forests there is no obvious factor driving differential abundance changes among species (Chisholm et al. 2014). Further work is needed to understand whether these population changes are linked to specific shifts in climatic conditions, biotic interactions, or other drivers. Given the potential for climate-related changes at these sites, large FDPs are a critical baseline for understanding the impact of future natural and anthropogenic change on species populations.

(vii) Impact of changes in vertebrate populations on forest diversity and dynamics

Hunting-induced defaunation is driving major changes in the diversity and functioning of forests around the world (Dirzo et al. 2014, Malhi et al. 2016, Osuri et al. 2016; Peres et al. 2016). However, defaunation outcomes are often idiosyncratic and site-specific because of the unique impacts of locally dominant vertebrates on herbivory, seed dispersal, predation and physical disturbance at each site (Wright 2003). For example, defaunation in three ForestGEO FDPs in Asia resulted in substantially different ecological outcomes. Defaunation of seed-dispersers in Khao Yai, Thailand, has reduced tree recruitment (Chanthorn et al. 2019). In Lambir, Malaysia, defaunation of seed predators and herbivores led to a dramatic increase in tree recruitment and shifts in the spatial aggregation of recruiting saplings (Harrison et al. 2013). In Pasoh, Malaysia, the loss of predators coupled with augmented food supplies from neighboring oil palm plantations have led to a hyperabundance of wild boar resulting in a 62% decline in sapling abundances (Ickes et al. 2005, Luskin et al. 2017) and an increase in the relative abundance of lianas, which are less preferred by wild boar (Luskin et al. 2019). Both the loss of and shifts in the relative abundance of top predators and megaherbivores results in trophic cascades that are severely affecting both tropical and temperate forests (Terborgh 2001, Estes et al. 2011, McGarvey et al. 2013). The longterm impacts of changes in faunal communities need to be explored more widely with increased standardized monitoring of vertebrate communities coupled with more manipulative experiments.

6. Future Directions and Research Opportunities

The ForestGEO network is one of many networks of forest plots that have collectively developed a powerful system of ground observations with which to monitor the dynamics of the world's forests and develop a detailed understanding of how the underlying drivers regulate the structure, composition and dynamics of these critical ecosystems (e.g., Malhi et al. 2002, Sist et al. 2015). In this section, we describe some of the most urgent challenges preventing a more complete understanding of the role of forests in the Earth System. While the focus in this discussion is on tropical forests, the arguments apply similarly to forests outside the tropics. A key element of our argument is that progress in understanding patterns and processes operating among forests will be greatly enhanced with much greater collaboration among forest plot networks, as well as broader integration among science disciplines actively engaged in the study of forests.

(i) Standardizing tree taxonomies for improved understanding of tropical forest species diversity and distributions

The total number of tropical tree species remains unknown, and many species remain unnamed by science (Slik et al. 2016, Cardoso et al. 2017). Moreover, the ecological roles, geographic distributions, and demographic characteristics of the vast majority of tropical tree species remain unknown (e.g., Chua et al. 2010, ter Steege et al. 2013, Johnson et al. 2018). Many prior findings

on tropical tree species' responses to abiotic and biotic conditions, such as soil nutrient availability or pathogen incidence, are derived from studies in single forests (e.g., John et al. 2007, Comita et al. 2010). Comparisons among sites are typically done at higher taxonomic levels (e.g., Esquivel-Muelbert, et al. 2019) or using functional traits (ter Steege et al. 2006) due to the lack of taxonomic standardization among sites. Studies at higher taxonomic levels provide more limited insights into ecological, evolutionary and biogeographic processes. Consequently, very little is known about the degree of phenotypic (e.g., ecological drought tolerance traits) or genotypic variation across species' geographic ranges in tropical forests (Brousseau et al. 2019). It therefore remains unclear whether individual species can adapt to global change in ways that would limit their risks of extinction (Fauset et al. 2012, Levine et al. 2016). This lack of knowledge impedes basic understanding of the diversity and distributions of tropical forests, and consequently, of how they are responding to changing environmental conditions (Baker et al. 2017). A range of new tools in taxonomy, imaging spectroscopy, genomics, and artificial intelligence and machine learning, will facilitate taxonomic standardization among plots, as well as greatly accelerating species discovery (e.g., Boyle et al. 2013, Durgante et al. 2013, Christin et al. 2019, Draper et al. 2020). Resolving these taxonomic issues would provide essential baseline data on the diversity of tropical forests, the distributions of individual species, and is fundamental to addressing how species composition in tropical forests is changing.

(ii) Resolving the main drivers of forest dynamics

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788 789

790

791

792

793

794

795 796

797

798

799

800

801

802

803 804

805

806

807

A robust understanding of how forest dynamics depend on environmental drivers like climate, soil properties, disturbance, and interactions with other taxa, such as seed-dispersing animals, is a critical precursor to predicting the future of forests under global change. Studies based on clusters of plots have documented patterns at local to regional scales, but results sometimes diverge across studies. For example, within the tropics some studies have found that forest biomass increases with soil fertility and others found that it decreases (Lewis et al. 2009, Schietti et al. 2016, Laurance et al. 1999, Slik et al. 2010, Muller-Landau et al. 2020). Similarly, some studies have found elevated tree mortality in dry years (Phillips et al. 2010, Zuleta et al. 2017), and others in wet years or seasons (Aubry-Kientz et al. 2015, Fontes et al. 2018). Evidence for recent directional changes in tropical forest dynamics, potentially due to direct and indirect anthropogenic effects, is also mixed. Physiology-based hypotheses propose that rising atmospheric carbon dioxide and other aspects of global change should increase tropical forest productivity, turnover, and biomass (Lewis et al. 2009). Consistent with this hypothesis, regional plot networks in Africa (Lewis et al. 2013), Asia (Qie et al. 2017) and Amazonia (Brienen et al. 2015) have found evidence for a substantial carbon sink in tropical forests. However, whether these plot networks are representative has been debated (Wright 2013, McMichael et al. 2017), and other studies have found little or no evidence of a carbon sink (Chave et al. 2008, Clark et al. 2013, Rutishauser et al. 2019, Walker et al. 2020). Likewise, lianas have been shown to be increasing in some, but not all, tropical forests, a pattern also hypothesized to be linked to global change (e.g., Phillips et al. 2002, Schnitzer & Bongers

2011, Wright et al. 2015). The degree to which these divergent results reflect differences in methodology, sampling error, or biologically meaningful variation among sites is unclear. This uncertainty impedes progress in forest science because it reduces the ability to make more generally applicable inferences that are necessary to advance understanding of the role of forests in the Earth System. Collaboration among forest plot networks would help resolve these conflicting findings through the synthesis of much larger datasets and the development and application of more powerful analytical techniques (e.g., Rutishauser et al. 2019).

(iii) Scaling-up ground plots with remote sensing to assess forest biomass and diversity at a global scale

Projections of the feedbacks between forests and climate require accurate and precise estimates of current and future forest carbon stocks and fluxes (Friedlingstein et al. 2014). Carbon stocks vary enormously across tropical and temperate forests in relation to a range of environmental and anthropogenic drivers. While ground plots have advanced understanding of forest carbon stocks, they cover far less than 0.01% of forest area (Schimel et al. 2015). Remote-sensing technologies provide the potential to scale up ground-based observations of forest biomass (Avitabile et al. 2016), structure (Yang et al. 2016, Krůček et al. 2020), productivity (Liu et al. 2017), and mortality (Clark et al. 2004) from local-to-global scales, and to be a key solution for estimating global carbon stocks and fluxes, and consequently, forest responses to anthropogenic change (Schimel et al. 2015, Randin et al. 2020). Airborne remote sensing of hyperspectral reflectance can enable mapping of tree functional composition and diversity (Antonarakis et al. 2014, Asner et al. 2017, Durán et al. 2019), and quantification of their responses to anthropogenic impacts (Swinfield et al. 2019). Future hyperspectral instruments on satellites will enable global surveys of plant functional, and perhaps even, species diversity (Schimel et al. 2013).

US and international space agencies are making significant investments in space-based global biomass and diversity monitoring (e.g., GEDI, Dubayah 2019, BIOMASS, Quegan et al. 2019). Despite these investments, there has been limited coordination with coincident ground-based observations (Chave et al. 2019, but see Schepaschenko et al. 2019), which are essential for calibration and validation of remotely-sensed biomass and diversity estimates (NASA-ESA-Smithsonian workshop 2016, Duncanson et al. 2019). ForestGEO and other tropical plot networks have systematically collected the data needed for this calibration and validation, including data on tree size, growth, diversity and functional traits. Collaboration between remote sensing scientists and forest ecologists has the potential to transform our ability to monitor forest biomass and biodiversity at the global scale.

(iv) Improving predictions of future tropical forest structure and function

Historically, Earth System Models (ESMs) have done a poor job of capturing patterns in tropical forest structure and dynamics (e.g., Johnson et al. 2016, Muller-Landau et al. 2020), and have

diverged greatly in their predictions for tropical forest responses to novel atmospheric and climate scenarios (Cavaleri et al. 2015). This is in part because most models represented vegetation as a "big leaf" and represented the diversity of tropical tree species with one or a few plant functional types (Levine et al. 2016). In recent years, ESMs have increasingly adopted vegetation demographic approaches that explicitly model size-structured competition, growth, survival, and reproduction of trees or cohorts of trees of different functional types (Fisher et al. 2018). These models have succeeded in better reproducing patterns within individual tropical sites, as well as general trends in among-site variation with precipitation (Seiler et al. 2014, Levine et al. 2016, Xu et al. 2016, Koven et al. 2020, Longo et al. 2019). Simulations with these models have also demonstrated the critical importance of better representing tropical tree functional diversity: models with more functional types have higher productivity and biomass, and greater resilience to environmental perturbations (Sakschewski et al. 2016, Koven et al. 2020). However, these models still require further development and improvements to remove large systematic errors (e.g., excessively high tree mortality rates, Longo et al. 2019), and to better capture spatial and temporal variation in tropical forest dynamics in relation to environmental conditions and disturbance patterns (Powell et al. 2013).

Resolving key uncertainties in vegetation demographic models requires strong integration between model development and testing with plot-based observations of vegetation structure, dynamics, and composition (Fisher et al. 2018). Specifically, these models, with their higher-fidelity representation of vegetation structure, need to be evaluated against benchmark data for tree size distributions, growth, mortality, and recruitment, and their variation with site conditions and species traits. These are exactly the kinds of data that ForestGEO maintains. Recognizing the need for model development and integration with field data, the US Department of Energy funded the "Next Generation Ecosystem Experiment - Tropics" in 2015 to build a new process-rich tropical forest ecosystem model that accurately represents forest structure and function, and provides robust projections of tropical forest responses to global change. The first version of this model, the Functionally Assembled Terrestrial Ecosystem Simulator (FATES), was recently published and is currently undergoing rapid development (Koven et al. 2020).

7. Conclusions: Addressing the challenges

 Long-term networks of forest plots like ForestGEO, and many others in both tropical and temperate regions, have created an unprecedented knowledge base, a greatly expanded capacity for forest science, and a wide range of new data with which to advance the science of forests at a global scale. Solving the grand scientific challenges outlined in Section 6, requires four interrelated developments:

(i) Financial support: In the tropics, more than anywhere, the future of the advances made by ForestGEO is at serious risk. Successfully maintaining the networks of FDPs, while a minor fraction of the cost of installing Earth-observing satellites (Phillips et al., this volume), is

expensive, labor-intensive, logistically complex and remains a major challenge for ForestGEO and other forest plot networks. Building on the successes of ForestGEO and sustaining the network of FDPs will require much more secure, long-term financial support. Despite the enthusiasm and willingness to continue this program, many ForestGEO partner sites have no long-term financial security for continued data collection. They do not have the resources to engage young scholars to use the existing data, and very few have the resources to advance and expand the science conducted at their sites. Without committed support for sites and the research teams that make up these sites, the long-term sustainability of ForestGEO is in jeopardy.

(ii) Training and capacity strengthening: The future of the ForestGEO network requires continued and expanded commitment to strengthening scientific capacity across the network, particularly in the tropics. Leadership is required in each and every site to maintain and expand science at the sites. The benefits accrued by networks like ForestGEO need to be more broadly shared among sites, with increased opportunities for diverse participation in network activities. Without a concerted effort to fund and train new generations of scientists and science leaders within the partner countries of the ForestGEO network, the future conservation and sustainable management of the world's forests is at risk.

(iii) Collaboration among forest plot networks: We recently estimated that there are currently in excess of 11,000 forest plots currently maintained around the tropics. These plots are coordinated through networks that span gradients in geography, elevation, land-use history, and scientific focus. No plot network individually provides the spatial intensity and extent required for global inferences about the structure, functioning and diversity of forests. It is therefore essential that the ground-based networks work together to address the major challenges outlined in Section 6. The US NSF has recently awarded ForestGEO and partner networks with a grant to help advance a multi-network collaboration through the <u>AccelNet Program</u>. The opportunity exists to rapidly advance understanding of tropical (and temperate) forest science through network-network collaboration.

(iv) Interdisciplinary collaboration: ForestGEO and the other networks of forest plots, on their own, are not sufficient to address scientific challenges outlined in Section 6. The diversity, structure, functioning and dynamics of tropical forests are currently being investigated by several largely independent scientific disciplines: biogeography, ecology, remote sensing, and modeling. These disciplines operate at different but complementary spatial and temporal scales. Greatly increased integration among these disciplines is urgently needed to achieve novel inferences about tropical forests that will accelerate our understanding of their role in the functioning of the Earth System.

Acknowledgements

924 925

926

927

928

929

930

931

932

933

934

935 936

937

938

939

940

941

942

943 944

923

ForestGEO acknowledges the incredible contributions of hundreds, perhaps thousands, of highly skilled and committed field and data technicians without whom the network of FDPs would not have been possible. We also acknowledge many local, regional and national agencies and institutions in each of the countries where ForestGEO works for their support in many aspects of the program, including protecting the valuable forests, making financial contributions, permitting researchers to access the forests to conduct these studies, and providing critical logistical support to enable the ambitious FDPs to be realized. ForestGEO acknowledges the role of the many students who have helped maintain the plots and provide vitality to the program. We acknowledge the important role of Liz Losos, first Director of CTFS/ForestGEO, Ira Rubinoff, Biff Bermingham and Matthew Larsen, past directors of the Smithsonian Tropical Research Institute, Bob Cook, past Director of the Arnold Arboretum, Lissy Coley, Jerome Chave and Cristián Samper, ForestGEO external advisory committee members, and Scott Miller, Kirk Johnson, Steve Monfort, Tuck Hines and Will Pitt, internal SI advisors. Financial support for the network has been received from the US National Science Foundation, the Frank H. Levinson Family Foundation, HSBC Climate Partnership, the Bromley Charitable Trust, the Stapper family, John Swire & Sons Inc., the Andrew W. Mellon Foundation, the Arnold Arboretum of Harvard University, the Next Generation Ecosystem Experiments-Tropics funded by the US Department of Energy, Office of Biological and Environmental Research, the MacArthur Foundation, Rockefeller Foundation, the Philecology Trust, the John Merck Fund, Jacqueline B. Mars, Jennifer and Greg Johnson, Christopher Davidson and Sharon Cristoph, the National Institute for Environmental Studies, Japan, and the Smithsonian Institution. Detailed site-specific acknowledgements are included as Supplementary Materials.

946 947

948

945

References

949 950

951

Alfaro-Sánchez, R., Muller-Landau, H. C., Wright, S. J., & Camarero, J. J. (2017). Growth and reproduction respond differently to climate in three Neotropical tree species. *Oecologia*, **184** (2), 531–541.

952 953

954 Anderson-Teixeira, K.J., Davies, S.J., Bennett, A.C., Gonzalez-Akre, E.B., Muller-Landau, H.C., 955 Wright, S.J., Abu Salim, K., Almeyda Zambrano, A.M., Alonso, A., Baltzer, J.L., Basset, Y., Bourg, N., Broadbent, E.B., Brockelman, W.Y., Bunyaveichewin, S., Burslem, D.F.R.P., Butt, N., 956 957 Cao, M., Cardenas, D., Chuyong, G., Clay, K., Cordell, S., Dattaraja, H.S., Deng, X., Detto, M., 958 Du, X., Duque, A., Erikson, D.L., Ewango, C.E.N., Fischer, G.A., Fletcher, C., Foster, R.B., Giardina, C.P., Gilbert, G.S., Gunatilleke, N., Gunatilleke, S., Hao, Z., Hargrove, W.W., Hart, 959 960 T.B., Hau, B.C.H., He, F., Inman-Narahari, F.M., Jansen, P.A., Jiang, M., Johnson, D.J., Kanzaki, 961 M., Kassim, A.R., Kenfack, D., Kibet, S., Kinnaird, M.F., Korte, L., Král, K., Kumar, J., Larson, 962 A.J., Li, Y., Li, X., Liu, S., Lum, S.K.Y., Lutz, J.A., Ma, K., Maddalena, D.M., Makana, J.-R.,

- 963 Malhi, Y., Marthews, T., Mizuno, T., Morecroft, M., Myers, J.A., Novotny, V., de Oliveira, A.A.,
- 964 Ong, P.S., Orwig, D.A., Ostertag, R., den Ouden, J., Parker, G.G., Phillips, R.P., Sack, L., Sainge,
- 965 M.N., Sang, W., Sri-ngerntuang, K., Sukumar, R., Sun, I.-F., Sungpalee, W., Suresh, H.S., Tan,
- 966 S., Thomas, S.C., Thomas, D.W., Thompson, J., Turner, B.L., Uriarte, M., Valencia, R., Vallejo,
- 967 M.I., Vicentini, A., Vrška, T., Wang, X., Wang, X., Weiblen, G., Wolf, A., Xu, H., Yap, S., and
- Zimmerman, J. (2015) CTFS-ForestGEO: a worldwide network monitoring forests in an era of 968
- 969 global change. Global Change Biology, 21, 528-549.
- 970
- 971 Anderson-Teixeira, K.J., Wang, M.M.H., McGarvey, J.C. & LeBauer, D.S. (2016) Carbon
- 972 dynamics of mature and regrowth tropical forests derived from a pantropical database (TropForC-
- 973 db). Global Change Biology, 22, 1690-1709.
- 974
- 975 Anderson-Teixeira, K. J., M. M. H. Wang, J. C. McGarvey, V. Herrmann, A. J. Tepley, B. P.
- 976 Bond-Lamberty, and D. S. LeBauer (2018). For C: a global database of forest carbon stocks and
- 977 fluxes. Ecology 99 (6), 1507-1507. DOI: 10.1002/ecy.2229.

- 979 Anon. (1989) Funding Priorities for Research Towards Effective Sustainable Management of
- 980 Biodiversity Resources in Tropical Asia. Report of a workshop sponsored by NSF and USAID
- 981 held in Bangkok, Thailand, March 27–30, 1989. Unpublished report.

982

- 983 Antonarakis, A.S., Munger, J.W. & Moorcroft, P.R. (2014) Imaging spectroscopy- and lidar-
- 984 derived estimates of canopy composition and structure to improve predictions of forest carbon
- 985 fluxes and ecosystem dynamics. Geophysical Research Letters, 41, 2535-2542.

986

- 987 Arellano, G., Zuleta, D. & Davies, S.J. (in review) Tree death and damage: a standardized protocol for frequent surveys in tropical forests.
- 988 989
- 990 Ashton, P.S., Boscolo, M., Liu, J. and LaFrankie, J.V. (1999) A global programme in
 - 991 interdisciplinary forest research: The CTFS perspective. Journal of Tropical Forest Science, 11,
 - 992 180-204.

993

- 994 Ashton, P.S. (2014) "On the forests of Tropical Asia: lest the memory fade." Kew Publishing,
- 995 Royal Botanical Gardens, Kew, London, United Kingdom. 670 pages.

996

- 997 Ashton, P.S. & Lee, D.W. (2020) "Exploring Tapovan. A natural history of tropical Asian forests."
- 998 In Press, University of Chicago Press.

999

- 1000 Asner, G.P., Martin, R.E., Knapp, D.E., Tupayachi, R., Anderson, C.B., Sinca, F., Vaughn, N.R.,
- 1001 and Llactayo, W. (2017) Airborne laser-guided imaging spectroscopy to map forest trait diversity
- 1002 and guide conservation. Science, 355, 385–389.

1003

- 1004 Aubry-Kientz, M., Rossi, V., Wagner, F., and Herault, B. (2015) Identifying climatic drivers of
- 1005 tropical forest dynamics. *Biogeosciences*, **12**, 5583-5596.

- 1007 Avitabile, V., Herold, M., Heuvelink G.B.M., Lewis, S.L., Phillips, O.L., Asner, G.P., Armston,
- 1008 J., Ashton, P.S., Banin, L., Bayol, N., Berry, N.J., Boeckx, P., de Jong, B.H.J., DeVries, B.,

- 1009 Girardin, C.A., Kearsley, E., Lindsell, J.A., Lopez-Gonzalez, G., Lucas, R., Malhi, Y., Morel, A.,
- 1010 Mitchard, E.TA., Nagay, L., Qie, L., Quinones, M.J., Ryan, C.M., Ferry, S.J.W., Sunderland, T.,
- 1011 Laurin, G.V., Gatti, R.C., Valentini, R., Verbeek, H., Wijaya, A., and Willcock, S. (2016) An
- 1012 integrated pan-tropical biomass map using multiple reference datasets. Global Change Biology,
- 1013 **22**. 1406-1420.
- 1014
- 1015 Baker, P.J., Bunyavejchewin, S., Oliver, C.D. & Ashton, P.S. (2005) Disturbance history and
- 1016 historical stand dynamics of a seasonal tropical forest in western Thailand. Ecological
- 1017 Monographs, **75**, 317–343.
- 1018
- 1019 Baker, T.R., Pennington, R.T., Dexter, K.G., Fine, P.V.A., Fortune-Hopkins, H., Honorio, E.N.,
- 1020 Huamantupa-Chuquimaco, I., Klitgård, B.B., Lewis, G.P., de Lima, H.C., Ashton, P., Baraloto,
- 1021 C., Davies, S., Donoghue, M.J., Kaye, M., Kress, W.J., Lehmann, C.E.R., Monteagudo, A.,
- 1022 Phillips, O.L., and Vasquez, R. (2017) Maximising synergy among tropical plant systematists,
- 1023 ecologists, and evolutionary biologists. Trends in Ecology & Evolution, 32, 258-267.
- 1024
- 1025 Baldeck, C.A., Harms, K.E., Yavitt, J.B., John, R., Turner, B.L., Valencia, R., Navarrete, H.,
- 1026 Davies, S.J., Chuyong, G.B., Kenfack, D., Thomas, D.W., Madawala, S., Gunatilleke, N.,
- 1027 Gunatilleke, S., Bunyavejchewin, S., Kiratiprayoon, S., Yaacob, A., Supardi, M.N. & Dalling,
- 1028 J.W. (2013) Soil resources and topography shape local tree community structure in tropical forests.
- 1029 Proceedings of the Royal Society B: Biological Sciences, 280, 20122532.
- 1030
- 1031 Baltzer, J.L., Davies, S.J., Bunyayejchewin, S. & Noor, N.S. (2008) The role of desiccation
- 1032 tolerance in determining tree species distributions along the Malay-Thai Peninsula. Functional
- 1033 Ecology, 22, 221-231.
- 1034
- 1035 Barberán, A., McGuire, K.L., Wolf, J.A., Jones, F.A., Wright, S.J., Turner, B.L., Essene, A.,
- 1036 Hubbell, S.P., Faircloth, B.C., Fierer, N. and Casper, B. (2015) Relating belowground microbial
- 1037 composition to the taxonomic, phylogenetic, and functional trait distributions of trees in a tropical
- 1038 forest. *Ecology Letters*, **18**, 1397-1405.
- 1039
- 1040 Basset, Y., Barrios, H., Segar, S., Srygley, R. B., Aiello, A., Warren, A. D., Delgado, F., Coronado,
- 1041 J., Lezcano, J., Arizala, S., Rivera, M., Perez, F., Bobadilla, R., Lopez, Y., and Ramirez, J.A.
- 1042 (2015). The butterflies of Barro Colorado Island, Panama: local extinction since the 1930s. PLoS
- 1043 One, 10, e0136623.
- 1044
- 1045 Basset, Y., Eastwood, R., Sam, L., Lohman, D. J., Novotny, V., Treuer, T., Miller, S.E., Weiblen,
- 1046 G.D., Pierce, N.E., Bunyavejchewin, S., Sakchoowong, W., Kongnoo, P., Osario-Arenas, M.A.
- 1047 (2013). Cross-continental comparisons of butterfly assemblages in tropical rainforests:
- 1048 implications for biological monitoring. *Insect Conservation and Diversity*, **6**, 223-233.
- 1049
- 1050 Basset, Y., & Lamarre, G. P. (2019). Toward a world that values insects. Science, 364, 1230-1231.
- 1051
- 1052 Basset, Y., Lamarre, G. P., Ratz, T., Segar, S. T., Decaëns, T., Rougerie, R., Miller, S.E., Perez,
- 1053 F., Bobadilla, R., Lopez, Y., Ramirez, J.A., Aiello, A., and Barrios, H. (2017). The Saturniidae of

- Barro Colorado Island, Panama: A model taxon for studying the long- term effects of climate change? *Ecology and Evolution*, **7**, 9991-10004.
- Basset, Y., Dahl, C., Ctvrtecka, R., Gripenberg, S., Lewis, O.T., Segar, S.T., Klimes, P., Barrios,
- 1058 H., Brown, J.W., Bunyavejchewin, S., Butcher, B.A., Cognato, A.I., Davies, S., Kaman, O.,
- 1059 Knizek, M., Miller, S.E., Morse, G.E., Novotny, V., Pongpattananurak, N., Pramual, P., Quicke,
- 1060 D.L.J., Robbins, R.K., Sakchoowong, W., Schutze, M., Vesterinen, E.J., Wang, W.z., Wang, Y.y.,
- 1061 Weiblen, G. & Wright, J.S. (2018) A cross- continental comparison of assemblages of seed- and
- fruit- feeding insects in tropical rain forests: Faunal composition and rates of attack. *Journal of*
- 1063 *Biogeography*, **45**, 1395-1407.

1064

1068

1071

1075

- Beckman, N. G., C. Neuhauser, and H. C. Muller-Landau. 2012. The interacting effects of clumped seed dispersal and distance- and density-dependent mortality on seedling recruitment patterns. *Journal of Ecology* **100**, 862-873.
- Bever, J.D., Mangan, S.A., Alexander, H.M. 2015. Maintenance of plant species diversity by pathogens. *Annual Review of Ecology, Evolution, and Systematics* **46**(1): 305-325.
- Bin, Y., G. Lin, S. E. Russo, Z. Huang, Y. Shen, H. Cao, J. Lian, and W. Ye. 2019. Testing the competition-colonization trade-off and its correlations with functional trait variations among subtropical tree species. *Scientific Reports* 9, 14942.
- Bourg, N.A., McShea, W.J., Thompson, J.R., McGarvey, J.C. & Shen, X. (2013) Initial census,
 woody seedling, seed rain, and stand structure data for the SCBI SIGEO Large Forest Dynamics
 Plot. *Ecology*, 94, 2111.
- Boyle, B., Hopkins, N., Lu, Z., Raygoza Garay, J.A., Mozzherin, D., Rees, T., Matasci, N., Narro,
 M.L., Piel, W.H., Mckay, S.J., Lowry, S., Freeland, C., Peet, R.K., and Enquist, B.J. (2013) The
 taxonomic name resolution service: an online tool for automated standardization of plant names.
 BMC Bioinformatics, 14, 16.
- 1084 1085 Brienen, R.J., Phillips, O.L., Feldpausch, T.R., Gloor, E., Baker, T.R., Lopez-Gonzalez, G.,
- Monteagudo-Mendoza, A., Malhi, Y., Lewis, S.L, Vásquez Martinez, R., Alexiades, M., Álvarez Dávila, E., Alvarez-Loayza, P., Andrade, A., Aragão, L.E.O.C., Araujo-Murakami, A., Arets,
- 1088 E.J.M.M, Arroyo, L., Aymard C., G.A., Bánki, O.S., Baraloto, C., Barroso, J., Bonal D., Boot,
- 1089 R.G.A., Camargo, J.L.C., Castilho, C.V., Chama, V., Chao, K.J., Chave, J., Comiskey, J.A.,
- 1090 Cornejo Valverde, F., da Costa, L., de Oliveira, E.A., Di Fiore, A., Erwin, T.L., Fauset, S., 1091 Forsthofer, M., Galbraith, D.R., Grahame, E.S., Groot, N., Hérault, B., Higuchi, N., Honorio
- 1092 Coronado, E.N., Keeling, H., Killeen, T.J., Laurance, W.F., Laurance, S., Licona, J., Magnussen,
- 1093 W.E., Marimon, B.S., Marimon-Junior, B.H., Mendoza, C., Neill, D.A., Nogueira, E.M., Núñez,
- 1094 P., Pallqui Camacho, N.C., Parada, A., Pardo-Molina, G., Peacock, M.J., Peña-Claros, M.,
- Pickavance, G.C., Pitman, N.C.A., Poorter, L., Prieto, A., Quesada, C.A., Ramírez, F., Ramírez-
- 1096 Angulo, H., Restrepo, Z., Roopsind, A., Rudas, A., Salomão, R.P., Schwarz, M., Silva, N., Silva-
- 1097 Espejo, J.E., Silveira, M., Stropp, J., Talbot, J., ter Steege, H. Teran-Aguilar, J., Terborgh, J.,
- 1098 Thomas-Caesar, R., Toledo, M., Torello-Raventos, Umetsu, R.K., van der Heijden, G.M.F., van

- der Hout, P., Guimarães Vieira, I.C., Vieira, S.A., Vilanova, E., Vos, V.A., and Zagt, R.J. (2015)
- 1100 Long-term decline of the Amazon carbon sink. *Nature*, **519**, 344-348.
- 1102 Broekman, M.J.E., Muller- Landau, H.C., Visser, M.D., Jongejans, E., Wright, S.J., Kroon, H.,
- 1103 2019. Signs of stabilisation and stable coexistence. Ecology Letters 22, 1957–
- 1104 1975. https://doi.org/10.1111/ele.13349
 1105
- Brousseau, L., Fine, P.V.A., Dreyer, E., Vendramin, G.G., and Scotti, I. (2019) Genomics of
- 1107 microgeographic adaptation in the Amazonian hyperdominant tree Eperua falcata Aubl.
- 1108 (Fabaceae) [Preprint]. *BioRxiv*, preprint no.312843, 27 p.
- 1110 Bruijning, M., Visser, M.D., Muller-Landau, H.C., Wright, S.J., Comita, L.S., Hubbell, S.P., de
- 1111 Kroon, H. & Jongejans, E. (2017) Surviving in a cosexual world: a cost-benefit analysis of dioecy
- in tropical trees. *The American Naturalist*, **189**, 297-314.
- Bunyavejchewin, S., J.V. LaFrankie, P.J. Baker, S.J. Davies & P.S. Ashton (2009) Forest Trees of
- 1115 Huai Kha Khaeng Wildlife Sanctuary, Thailand: Data from the 50-Hectare Forest Dynamics Plot.
- 1116 342 pp. National Parks, Wildlife and Plant Conservation Department, Bangkok, Thailand.
- Bunyavejchewin, S., Sinbumroong, A., Turner, B.L. & Davies, S.J. (2019) Natural disturbance
- and soils drive diversity and dynamics of seasonal dipterocarp forest in Southern Thailand. *Journal*
- 1120 *of Tropical Ecology*, **35**, 95-107.
- 1122 Cao, H., Wu, L., Wang, Z., Huang, Z., Li, L., Wei, S., Lian, J., & Ye, W. (2013) Dinghushan
- Lower Subtropical Forest Dynamics Plot: Tree Species and Their Distribution Patterns. In: Ma,
- 1124 K. (ed.). Chinese Forest Biodiversity Monitoring Network Series. China Forestry Publishing
- House, Beijing.
- 1127 Cao, M., Zhu, H., Wang, H., Lan, G., Hu, Y., Zhou, S., Deng, X., and Cui, J. (2008)
- 1128 Xishuangbanna tropical seasonal rainforest dynamics plot: Tree distribution maps, diameter
- 1129 tables and species documentation. 266 pp. Yunnan Science and Technology Press, Kunming,
- 1130 China.

1109

1113

1117

1121

1126

- 1132 Cardoso, D., Särkinen, T., Alexander, S., Amorim, A.M., Bittrich, V., Celis, M., Daly, D.C.,
- 1133 Fiaschi, P., Funk, V.A., Giacomin, L.L., Goldenberg, R., Heiden, G., Iganci, J., Kelloff, C.L.,
- Knapp, S., Cavalcante de Lima, H., Machado, A.F.P., Manoel dos Santos, R., Mello-Silva, R.,
- 1135 Michelangeli, F.A., Mitchell, J., Moonlight, P., de Moraes, L.R., Mori, S.A., Nunes, T.S.,
- Pennington, T.D., Pirani, J.R., Prance, G.T., de Queiroz, L.P., Rapini, A., Riina, R., Rincon,
- 1137 C.A.V., Roque, N., Shimizu, G., Sobral, M., Stehmann, J.R., Stevens, W.D., Taylor, C.M., Trovó, M., van den Berg, C., van der Werff, H., Viana, P.L., Zartman, C.E., and Forzza, R.C. (2017)
- 1139 Amazon plant diversity revealed by a taxonomically verified species list. *Proceedings of the*
- 1140 *National Academy of Sciences*, **114**, 10695-10700. 1141
- 1142 Cavaleri, M. A., Reed, S.C., Smith, W.K., and Wood, T.E. (2015) Urgent need for warming
- experiments in tropical forests. *Global Change Biology*, **21**, 2111-2121.

- 1145 Chang, L.-W., Hwong, J.-L., Chen, Y.-T., Yeh, C.-Y., Lin, H.-C., Kuo, C.-C., Lin, C.-C., Sun, I.-
- 1146 F., Yang, K.-C., Chen, Z.-S., and Wang, H.-H. (2012). Lienhuachih Subtropical Evergreen
- 1147 Broadleaf Forest Dynamics Plot: Tree Species Characteristics and Distribution Patterns. 360
- pp. Taiwan Forestry Research Institute, Taipei, Taiwan.
- 1149
- 1150 Chanthorn, W., Hartig, F., Brockelman, W.Y., Srisang, W., Nathalang, A. & Santon, J. (2019).
- Defaunation of large-bodied frugivores reduces carbon storage in a tropical forest of Southeast
- 1152 Asia. Scientific Reports, 9, 1–9.
- 1153
- 1154 Chave, J., R. Condit, S. Lao, J. P. Caspersen, R. B. Foster, and S. P. Hubbell. 2003. Spatial and
- temporal variation of biomass in a tropical forest: results from a large census plot in Panama.
- 1156 *Journal of Ecology* **91**:240-252.
- 1157
- 1158 Chave, J., Condit, R., Muller-Landau, H.C., Thomas, S.C., Ashton, P.S., Bunyavejchewin, S., Co,
- 1159 L.C., Dattaraja, H.S., Davies, S.J., Esufali, S., Ewango, C.E.N., Feeley, K.J., Foster, R.B.,
- Gunatilleke, N., Gunatilleke, S., Hall, P., Hart, T.B., Hernández, C., Hubbell, S.P., Itoh, A.,
- 1161 Kiratiprayoon, S., LaFrankie, J.V., Loo de Lao, S., Makana, J.-R., Noor, M.N.S., Kassim, A.R.,
- Samper, C., Sukumar, R., Suresh, H.S., Tan, S., Thompson, J., Tongco, M.D.C., Valencia, R.,
- 1163 Vallejo, M., Villa, G., Yamakura, T., Zimmerman, J.K., and Losos, E.C. (2008) Assessing
- evidence for a pervasive alteration in tropical tree communities. *PLoS Biology*, **6**, 1-8.
- 1165
- 1166 Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M.S., Delitti, W.B.C.,
- Duque, A., Eid, T., Fearnside, P.M., Goodman, R.C., Henry, M., Martínez-Yrízar, A., Mugasha,
- 1168 W.A., Muller-Landau, H.C., Mencuccini, M., Nelson, B.W., Ngomanda, A., Nogueira, E.M.,
- Ortiz-Malavassi, E., Pélissier, R., Ploton, P., Ryan, C.M., Saldarriaga, J.G. & Vieilledent, G.
- 1170 (2014) Improved allometric models to estimate the aboveground biomass of tropical trees. *Global*
- 1171 *Change Biology*, **20**, 3177-3190.
- 1172
- 1173 Chave, J., Davies, S.J., Phillips, O.L., Lewis, S.L., Sist, P., Schepaschenko, D., Armston, J., Baker,
- 1174 T.R., Coomes, D., Disney, M., Duncanson, L., Hérault, B., Labrière, N., Meyer, V., Réjou-
- 1175 Méchain, M., Scipal, K., and Saatchi, S. (2019) Ground Data are Essential for Biomass Remote
- 1176 Sensing Missions. *Surveys in Geophysics*, **40**, 863-880.
- 1177
- 1178 Chen, B., Mi X., Fang, T., Chen, L., Ren, H., & Ma K. (2009) Gutianshan Forest Dynamic Plot:
- 1179 Tree Species and Their Distribution Patterns. In: Ma, K. (ed.). Chinese Forest Biodiversity
- 1180 Monitoring Network Series. China Forestry Publishing House, Beijing.
- 1181
- 1182 Chen, L., Mi, X., Comita, L.S., Zhang, L., Ren, H. & Ma, K. (2010) Community-level
- 1183 consequences of density dependence and habitat association in a subtropical broad-leaved forest.
- 1184 *Ecology Letters*, **13**, 695-704.
- 1185
- 1186 Chen, L., L. Wang, Y. Baiketuerhan, C. Zhang, X. Zhao, and K. von Gadow. (2014). Seed dispersal
- and seedling recruitment of trees at different successional stages in a temperate forest in
- northeastern China. *Journal of Plant Ecology* **7,** 337-346.
- 1189

- 1190 Chen, Y.-Y., Satake, A., Sun, I.F., Kosugi, Y., Tani, M., Numata, S., Hubbell, S.P., Fletcher, C.,
- Nur Supardi, M.N., Wright, S.J. & Rafferty, N. (2018) Species-specific flowering cues among
- general flowering Shorea species at the Pasoh Research Forest, Malaysia. Journal of Ecology, 106,
- 1193 586-598.

1195 Chesson P. 2000. Mechanisms of maintenance of species diversity. *Annual Review of Ecology and Systematics* **31**, 343-366.

1197

- 1198 Chisholm, R.A., Muller-Landau, H.C., Abdul Rahman, K., Bebber, D.P., Bin, Y., Bohlman, S.A.,
- Bourg, N.A., Brinks, J., Bunyavejchewin, S., Butt, N., Cao, H., Cao, M., Cárdenas, D., Chang, L.-
- W., Chiang, J.-M., Chuyong, G., Condit, R., Dattaraja, H.S., Davies, S., Duque, A., Fletcher, C.,
- Gunatilleke, N., Gunatilleke, S., Hao, Z., Harrison, R.D., Howe, R., Hsieh, C.-F., Hubbell, S.P.,
- 1202 Itoh, A., Kenfack, D., Kiratiprayoon, S., Larson, A.J., Lian, J., Lin, D., Liu, H., Lutz, J.A., Ma, K.,
- Malhi, Y., McMahon, S., McShea, W., Meegaskumbura, M., Mohd. Razman, S., Morecroft, M.D.,
- 1204 Nytch, C.J., Oliveira, A., Parker, G.G., Pulla, S., Punchi-Manage, R., Romero-Saltos, H., Sang,
- 1205 W., Schurman, J., Su, S.-H., Sukumar, R., Sun, I.F., Suresh, H.S., Tan, S., Thomas, D., Thomas,
- 1206 S., Thompson, J., Valencia, R., Wolf, A., Yap, S., Ye, W., Yuan, Z., Zimmerman, J.K. & Coomes,
- 1207 D. (2013) Scale-dependent relationships between tree species richness and ecosystem function in
- 1208 forests. *Journal of Ecology*, **101**, 1214-1224.

1209

1210 Chisholm, R.A. and J.P. O'Dwyer (2014). Species ages in neutral biodiversity models. *Theoretical Population Biology*, **93**, 85-94.

1212

- 1213 Chisholm, R.A., Condit, R., Rahman, K.A., Baker, P.J., Bunyavejchewin, S., Chen, Y.Y.,
- 1214 Chuyong, G., Dattaraja, H.S., Davies, S., Ewango, C.E., Gunatilleke, C.V., Nimal Gunatilleke,
- 1215 I.A., Hubbell, S., Kenfack, D., Kiratiprayoon, S., Lin, Y., Makana, J.R., Pongpattananurak, N.,
- 1216 Pulla, S., Punchi-Manage, R., Sukumar, R., Su, S.H., Sun, I.F., Suresh, H.S., Tan, S., Thomas, D.,
- 4217 & Yap, S. (2014) Temporal variability of forest communities: empirical estimates of population
- change in 4000 tree species. *Ecology Letters*, **17**, 855-65.

1219

1220 Chisholm, R.A & Fung, T. 2020. Janzen-Connell effects are a weak impediment to competitive exclusion. *American Naturalist (in press)*

1222

- 1223 Chu, C., Lutz, J.A., Král, K., Vrška, T., Yin, X., Myers, J.A., Abiem, I., Alonso, A., Bourg, N.,
- Burslem, D.F.R.P., Cao, M., Chapman, H., Condit, R., Fang, S., Fischer, G.A., Gao, L., Hao, Z.,
- Hau, B.C.H., He, Q., Hector, A., Hubbell, S.P., Jiang, M., Jin, G., Kenfack, D., Lai, J., Li, B., Li,
- 1226 X., Li, Y., Lian, J., Lin, L., Liu, Y., Liu, Y., Luo, Y., Ma, K., McShea, W., Memiaghe, H., Mi, X.,
- Ni, M., O'Brien, M.J., de Oliveira, A.A., Orwig, D.A., Parker, G.G., Qiao, X., Ren, H., Reynolds, G., Sang, W., Shen, G., Su, Z., Sui, X., Sun, I.F., Tian, S., Wang, B., Wang, X., Wang,
- 1229 Y., Weiblen, G.D., Wen, S., Xi, N., Xiang, W., Xu, H., Xu, K., Ye, W., Zhang, B., Zhang, J.,
- 1230 Zhang, X., Zhang, Y., Zhu, K., Zimmerman, J., Storch, D., Baltzer, J.L., Anderson- Teixeira, K.J.,
- 1231 Mittelbach, G.G. & He, F. (2018) Direct and indirect effects of climate on richness drive the
- 1232 latitudinal diversity gradient in forest trees. *Ecology Letters*, **22**, 245-255.

- 1234 Chua, L.S.L., Suhaida, M., Hamidah, M., and Saw, L.G. (2010) Malaysia plant Red List:
- 1235 Peninsular Malaysian Dipterocarpaceae. Research Pamphlet Forest Research Institute Malaysia,
- 1236 129, 210.
- 1237
- 1238 Chuyong GB, Kenfack D, Harms KE, Thomas DW, Condit R, Comita LS. (2011). Habitat
- specificity and diversity of tree species in an African wet tropical forest. *Plant Ecology* 212(8):
- 1240 1363-1374.
- 1241
- 1242 Christin, S., Hervet, É., Lecomte, N., and Ye, H. (2019) Applications for deep learning in ecology.
- 1243 *Methods in Ecology and Evolution*, **10**, 1632-1644.
- 1244
- 1245 Clark, D. B., Castro, C.S., Alvarado, L. D. A., Read, J.M. (2004) Quantifying mortality of tropical
- rain forest trees using high-spatial-resolution satellite data. *Ecology Letters*, **7**, 52-59.
- 1247
- 1248 Clark, D.A., Clark, D.B., and Oberbauer, S.F. (2013) Field-quantified responses of tropical
- rainforest aboveground productivity to increasing CO₂ and climatic stress, 1997-2009. *Journal of*
- 1250 Geophysical Research: Biogeosciences, 118, 783-794.
- 1251
- 1252 Clark, A. T., M. Detto, H. C. Muller-Landau, S. A. Schnitzer, S. J. Wright, R. Condit, S. P.
- Hubbell, and L. Gomez-Aparicio. 2017. Functional traits of tropical trees and lianas explain spatial
- structure across multiple scales. *Journal of Ecology*, **106**, 795-806.
- 1255
- 1256 Co, L., D. Lagunzad, K.A. Pasion, H. Consunji, N. Bartolome, S. Yap, J. Molina, D.C. Tongco,
- 1257 U.F. Ferreras, J.V. LaFrankie, S.J. Davies & P.S. Ashton (2006) Forest Trees of Palanan,
- 1258 Philippines: A Study in Population Ecology. 313 pp. Center for Integrative and Development
- 1259 Studies, University of the Philippines Diliman, Philippines.
- 1260
- 1261 Comita, L.S., Muller-Landau, H.C., Aguilar, S., and Hubbell, S.P. (2010) Asymmetric density
- dependence shapes species abundances in a tropical tree community. *Science*, **329**, 330-332.
- 1263
- 1264 Comita, L.S. and Stump, S.M. (2020) Natural enemies and the maintenance of tropical tree
- diversity: recent insights and implications for the future of biodiversity in a changing world. *Annals*
- 1266 of the Missouri Botanical Garden, 105, 377-392.
- 1267
- 1268 Condit, R., Hubbell, S.P. & Foster, R.B. (1995) Mortality rates of 205 Neotropical tree and shrub
- species and the impact of a severe drought. *Ecological Monographs*, **65**, 419-439.
- 1270
- 1271 Condit, R. (1998) Tropical Forest Census Plots: Methods and results from Barro Colorado Island,
- 1272 Panama and a comparison with other plots. Springer-Verlag, Berlin.
- 1273
- 1274 Condit, R., Ashton, P.S., Baker, P., Bunyavejchewin, S., Gunatilleke, S., Gunatilleke, N., Hubbell,
- 1275 S.P., Foster, R.B., Itoh, A., LaFrankie, J.V., Lee, H.S., Losos, E., Manokaran, N., Sukumar, R. &
- Yamakura, T. (2000) Spatial patterns in the distribution of tropical trees. *Science*, **288**, 1414-1418.
- 1277
- 1278 Condit, R., Ashton, P., Bunyavejchewin, S., Dattaraja, H.S., Davies, S.J., Esufali, S., Ewango, C.,
- Foster, R., Gunatilleke, I.A.U.N., Gunatilleke, C.V.S., Hall, P., Harms, K.E., Hart, T., Hernandez,

- 1280 C., Hubbell, S., Itoh, A., Kiratiprayoon, S., LaFrankie, J., Lao, S.L.d., Makana, J.-R., Noor,
- 1281 M.N.S., Kassim, A.R., Russo, S., Sukumar, R., Samper, C., Suresh, H.S., Tan, S., Thomas, S.,
- Valencia, R., Vallejo, M., Villa, G. & Zillio, T. (2006) The importance of demographic niches to
- 1283 tree diversity. *Science*, **313**, 98-101.

1285 Condit, R. (2012) CTFS R Package. http://ctfs.si.edu/Public/CTFSRPackage.

1286

1287 Condit, R., R.A. Chisholm, and S.P. Hubbell (2012) Thirty Years of Forest Census at Barro Colorado and the Importance of Immigration in Maintaining Diversity. *PLOS ONE*, 7, 11, e49826.

1289

1290 Condit, R., Engelbrecht, B.M.J., Pino, D., Pérez, R. & Turner, B.L. (2013) Species distributions 1291 in response to individual soil nutrients and seasonal drought across a community of tropical trees. 1292 *Proceedings of the National Academy of Science, USA*, **110**, 5064-5068.

1293

1294 Condit, R., Lao, S., Singh, A., Esufali, S. and Dolins, S. (2014) Data and database standards for permanent forest plots in a global network. *Forest Ecology and Management*, **316**, 21-31.

1296

Connell, J. (1971) On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees. In: *Dynamics of Populations*. (ed. by P.J. Den Boer and G.R. Gradwell), pp. 298-312. Centre for Agricultural Publishing and Documentation, Wageningen, The Netherlands.

1301

- Davies, S.J., M.N. Nur Supardi, J.V. LaFrankie & P.S. Ashton (2003) The Trees of Pasoh Forest: Stand Structure and Floristic Composition of the 50-Hectare Forest Research Plot. In: *Pasoh*:
- 1304 Ecology and natural history of a Southeast Asian lowland tropical rain forest. (Okuda, T., N.
- 1305 Manokaran, S.C. Thomas & P.S. Ashton, eds.), pp. 35-50.

1306

Davies, S.J., S. Tan, J.V. LaFrankie & M.D. Potts (2005) Soil-related floristic variation in a hyperdiverse dipterocarp forest. In: Pollination Ecology and the Rain Forest (Sarawak Studies). (Roubik, D., S. Sakai & A.A. Hamid Karim eds.). Springer Science, New York, pp. 22-34.

1310

Delissio, L., Primack, R.B., Hall, P. & Lee, H.S. (2002) A decade of canopy-tree seedling survival and growth in two Bornean rain forests: persistence and recovery from suppression. *Journal of Tropical Ecology*, **18**, 645-658.

1314

Detto, M., and H. C. Muller-Landau. 2013. Fitting ecological process models to spatial patterns using scalewise variances and moment equations. American Naturalist **181**, E68-82.

1317

Detto, M., Wright, S.J., Calderon, O. and Muller-Landau, H.C. (2018) Resource acquisition and reproductive strategies of tropical forest in response to the El Nino-Southern Oscillation. *Nature Communications*, **9**, 1-8.

1321

Detto, M., Visser, M.D., Wright, S.J., Pacala, S.W. & Coulson, T. (2019) Bias in the detection of negative density dependence in plant communities. *Ecology Letters*, **22**, 1923-1939.

- Ding, B., Chen, D., Luo, Z., Chen, X., Hu, R., & Ye, Z. (2013) Zhejiang Baishanzu Forest
- 1326 Dynamics Plot: Tree Species and Their Distribution Patterns. In: Ma, K. (ed.). Chinese Forest
- 1327 Biodiversity Monitoring Network Series. China Forestry Publishing House, Beijing.

Dirzo, R., Young, H.S., Galetti, M., Ceballos, G., Isaac, N.J.B. & Collen, B. (2014). Defaunation in the Anthropocene. *Science*, **345**, 401–406.

1331

- Draper, F.C., Baker, T.R., Baraloto, C., Chave, J., Costa, F., Martin, R.E., Pennington, R.T.,
- 1333 Vicentini, A. & Asner, G.P. (2020) Quantifying tropical plant diversity requires an integrated
- 1334 technological approach. Trends in Ecology & Evolution, 35, 1100-1109.
- 1335 https://doi.org/10.1016/j.tree.2020.08.003

1336

Du, Y., Mi, X., Liu, X., Chen, L. & Ma, K. (2009) Seed dispersal phenology and dispersal syndromes in a subtropical broad-leaved forest of China. *Forest Ecology and Management*, **258**, 1339 1147-1152.

1340

Dubayah, R. (2019) The Global Ecosystem Dynamics Investigation: Mission status and first results. AGU Fall Meeting 2019.

1343

- Duncanson, L., Armston, J., Disney, M., Avitabile, V., Barbier, N., Calders, K., Carter, S., Chave,
- 1345 J., Herold, M., Crowther, T.W., Falkowski, M., Kellner, J.R., Labrière, N., Lucas, R., MacBean,
- 1346 N., McRoberts, R.E., Meyer, V., Naesset, E, Nickeson, J.E., Paul, K.I., Phillips, O.L., Réjou-
- 1347 Méchain, M., Román, M., Roxburgh, S., Saatchi, S., Schepaschenko, D., Scipal, K., Siqueira, P.R.,
- Whitehurst, A., and Williams, M. (2019) The importance of consistent global forest aboveground
- biomass product validation. *Surveys in Geophysics*, **40**, 979-999.

1350

- Durán, S.M., Martin, R.E., Díaz, S., Maitner, B.S., Malhi, Y., Salinas, N., Shenkin, A., Silman,
- 1352 M.R., Wieczynski, D.J., Asner, G.P., Bentley, L.P., Savage, V.M., and Enquist, B.J. (2019)
- 1353 Informing trait-based ecology by assessing remotely sensed functional diversity across a broad
- tropical temperature gradient. Science Advances, 5, eaaw8114.

1355

- Durgante, F. M., Higuchi, N., Almeida, A., and Vicentini, A. (2013) Species spectral signature:
- 1357 Discriminating closely related plant species in the Amazon with near-infrared leaf-spectroscopy.
- 1358 Forest Ecology and Management, **291**, 240–248.

1359

- Duque, A., Muller-Landau, H.C., Valencia, R., Cardenas, D., Davies, S., de Oliveira, A., Pérez,
- A.J., Romero-Saltos, H. & Vicentini, A. (2017) Insights into regional patterns of Amazonian forest
- structure, diversity, and dominance from three large terra-firme forest dynamics plots. *Biodiversity*
- 1363 and Conservation, **26**, 669-686.

1364

- Engelbrecht, B.M.J., Comita, L.S., Condit, R., Kursar, T.A., Tyree, M.T., Turner, B.L. & Hubbell,
- 1366 S.P. (2007) Drought sensitivity shapes species distribution patterns in tropical forests. *Nature*, **447**,
- 1367 80-82.

- Engone-Obiang, N. L., D. Kenfack, N. Picard, J. A. Lutz, P. Bissiengou, H. R. Memiaghe, and A.
- Alonso. 2019. Determinants of spatial patterns of canopy tree species in a tropical evergreen forest
- in Gabon. *Journal of Vegetation Science* **30**, 929-939. https://doi.org/10.1111/jvs.12778
- 1372
- 1373 Erickson, D.L., Jones, F.A., Swenson, N.G., Pei, N., Bourg, N.A., Chen, W., Davies, S.J., Ge, X.-
- 1374 j., Hao, Z., Howe, R.W., Huang, C.-L., Larson, A.J., Lum, S.K.Y., Lutz, J.A., Ma, K.,
- 1375 Meegaskumbura, M., Mi, X., Parker, J.D., Sun, I.-F., Wright, S.J., Wolf, A.T., Ye, W., Xing, D.,
- Zimmerman, J.K., and Kress, W.J. (2014) Comparative evolutionary diversity and phylogenetic
- 1377 structure across multiple forest dynamics plots: a mega-phylogeny approach. Frontiers in
- 1378 *Genetics*, **5**.
- 1379
- Erickson, D.L., Reed, E., Ramachandran, P., Bourg, N.A., McShea, W.J. and Ottesen, A. (2017)
- 1381 Reconstructing a herbivore's diet using a novel rbcL DNA mini-barcode for plants. *AoB PLANTS*,
- **1382 9**, plx015.
- 1383
- Esquivel-Muelbert, A., Baker, T.R., Dexter, K.G., Lewis, S.L., Brienen, R.J.W., Feldpausch, T.R.,
- Lloyd, J., Monteagudo-Mendoza, A., Arroyo, L., Álvarez-Dávila, E., Higuchi, N., Marimon, B.S.,
- 1386 Marimon-Junior, B.H., Silveira, M., Vilanova, E., Gloor, E., Malhi, Y., Chave, J., Barlow, J.,
- Bonal, D., Cardozo, N.D., Erwin, T., Fausest, S., Hérault, B., Laurance, S., Poorter, L., Qie, L.,
- 1388 Stahl, C., Sullivan, M.J.P., ter Steege, H., Vos, V.A., Zuidema, P.A., Almeida, E., de Oliveira,
- 1389 E.A., Andrade, A., Vieire, S.A., Aragão, L., Araujo-Murakami, A., Arets, E., Aymard C., G.A.,
- 1390 Baraloto, C., Carmago, P.B., Barroso, J.G., Bongers, F., Boot, R., Carmago, J.L., Castro, W.,
- Moscoso, V.C., Comiskey, J., Valverde, F.C., da Costa, A.C.L., del Aguila Pasquel, J., Di Fiore,
- 1392 A., Duque, L.F., Elias, F., Engel, J, Llampazo, G.F., Galbraith, D., Herrera Fernández, R., Honorio
- 1393 Coronado, E., Hubau, W., Jimenez-Rojas, E., Lima A.J.N., Keichi Umetsu, R., Laurance, W.,
- Lopez-Gonazalez, G., Lovejoy T., Melo Cruz, O.A., Morandi, P.S., Neill, D., Núñez Vargas, P.,
- Pallqui Camacho, N.C. Parada Gutierrez, A., Pardo, G., Peacock, J., Peña-Claros, M., Peñuela-
- 1396 Mora, M.C., Petronelli, P., Pickavance, G.C., Pitman, N., Prieto, A., Quesada, C., Ramírez-
- Angulo, H., Réjou-Méchain, M., Restrepo Correa, Z., Roopsind, A., Rudas, A., Saomão, R., Silva,
- 1398 N., Silva Espejo, J., Singh, J., Stropp, J., Terborgh, J., Thomas, R., Toldeo, M., Torres-Lezama,
- 1399 A., Valenzuela Gamarra, L., van de Meer, P.J., van der Jeijden, G., van der Hout, P., Vasquez
- A., Valenzuela Galilaria, E., Vali de Meet, T.J., Vali del Jeljden, G., Vali del Hout, T., Vasquez
- 1400 Martinez, R., Vela, C., Vieira, I.C.G., and Phillips, O.L. (2019) Compositional response of
- 1401 Amazon forests to climate change. *Global Change Biology*, **25**, 39-56.
- 1402
- Estes, J.A., Terborgh, J., Brashares, J.S., Power, M.E., Berger, J., Bond, W.J., et al. (2011). Trophic
- downgrading of planet Earth. Science, 333, 301–306.
- 1405
- 1406 Faith, D.P. (1992). Conservation evaluation and phylogenetic diversity. *Biological*
- 1407 *conservation*, **61**, 1-10.
- 1408
- 1409 Fauset, S., Baker, T.R., Lewis, S.L., Feldpausch, T.R., Affum-Baffoe, K., Foli, E.G., Hamer, K.C.,
- and Swaine, M.D. (2012) Drought-induced shifts in the floristic and functional composition of
- tropical forests in Ghana. *Ecology Letters*, **15**, 1120-1129.
- 1412
- 1413 Feng, G., Mi, X., Yan, H., Li, F. Y., Svenning, J.- C., & Ma, K. (2016). CForBio: a network
- monitoring Chinese forest biodiversity. *Science Bulletin*, **61**, 15, 1163–1170.

- 1416 Fisher, R.A., Koven, C.D., Anderegg, W.R.L., Christoffersen, B.O., Dietze, Farrior, C.E., Holm,
- 1417 J.A., Hurtt, G.C., Knox, R.G., Lawrence, P.J., Lichstein, J.W., Longo, M., Matheny, A.M.,
- 1418 Medvigy, D., Muller-Landau, H.C., Powell, T.L., Serbin, S.P., Sato, H., Shuman, J.K., Smith, B.,
- 1419 Trugman, A.T., Viskari, T., Verbeeck, H., Weng, E., Xu, C., Xu, X., Zhang, T., and Moorcroft,
- 1420 P.R. (2018) Vegetation demographics in Earth System Models: A review of progress and priorities.
- 1421 *Global Change Biology*, **24**, 35-54.

1422

- 1423 Fisher, R.A., Muszala, S., Verteinstein, M., Lawrence, P., Xu, C., McDowell, N.G., Knox, R.G.,
- Koven, C., Holm, J., Rogers, B.M., Spessa, A., Lawrence, D. & Bonan, G. (2015) Taking off the
- training wheels: the properties of a dynamic vegetation model without climate envelopes,
- 1426 CLM4.5(ED). Geoscientific Model Development, 8, 3593-3619.

1427

- 1428 Fontes, C. G., Chambers, J. Q., and Higuchi, N. (2018) Revealing the causes and temporal
- 1429 distribution of tree mortality in Central Amazonia. Forest Ecology and Management, 424, 177-
- 1430 183.

1431

- 1432 Friedlingstein, P., Meinshausen, M., Arora, V.K., Jones, C.D., Anav, A., Liddicoat, S.K., and
- 1433 Knutti, R. (2014) Uncertainties in CMIP5 Climate Projections due to Carbon Cycle Feedbacks.
- 1434 *Journal of Climate*, **27**, 511-526.

1435

- Furniss, T.J., Larson, A.J., Kane, V.R. & Lutz, J.A. (2020) Wildfire and drought moderate the
- spatial elements of tree mortality. *Ecosphere*, **11**

1438

- 1439 Gentry, A.H. (1988) Tree species richness of upper Amazonian forests. *Proceedings of the*
- 1440 National Academy of Science, USA, 85, 156-159.

1441

- 1442 Gilbert GS. (2002). Evolutionary ecology of plant diseases in natural ecosystems. *Annual Review*
- 1443 *of Phytopathology* **40**: 13-43.

1444

- Gonzalez-Akre, EB, C. Piponiot, M. Lepore, V. Herrmann, J. A. Lutz, K.J. Anderson-Teixeira
- 1446 (in review). An R database for biomass estimation at globally distributed extratropical forest
- 1447 plots. Methods in Ecology and Evolution

1448

- Gora, E.M., Kneale, R.C., Larjavaara, M. & Muller-Landau, H.C. (2019) Dead wood necromass
- in a moist tropical forest: stocks, fluxes, and spatiotemporal variability. *Ecosystems*, 22, 1189-
- 1451 1205.

1452

- Gripenberg, S., Basset, Y., Lewis, O. T., Terry, J. C. D., Wright, S. J., Simón, I., Fernández, C.,
- 1454 Cedeño-Sanchez, M., Rivera, M., Barrios, H., Brown, J.W. Calderón, O., Cognato, A.I., Kim, J.,
- 1455 Miller, S.E, Morse G.E., Pinzón-Navarro, S., Quicke, D.L.J., Robbins, R.K., Salminen, J.-P., and
- 1456 Vesterinen, E. (2019). A highly resolved food web for insect seed predators in a species- rich
- tropical forest. *Ecology Letters*, **22**, 1638-1649.

- Gunatilleke, C.V.S., Gunatilleke, I.A.U.N, Euthugala, A.U.K., and Esufali, S. (2004). *Ecology of Sinharaja rain forest and the forest dynamics plot in Sri Lanka's Natural World Heritage Site*. 221
 pp. WHT Publications (Pvt.) Ltd., Colombo, Sri Lanka.
- Gunatilleke, C.V.S., Gunatilleke, I.A.U.N., Esufali, S., Harms, K.E., Ashton, P.M.S., Burslem, D.F.R.P. & Ashton, P.S. (2006) Species—habitat associations in a Sri Lankan dipterocarp forest. *Journal of Tropical Ecology*, **22**, 371-384.

1466

1482

1486

1490

1495

- Harms, K.E., Wright, S.J., Calderon, O., Hernandez, A. & Herre, E.A. (2000) Pervasive densitydependent recruitment enhances seedling diversity in a tropical forest. *Nature*, **404**, 493-495.
- Harms, K.E., Condit, R., Hubbell, S.P. & Foster, R.B. (2001) Habitat associations of trees and shrubs in a 50-ha neotropical forest plot. *Journal of Ecology*, 89, 947-959.
 1472
- Harris, I., Osborn, T.J., Jones, P. & Lister, D. (2020) Version 4 of the CRU TS monthly highresolution gridded multivariate climate dataset. *Scientific Data*, 7.
- Harrison, R.D., Tan, S., Plotkin, J.B., Slik, F., Detto, M., Brenes, T., Itoh, A. & Davies, S.J. (2013)
 Consequences of defaunation for a tropical tree community. *Ecology Letters*, 16, 687-94.
- Helcoski, R., Tepley, A. J., Pederson, N., McGarvey, J. C., Meakem, V., Herrmann, V., Thompson,
 J. R., and Anderson-Teixeira, K. J. (2019). Growing season moisture drives inter-annual variation
 in woody productivity of a temperate deciduous forest. *New Phytologist*, 223, 1204-1216.
- Herrmann, V., McMahon, S.M., Detto, M., Lutz, J.A., Davies, S.J., Chang-Yang C.-H., and Anderson-Teixeira, K.J. (2016) Tree Circumference Dynamics in Four Forests Characterized Using Automated Dendrometer Bands. *PLoS ONE*, **11**, e0169020.
- Hoesly, Rachel M., O'Rourke, Patrick R, Smith, Steven J., Feng, Leyang, Klimont, Zbigniew,
 Janssens-Maenhout, Greet, ... Muwan, Presley. (2020). CEDS v_2019_12_23 Emission Data
 (Version v_2019_12_23) [Data set].
- Hogan, J., Zimmerman, J., Thompson, J., Uriarte, M., Swenson, N., Condit, R., Hubbell, S.,
 Johnson, D., Sun, I., Chang-Yang, C.-H., Su, S.-H., Ong, P., Rodriguez, L., Monoy, C., Yap, S. &
 Davies, S. (2018) The frequency of cyclonic wind storms shapes tropical forest dynamism and
 functional trait dispersion. *Forests*, 9, 404.
- Hubbell, S.P. (1979a) Tree dispersion, abundance, and diversity in a tropical dry forest. *Science*,
 203, 4387, 1299-1309.
- Hubbell, S.P. (1979b). A unified theory of biogeography and relative species abundance and its application to tropical rain forests and coral reefs. Coral Reefs, **16**, S9-S21.
- Hubbell, S.P. and Foster, R.B. (1982). The Structure and Dynamics of a Tropical Forest: A
 Demographic Analysis. Proposal to the National Science Foundation.

- Hubbell, S.P., Condit, R. & Foster, R.B. (1990) Presence and absence of density dependence in a
- neotropical tree community. Philosophical Transactions of the Royal Society London, B., 330,
- 1507 269-281.

Hubbell, S.P. & Foster, R.B. (1992) Short-term dynamics of a neotropical forest: why ecological research matters to tropical conservation and management. *Oikos*, **63**, 48-61.

1511

- Hubbell, S.P., Foster, R.B., O'Brien, S.T., Harms, K.E., Condit, R., Wechsler, B., Wright, S.J. &
- 1513 Loo de Lao, S. (1999) Light-gap disturbances, recruitment limitation, and tree diversity in a
- 1514 Neotropical forest. *Science*, **283**, 554-557.

1515

- Hubbell, S.P. (2001) The Unified Neutral Theory of Biodiversity and Biogeography. Princeton,
- 1517 NJ: Princeton University Press.

1518

- Hurtt, G. C., and S. W. Pacala. 1995. The consequences of recruitment limitation reconciling
- chance, history and competitive differences between plants. Journal of Theoretical Biology 176,
- 1521 1-12.

1522

- 1523 Ickes, K., Paciorek, C.J. & Thomas, S.C. (2005). Impacts of nest construction by native pigs (Sus
- scrofa) on lowland Malaysian rain forest saplings. *Ecology*, **86**, 1540–1547.

1525

- 1526 Iida, Y., Kohyama, T.S., Swenson, N.G., Su, S.-H., Chen, C.-T., Chiang, J.-M., Sun, I.F. &
- 1527 Zuidema, P. (2014) Linking functional traits and demographic rates in a subtropical tree
- 1528 community: the importance of size dependency. *Journal of Ecology*, **102**, 641-650.

1529

- 1530 Immerzeel, W. W., Lutz, A.F., Andrade, M., Bahl, A., Biemans, H., Bolch, T., Hyde, S., Brumby,
- 1531 S., Davies, B.J., Elmore, A.C., Emmer, A., Feng, M., Fernández, A., Haritashya, U., Kargel, J.S.,
- 1532 Koppes, M., Kraaijenbrink, P.D.A., Kulkarni, A.V., Mayewski, P.A., Nepal, S., Pacheco, P.,
- Painter, T.H., Pellicciotti, F., Rajaram, H., Rupper, S., Sinisalo, A., Shrestha, A.B., Viviroli, D.,
- Wada, Y., Xiao, C., Yao, T., and Baillie, J.E.M. (2020) Importance and vulnerability of the world's
- 1535 water towers. *Nature*, **577**, 364–369.

1536

- 1537 Itoh, A., Nanami, S., Harata, T., Ohkubo, T., Tan, S., Chong, L., Davies, S.J. & Yamakura, T.
- 1538 (2012) The effect of habitat association and edaphic conditions on tree mortality during El Nino-
- induced drought in a Bornean dipterocarp forest. *Biotropica*, 44, 606-617.

1540

- Janik, D., Kral, K., Adam, D., Vrska, T., & Lutz, J. (2019). ForestGEO Dead Wood Census
- Protocol. Smithsonian Institute, Utah State University. https://doi.org/10.26078/VCDR-Y089

1543

- Janzen, D. H. 1970. Herbivores and the number of tree species in tropical forests. *American*
- 1545 *Naturalist* **104**, 501-528.

1546

- 1547 Jia, S., Wang, X., Yuan, Z., Lin, F., Ye, J., Lin, G., Hao, Z. & Bagchi, R. (2020) Tree species traits
- 1548 affect which natural enemies drive the Janzen-Connell effect in a temperate forest. Nature
- 1549 *Communications*, **11**, 286.

Jin, Y., Russo, S.E., & Yu, M. (2017) Effects of light and topography on regeneration and coexistence of evergreen and deciduous tree species in a Chinese subtropical forest. *Journal of Ecology*, **106**, 1634-1645.

1554

1559

1586

1591

- John, R., Dalling, J.W., Harms, K.E., Yavitt, J.B., Stallard, R.F., Mirabello, M., Hubbell, S.P., Valencia, R., Navarrete, H., Vallejo, M. and Foster, R.B. (2007) Soil nutrients influence spatial distributions of tropical tree species. *Proceedings of the National Academy of Science, USA*, **104**, 864-869.
- Johnson, D.J., Beaulieu, W.T., Bever, J.D. & Clay, K. (2012) Conspecific negative density dependence and forest diversity. *Science*, **336**, 904-907.

 Johnson, D.J., Needham, J., Xu, C., Massoud, E.C., Davies, S.J., Anderson-Teixeira, K.J.,
- Bunyavejchewin, S., Chambers, J.Q., Chang-Yang, C.-H., Chiang, J.-M., Chuyong, G.B., Condit, R., Cordell, S., Fletcher, C., Giardina, C.P., Giambelluca, T.W., Gunatilleke, N., Gunatilleke, S., Hsieh, C.-F., Hubbell, S., Inman-Narahari, F., Kassim, A.R., Katabuchi, M., Kenfack, D., Litton, C.M., Lum, S., Mohamad, M., Nasardin, M., Ong, P.S., Ostertag, R., Sack, L., Swenson, N.G., Sun, I.F., Tan, S., Thomas, D.W., Thompson, J., Umaña, M.N., Uriarte, M., Valencia, R., Yap, S., Zimmerman, J., McDowell, N.G., and McMahon, S.M. (2018) Climate sensitive size-dependent
- Zimmerman, J., McDowell, N.G., and McMahon, S.M. (2018) Climate sensitive size-dependent survival in tropical trees. *Nature Ecology & Evolution*, **2**, 1436-1442.
- Johnson, M. Galbraith, O., D., Gloor, M., De Deurwaerder H., Guimberteau, M., Rammig, A., Thonicke, K., Verbeeck, H., von Randow, C., Monteagudo, A., Phillips, O.L. Brienen, R.J.W., Feldpausch, T.R., Lopez Gonzalez, G., Fauset, S., Quesada, C.A., Christoffersen, B., Ciais, P., Sampaio, G., Kruijt, B., Meir, P., Moorcroft, P., Zhang, K., Alvarez-Davila, E., de Oliveira, A.A.,
- Amaral, I., Andrade, A., Aragao, L.E.O.C., Araujo-Murakami, A., Arets, E.J.M.M., Arroyo, L., Aymard, G.A., Baraloto, C. Barroso, J., Bonal, D., Boot, R., Camargo, J., Chave, J., Cogollo, A.,
- 1577 Ayınatd, G.A., Baraloto, C. Barroso, J., Boliai, D., Boot, R., Calliaigo, J., Cliave, J., Cogolio, A., 1578 Cornejo Valverde, F., da Costa, A.C.L., Di Fiore, A., Ferreira, L., Higuchi, N., Honorio, E.N.,
- 1579 Killeen, T.J., Laurance, S.G., Laurance, W.F., Licona, J., Lovejoy, T., Malhi, Y., Marimon, B.,
- Marimon Junior, B.H., Matos, D.C.L., Mendoza, C., Neill, D.A., Pardo, G., Roopsind, A., Rudas,
- A., Salomao, R.P., Silveira, M., Stropp, J., ter Steege, H., Terborgh, J., Thomas, R., Toledo, M., Torres-Lezama, A., van der Heijden, G.M.F., Vasquez, R., Vieira, I.C.G., Vilanova, E., Vos, V.A.,
- and Baker, T.R. (2016). Variation in stem mortality rates determines patterns of above-ground
- biomass in Amazonian forests: implications for dynamic global vegetation models. *Global Change Biology*, 22, 3996-4013.
- Jones , F.A., Erickson, D.L., Bernal, M.A., Bermingham, E., Kress, W.J., Herre, E.A., Muller-Landau, H.C., and Turner, B.L. (2011) The Roots of Diversity: Below Ground Species Richness and Rooting Distributions in a Tropical Forest Revealed by DNA Barcodes and Inverse Modeling. *PLoS ONE*, **6**, e24506.
- Katabuchi, M., Kurokawa, H., Davies, S.J., Tan, S. & Nakashizuka, T. (2012) Soil resource availability shapes community trait structure in a species-rich dipterocarp forest. *Journal of Ecology*, **100**, 643-651.

- Keenan, T.F. and Williams, C.A. (2018). The terrestrial carbon sinks. *Annual Review of Environment and Resources*, **43**, 219-243.
- 1598
- 1599 Koven, C.D., Knox, R.G., Fisher, R.A., Chambers, J., Christoffersen, B.O., Davies, S.J., Detto,
- 1600 M., Dietze, M.C., Faybishenko, B., Holm, J., Huang, M., Kovenock, M., Kueppers, L.M.,
- 1601 Lemieux, G., Massoud, E., McDowell, N.G., Muller-Landau, H.C., Needham, J.F., Norby, R.J.,
- Powell, T., Rogers, A., Serbin, S.P., Shuman, J.K., Swann, A.L.S., Varadharajan, C., Walker, A.P.,
- Wright, S.J., and Xu, C. (2020) Benchmarking and parameter sensitivity of physiological and
- vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES)
- at Barro Colorado Island, Panama. *Biogeosciences Discussions*, 17, 3017-3044.

Kraft, N.J.B., Valencia, R. & Ackerly, D.D. (2008) Functional traits and niche-based tree community assembly in an Amazonian forest. *Science*, **322**, 580-582.

1609

- 1610 Kress, W.J., Erickson, D.L., Jones, A., Swenson, N.G., Perez, R., Sanjur, O., and Bermingham, E.
- 1611 (2009) Plant DNA barcodes and a community phylogeny of a tropical forest dynamics plot in
- Panama. *Proceedings of the National Academy of Science*, USA, **106**, 18621-18626.

1613

- 1614 Krůček, M., Král, K., Cushman, K.C., Missarov, A. and Kellner, J.R. (2020) Supervised
- segmentation of ultra-high-density drone Lidar for large-area mapping of individual trees. *Remote*
- 1616 *Sensing*, **12**, 3260.

1617

- 1618 Kupers, S. J., C. Wirth, B. M. J. Engelbrecht, and N. Rüger. (2019) Dry season soil water potential
- maps of a 50 hectare tropical forest plot on Barro Colorado Island, Panama. Scientific Data 6, 63.

1620

- Kurten, E.L., Bunyavejchewin, S., and Davies, S.J. (2018) Phenology of a dipterocarp forest with
- seasonal drought: Insights into the origin of general flowering. *Journal of Ecology*, **106**, 126-136.

1623

- LaFrankie, J.V., S.J. Davies, L.K. Wang, S.K.Y. Lum & S.K. Lee (2005) Forest Trees of Bukit
- 1625 Timah, Singapore: Population Ecology in a Forest Fragment. 178 pp. Simply Green, Singapore.

1626

Lai, J., Mi, X., Ren, H. & Ma, K. (2009) Species-habitat associations change in a subtropical forest of China. *Journal of Vegetation Science*, **20**, 415-423.

1629

- LaManna, J.A., Mangan, S.A., Alonso, A., Bourg, N.A., Brockelman, W.Y., Bunyavejchewin, S.,
- 1631 Chang, L.-W., Chiang, J.-M., Chuyong, G.B., Clay, K., Condit, R., Cordell, S., Davies, S.J.,
- Furniss, T.J., Giardina, C.P., Gunatilleke, I.A.U.N., Gunatilleke, C.V.S., He, F., Howe, R.W.,
- Hubbell, S.P., Hsieh, C.-F., Inman-Narahari, F.M., Janík, D., Johnson, D.J., Kenfack, D., Korte,
- L., Král, K., Larson, A.J., Lutz, J.A., McMahon, S.M., McShea, W.J., Memiaghe, H.R., Nathalang,
- A., Novotny, V., Ong, P.S., Orwig, D.A., Ostertag, R., Parker, G.G., Phillips, R.P., Sack, L., Sun,
- 1636 I.-F., Tello, J.S., Thomas, D.W., Turner, B.L., Vela Díaz, D.M., Vrška, T., Weiblen, G.D., Wolf,
- 1637 A., Yap, S. and Myers, J.A. (2017) Plant diversity increases with the strength of negative density

dependence at the global scale. *Science*, **356**, 1389-1392.

- 1640 Lan, G., Getzin, S., Wiegand, T., Hu, Y., Xie, G., Zhu, H. & Cao, M. (2012) Spatial distribution 1641 and interspecific associations of tree species in a tropical seasonal rain forest of China. PLoS ONE,
- 1642 **7**, e46074.
- 1643
- 1644 Lamarre, G. P. A., Fayle T. M., Segar, S. T., Laird-Hopkins, B., Nakamura, A., Souto-Vilarós, D.,
- 1645 Watanabe, S., and Basset, Y. (2020). Monitoring tropical insects in the 21st century. Advances in
- 1646 Ecological Research, 62, 295-330.
- 1647
- Laurance, W. F., Fearnside, P. M., Laurance, S. G., Delamonica, P., Lovejoy, T.E., Rankin-de 1648
- Merona, J.M., Chambers, J.Q., and Gascon, C. (1999) Relationship between soils and Amazon 1649
- 1650 forest biomass: A landscape-scale study. Forest Ecology and Management, 118, 127-138.
- 1651
- 1652 Lee, H.S., Davies, S.J., LaFrankie, J.V., Tan, S., Itoh, A., Yamakura, T., Ohkubo, T. & Ashton,
- 1653 P.S. (2002) Floristic and structural diversity of 52 hectares of mixed dipterocarp forest in Lambir
- Hills National Park, Sarawak, Malaysia. Journal of Tropical Forest Science, 14, 379-400. 1654
- 1655
- 1656 Lee, H.S., P.S. Ashton, T. Yamakura, S. Tan, S.J. Davies, A. Itoh, T. Ohkubo & J.V. LaFrankie.
- (2003). The 52-Hectare Forest Dynamics Plot at Lambir Hills, Sarawak, Malaysia: Tree 1657
- 1658 Distribution Maps, Diameter Tables and Species Documentation. Sarawak Forest Department.
- 1659 621 pp. Lee Ming Press, Kuching, Sarawak, Malaysia.
- 1660
- 1661 Leigh, E.G. (2007). Neutral theory: a historical perspective. *Journal of Evolutionary Biology*, 20,
- 1662 2075-2091.
- 1663
- 1664 Levine, N.M., Zhang, K., Longo, M., Baccini, A., Phillips, Lewis, S.L., Alvarez-Dávila, E., de
- Andrade, A.C.S., Brienen, R.J.W., Erwin, T.L., Feldpausch, T.R., Monteagudo Mendoza, A.L., 1665
- 1666 Vargas, P.N., Prieto, A., Silva-Espejo, J.E., Malhi, Y., and Moorcroft, P.R. (2016) Ecosystem
- heterogeneity determines the ecological resilience of the Amazon to climate change. *Proceedings* 1667 of the National Academy of Science, USA, 113, 793-797.
- 1668
- 1669
- 1670 Lewis, S.L., Lopez-Gonzalez, G., Sonke, B., Affum-Baffoe, K., Baker, T.R., Ojo, L.O., Phillips,
- 1671 O.L., Reitsma, J.M., White, L., Comiskey, J.A., Djuikouo, M.-N., Ewango, C.E.N., Feldpausch,
- 1672 T.R., Hamilton. A.C., Gloor, M., Hart, T., Hladik, A., Lloyd, J., Lovett, J.C., Makana, J.-R., Malhi,
- 1673 Y., Mbago, F.M., Ndangalasi, H.J., Peacock, J., Peh, K., S.-H., Sheil, D., Sunderland, T., Swaine,
- 1674 M.D., Taplin, J., Taylor, D., Thomas, S.C., Votere, R., and Wöll, H. (2009) Increasing carbon
- storage in intact African tropical forests. *Nature*, **457**, 1003-1006. 1675
- 1676
- 1677 Lewis, S. L., Sonke, B., Sunderland, T., Begne, S.K., Lopez-Gonzalez, G., van der Heijden,
- 1678 G.M.F., Phillips, O.L., Affum-Baffoe, K., Baker, T.R., Banin, L., Bastin, J.-F., Beeckman, H.,
- Boeckx, P., Bogaert, J., De Cannière, C., Chezeaux, E., Clark, C.J., Collins, M., Djagbletey, G., 1679
- 1680 Djuikouo, M.N.K., Droissart, V., Doucet, J.-L., Ewango, C.E.N., Fauset, S., Feldpausch, T.R.,
- Foli, E.G., Gillet, J.-F., Hamilton, A.C., Harris, D.J., Hart, T.B., de Haulleville, T., Hladik, A., 1681
- 1682 Hufkens, K., Huygens, D., Jeanmart, P., Jeffery, K.J., Kearsley, E., Leal, M.E., Lloyd, J., Lovett,
- J.C., Makana, J.-R., Malhi, Y., Marshall, A.R., Ojo, L., Peh, K.S.-H., Pickavance, G., Poulsen, 1683
- J.R., Reitsma, J.M., Sheil, D., Simo, M., Steppe, K., Taedoumg, H.E., Talbot, J., Talpin, J.R.D., 1684
- 1685 Taylor, D., Thomas, S.C., Toirambe, B., Verbeeck, H., Vleminckx, J., White, L.J.T., Willcock, S.,

- 1686 Woell, H., and Zemagho, L. (2013) Above-ground biomass and structure of 260 African tropical forests. Philosophical Transactions of the Royal Society B-Biological Sciences, 368, 20120295. 1687
- 1689 Li, B., Wang, X., Zhang, J., Bai, X., Ye, J., & Hao, Z. (2010) Changbaishan Temperate Forest 1690 Dynamic Plots: Broad-leaved Korean Pine Mixed Forest and Secondary Poplar-birch Forest
- Species Composition and Their Spatial Patterns. In: Ma, K. (ed.). Chinese Forest Biodiversity 1691
- 1692 Monitoring Network Series. China Forestry Publishing House, Beijing.

1688

1695 Li, B., Z. Hao, Y. Bin, J. Zhang, and M. Wang. 2012. Seed rain dynamics reveals strong dispersal limitation, different reproductive strategies and responses to climate in a temperate forest in 1696 1697 northeast China. Journal of Vegetation Science 23, 271-279.

1698

1699 Lin, D. M., J. S. Lai, H. C. Muller-Landau, X. C. Mi, & K. P. Ma. 2012. Topographic variation in 1700 aboveground biomass in a subtropical evergreen broad-leaved forest in China. Plos One 7.

1701

- 1702 Liu, J., Bowman, K.W., Schimel, D.S., Parazoo, N.C., Jiang, Z., Lee, M., Bloom, A.A., Wunch, 1703 D., Frankenberg, C., Sun, Y., O'Dell, C.W., Gurney, K.R., Menemenlis, D., Gierach, M., Crisp,
- D., and Eldering, A. (2017) Contrasting carbon cycle responses of the tropical continents to the 1704
- 1705 2015–2016 El Niño. Science, 358, eaam5690.

1706

1707 Liu, X., Swenson, N.G., Zhang, J., Ma, K. & Thompson, K. (2013) The environment and space, 1708 not phylogeny, determine trait dispersion in a subtropical forest. Functional Ecology, 27, 264-272.

1709

1710 Liu, Y., Fang, S., Chesson, P. & He, F. (2015) The effect of soil-borne pathogens depends on the 1711 abundance of host tree species. *Nature Communications*, **6**, 10017.

1712

1713 Longo, M., Knox, R. G., Levine, N. M., Swann, A. L. S., Medvigy, D.M., et al. (2019) The 1714 biophysics, ecology, and biogeochemistry of functionally diverse, vertically and horizontally heterogeneous ecosystems: the Ecosystem Demography model, version 2.2 - Part 2: Model 1715 evaluation for tropical South America. Geosciences Model Development, 12, 4347-4374.

1716

- 1717
- 1718 Losos, E.C. and E.G. Leigh, Jr (eds.) (2004) Tropical forest diversity and dynamism: Findings 1719 from a large-scale plot network. 645 pp. University of Chicago Press, Chicago.

1720

1721 Lu, Z., Bao, D., Liu, H., Xu, Y., Huang, H., Jiang, M., & Gu, Z. (2016) Hunan Badagongshan Forest Dynamics Plot: Tree Species and Their Distribution Patterns. In: Ma, K. (ed.). Chinese 1722 1723 Forest Biodiversity Monitoring Network Series. China Forestry Publishing House, Beijing.

1724

1725 Lucas, M., Forero, D., and Basset, Y. (2016). Diversity and recent population trends of assassin 1726 bugs (Hemiptera: Reduviidae) on Barro Colorado Island, Panama. Insect Conservation and Diversity, 9, 546-558. 1727

- 1729 Luk, C.-L., Basset, Y., Kongnoo, P., Hau, B.C.H., and Bonebrake, T.C. (2019). Inter- annual 1730 monitoring improves diversity estimation of tropical butterfly assemblages. Biotropica, 51, 519-
- 1731 528.

- Luskin, M.S., Brashares, J.S., Ickes, K., Sun, I.-F., Fletcher, C., Wright, S.J., et al. (2017). Cross-
- boundary subsidy cascades from oil palm degrade distant tropical forests. *Nature Communications*,
- **1735 8**, 1–7.

1736

- Luskin, M.S., Ickes, K., Yao, T.L. & Davies, S.J. (2019). Wildlife differentially affect tree and liana regeneration in a tropical forest: An 18-year study of experimental terrestrial defaunation
- versus artificially abundant herbivores. *Journal of Applied Ecology*, **56**, 1379–1388.

1740

Lutz, J. A. 2015. The evolution of long-term data for forestry: large temperate research plots in an era of global change. *Northwest Science* **89**, 255-269. doi: http://dx.doi.org/10.3955/046.089.0306

1743

- 1744 Lutz, J.A., Furniss, T.J., Johnson, D.J., Davies, S.J., Allen, D., Alonso, A., Anderson-Teixeira,
- 1745 K.J., Andrade, A., Baltzer, J., Becker, K.M.L., Blomdahl, E.M., Bourg, N.A., Bunyavejchewin,
- 1746 S., Burslem, D.F.R.P., Cansler, C.A., Cao, K., Cao, M., Cárdenas, D., Chang, L.-W., Chao, K.-J.,
- 1747 Chao, W.-C., Chiang, J.-M., Chu, C., Chuyong, G.B., Clay, K., Condit, R., Cordell, S., Dattaraja,
- 1748 H.S., Duque, A., Ewango, C.E.N., Fischer, G.A., Fletcher, C., Freund, J.A., Giardina, C., Germain,
- 1749 S.J., Gilbert, G.S., Hao, Z., Hart, T., Hau, B.C.H., He, F., Hector, A., Howe, R.W., Hsieh, C.-F.,
- Hu, Y.-H., Hubbell, S.P., Inman-Narahari, F.M., Itoh, A., Janík, D., Kassim, A.R., Kenfack, D.,
- 1751 Korte, L., Král, K., Larson, A.J., Li, Y., Lin, Y., Liu, S., Lum, S., Ma, K., Makana, J.-R., Malhi,
- 1752 Y., McMahon, S.M., McShea, W.J., Memiaghe, H.R., Mi, X., Morecroft, M., Musili, P.M., Myers,
- 1753 J.A., Novotny, V., de Oliveira, A., Ong, P., Orwig, D.A., Ostertag, R., Parker, G.G., Patankar, R.,
- 1754 Phillips, R.P., Reynolds, G., Sack, L., Song, G.-Z.M., Su, S.-H., Sukumar, R., Sun, I.F., Suresh,
- 1755 H.S., Swanson, M.E., Tan, S., Thomas, D.W., Thompson, J., Uriarte, M., Valencia, R., Vicentini,
- 1756 A., Vrška, T., Wang, X., Weiblen, G.D., Wolf, A., Wu, S.-H., Xu, H., Yamakura, T., Yap, S. &
- 1757 Zimmerman, J.K. (2018) Global importance of large-diameter trees. Global Ecology and
- 1758 *Biogeography*, **27**, 849-864.

1759

Ma, L., W. Li, N. Shi, S. Fu, J. Lian, and W. Ye. 2019. Temporal and spatial patterns of aboveground biomass and its driving forces in a subtropical forest: a case study. *Polish Journal of Ecology* **67**:95-104.

1763

- Malhi, Y., Phillips, O.L., Lloyd, J., Baker, T., Wright, J., Almeida, S., Arroyo, L., Frederiksen, T.,
- 1765 Grace, J., Higuchi, N., Killeen, T., Laurance, W.F., Leaño, C., Lewis, S., Meir, P., Monteagudo,
- A., Neill, D., Núñez Vargas, Panfil, S.N., Patiño, S., Pitman, N., Quesada, C.A., Rudas-Ll., A.,
- Salomão, R., Saleska, S., Silva, N., Silveira, M., Sombroek, W.G., Valencia, R., Vásquez Martínez, R., Vieira, I.C.G. & Vinceti, B. (2002) An international network to monitor the structure,
- 1769 composition and dynamics of Amazonian forests (RAINFOR). Journal of Vegetation Science, 13,
- 1770 439-450.

1771

- Malhi, Y., Doughty, C.E., Galetti, M., Smith, F.A., Svenning, J.C. & Terborgh, J.W. (2016)
- 1773 Megafauna and ecosystem function from the Pleistocene to the Anthropocene. *Proceedings of the*
- 1774 National Academy of Science, USA, 113, 838-46.

- 1776 Mangan, S.A., Schnitzer, S.A., Herre, E.A., Mack, K.M.L., Valencia, M.C., Sanchez, E.I. & Bever,
- 1777 J.D. (2010) Negative plant-soil feedback predicts tree-species relative abundance in a tropical
- 1778 forest. *Nature*, **466**, 752-755.
- 1779
- 1780 Manokaran, N., La Frankie, J.V., Kochummen, K.M., Quah, E.S., Klahn, J.E., Ashton, P.S. &
- Hubbell, S.P. (1990) Methodology for the fifty hectare research plot at Pasoh Forest Reserve. In.
- 1782 Forest Research Institute Malaysia, Kepong, Malaysia.
- 1783
- Manokaran, N., LaFrankie, J.V., Kotchummen, K.M., Quah, E.S., Ashton, P.S., and Hubbell, S.P.
- 1785 (1993) Stand tables and distribution of species in the fifty-hectare research plot at Pasoh Forest
- 1786 Reserve. FRIM Research Data Series 1. 454 pp. Forest Research Institute of Malaysia, Kepong,
- 1787 Malaysia.
- 1788
- 1789 Marchand, P., Comita, L.S., Wright, S.J., Hubbell, S.P. & Beckman, N. (2020) Seed-to-seedling
- transitions exhibit distance-dependent mortality but no strong spacing effects in a Neotropical
- 1791 forest. *Ecology*, **101**, e02926.
- 1792
- McGarvey, J.C., Bourg, N.A., Thompson, J.R., McShea, W.J. & Shen, X. (2013). Effects of twenty
- 1794 years of deer exclusion on woody vegetation at three life-history stages in a Mid-Atlantic
- 1795 Temperate Deciduous forest. *Northeastern Naturalist*, **20**, 451–468.
- 1796
- 1797 McMahon, S.M. & Parker, G.G. (2015) A general model of intra-annual tree growth using
- dendrometer bands. *Ecology and Evolution*, **5**, 243-254.
- 1799 1800 McMahon, S.M.,
 - McMahon, S.M., Arellano, G., and Davies, S.J. (2019) The importance and challenges of detecting
 - changes in forest mortality rates. *Ecosphere*, **10**, e02615.
 - 1802
 - 1803 McMichael, C.N., Matthews-Bird, F., Farfan-Rios, W., and Feeley, K.J. (2017) Ancient human
 - 1804 disturbances may be skewing our understanding of Amazonian forests. Proceedings of the
 - 1805 *National Academy of Science, USA*, **114**, 522-527.
 - 1806
 - McShea, W.J., Sukmasuang, R., Erickson, D.L., Herrmann, V., Ngoprasert, D., Bhumpakphan, N.,
 - and Davies, S.J. (2019) Metabarcoding reveals diet diversity in an ungulate community in
 - 1809 Thailand. *Biotropica*, **51**, 923-937.
 - 1810
 - Medeiros, C., Scoffoni, C., John, G.P., Bartlett, M., Inman-Narahari, F., Ostertag, R., Cordell, S.,
 - 1812 Giardina, C., Sack, L. 2019. An extensive suite of functional traits distinguishes wet and dry
 - Hawaiian forests and enables prediction of species vital rates. Functional Ecology 33, 712-734.
 - 1814
 - 1815 Memiaghe, H.R., Lutz, J.A., Korte, L., Alonso, A. & Kenfack, D. (2016) Ecological importance
 - of small-diameter trees to the structure, diversity and biomass of a tropical evergreen forest at
 - 1817 Rabi, Gabon. *Plos One*, **11**, e0154988.
 - 1818
 - 1819 Mi, X., Swenson, N.G., Valencia, R., Kress, W.J., Erickson, D.L., Pérez, Á.J., Ren, H., Su, S.-H.,
 - Gunatilleke, N., Gunatilleke, S., Hao, Z., Ye, W., Cao, M., Suresh, H.S., Dattaraja, H.S., Sukumar,

- 1821 R. & Ma, K. (2012) The contribution of rare species to community phylogenetic diversity across
- a global network of forest plots. *The American Naturalist*, **180**, E17-E30. 1822
- 1823
- 1824 Muller-Landau, H. C., and B. D. Hardesty. (2005). Seed dispersal of woody plants in tropical
- 1825 forests: concepts, examples, and future directions. Pages 267-309 in D. F. R. P. Burslem, M. A.
- Pinard, and S. Hartley, editors. Biotic Interactions in the Tropics. Cambridge University Press, 1826
- 1827 Cambridge.

- 1829 Muller-Landau, H. C. (2008). Colonization-related tradeoffs in tropical forests and their role in the 1830 maintenance of plant species diversity. Pages 182-195 in W. P. Carson and S. A. Schnitzer, editors.
- Tropical Forest Community Ecology. Blackwell Scientific. 1831

1832

1833 Muller-Landau, H.C., Wright, S.J., Calderón, O., Condit, R., and Hubbell, S.P. (2008) Interspecific 1834 variation in primary seed dispersal in a tropical forest. *Journal of Ecology*, **96**, 653-667.

1835

1836 Muller-Landau, H. C. 2010. The tolerance-fecundity trade-off and the maintenance of diversity in 1837 seed size. Proceedings of the National Academy of Sciences, 107, 4242-4247.

1838

- 1839 Muller-Landau, H. C., M. Detto, R. A. Chisholm, S. P. Hubbell, and R. Condit. (2014). Detecting 1840 and projecting changes in forest biomass from plot data. Pages 381-415 in D. A. Coomes and D.
- F. R. P. Burslem, editors. Forests and Global Change. Cambridge University Press. 1841

1842

- 1843 Muller-Landau, H.C., K.C. Cushman, E.E. Arroyo, I.Martinez-Cano, K.J. Anderson-Teixeira &
- 1844 B. Backiel (2020) Patterns and mechanisms of spatial variation in tropical forest productivity,
- 1845 woody residence time, and biomass. New Phytologist DOI: 10.1111/nph.17084 (in press).

1846

- 1847 Murphy, S.J., Wiegand, T. and Comita, L.S. (2017) Distance- dependent seedling mortality and long- term spacing dynamics in a neotropical forest community. Ecology Letters, 20, 1469-1848
- 1849 1478. https://doi.org/10.1111/ele.12856

- 1850 1851 NASA-ESA-Smithsonian Workshop on Calibration and Validation of Upcoming Satellite 1852 Missions Forest Structure and Biomass, Washington, DC (2016)
- (https://nisar.jpl.nasa.gov/files/nisar/NISAR Vegetation Biomass Workshop Report.pdf). 1853

1854

1855 Nee, S. (2005) The neutral theory of biodiversity: do the numbers add up? Functional Ecology, **19**, 173-176. 1856

1857

- 1858 Needham, J., Merow, C., Chang-Yang, C.-H., Caswell, H. & McMahon, S.M. (2018) Inferring 1859 forest fate from demographic data: from vital rates to population dynamic models. *Proceedings of*
- 1860 the Royal Society B: Biological Sciences, 285, 20172050.

1861

- 1862 Ngo, K.M., Turner, B.L., Muller-Landau, H.C., Davies, S.J., Larjavaara, M., Nik Hassan, N.F.b.
- & Lum, S. (2013) Carbon stocks in primary and secondary tropical forests in Singapore. Forest 1863
- 1864 Ecology and Management, 296, 81-89.

- Osuri, A.M., Ratnam, J., Varma, V., Alvarez-Loayza, P., Astaiza, J.H., Bradford, M., et al. (2016).
- 1867 Contrasting effects of defaunation on aboveground carbon storage across the global tropics. *Nature*
- 1868 *Communications*, **7**, 11351.

Peay, K.G., Kennedy, P.G., Davies, S.J., Tan, S., and Bruns, T.D. (2010) Potential link between plant and fungal distributions in a dipterocarp rainforest: community and phylogenetic structure of tropical ectomycorrhizal fungi across a plant and soil ecotone. *New Phytologist*, **185**, 529-42.

1873

Peay, K.G., Russo, S.E., McGuire, K.L., Lim, Z., Chan, J.P., Tan, S., Davies, S.J., and Chave, J. (2015) Lack of host specificity leads to independent assortment of dipterocarps and ectomycorrhizal fungi across a soil fertility gradient. *Ecology Letters*, **18**, 807-816.

1877

Peres, C.A., Emilio, T., Schietti, J., Desmoulière, S.J. & Levi, T. (2016). Dispersal limitation induces long-term biomass collapse in overhunted Amazonian forests. *Proceedings of the National Academy of Sciences*, **113**, 892–897.

1881

Pérez, Á. J., Hernández, C., Romero-Saltos, H., and Valencia, R. (2014) Árboles emblemáticos
 de Yasuní, Ecuador. 395 pp. Escuela de Ciencias Biológicas, Pontificia Universidad Católica del
 Ecuador, Quito.

1885

Phillips, O.L., Martinez, R.V., Arroyo, L., Baker, T.R., Killeen, T., Lewis, S.L., Malhi, Y., Monteagudo Mendoza, A., Neill, D., Núñez Vargas, P., Alexiades, M., Cerón, C., Di Fiore, A., Erwin, T., Jardim, A., Palacios, W., Saldias, M., and Vinceti, B. (2002) Increasing dominance of large lianas in Amazonian forests. *Nature*, **418**, 770-774.

1890

- Phillips, O. L., van der Heijden, G., Lewis, S.L., Lopez-Gonzalez, G., Aragão, L.E.O.C., Lloyd,
- J., Malhi, Y., Monteagudo, A., Almeida, S., Alvarez Dávila, Amaral, I., Andelman, S., Andrade, A., Arroyo, L., Aymard, G., Baker, T.R., Blanc, L., Bonal, D., de Oliveira, Á.C.A., Chao, K.-J.,
- 1894 Dávila Cardozo, N., da Costa, L., Feldpausch, T.R., Fisher, J.B., Fyllas, N.M., Freitas, M.A.,
- 1895 Galbraith, D., Gloor, E., Higuchi, N., Honorio, E., Jiménez, E., Keeling, H., Killeen, T.J., Lovett,
- 1896 J.C., Meir, P., Mendoza, C., Morel, A., Núñez Vargas, P., Patiño, S., Peh, K. S.-H., Peña Cruz, A.,
- 1897 Prieto, A., Quesada, C.A., Ramírez, F., Ramírez, H., Rudas, A., Salamão, Schwarz, M., Silva, M.,
- 1898 Slik, J.W.F., Sonké, B., Sota Thomas, A., Stropp, J., Taplin, J.R.D., Vásquez, and Vilanova, E.
- 1899 (2010) Drought-mortality relationships for tropical forests. *New Phytologist*, **187**, 631-646.

1900

- Powell, T.L., Galbraith, D.R., Christoffersen, B.O., Harper, A., Imbuzeiro, H.M., Rowland, L., Almeida, S., Brando, P.M., da Costa, A.C.L., Costa, M.H., Levine, N.M., Malhi, Y., Saleska, S.R.,
- Sotta, E., Williams, M., Meir, P., and Moorcroft, P.R. (2013) Confronting model predictions of carbon fluxes with measurements of Amazon forests subjected to experimental drought. *New*
- 1905 *Phytologist*, **200**, 350-365.

1906

Puerta-Piñero, C., H. C. Muller-Landau, O. Calderón, and S. J. Wright. 2013. Seed arrival in tropical forest treefall gaps. *Ecology* **94**, 1552-1562.

- 1910 Quegan, S., Toan, T.L., Chave, J., Dall, J., Exbrayat, J.-F., Minh, D.H.T., Lomas, M.,
- 1911 D'Alessandro, M.M., Paillou, P., Papathanassiou, K., Rocca, F., Saatchi, S., Scipal, K., Shugart,

- 1912 H., Smallman, T.L., Soja, M.J., Tebaldini, S., Ulander, L., Villard, L. and M. Williams (2019) The
- 1913 European Space Agency BIOMASS mission: Measuring forest above-ground biomass from space.
- 1914 Remote Sensing of Environment, 227, 44-60.
- 1915
- 1916 Qie, L., Lewis, S.L., Sullivan, M.J.P., Lopez-Gonzalez, G., Pickavance, G.C., Sunderland, T.,
- 1917 Ashton, P., Hubau, W., Abu Salim, K., Aiba, S.-I., Banin, L.F., Berry, N., Brearley, F.Q., Burslem,
- 1918 D.F.R.P., Dančák, M., Davies, S.J., Fredriksson, G., Hamer, K.C., Hédl, R., Kho, L. K., Kitayama,
- 1919 K., Krisnawati, H., Lhota, S., Malhi, Y., Maycock, C., Metali, F., Mirmanto, E., Nagy, L., Nilus,
- 1920 R., Ong, R., Pendry, C.A., Poulson, A.D., Primack, R.B., Rutishauser, E., Samsoedin, I., Saragih,
- 1921 B., Sist, P., Slik, J.W.F., Sukri, R.S., Svátek, M., Tan, S., Tjoa, A., van Nieuwstadt, M.,
- Vernimmen, R.R.E., Yassir, I., Kidd, P.S., Fitriadi, M., Ideris, N.K.H., Serudin, R.M., Lim, 1922
- 1923 L.S.A., Saparudin, M.S., and Phillips, O.L. (2017) Long-term carbon sink in Borneo's forests
- 1924 halted by drought and vulnerable to edge effects. *Nature Communications*, **8**, 1966.
- 1925
- 1926 Randin, C.F., Ashcroft, M.B., Bollinger, J., Cavender-Bares, J., Coops, Dullinger, S., Dirnböck,
- 1927 T., Eckert, S., Ellis, E., Fernández, N., Giuliani, G., Guisan, A., Jetz, W., Joost, S., Karger, D.,
- 1928 Lembrechts, J., Lenoir, J., Luoto, M., Morin, X., Price, B., Rocchini, D., Schaepman, M., Schmid,
- B., Verburg, P., Wilson, A., Woodcock, P., Yoccoz, N., and Payne, D. (2020) Monitoring 1929
- 1930 biodiversity in the Anthropocene using remote sensing in species distribution models. Remote
- 1931 Sensing Environment, 239, 111626.
- 1932
- 1933 Ren, H., Condit, R., Chen, B., Mi, X., Cao, M., Ye, W., Hao, Z. & Ma, K. (2013) Geographical
- 1934 range and local abundance of tree species in China. *PLoS ONE*, **8**, e76374.
- 1935
- 1936 Réjou-Méchain, M., Muller-Landau, H.C., Detto, M., Thomas, S.C., Le Toan, T., Saatchi, S.S.,
- Barreto-Silva, J.S., Bourg, N.A., Bunyavejchewin, S., Butt, N., Brockelman, W.Y., Cao, M., 1937
- Cárdenas, D., Chiang, J.M., Chuyong, G.B., Clay, K., Condit, R., Dattaraja, H.S., Davies, S.J., 1938
- 1939 Duque, A., Esufali, S., Ewango, C., Fernando, R.H.S., Fletcher, C.D., Gunatilleke, I.A.U.N., Hao,
- 1940 Z., Harms, K.E., Hart, T.B., Hérault, B., Howe, R.W., Hubbell, S.P., Johnson, D.J., Kenfack, D.,
- 1941 Larson, A.J., Lin, L., Lin, Y., Lutz, J.A., Makana, J.R., Malhi, Y., Marthews, T.R., McEwan, R.W.,
- 1942 McMahon, S.M., McShea, W.J., Muscarella, R., Nathalang, A., Noor, N.S.M., Nytch, C.J.,
- Oliveira, A.A., Phillips, R.P., Pongpattananurak, N., Punchi-Manage, R., Salim, R., Schurman, J., 1943
- 1944 Sukumar, R., Suresh, H.S., Suwanvecho, U., Thomas, D.W., Thompson, J., Uríarte, M., Valencia,
- 1945 R., Vicentini, A., Wolf, A.T., Yap, S., Yuan, Z., Zartman, C.E., Zimmerman, J.K., and Chave, J.
- 1946 (2014) Local spatial structure of forest biomass and its consequences for remote sensing of carbon
- 1947 stocks. *Biogeosciences Discussions*, **11**, 5711-5742.
- 1948
- 1949 Réjou- Méchain, M., Tanguy, A., Piponiot, C., Chave, J., and Herault, B. (2017) BIOMASS: an
- 1950 R package for estimating above-ground biomass and its uncertainty in tropical forests. *Methods in*
- 1951 Ecology and Evolution, 8, 1163-1167.
- 1952
- 1953 Ricklefs, R.E. & He, F. (2016) Region effects influence local tree species diversity. *Proceedings*
- 1954 of the National Academy of Sciences, 113, 674-679.
- 1955

- 1956 Rosindell, J. and R.A. Chisholm, The Species–Area Relationships of Ecological Neutral Theory,
- in The Species–Area Relationship: Theory and Application, T.J. Matthews, K.A. Triantis, and R.J.
- 1958 Whittaker, Editors. 2020, Cambridge University Press: Cambridge, UK. p. 259-288.

Rubio, V. E., and M. Detto. 2017. Spatiotemporal variability of soil respiration in a seasonal tropical forest. *Ecology and Evolution* **7**, 7104-7116.

1962

Rüger, N., Berger, U., Hubbell, S.P., Vieilledent, G., and Condit, R. (2011) Growth strategies of tropical tree species: disentangling light and size effects. *PLoS ONE*, **6**, e25330.

1965

Rüger, N., Comita, L.S., Condit, R., Purves, D., Rosenbaum, B., Visser, M.D., Wright, S.J., Wirth,
 C. & Salguero-Gomez, R. (2018) Beyond the fast-slow continuum: demographic dimensions
 structuring a tropical tree community. *Ecology Letters*, 21, 1075-1084.

1969

Rüger, N., Condit, R., Dent, D.H., DeWalt, S.J., Hubbell, S.P., Lichstein, J.W., Lopez, O.R., Wirth,
C. & Farrior, C.E. (2020) Demographic trade-offs predict tropical forest dynamics. *Science*, 368,
165-168.

1973

Russo, S.E., Davies, S.J., King, D.A. & Tan, S. (2005) Soil-related performance variation and distributions of tree species in a Bornean rain forest. *Journal of Ecology*, **93**, 879-889.

1976

Russo, S.E., Potts, M.D., Davies, S.J. & Tan, S. (2007) Determinants of tree species distributions: comparing the roles of dispersal, seed size, and soil specialization in a Bornean rain forest. *Seed Dispersal: Theory and its Application in a Changing World* (eds A. Dennis, R. Green, E.W. Schupp, D. Wescott), pp. 499–518.

1981

Russo, S.E., Brown, P., Tan, S. & Davies, S.J. (2008) Interspecific demographic trade-offs and soil-related habitat associations of tree species along resource gradients. *Journal of Ecology*, **96**, 192-203.

1985

Russo, S.E., Legge, R., Weber, K.A., Brodie, E.L., Goldfarb, K.C., Benson, A.K., and Tan, S. (2012) Bacterial community structure of contrasting soils underlying Bornean rain forests: Inferences from microarray and next-generation sequencing methods. *Soil Biology and Biochemistry*, **55**, 48-59.

1990

- Russo, S., McMahon, S.M., Detto, M., Ledder, G., Wright, S.J., Condit, R., Davies, S.J., Ashton, P.S., Bunyavejchewin, S., Chang-Yang, C.H., Ediriweera, S., Ewango, C., Fletcher, C., Foster, R.B., Gunatilleke, C.V.S., Gunatilleke, I.A.U.N., Hart, T., Hsieh, C.F., Hubbell, S., Itoh, A., Kassim, A.R., Yao, T.Z., Lin, Y., Makana, J.-R., Mohamad, M., Ong, P., Sugiyama, A., Sun, I.F.,
- Kassım, A.R., Yao, T.Z., Lin, Y., Makana, J.-R., Mohamad, M., Ong, P., Sugiyama, A., Sun, I.F., Tan, S., Thompson, J., Yamakura, T., Yap, S. & Zimmerman, J.K. (2020) The interspecific
- growth-mortality trade-off is not a general framework for understanding tropical forest community structure. *Nature Ecology & Evolution*, https://doi.org/10.1038/s41559-020-01340-9

- Rutishauser, E., Wright, S.J., Condit, R., Hubbell, S.P., Davies, S.J., and Muller-Landau, H.C. (2019) Testing for changes in biomass dynamics in large-scale forest datasets. *Global Change*
- 2001 *Biology*, **26**, 1485-1498.

Sánchez-Bayo, F., and Wyckhuys, K. A. (2019). Worldwide decline of the entomofauna: A review of its drivers. *Biological Conservation*, **232**, 8-27.

2005

Sakschewski, B., von Bloh, W., Boit, A., Poorter, L., Peña-Claros, M., Heinke, J., Joshi, J., and Thonicke, K. (2016) Resilience of Amazon forests emerges from plant trait diversity. *Nature Climate Change*, **6**, 1032-1036.

2009

Žamonil, P., Doleželová, P., Vašíčková, I., Adam, D., Valtera, M., Král, K., Janík, D., and
 Šebková, B. (2013). Individual-based approach to the detection of disturbance history through
 spatial scales in a natural beech-dominated forest. *Journal of Vegetation Science*, 24, 1167–1184.

2013 2014

Scheiter, S., Langan, L., and Higgins, S.I. (2013) Next-generation dynamic global vegetation models: learning from community ecology. *New Phytologist*, **198**, 957-69.

2015 2016

2017 Schepaschenko, D., Chave, J., Phillips, O.L., Lewis, S.L., Davies, S.J., Réjou-Méchain, M., Sist, P., Scipal, K., Perger C., Herault, B., Labrière, Hofhansl, F., Affum-Baffoe, K., Aleinikov, A., 2018 Alonso, A., Amani, C., Araujo-Murakami, A., Armston, J., Arroyo, L., Ascarrunz, N., Azevedo, 2019 2020 C., Baker, T., Bałazy, R., Bedeau, C., Berry, N., Bilous, A.M., Bilous, S.Y., Bissiengou, P., Blanc, L., Bobkova, K.S., Braslavskaya, T., Brienen, R., Burslem, D.F.R.P., Condit, R., Cuni-Sanchez, 2021 2022 A., Danilina, D., del Castillo Torres, D., Derroire, G., Lauren, D., Doff Sotta, E., d'Oliveira, 2023 M.V.N., Dresek, C., Erwin, T., Evdokimenko, M.D., Falck, J., Feldpausch, T.R., Foli, E.G., Foster, 2024 R., Fritz, S., Garcia-Abril, A.D., Gornov, A., Gornova, M., Gothard-Bassébé, E., Gourlet-Fleury, 2025 S., Guedes, M., Hamer, K.C., Herry Susanty, F., Higuchi, N., Honorio Coronado, E.N., Hubau, 2026 W., Hubbell, S., Ilstedt, U., Ivanov, V.V., Kanashiro, M., Karlsson, A., Karminov, V.N., Killeen, 2027 T., Konan Koffi, J.-C., Konovalova, M., Kraxner, F., Krejza, J., Krisnawati, H., Krivobokov, L.V., Kuznetsov, M.A., Lakyda, I., Lakyda, P.I., Licona, J.C., Lucas, R.M., Lukina, N., Lussetti, D., 2028 2029 Malhi, Y., Manzanera, J.A., Marimon, B., Marimon Junior, B.H., Vasquez Martinez, R., 2030 Martynenko, O.V., Matsala, M., Matyashuk, R.K., Mazzei, L., Memiaghe, H., Mendoza, C., 2031 Monteagudo Mendoza, A., Moroziuk, O.V. Mukhortova, L., Musa, S., Nazimova, D.I., Okuda, T., 2032 Oliveira, L.C., Ontikov, P.V., Osipov, A.F., Pietsch, S., Playfair, M., Poulsen, J., Radchenko, V.G., 2033 Rodney, K., Rozak, A.H., Ruschel, A., Rutishauser, E., See, L., Schepashchenko, M., Shevchenko, N., Shvidenko, A., Silveira, M., Singh, J., Sonké, B., Souza, C., Stereńczak, Stonozhenko, L., 2034

2040 2041 biomass. Scientific Data, 6, 198.

2035

2036

2037

20382039

Schietti, J., Martins, D., Emilio, T., Souza, P.F., Levis, C., Baccaro, F.B., da Veiga Pinto, J.L.P., Moulatlet, G.M., Stark, S.C., Sarmento, K., de Araújo, R.N.O., Costa, F.R., Schöngart, J., Quesada, C.A., Saleska, S.R., Tomasella, J., and Magnusson, W.E. (2016) Forest structure along a 600 km transect of natural disturbances and seasonality gradients in central-southern Amazonia. *Journal of Ecology*, **104**, 1335-1346.

Sullivan, M.J.P., Szatniewska, J., Taedoumg, H., ter Steege, H., Tikhonova, E., Toledo, M., Trefilova, O.V., Valbuena, R., Valenzuela Gamarra, L., Vasiliev, S., Vedrova, E.F., Verhovets,

S.V., Vidal, E., Vladimirova, N.A., Vleminckx, J., Vos, V.A., Vozmitel, F.K., Wanek, W., West,

T.A.P., Woell, H., Woods, J.T., Wortel, V., Yamada, T., Hajar, Z.S.N., and Zo-Bi, I.C. (2019) The

Forest Observation System, building a global reference dataset for remote sensing of forest

- Schimel, D.S., Asner, G.P., and Moorcroft, P. (2013) Observing changing ecological diversity in the Anthropocene. *Frontiers in Ecology and the Environment*, **11**, 129-137.
- Schimel, D., Pavlick, R., Fisher, J.B., Asner, G.P., Saatchi, S., Townsend, P., Miller, C., Frankenberg, C., Hibbard, K., and Cox, P. (2015) Observing terrestrial ecosystems and the carbon
- 2053 cycle from space. *Global Change Biology*, **21**, 1762-1776.

2054

2057

2061

2072

- Schnitzer, S.A. and Bongers, F. (2011) Increasing liana abundance and biomass in tropical forests: emerging patterns and putative mechanisms. *Ecology Letters*, **14**, 397-406.
- Segnitz, R.M., Russo, S.E., Davies, S.J. & Peay, K.G. (2020) Ectomycorrhizal fungi drive positive phylogenetic plant-soil feedbacks in a regionally dominant tropical plant family. *Ecology*, doi:10.1002/ecy.3083.
- Seidler, T.G. & Plotkin, J.B. (2006) Seed dispersal and spatial pattern in tropical trees. *PLoS Biology*, **4**, e344.
- Seiler, C., Hutjes, R.W.A., Kruijt, B., Quispe, J., Añez, S., Arora, V.K., Melton, J.R., Hickler, T., and Kabat, P. (2014) Modeling forest dynamics along climate gradients in Bolivia. *Journal of Geophysical Research-Biogeosciences*, **119**, 758-775.
- Shen, G., Yu, M., Hu, X.-S., Mi, X., Ren, H., Sun, I.-F. & Ma, K. (2009) Species area relationships explained by the joint effects of dispersal limitation and habitat heterogeneity. *Ecology*, **90**, 3033-3041.
- Shen, G., He, F., Waagepetersen, R., Sun, I.-F., Hao, Z., Chen, Z.S. & Yu, M. (2013) Quantifying effects of habitat heterogeneity and other clustering processes on spatial distributions of tree species. *Ecology*, **94**, 2436-2443.
- Shono, K., Davies, S.J. & Chua, Y.K. (2007) Performance of 45 native tree species on degraded lands in Singapore. *Journal of Tropical Forest Science*, **19**, 25-34.
- 2080 Sist, P., Rutishauser, E., Peña-Claros, M., Shenkin, A., Hérault, B., Blanc, L., Baraloto, C., Baya, F., Benedet, F., da Silva, K.E., Descroix, L., Ferreira, J.N., Gourlet-Fleury, S., Guedes, M.C., Bin
- Harun, I., Jalonen, R., Kanashiro, M., Krisnawati, H., Kshatriya, M., Lincoln, P., Mazzei, L.,
- Medjibé, V., Nasi, R., d' Oliveira, M.V.N., de Oliveira, L.C., Picard, N., Pietsch, S., Pinard, M.,
- Priyadi, H., Putz, F.E., Rodney, K., Rossi, V., Roopsind, A., Ruschel, A.R., Shari, N.H.Z.,
- 2085 Rodrigues de Souza, C., Susanty, F.H., Sotta, E.D., Toledo, M., Vidal, E., West, T.A.P. & Wortel,
- V., Yamada, T. (2015) The Tropical managed Forests Observatory: a research network addressing
- the future of tropical logged forests. *Applied Vegetation Science*, **18**, 171-174.
- 2089 Slik, J. W. F., Aiba, S.-I., Brearley, F.Q., Cannon, C.H., Forshed, O., Kitayama, K., Nagamasu,
- 2090 H., Nilus, R., Payne, J., Paoli, G., Poulsen, A.D., Raes, N., Sheil, D., Sidiyasa, K., Suzuki, E., and
- van Valkenburg, J.L.C.H. (2010) Environmental correlates of tree biomass, basal area, wood
- 2092 specific gravity and stem density gradients in Borneo's tropical forests. Global Ecology and
- 2093 *Biogeography*, **19**, 50-60.

2095 Slik, J.W.F., Arroyo-Rodríguez, V., Aiba, S.-I., Alvarez-Loayza, P., Alves, L.F., Alves, L.F., 2096 Ashton, P., Balvanera, P., Bastian, M.L., Bellingham, P.J., van den Berg, E., Bernacci, L., da 2097 Conceição Bispo, P., Blanc, L., Böhning-Gaese, K, Boeckx, P., Bongers, F., Boyle, B., Bradford, M., Brearley, F.Q., Breuer-Ndoundou Hockemba, M., Bunyavejchewin, S., Calderado Leal Matos, 2098 2099 D., Castillo-Santiago, M., Catharino, E.L.M., Chai, S.-L., Chen, Y., Colwell, R.K., Chazdon, R.L., 2100 Clark, C., Clark, D.B., Clark, D.A., Culmsee, H., Damas, K., Dattaraja, H.S., Dauby, G., Davidar, 2101 P., DeWalt, S.J., Doucet, J.-L., Duque, A., Durigan, G., Eichorn, K.A.O., Eisenlohr, P.V., Eler, E., Ewango, C., Farwig, N., Feeley, K.J., Ferreira L., Field, R., de Oliveira Filho, A.T., Fletcher, C., 2102 2103 Forshed, O., Franco, G., Fredriksson, G., Gillespie, T., Gillet, J.-F., Amarnath, G., Griffith, D.M., 2104 Grogan, J., Gunatilleke, N., Harris, D., Harrison, R., Hector, A., Homeier, J., Imai, N., Itoh, A., 2105 Jansen, P.A., Joly, C.A., de Jong, B.H.J., Kartawinata, K., Kearsley, E., Kelly, D.L., Kenfack D., 2106 Kessler, M., Kitayama, K., Kooyman, R., Larney, E., Laumonier, Y., Laurance, S., Laurance, 2107 W.F., Lawes, M.J., do Amaral, I.L., Letcher, S.G., Lindsell, J., Lu, X., Mansor, A., Marjokorpi, 2108 A., Martin, E.H., Meilby, H., Melo, F.P.L., Metcalfe, D.J., Medjibe, V.P., Metzger, J.P., Millet, J., 2109 Mohandass, M.D., Montero, J.C., de Morisson Valeriano, M., Mugerwa, B., Nagamasu, H., Nilus, R., Ochoa-Gaona, S., Page, N., Parolin, P., Parren, M., Parthasarathy, N., Paudel, E., Permana, A., 2110 Piedade, M.T.F., Pitman, N.C.A., Poorter, L., Poulsen, A.D., Pouslen, J. Powers, J., Prasad, R.C., 2111 2112 Puyravaud, J.-P., Razafimahaimodison, J.-C., Reitsma, J., dos Santos, J.R., Spironello, W.R., 2113 Romero-Saltos, H., Rovero, F., Rozak, A.H., Ruokolainen, K., Rutishauser, E., Saiter, F., Saner, 2114 P. Santos, B.A., Schöngart, J., Schulze, M., Suganuma M.S, Sheil, D., da Silva Pinheiro, E., Sist, 2115 P., Stevart, T., Sukumar, R., Sun, I.-F., Sunderland, T., Suresh, H.S, Suzuki, E., Tabarelli, M., 2116 Tang, J., Targhetta, N., Theilade, I., Thomas, D.W., Tchouto, P., Hurtado, J., Valencia, R., van Valkenburg, J.L.C.H., Van Do, T., Vasquez, R., Verbecck, H., Adekunle, V., Vierira, S.A., Webb, 2117 2118 C.O., Whitfeld, T., Wich, S.A., Williams, J., Wittmann, F., Wöll, H., Yang, X., Yao, C.Y.A., Yap,

2121 2122

2119

2120

2123 Sniderhan, A. E., & Baltzer, J. L. (2016). Growth dynamics of black spruce (Picea mariana) in a 2124 rapidly thawing discontinuous permafrost peatland: Growth Dynamics Boreal Peatlands. Journal 2125 of Geophysical Research: Biogeosciences, 121 (12), 2988–3000.

S.L., Yoneda, T., Zahawi, R.A., Zakaria, R., Zang, R., de Assis, R., Garcia Luize, B., and

Venticingue, E.M. (2016) An estimate of the number of tropical tree species. *Proceedings of the*

2126

2127 Song, M., Peng, W., Zeng, F., Du, H., Peng, Q., Xu, Q., Chen, L. & Zhang, F. (2018) Spatial 2128 patterns and drivers of microbial taxa in a karst broadleaf forest. Frontiers in Microbiology, 9 2129

2130 Song X., Lim, J.Y., Jie, Y. & Luskin, M.S. (in review) When do Janzen-Connell effects matter? A 2131 meta-analysis.

2132

- 2133 Sreekar, R., Katabuchi, M., Nakamura, A., Corlett, R.T., Slik, J.W.F., Fletcher, C., He, F.,
- Weiblen, G.D., Shen, G., Xu, H., Sun, I.F., Cao, K., Ma, K., Chang, L.-W., Cao, M., Jiang, M., 2134 2135 Gunatilleke, I.A.U.N., Ong, P., Yap, S., Gunatilleke, C.V.S., Novotny, V., Brockelman, W.Y.,
- Xiang, W., Mi, X., Li, X., Wang, X., Qiao, X., Li, Y., Tan, S., Condit, R., Harrison, R.D. & Koh, 2136
- 2137 L.P. (2018) Spatial scale changes the relationship between beta diversity, species richness and

2138 latitude. Royal Society Open Science, 5, 181168. 2139

National Academy of Science, USA, 112, 7472-7477.

- 2140 Stump, S.M., Comita, L.S., 2018. Interspecific variation in conspecific negative density
- 2141 dependence can make species less likely to coexist. Ecology Letters 21, 1541–1551.
- 2142 https://doi.org/10.1111/ele.13135
- 2143
- Su, S.H, Chang-Yang, C.-H., Lu, CL, Tsui, C.C., Lin, T.T., Lin, C.L., Chiou, W.L. Kuan, L.H.,
- 2145 Chen, Z.S., and Hsieh, C.F. (2007) Fushan subtropical forest dynamics plot: Tree species
- 2146 characteristics and distribution patterns. 272 pp. Taiwan Forestry Research Institute, Taipei,
- 2147 Taiwan.
- 2148
- Swenson, N.G., Erickson, D.L., Mi, X., Bourg, N.A., Forero-Montaña, J., Ge, X., Howe, R., Lake,
- 2150 J.K., Liu, X., Ma, K., Pei, N., Thompson, J., Uriarte, M., Wolf, A., Wright, S.J., Ye, W., Zhang,
- 2151 J., Zimmerman, J.K., and Kress, W.J. (2012) Phylogenetic and functional alpha and beta diversity
- in temperate and tropical tree communities. *Ecology*, **93**, 112-125.
- 2153
- Swenson, N.G., Mi, X., Kress, W.J., Thompson, J., Uriarte, M., and Zimmerman, J.K. (2013)
- 2155 Species-time-area and phylogenetic-time-area relationships in tropical tree communities. *Ecology*
- **2156** *and Evolution*, **3**, 1173-83.
- 2157
- Swenson, N.G., Jones, F.A., and Gibson, D. (2017a) Community transcriptomics, genomics and
- 2159 the problem of species co-occurrence. *Journal of Ecology*, **105**, 563-568.
- 2160
 - Swenson, N.G., Iida, Y., Howe, R., Wolf, A., Umaña, M.N., Petprakob, K., Turner, B.L., and Ma,
- 2162 K. (2017b) Tree co-occurrence and transcriptomic response to drought. *Nature Communications*,
- **2163 8**, 1996.
- 2164
- Swinfield, T., Both, S., Riutta, T., Bongalov, B., Elias, D., Majalap-Lee, N., Ostle, N., Svátek, M.,
- 2166 Kvasnica, J., Milodowski, D., Jucker, T., Ewers, R.M., Zhang, Y., Johnson, D., The, Y.A.,
- Burslem, D.F.R.P., Malhi, Y., and Coomes, D. (2019) Imaging spectroscopy reveals the effects of
- 2168 topography and logging on the leaf chemistry of tropical forest canopy trees. Global Change
- 2169 *Biology*, **26**, 989-1002.
- 2170
- 2171 Terborgh, J. (2001). Ecological meltdown in predator-free forest fragments. Science, 294, 1923–
- 2172 1926.
- 2173
- 2174 ter Steege, H., Pitman, N.C., Phillips, O.L., Chave, J., Sabatier, D., Duque, A., Molino, J.-F.,
- 2175 Prévost, M.-F., Spichiger, R., Castellanos, H., von Hildebrand, P., and Vásquez, R. (2006)
- 2176 Continental-scale patterns of canopy tree composition and function across Amazonia. *Nature*, **443**,
- 2177 444-447.
- 2178
- 2179 ter Steege, H., Pitman, N.C., Sabatier, D., Baraloto, C., Salomao, R.P., Guevara, J.E., Phillips,
- 2180 O.L., Castilho, C.V., Magnusson, W.E., Molino, J.-F., Monteagudo, A., Núñez, P., Montero, J.C.,
- Feldpausch, T.R., Honorio Coronado, E.N., Killeen, T.J., Mostacedo, B., Vasquez, R., Assis, R.L.,
- 2182 Terborgh, J., Wittmann, F., Andrade, A., Laurance, W.F., Laurance, S.G.W., Marimon, B.S.,
- 2183 Marimon Jr., B.-H., Guimarães Vierira, I.C., Amaral, I.L., Brienen, R., Castellanos, H., Cárdenas
- 2184 López, D., Duivenvoorden, J.F., Mogollón, H.F., de Almeida Matos, F.D., Dávila, N., García-
- Villacorta, R., Diaz, P.R.S., Costa, F., Emilio, T., Levis, C., Schietti, J., Souza, P., Alonso, A.,

- 2186 Dallmeier, F., Duque Montoya, A.J., Fernandez Piedade, M.T., Araujo-Murakami, A., Arroyo, L.,
- 2187 Gribel, R., Fine, P.V.A., Peres, C.A., Toldeo, M., Aymard, C., G.A., Baker, T.R., Cerón, C., Engel,
- 2188 J., Henkel, T.W., Maas, P., Petronelli, P., Stropp, J., Zartman, C.E., Daly, D., Neill, D., Silveira,
- 2189 M., Paredes, M.R., Chave, J., de Andrade Lima Filho, D., Møller Jørgensen, P., Fuentes, A.,
- 2190 Schöngart, J., Cornejo Valverde, F., Di Fiore, A., Jimenez, E.M., Peñuela Mora, M.C., Phillips
- 2191 J.F., Rivas, G., van Andel, T.R., von Hildebrand, P., Hoffman, B., Zent, E.L., Malhi, Y., Prieto,
- 2192 A., Rudas, A., Ruschell, A.R., Silva, N., Vos, V., Zent, S., Oliveira, A.A., Cano Schutz, A.,
- 2193 Gonzales, T., Trindade Nascimento, M., Ramirez-Angulo, H., Sierra, R., Tirado, M., Umaña
- Medina, M.N., van der Heijden, G., Vela, C.I.A., Vilanova Torre, E., Vriesendorp, C., Wang, O.,
- Young, K.R., Baider, C., Balslev, H., Ferreira, C., Mesones, I., Torres-Lezama, Urrego Giraldo,
- 2196 L.E., Zagt, R., Alexiades, M.N., Hernandez, L., Huamantupa-Chuquimaco, I., Milliken, W.,
- Palacios Cuenca, W., Pauletto, D., Valderrama Sandoval, E., Valenzuela Gamarra, L., Dexter,
- 2198 K.G., Feeley, K., Lopez-Gonzalez, G., and Silman, M.R. (2013) Hyperdominance in the
- 2199 Amazonian tree flora. *Science*, **342**, 1243092.
- Thomas, D.W., Kenfack, D., Chuyong, G.B., Moses, S.N., Losos, E.C., Condit, R.S., and Songwe,
- 2202 N. (2003). Tree species of southwest Cameroon: Tree distribution maps, diameter tables, and
- 2203 species documentation of the 50-ha Korup Forest Dynamics Plot. 254 pp. Center for Tropical
- 2204 Forest Science of the Smithsonian Tropical Research Institute and Bioresources Development and
- 2205 Conservation Programme-Cameroon, Washington, D.C.
- 2207 Uriarte, M., C. D. Canham, J. Thompson, J. K. Zimmerman, and N. Brokaw. 2005. Seedling
- 2208 recruitment in a hurricane-driven tropical forest: light limitation, density-dependence and the
- spatial distribution of parent trees. *Journal of Ecology* **93**, 291-304.
- 2211 Uriarte, M., Condit, R., Canham, C.D. & Hubbell, S.P. (2004). A spatially explicit model of
- sapling growth in a tropical forest: does the identity of neighbours matter? *Journal of Ecology*, **92**,
- 2213 348–360.

2206

2210

2214

2218

2222

2226

- Valencia, R., Foster, R.B., Villa, G., Condit, R., Svenning, J.C., Hernández, C., Romoleroux, K.,
- 2216 Losos, E., Magård, E., and Balslev, H. (2004) Tree species distributions and local habitat variation
- in the Amazon: large forest plot in eastern Ecuador. *Journal of Ecology*, **92**, 214-229.
- Valencia, R., Condit, R., Muller-Landau, H.C., Hernandez, C., and Navarrete, H. (2009)
- 2220 Dissecting biomass dynamics in a large Amazonian forest plot. *Journal of Tropical Ecology*, **25**,
- 2221 473-482.
- van Putten, B., M. D. Visser, H. C. Muller-Landau, and P. A. Jansen. (2012). Distorted-distance
- 2224 models for directional dispersal: a general framework with application to a wind-dispersed tree.
- 2225 *Methods in Ecology and Evolution* **3**:642-652.
- Visser, M.D., Bruijning, M., Wright, S.J., Muller-Landau, H.C., Jongejans, E., Comita, L.S., de
- 2228 Kroon, H. & Merow, C. (2016) Functional traits as predictors of vital rates across the life cycle of
- tropical trees. Functional Ecology, **30**, 168-180.

- 2231 Visser, M.D., Schnitzer, S.A., Muller-Landau, H.C., Jongejans, E., de Kroon, H., Comita, L.S.,
- Hubbell, S.P., Wright, S.J. & Zuidema, P. (2017) Tree species vary widely in their tolerance for 2232
- 2233 liana infestation: A case study of differential host response to generalist parasites. Journal of
- 2234 Ecology, **106**, 781-794.
- 2235
- 2236 Visser, M.D., Muller-Landau, H.C., Schnitzer, S.A., de Kroon, H., Jongejans, E., Wright, S.J. &
- 2237 Gibson, D. (2018) A host-parasite model explains variation in liana infestation among co-
- 2238 occurring tree species. *Journal of Ecology*, **106**, 2435-2445.
- 2239
- 2240 Volkov, I., Banavar, J.R., Hubbell, S.P., and Maritan, A. (2003). Neutral theory and relative species abundance in ecology. Nature, 424, 1035-1037. 2241
- 2242
- 2243 Wagner, D. L. (2020). Insect declines in the Anthropocene. Annual Review of Entomology, 65,
- 2244 457-480.
- 2245
- 2246 Wagner, F., E. Rutishauser, L. Blanc, and B. Herault. 2010. Effects of plot size and census interval
- 2247 on descriptors of forest structure and dynamics. *Biotropica* **42**:664-671.
- 2248
- 2249 Walker, A. P., M. G. D. Kauwe, A. Bastos, S. Belmecheri, K. Georgiou, R. Keeling, S. M.
- 2250 McMahon, B. E. Medlyn, D. J. P. Moore, R. J. Norby, S. Zaehle, K. J. Anderson-Teixeira, G.
- Battipaglia, R. J. W. Brienen, K. G. Cabugao, M. Cailleret, E. Campbell, J. Canadell, P. Ciais, M. 2251
- 2252 E. Craig, D. Ellsworth, G. Farquhar, S. Fatichi, J. B. Fisher, D. Frank, H. Graven, L. Gu, V.
- Haverd, K. Heilman, M. Heimann, B. A. Hungate, C. M. Iversen, F. Joos, M. Jiang, T. F. Keenan, 2253
- J. Knauer, C. Körner, V. O. Leshyk, S. Leuzinger, Y. Liu, N. MacBean, Y. Malhi, T. McVicar, J. 2254
- 2255 Penuelas, J. Pongratz, A. S. Powell, T. Riutta, M. E. B. Sabot, J. Schleucher, S. Sitch, W. K. Smith,
- B. Sulman, B. Taylor, C. Terrer, M. S. Torn, K. Treseder, A. T. Trugman, S. E. Trumbore, P. J. 2256
- van Mantgem, S. L. Voelker, M. E. Whelan, and P. A. Zuidema (2020). Integrating the evidence 2257
- 2258 for a terrestrial carbon sink caused by increasing atmospheric CO₂. New Phytologist,
- https://doi.org/10.1111/nph.16866 2259
- 2260
- 2261 Wang, B., Huang, Y., Li, X., Xiang, W., Ding, T., Liu, S., Liu, Y., Lu, S., Nong, C., Lu, M., Han,
- 2262 W., & Li, D. (2016) Guangxi Nonggang Karst Seasonal Rain Forest: Tree Species and Their
- Distribution Patterns. In: Ma, K. (ed.). Chinese Forest Biodiversity Monitoring Network Series. 2263
- China Forestry Publishing House, Beijing. 2264
- 2265
- 2266 Wang, X., Wiegand, T., Anderson-Teixeira, K.J., Bourg, N.A., Hao, Z., Howe, R., Jin, G., Orwig,
- D.A., Spasojevic, M.J., Wang, S., Wolf, A. & Myers, J.A. (2018) Ecological drivers of spatial 2267
- 2268 community dissimilarity, species replacement and species nestedness across temperate forests.
- 2269 Global Ecology and Biogeography, 27, 581-592.
- 2270
- 2271 Whittaker RH. (1965). Dominance and diversity in land plant communities. *Science* **147**, (3655):
- 2272 250.
- 2273
- 2274 Williams, L.J., Bunyaveichewin, S., and Baker, P.J. (2008) Deciduousness in a seasonal tropical
- 2275 forest in western Thailand: interannual and intraspecific variation in timing, duration and
- environmental cues. Oecologia, 155, 571-82. 2276

- Wills, C., K.E. Harms, R. Condit, D. King, J. Thompson, F. He, H.C. Muller-Landau, P. Ashton,
- E. Losos, L. Comita, S. Hubbell, J. LaFrankie, S. Bunyavejchewin, H. S. Dattaraja, S. Davies, S.
- Esufali, R. Foster, N. Gunatilleke, S. Gunatilleke, P. Hall, A. Itoh, R. John, S. Kiratiprayoon, S.
- 2280 Loo de Lao, M. Massa, C. Nath, M.N. Supardi Noor, A. Rahman Kassim, R. Sukumar, H.S.
- Suresh, I-F. Sun, S. Tan, T. Yamakura and J. Zimmerman (2006) Nonrandom processes maintain
- diversity in tropical forests. *Science* 311: 527-531.
- 2283
- Wright, S.J. (2003). The myriad consequences of hunting for vertebrates and plants in tropical
- forests. *Perspectives in Plant Ecology, Evolution and Systematics*, **6**, 73–86.
- 2286
- Wright, S.J., Muller-Landau, H.C., Calderon, O. & Hernandez, A. (2005) Annual and spatial
- variation in seedfall and seedling recruitment in a Neotropical forest. *Ecology*, **86**, 848-860.
- 2289
- Wright, S. J., A. Trakhtenbrot, G. Bohrer, M. Detto, G. G. Katul, N. Horvitz, H. C. Muller-Landau,
- F. A. Jones, and R. Nathan. (2008). Understanding strategies for seed dispersal by wind under
- 2292 contrasting atmospheric conditions. *Proceedings of the National Academy of Sciences* **105**, 19084-
- 2293 19089.
- 2294
- Wright, S.J., Kitajima, K., Kraft, N.J.B., Reich, P.B., Wright, I.J., Bunker, D.E., Condit, R.,
- Dalling, J.W., Davies, S.J., Diaz, S., Engelbrecht, B.M.J., Harms, K.E., Hubbell, S.P., Marks, C.O.,
- 2297 Ruiz-Jaen, M.C., Salvador, C.M. & Zanne, A.E. (2010) Functional traits and the growth–mortality
- trade-off in tropical trees. *Ecology*, **91**, 3664-3674.
- 2299
- Wright, S.J. (2013) The carbon sink in intact tropical forests. Global Change Biology, 19, 337-
- 2301 339.
- 2302
- Wright, S.J., Sun, I.-F., Pickering, M., Fletcher, C.D., and Chen, Y.-Y. (2015) Long-term changes
- in liana loads and tree dynamics in a Malaysian forest. *Ecology*, **96**, 2748–2757.
- 2305
- 2306 WWF. (2020). Living Planet Report 2020 Bending the curve of biodiversity loss. Almond,
- 2307 R.E.A., Grooten M. and Petersen, T. (Eds). WWF, Gland, Switzerland
- 2308
- 2309 Xu, K., Li, D., Huang, H., Liu, D., & Chen, Z., & Lijing (2017) Yulongxueshan Cold Temperate
- 2310 Forest Dynamics Plot: Spruce-fir Forest Species Composition and Their Distribution Patterns. In:
- 2311 Ma, K. (ed.). Chinese Forest Biodiversity Monitoring Network Series. China Forestry Publishing
- 2312 House, Beijing.
- 2313
- 2314 Xu, X., Medvigy, D., Powers, J.S., Becknell, J.M., and Guan, K. (2016) Diversity in plant
- 2315 hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally
- dry tropical forests. *New Phytologist*, **212**, 80-95.
- 2317
- 2318 Yang, J., Ci, X., Lu, M., Zhang, G., Cao, M., Li, J. & Lin, L. (2014) Functional traits of tree species
- with phylogenetic signal co-vary with environmental niches in two large forest dynamics plots.
- 2320 *Journal of Plant Ecology*, **7**, 115-125.
- 2321

- 2322 Yang, Q., Liu, H., Yang, H., Wang, Z., Fang, X., Ma, Z., & Wang, X. (2019) Tiantong Subtropical
- 2323 Forest Dynamics Plot: Tree Species and Their Distribution Patterns. In: Ma, K. (ed.). Chinese
- 2324 Forest Biodiversity Monitoring Network Series. China Forestry Publishing House, Beijing.
- 2325
- Yang, Y., Saatchi, S., Xu, L., Yu, Y., Lefsky, M., White, L., Knyazikhin, Y., and Myneni, R.B.
- 2327 (2016) Abiotic controls on macroscale variations of humid tropical forest height. *Remote Sensing*,
- **2328 8**, 494.
- 2329
- 2330 Yuan, Z. Q., A. Gazol, X. G. Wang, F. Lin, J. Ye, Z. C. Zhang, Y. Y. Suo, X. Kuang, Y. Y. Wang,
- S. H. Jia, and Z. Q. Hao. 2016. Pattern and dynamics of biomass stock in old growth forests: The
- role of habitat and tree size. *Acta Oecologica-International Journal of Ecology* **75**:15-23.
- 2333
- Yuan, Z. Q., A. Ali, T. Jucker, P. Ruiz-Benito, S. P. Wang, L. Jiang, X. G. Wang, F. Lin, J. Ye, Z.
- Q. Hao, and M. Loreau. 2019. Multiple abiotic and biotic pathways shape biomass demographic
- processes in temperate forests. *Ecology* **100**:10.
- 2337
- 2338 Zemunik, G., Davies, S.J. & Turner, B.L. (2018) Soil drivers of local- scale tree growth in a
- 2339 lowland tropical forest. *Ecology*, **99**, 2844-2852.
- 2340
- Zuleta, D., Duque, A., Cardenas, D., Muller-Landau, H.C., and Davies, S.J. (2017) Drought-
- 2342 induced mortality patterns and rapid biomass recovery in a terra firme forest in the Colombian
- 2343 Amazon. *Ecology*, **98**, 2538-2546.
- 23442345

Table 1. Characteristics of 71 ForestGEO FDPs spanning the world's forest types, including total number of trees (trees #), species (species #) and censuses (censuses #), and mean annual temperature (MAT) and mean annual precipitation (MAP). Elevation is the average elevation across each plot. Data for each plot are derived from the most recent census. For Santa Cruz, the plot started as 6 ha in 2007 and was expanded to 16 ha in 2012.

2350	2012.									
2351	Site	Area	First census	Trees	Species	Fisher's	Censuses	Elevation	MAT	MAP
2352		(ha)	(yr)	#	#	alpha	#	(m)	(°C)	(mm/yr)
2353		` ,				•		. ,	` /	
2354										
2355	Ailaoshan, Yunnan	20	2014	44168	104	12.8	2	2550	11.3	1778
2356	Amacayacu, Colombia	25	2006	123790	1133	172.2	2	94	25.8	3215
2357	Badagongshan, Hunan	25	2011	186000	238	26.9	2	1420	15.9	1410
2358	Baishanzu, Zhejiang	25	2014	207178	177	19.0	1	1527	12.8	2342
2359	Baotianman, Henan	25	2009	59569	126	15.2	2		15.1	886
2360	Barro Colorado Island, Panama	50	1981	208400	299	34.3	8	120	27.1	2551
2361	Bidoup, Vietnam	25	2012	204684	215	23.7	1	1557	17.3	1533
2362	Bukit Timah, Singapore	4	1993	17239	408	75.0	6	99	26.9	2473
2363	Changbaishan, Jilin	25	2004	36904	52	6.0	4	801	2.9	700
2364	Cocoli, Panama	4	1994	3200	176	40.1	3	50	26.6	1950
2365	Danum Valley, Malaysia	50	2010	256729	694	86.8	2	150	26.7	2822
2366	Daxinganling, Heilongjiang	25	2011	209785	18	1.5	1	897	-4.0	458
2367	Dinghushan, Guangdong	20	2005	71617	210	26.6	2	350	20.9	1985
2368	Doi Inthanon, Thailand	15	1997	73269	162	19.7	4	1670	20.9	1908
2369	Donglingshan, Beijing	20	2010	52136	58	6.4	2	1400	4.7	570
2370	Fushan, Taiwan	25	2004	110595	101	11.0	4	667	18.2	4271
2371	Gutianshan, Zhejiang	24	2005	140087	159	17.7	3	581	15.3	1964
2372	Hainan, Hainan	60	2012	439676	290	30.3	2	942	19.8	2381
2373	Haliburton, Canada	13.5	2007	46339	30	3.1	2	434	5.0	1070
2374	Harvard Forest, MA, USA	35	2010	116200	51	5.1	1	354	9.0	1050
2375	Heishiding, Guangdong	50	2013	218513	236	26.1	2	567	22.0	1744
2376	Hong Kong, Hong Kong	20	2012	81021	172	20.8	1	201	23.3	2399
2377	Huai Kha Khaeng, Thailand	50	1992	72500	251	32.6	6	596	23.5	1476
2378	Ilha do Cardoso, Brazil	10.2	2004	40000	106	13.2	2	6	22.4	2100
2379	Indian Cave, NE, USA	18.4	2019	15786	49	6.3	1	315	11.2	876
2380	Ituri, D.R. Congo	40	1994	288000	445	51.6	4	775	24.3	1682

2381	Kenting, Taiwan	10	1996	39093	95	11.7	1	275	25.4	1964
2382	Khao Chong, Thailand	24	2000	121500	593	81.1	4	235	27.1	2611
2383	Korup, Cameroon	50	1996	329000	494	57.0	3	195	26.6	5272
2384	Belalong, Brunei Darussalam	25	2009	155901	1266	188.4	1	240	26.5	5203
2385	La Planada, Colombia	25	1997	105400	240	29.3	2	1818	19.0	4087
2386	Lambir, Malaysia	52	1991	359600	1182	152.2	5	174	26.6	2664
2387	Laupahoehoe, USA	4	2008	14641	21	2.4	2	1160	16.0	3440
2388	Lienhuachih, Taiwan	25	2008	153268	144	15.7	1	754	20.8	2211
2389	Lilly Dickey Woods, IN, USA	25	2012	27993	35	3.9	2	267	11.6	1203
2390	Luquillo, Puerto Rico, USA	16	1990	39160	138	17.9	6	381	22.8	3548
2391	Manaus, Brazil	25	2004	154177	1519	234.0	2	60	26.7	2600
2392	Michigan Big Woods, MI, USA	A 23	2014	33690	45	5.1	1	288	8.6	857
2393	Mo Singto, Thailand	30.5	2000	134942	264	31.6	3	770	23.5	2100
2394	Mpala, Kenya	120	2011	139259	68	6.9	2	1730	17.9	657
2395	Mudumalai, India	50	1988	25500	72	9.1	8	1050	22.7	1255
2396	Nanjenshan, Taiwan	5.88	1989	36400	125	16.2	4	320	23.5	3582
2397	Ngardok, Palau	4	2017	14216	70	9.6	1	39	28.0	3734
2398	Ngel Nyaki, Nigeria	20.28	2014	41031	106	13.2	1	1639	19.0	1800
2399	Niobrara, NE, USA	20.16	2018	8293	26	3.3	1	687	8.7	597
2400	Nonggang, Guangxi	15	2011	68010	223	28.7	2	275	22.0	1376
2401	Ordway-Swisher, FL, USA	23.04	2019	9935	11	1.2	1	38	20.0	1280
2402	Palamanui, HI, USA	4	2008	15652	15	1.6	2	265	20.0	835
2403	Palanan, Philippines	16	1994	78205	335	44.9	5	97	26.1	3380
2404	Pasoh, Malaysia	50	1986	300211	814	101.9	7	80	27.9	1788
2405	Rabi, Gabon	25	2010	178447	342	40.8	2	41	26.0	2282
2406	San Lorenzo, Panama	6	1996	1935	238	71.3	5	140	26.2	3030
2407	Santa Cruz, CA, USA	6/16	2007/2012	20892	33	3.8	3/2	323	14.8	778
2408	Scotty Creek, Canada	9.6	2013	38050	11	1.0	2	266	-3.2	369
2409	Sinharaja, Sri Lanka	25	1993	193400	204	22.5	5	500	22.5	5016
2410	SCBI, VA, USA	25.6	2008	49285	65	7.4	3	306	12.9	1001
2411	SERC, MD, USA	16	2007	24961	79	10.1	3	8	13.2	1068
2412	Speulderbos, Netherlands	27	2013	9350	13	1.5	2	56	10.1	833
2413	Tiantongshan, Zhejiang	20	2008	94603	153	17.8	2	453	16.2	1375
2414	Traunstein, Germany	25	2015	15758	29	3.4	1	605	7.6	1240
2415	Tyson Res. Center, MO, USA	20.16	2013	30333	42	5.3	2	205	13.5	957

2416	UMBC, MD, USA	12.5	2012	7782	79	12.2	2	50	12.8	1063
2417	Utah, UT, USA	13.64	2014	23177	17	1.8	1	3084	2.7	850
2418	Wabikon, WI, USA	25.2	2008	50130	42	4.5	3	498	4.2	805
2419	Wanang, Papua New Guinea	50	2009	285825	527	62.5	2	140	26.0	3500
2420	Wind River, WA, USA	27.2	2010	30973	26	2.8	2	369	9.2	2495
2421	Wytham Woods, UK	18	2008	16313	23	2.6	3	134	10.0	717
2422	Xishuangbanna, Yunnan	20	2007	95834	468	64.0	3	789	21.8	1493
2423	Yasuni, Ecuador	50	1995	297778	1114	146.2	2	230	28.3	3081
2424	Yosemite Nat. Park, CA, USA	25.6	2009	34458	23	2.4	3	1843	10.2	1065
2425	Zofin, Czech Republic	25	2012	73457	13	1.2	2	780	6.2	866
2426										
2427										

2428 List of Figures.

Figure 1. Global map of 71 ForestGEO Forest Dynamics Plots.

Figure 2. Representation of woody plant diversity in ForestGEO FDPs. The percent of known woody plant genera (A) and families (B) recorded within ForestGEO plots based of the global woody plant database (Zanne et al. 2014). Percent of global woody plant phylogenetic diversity (phylodiversity) of genera (C) and families (D) recorded in ForestGEO FDPs. Phylodiversity is the sum all branch lengths for the phylogeny of genera or families (Faith 1992). The phylodiversity percent is the fraction of branches on the phylogeny that occur in ForestGEO FDPs. The analysis was based on 63 FDPs (Monks, Davies & Swenson, *unpublished data*), so underestimates the actual diversity found in the ForestGEO network. n is the total number of woody genera and families.

Figure 3. Cumulative growth of ForestGEO peer-reviewed publications since the start of the first plot on Barro Colorado Island in Panama in 1981. Publications included up to August 2020.

Figure 4. Growth of the ForestGEO network in terms of numbers of species and trees being monitored by the FDPs. The number of species is the sum of all recorded species at each plot, so species occurring in more than one plot are counted twice. The number of unique species is approximately 12,000. The number of trees reflects the number of living trees at the most recent census of each plot. Over time the number of tree measurements has grown to over 20 million due to many plots having multiple censuses (Table 1).

Figure 5. Pictorial representation of soil, topographic and hydrological variation within the 50-ha FDP at Pasoh, Malaysia, illustrating the dramatic variation in edaphic conditions that are often included within a typical large-scale ForestGEO FDP. USDA soil taxonomic names listed at the top of each photo which were taken within soil pits sampled along the soil catena (hatched boxes) spanning just 30 m of elevation difference between the highest and lowest points within the plot. Like most FDPs this edaphic and topographic gradient results in significant turnover in species composition across the plot (Davies et al. 2003).

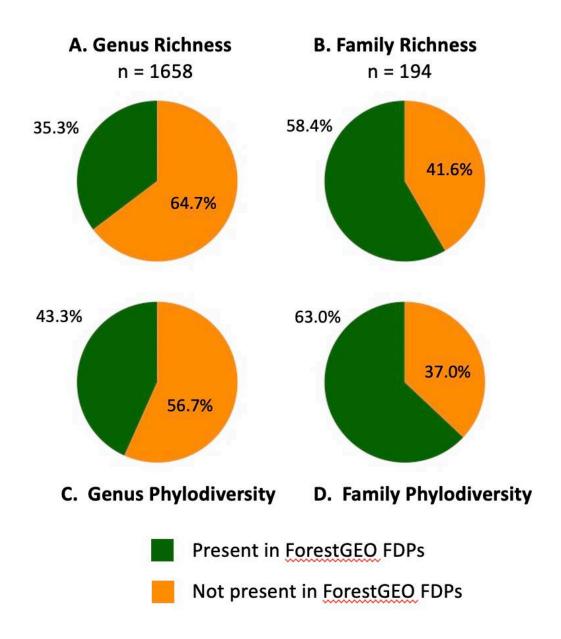
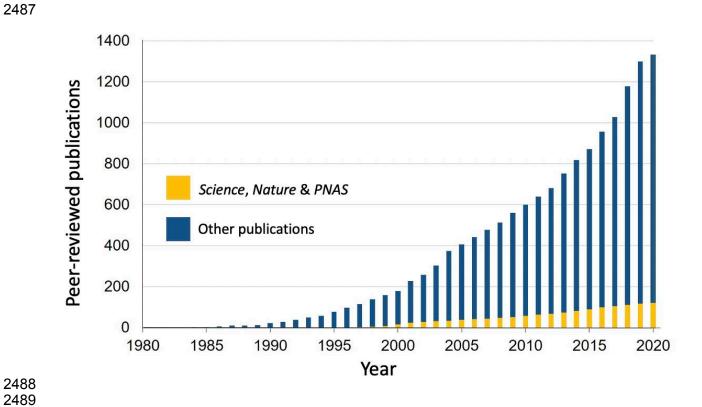
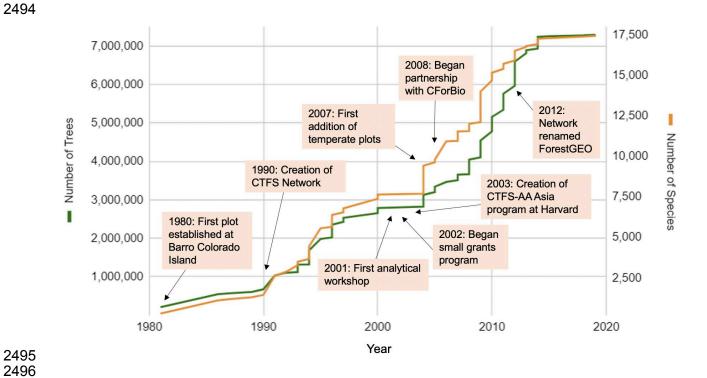

Figure 6. The striking habitat-related variation in spatial distributions of individuals of five species of *Shorea* (Dipterocarpaceae) in the 52-ha FDP at Lambir, Sarawak, Malaysia. The pattern of sympatric congeneric species occupying different habitats within the same plot is a repeated feature of many ForestGEO FDPs. Habitats, defined by soil chemistry and texture, range from most nutrient-poor sandy loams (white) to least nutrient-poor clays (dark green). Contour lines span 140 m of elevation change within the plot. Dot sizes are scaled to tree size. Species and habitat specialization include: (A) *Shorea inappendiculata* - clay, B. *Shorea xanthophylla* - fine loam; C. *Shorea amplexicaulis* - loam; D. *Shorea acuta* - sandy loam; E. *Shorea ochracea* - a generalist species without habitat specialization within the plot. Figure adapted from Russo et al. (2005).

Figure 7. Photo of network participants at the annual ForestGEO analytical workshop in July 2018 in Boubin old-growth forest, Czech Republic; the oldest known forest plot with mapped stems in the world.


2471 Figure 1.2472


2478 Figure 2.2479

2485 Figure 3.2486

2492 Figure 4.2493

2499 Figure 5.2500

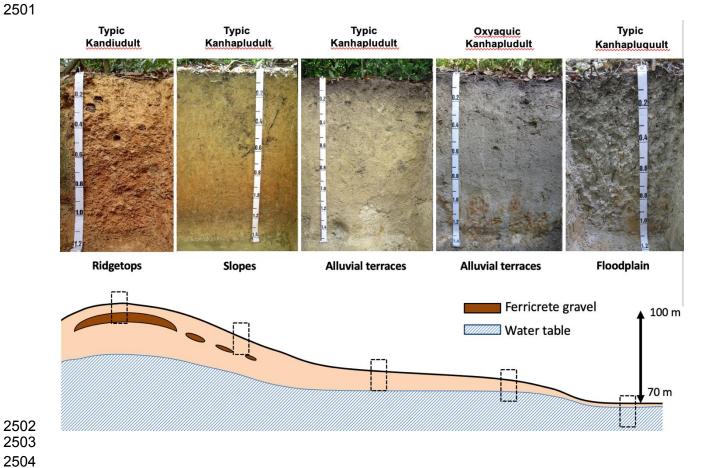
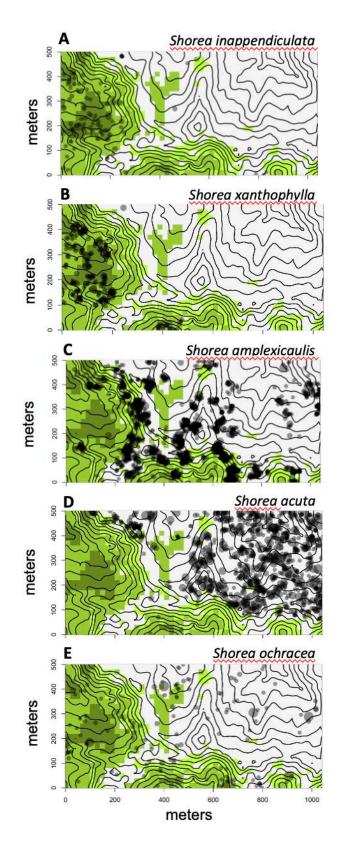



Figure 6.

2511 Figure 7.

Supplementary Information: Site-specific acknowledgements

Ailaoshan: The 20-ha Ailaoshan forest dynamics plot is a collaborative effort by Xishuangbanna Tropical Botanical Garden's Forest Ecology Group and the Ailaoshan Station for Subtropical Forest Ecosystem Studies. Many thanks to the research team Fan Zexin, Yang Xiaodong, Zhang Jiaolin, Wen Handong, Lin Luxiang, Yang Jie, Hu Yuehua, Song Xiaoyang, Sun Zhenghua, Lu Zhiyun, Luo Kang, Chen Si, Yan Qiaoshun, plot Principal Investigator, Cao Min, and many other technicians, students, and staff.

Amacayacu: The 25-ha Long-Term Ecological Research Project of Amacayacu is a collaborative project of the Instituto Amazónico de Investigaciones Científicas Sinchi and the Universidad Nacional de Colombia Sede Medellín, in partnership with the Unidad de Manejo Especial de Parques Naturales Nacionales and the Forest Global Earth Observatory of the Smithsonian Tropical Research Institute (ForestGEO). We acknowledge the Director and staff of the Amacayacu National Park for supporting and maintaining the project in this National Park as well as coworkers from the Palmeras Indigenous Community for their assistance in fieldwork.

Badagongshan: Work at Badagongshan was supported by the National Natural Science Foundation of China (31270562) and the Chinese Forest Biodiversity Monitoring Network (29200931131101919).

Baishanzu: The 25-ha Baishanzu forest dynamics plot was established with the cooperation of East China Normal University, Sun Yat-sen University, Zhejiang University, Wenzhou University, Lishui University and The BSZ Nature Reserve Management Department. Thank you to the field team Shuping Yang, Yixin Zhen, Dinyun Chen, Junjie Zhong, Yan Chen, Shuwen Ye, Ziying Wang, Dinghan Huang, Chenyang Lou, and many other technicians, students, and staff, and to plot Principal Investigators Fangliang He and Minhua Zhang.

Baotianman: The 25-ha Baotianman forest dynamics plot was funded by the National Science and Technology Support Plan (2008BAC39B02), the State Key Laboratory of Vegetation and Environmental Change (LVEC2011zyts01), the Natural Science Foundation of China (31070554, 31270642, 31370586), and the Biodiversity Committee of the Chinese Academy of Sciences. Thanks to hundreds of college students, graduate students, local workers, and researchers for their hard work. Thanks to State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Chinese Forest Biodiversity Monitoring Network, Henan Agricultural University, Nanyang Normal University, China University of Mining & Technology (Beijing), Pingdingshan University, and Baotianman National Nature Reserve for their cooperation and kind support.

Barro Colorado Island: The BCI forest dynamics research project was made possible by National Science Foundation grants to Stephen P. Hubbell: DEB-0640386, DEB-0425651, DEB0346488, DEB-0129874, DEB-00753102, DEB-9909347, DEB-9615226, DEB-9615226, DEB9405933, DEB-9221033, DEB-9100058, DEB-8906869, DEB-8605042, DEB-8206992, DEB7922197, support from the Forest Global Earth Observatory (ForestGEO), the Smithsonian Tropical Research Institute, the John D. and Catherine T. MacArthur Foundation, the Mellon Foundation,

the Small World Institute Fund, numerous private individuals, and through the hard work of over people from 10 countries over the past two decades.

Bidoup: The Bidoup Forest Dynamics Plot was funded by the project TN3/T09 within the Vietnam National Key Programme KHCN-TN3/11-15 (Tay Nguyen Programme No. 3), Smithsonian Tropical Research Institute and Vietnam Ministry of Science and Technology through the Scientific and Technological Cooperation with the US Program.

Bukit Timah: The Bukit Timah Dynamics Plot has been funded mainly by the National Institute of Education of Nanyang Technological University and the Smithsonian Tropical Research Institute.

Changbaishan: Zhanqing Hao and Xugao Wang were supported by The National Key Research and Development Program of China (2016YFC0500302), National Natural Science Foundation of China (31570432 and 31370444), Key Research Program of Frontier Sciences, CAS (QYZDB-SSW-DQC002).

Cocoli: The 4-ha Cocoli forest dynamics plot is supported by the Smithsonian Tropical Research Institute. Thank you to the plot Principal Investigators Richard Condit, Rolando Pérez, and Salomón Aguilar, and many field workers, students, technicians, and STRI staff.

Danum Valley: The Danum plot is a core project of the Southeast Asia Rain Forest Research Partnership (SEARRP). We thank SEARRP partners, especially Yayasan Sabah, for their support, and HSBC Malaysia and the University of Zurich for funding. We are grateful to the research assistants who are conducting the census, in particular, the team leader Alex Karolus, and to Mike Bernados and Bill McDonald for species identifications. We thank Stuart Davies and Shameema Esufali for advice and training.

Daxing`angling: The 25-ha Daxing`angling forest dynamics plot is supported by the Chinese Forest Biodiversity Monitoring Network and the Institute of Botany at the Chinese Academy of Sciences. Thank you to the research team Zhu Daoguang, Cui Fuxing, Chai Chunrong, and Li Jinbo, and plot Principal Investigator Ni Hongwei at the Institute of Natural Resources, Heilongjiang Academy of Sciences, as well as many other technicians, students, and staff.

Dinghushan: The 20-ha Dinghushan forest dynamics plot is supported by the Chinese Forest Biodiversity Monitoring Network, the Chinese Academy of Sciences Institute of Botany, the Arnold Arboretum of Harvard University, and the Chinese Academy of Sciences South China Botanical Garden. We thank plot Principal Investigator Wanhui Ye, Professor of South China Botanical Garden, and the research team Huang Zhongliang, Cao Honglin, Lian Juyu, Bin Yue, and Wang Zhengfeng, and many other technicians, students, and support staff.

Doi Inthanon: The 15-ha Doi Inthanon Forest Dynamics Plot is supported by Osaka City and Utsunomiya Universities (Japan), Kasetsart University (Thailand), and the Royal Thai Forest Department. Thank you to plot Principal Investigators Mamoru Kanzaki and Kriangsak Sri Ngernyuang, as well as many field crew members, research technicians, students, and staff.

 Donglingshan: The 20-ha Donglingshan Forest Dynamics Plot is supported by the Chinese
 Academy of Sciences Institute of Botany. Many thanks to plot Principal Investigators Weiguo
 Sang and Li Zhu, as well as many field workers, research technicians, students, and staff.

Fushan: Taiwan Forestry Bureau, Taiwan Forestry Research Institute, National Taiwan University (Institute of Ecology and Evolutionary Biology), and the Forest Global Earth Observatory (ForestGEO) of the Smithsonian Tropical Research Institute.

Gutianshan: We thank Drs. Mingjian Yu from Zhejiang University, Jianhua Chen for their contributions to the establishment and census of the 24-ha permanent forest plot. We gratefully acknowledge support from the Administration Bureau of the Gutianshan National Nature Reserve.

Hainan: This research was supported by the Central Public-Interest Scientific Institution Basal Research Fund (CAFYBB2017ZE001), National Nonprofit Institute Research Grant of CAF (CAFYBB2011004, RITFYWZX200902, RITFYWZX201204), National Natural Science Foundation of China (31290223, 41201192), State Forestry Administration of China (201104057). It was also supported by the Jianfengling National Key Field Research Station for Tropical Forest Ecosystem.

Haliburton: The principal investigators graciously acknowledge the generosity of Haliburton Forest and Wildlife Reserve Ltd., in allowing the Principal Investigators to establish and maintain the Haliburton Forest Dynamics Plot (HFDP). The HFDP has been made possible through work of more than 30 census team members, with notable contributions from census team leaders and data managers Michael Drescher, Rajit Patankar, Jon Schurmann, and Leeladarshini Sujeeun. The HFDP is financially supported through Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grants to both S.C. Thomas and A.R. Martin, and by a University of Toronto Connaught New Researcher Award to A.R. Martin.

Harvard Forest: Funding for the Harvard ForestGEO Forest Dynamics Plot was provided by the Smithsonian Institution's Forest Global Earth Observatory (ForestGEO), the National Science Foundation's LTER program (DEB 06-20443 and DEB 12-37491), and Harvard University. Thanks to many field technicians who helped census the plot. Jason Aylward was instrumental as a field supervisor and with data screening and database management. Thanks to John Wisnewski and the woods crew at HF for providing materials, supplies, and invaluable field assistance with plot logistics. Joel Botti and Frank Schiappa provided survey expertise to establish the 35-ha plot. Special thanks to Stuart Davies and Rick Condit for field training, database assistance, and plot advice. Sean McMahon and Suzanne Lao were extremely helpful with field planning, data questions, and many plot logistics. Thanks to Jeannette Bowlen for administrative assistance and to Emery Boose and Paul Siqueira for help with plot coordinates. Thanks also to David Foster for his support and assistance with plot design, location, and integration with other long-term studies at HF.

Heishiding: The Heishiding forest plot was partly financially supported by the National Natural Science Foundation of China (31925027, 31622014 and 31570426 to Chengjin Chu).

Hong Kong: We thank HSBC for funding the plot and the Policy for Sustainability Lab, Faculty of Social Sciences, HKU for coordinating the project.

Huai Kha Khaeng: We thank the many people who helped to create the permanent research plot in Huai Kha Khaeng. The administrative staff of Huai Kha Khaeng Wildlife Sanctuary helped with logistical problems of the plots on many occasions. The Huai Kha Khaeng 50-hectare plot project has been financially and administratively supported by many institutions and agencies. Direct financial support for the plot has been provided by the Royal Thai Forest Department and the National Parks Wildlife and Plant Conservation Department, the Arnold Arboretum of Harvard University (under NSF award #DEB-0075334, and grants from USAID and the Rockefeller Foundation), the Smithsonian Tropical Research Institute, and the National Institute for Environmental Studies, Japan. We acknowledge the Royal Thai Forest Department for supporting and maintaining the project in Huai Kha Khaeng Wildlife Sanctuary, Thailand.

 Ilha do Cardoso: The 10-ha Ilha do Cardoso Forest Dynamics Plot was established with support from the project Parcelas Permanente São Paulo (PPSP, BIOTA-FAPESP) and the Universidade de São Paulo. Thank you to the plot Principal Investigator Alexandre Adalardo de Oliveira and many field workers, research and data technicians, and staff.

Indian Cave: The Nebraska Game and Parks has been an important partner in the establishment of the Indian Cave plot. Funding was provided by the University of Nebraska-Lincoln and Jacqueline Mars.

Ituri (**Edoro and Lenda**): The Ituri 40-ha plot program is a collaborative project between the Centre de Formation et de Recherche en Conservation Forestière and the Wildlife Conservation Society–DRC, in partnership with the Forest Global Earth Observatory (ForestGEO) of the Smithsonian Tropical Research Institute. The Ituri plots are financially supported by the Wildlife Conservation Society, the Frank Levinson Family Foundation, and the Smithsonian Forest Global Earth Observatory. The Institut Congolais pour la Conservation de la Nature graciously provided the research permit.

Kenting: The 2008 tree census was funded by a grant to SHW from the Council of Agriculture grant, Taiwan.

Khao Chong: We thank the many people who helped to create the permanent research plot in Khao Chong. The administrative staff of Khao Chong Botanical Garden helped with logistical problems of the plots on many occasions. Direct financial support for the plot has been provided by the people of Thailand through the Royal Forest Department (1991-2003) and the National Parks Wildlife and Plant Conservation Department since 2003, the Arnold Arboretum of Harvard University, the Smithsonian Tropical Research Institute, and the National Institute for Environmental Studies, Japan, as well as grants from the US National Science Foundation (grant #DEB-0075334 to P.S. Ashton and S.J. Davies), US-AID (with the administrative assistance of WWF-USA), and the Rockefeller Foundation. Administrative support has been provided by the Arnold Arboretum, the Harvard Institute for International Development, the Royal Forest Department, and the National Parks Wildlife and Plant Conservation Department. In addition, general support for the ForestGEO program has come from the Arnold Arboretum of Harvard

University, the Smithsonian Tropical Research Institute, the John D. and Catherine T. MacArthur Foundation, Conservation, Food and Health, Inc., and the Merck Foundation. All of these organizations are gratefully acknowledged for their support.

Korup: The 50-ha Korup Forest Dynamics Plot is affiliated with the Smithsonian's Forest Global Earth Observatory (ForestGEO). The 3 principal investigators gratefully acknowledge funding and other support received from ForestGEO for our three censuses. Funding from the Botanical Research Foundation of Idaho is also gratefully acknowledged. Permission to conduct the field program in Cameroon is provided by the Ministry of Environment and Forests and the Ministry of Scientific Research and Innovation. We also acknowledge the dedicated support of our field team, especially field leadership by Sainge Nsanyi Moses and botanical work by Ekole Mambo Peter.

Kuala Belalong: Funding for the 25 ha Kuala Belalong Forest Dynamics Research Plot was provided by HSBC-Brunei Darussalam, Smithsonian's ForestGEO, and Universiti Brunei Darussalam. We also acknowledge support from Heart of Borneo (HOB)-Brunei Darussalam, Brunei Forestry Department, and the Kuala Belalong Field Studies Centre

La Planada: The 25-ha is a collaborative project between the Instituto de Investigación de Recursos Biológicos Alexander von Humboldt and the Forest Global Earth Observatory (ForestGEO) of the Smithsonian Tropical Research Institute. We especially thank Martha Isabel Vallejo and Cristian Samper, who made this project possible. For more information on La Planada, visit: http://i2d.humboldt.org.co/ceiba/resource.do?r=planada_parcelapermanente_censo1

Lambir: The 52-ha Long-Term Ecological Research Project is a collaborative project of the Forest Department of Sarawak, Malaysia, the Forest Global Earth Observatory (ForestGEO) of the Smithsonian Tropical Research Institute, the Arnold Arboretum of Harvard University, USA (under NSF awards DEB-9107247 and DEB-9629601), and Osaka City, Ehime & Kyoto Universities, Japan (under Monbusho/JSPS Kakenhi grants 06041094, 08NP0901, 09NP0901, 26304027, and 17H04602). We acknowledge the Sarawak Forest Department for supporting and maintaining the project in Lambir Hills National Park.

Laupahoehoe and **Palamanui**: The Hawai'i Permanent Plot Network thanks the USFS Institute of Pacific Islands Forestry (IPIF) and the Hawai'i Division of Forestry and Wildlife/Department of Land and Natural Resources for permission to conduct research within the Hawai'i Experimental Tropical Forest; the Palāmanui Group, especially Roger Harris, for access to the lowland dry forest site. We thank the Smithsonian Tropical Research Institute's Forest Global Earth Observatory (ForestGEO), the University of California, Los Angeles, the Pacific Southwest Research Station of the USFS, the University of Hawai'i, and NSF EPSCoR Grants No. 0554657 and No. 0903833 for support.

Lienhuachih: The Taiwan Forestry Research Institute, Taiwan Forestry Bureau, Taiwan Academy of Ecology, Tunghai University (Taiwan), and the Forest Global Earth Observatory (ForestGEO) of the Smithsonian Tropical Research Institute.

Lilly Dickey Woods: Funding for the Lilly Dickey Woods Forest Dynamics Plot was provided by
 the Indiana Academy of Sciences, Indiana University Research and Teaching Preserve, and the
 Smithsonian Institution's Forest Global Earth Observatory (ForestGEO).

Luquillo: This research was supported by grants BSR-8811902, DEB 9411973, DEB 0080538, DEB 0218039, DEB 0620910, DEB 0963447, DEB-129764, DEB-1546686 AND DEB-1831952 from NSF to the Department of Environmental Science, University of Puerto Rico, and to the International Institute of Tropical Forestry, USDA Forest Service, as part of the Luquillo Long-Term Ecological Research Program. The U.S. Forest Service (Dept. of Agriculture) and the University of Puerto Rico gave additional support. The LFDP is also supported by the Andrew Mellon foundation and the Smithsonian Institution Forest Global Earth Observatory.

Manaus: The Manaus plot is part of the Biological Dynamics of Forest Fragments Project (BDFFP) of the National Institute for Amazonian Research (INPA). We thank ForestGEO for all the funding and support over the years and for the understanding of the complications of implementing a large scale plot in a hyperdiverse forest. We thank BDFFP for all the logistical support for conducting field work, and for supporting key team members. We thank João Batista da Silva, our field team leader, and the many students that have participated in data gathering and in the challenging endless process of plant identification. Funding for work at the Manaus site has also been provided by FAPEAM (Fundação de Ampara à Pesquisa do Estado do Amazonas, Brazil) and by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico, Brazil). This is publication 803 in the Biological Dynamics of Forest Fragments Project technical series.

Michigan Big Woods: We would like to thank the University of Michigan and Middlebury College students who have helped with all of the censuses of the Big Woods Plot. These censuses were supported by the Edwin S. George Reserve Fund, a USDA McIntyre-Stennis Grant, and the Middlebury College Millennium Fund.

Mo Singto: The 30.5-ha Mo Singto Forest Dynamics Plot is supported by Mahidol University, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, and Thai Ministry of Natural Resources and Environment. Many thanks to plot Principal Investigators Anuttara Nathalang and Warren Y. Brockelman, and to countless field workers, research and data technicians, and staff.

Mpala: The 120-ha Mpala plot is a collaborative project of the National Museums of Kenya, the Kenya Wildlife Service, and the Mpala Wildlife Foundation, in partnership with the Forest Global Earth Observatory of the Smithsonian Tropical Research Institute. Funding for the two censuses was provided by the Forest Global Earth Observatory.

Mudumalai: Funding was received from the Ministry of Environment, Forest and Climate Change, Government of India and the Department of Biotechnology, Government of India.

Nanjenshan: The Nanjenshan plot has been supported by the Taiwan Forestry Bureau, Kenting National Park, the National Science Council of Taiwan, and the Forest Global Earth Observatory (ForestGEO) of the Smithsonian tropical Research Institute.

Ngardok: The Ngardok 4-ha plot is the first forest dynamics monitoring plot in Palau, establishing the Palau-Pacific Island Permanent Plot Network (PIPPNET). PIPPNET is a collaboration of the USDA Forest Service, Institute of Pacific Islands Forestry, Palau Forestry under the Ministry of Natural Resources, Environment and Tourism, and the Ngardok Nature Reserve of Melekeok State. Many thanks to the plot Principal Investigators Susan Cordell, Christian Giardina, and Amanda Uowolo, as well as countless field workers, data and research technicians, and staff.

Ngel Nyaki: The 20.28-ha Ngel Nyaki forest dynamics plot was initiated by the Nigerian Montane Forest Project (NMFP) under the directorship of Associate Professor Hazel Chapman from the University of Canterbury in New Zealand. The establishment of the plot was made possible by a significant donation received from Retired General T.Y. Danjuma, whose home is Taraba State. Support for the plot has been received from the Taraba State Forest Service, New Zealand Chester Zoo, The A.G. Leventis Foundation, and Nexen Nigeria. Many thanks to plot Principal Investigators David Kenfack, Hazel Chapman, and Iveren Abiem, as well as countless field workers, data and research technicians, and support staff.

Niobrara: The Niobrara Valley Preserve of the Nature Conservancy has been an important partner in the establishment of the Niobrara plot. Funding was provided by the University of Nebraska-Lincoln and Jacqueline Mars.

Nonggang: We appreciate the researchers from the Guangxi Institute of Botany, Chinese Academy of Sciences for their contributions to the establishment and census of the 15-ha Nonggang karst forest plot. They are Wusheng Xiang, Bin Wang, Tao Ding, Shuhua Lu, Fuzhao Huang, Wenheng Han, Lanjun He, Qingbai Lu, Dongxing Li, respectively. We also thank many volunteers in the field work from the College of Life Science, Guangxi Normal University. We acknowledge the support from the Administration Bureau of the Nonggang National Nature Reserve.

Ordway Swisher: The Ordway Swisher 23.04-ha Forest Dynamics Plot is supported by the University of Florida. Thank you to plot Principal Investigators Stephanie Bohlman and Daniel Johnson, as well as many field workers, research and data technicians, and support staff.

Palanan: Funding since 2010 has been provided by the Biodiversity Research Laboratory, Institute of Biology, University of the Philippines Diliman (BRL UP Biology), University of the Philippines Office of the Vice President for Academic Affairs under the Emerging Interdisciplinary Developing Research Program (EIDR), the University of the Philippines Diliman Office of the Vice Chancellor for Research and Development (UPD OVCRD), the Commission on Higher Education (CHED), the Department of Science and Technology Philippine Council for Agriculture, Aquatic Resources Research and Development (DOSTPCAARRD), the Energy Development Corporation (EDC), the Forest Foundation Philippines, the Diliman Science Research Foundation, and the Smithsonian Tropical Research Institute (STRI). Permits to work in the Northern Sierra Madre Natural Park were issued by its Protected Area Management Board (PAMB) through the cooperation of Biodiversity Management Bureau's Department of Environment and National Resource (BMB-DENR), Local Government of Palanan, Isabela. The plot was established by the Isabela State University (Philippines), Conservation International, PLAN, and the Arnold Arboretum of Harvard University (USA).

- 2836 Pasoh: The 50-ha forest plot at Pasoh FR is an ongoing project of the Malaysian Government,
- 2837 directed by the Forest Research Institute Malaysia through its Director-General, Dato' Abdul
- 2838 Razak Mohd. Ali. The project was initiated under the leadership of Drs. N. Manokaran, P. S.
- 2839 Ashton and S. P. Hubbell. The project is now a collaboration of the Forest Research Institute
- 2840 Malaysia and ForestGEO of the Smithsonian Tropical Research Institute. The late Dr. K. M.
- 2841 Kochummen, while on a fellowship at STRI, supervised the species identification and personally
- examined all trees over 10 cm DBH. Funds for the project are gratefully acknowledged from: the
- 2843 National Science Foundation, USA (BSR Grant
- No. INT-84-12201 to Harvard University through Drs. P. S. Ashton and S. Hubbell), Conservation,
- Food and Health Foundation, Inc., USA, the United Nations, through the Man and the Biosphere
- 2846 program (UNESCO-MAB grant Nos. 217.651.5, 217.652.5, 243.027.6, 213.164.4, and also
- 2847 UNESCO-ROSTSEA grant No. 243.170.6), the Center for Tropical Forest Science-Arnold
- 2848 Arboretum Asia
- Program at Harvard University, USA, and the National Institute for Environmental Studies, Japan.

Rabi: The Rabi 25-ha plot is a collaborative project of the National Center for Scientific and Technical Research (CENAREST) in Gabon, the Center for Conservation and Sustainability (CCS) of the Smithsonian Conservation Biology Institute (SCBI) and the Forest Global Earth Observatory (ForestGEO) of the Smithsonian Tropical Research Institute. Funding for the first census was provided by Shell Gabon (and now Assala Gabon), ForestGEO, and SCBI. Permission to conduct the field program in Gabon is provided by CENAREST. The plot is located in a conservation area of between a forest concession of the Compagnie des Bois du Gabon (CBG) and Assala oil company.

San Lorenzo: The 5.96-ha San Lorenzo forest dynamics plot is supported by the Smithsonian Tropical Research Institute. Thank you to the plot Principal Investigators Richard Condit, Rolando Pérez, and Salomón Aguilar, and many field workers, technicians, and STRI staff.

Santa Cruz: The UCSC Forest Ecology Research Plot was made possible by National Science Foundation grants to Gregory S. Gilbert (DEB-0515520, DEB-084259, and DEB-1655896), by the Pepper-Giberson Chair Fund, the University of California, and the hard work of hundreds of UCSC students.

Scotty Creek: The Scotty Creek plot establishment was supported by funds to JLB from the Canada Foundation for Innovation, Ontario Ministry of Research and Innovation, and Canadian Foundation for Climate and Atmospheric Sciences. We are grateful to Rajit Patankar and Cory Wallace for their leadership in plot establishment and the hard work of many field assistants.

Sinharaja: The authors gratefully acknowledge the permission given to work in Sinharaja World Heritage Site by the Forest Department of Sri Lanka, as well as the generous financial assistance given to set up the plot and for censuses by the Forest Global Earth Observatory (ForestGEO) of the Smithsonian Tropical Research Institute. We gratefully acknowledge logistical support from Uva Wellassa University, University of Peradeniya and Yale University.

Smithsonian Conservation Biology Institute: Funding for the Smithsonian Conservation Biology Institute (SCBI) large forest dynamics plot was provided by the Smithsonian Institution

(Forest Global Earth Observatory and the National Zoological Park), and the HSBC Climate Partnership. We especially thank the numerous technicians, interns, and volunteers of the Conservation Ecology Center at the SCBI who were essential in assisting with plot establishment and data collection. Support for the original exclosure fence installation was provided by the Friends of the National Zoo and Earthwatch Foundation.

Smithsonian Environmental Research Center: Smithsonian Environmental Research Center, Earthwatch Institute.

Speulderbos: The 27-ha Speulderbos forest dynamics plot is supported by Wageningen University. Many thanks to plot Principal Investigators Jan den Ouden and Patrick Jansen, as well as countless field workers, data and research technicians, and support staff.

Tiantongshan: The 20-ha Tiantongshan Forest Dynamics Plot is supported by East China Normal University. Thank you to Principal Investigator Wang Xihua, professor at East China Normal University, and to the research team Chen Xiaoyong, Yan Enrong, Yang Haibo, Shen Guochun, Yang Qiongsong, Zheng Zemei, Yao Fangfang, and many others.

Traunstein: The establishment of the plot (2005) has been supported by the Helmoltz Alliance "EDA "Remote Sensing and Earth System Dynamics" funded by the Helmholtz Assiociation of German Research Centres. The Traunstein forest megaplot was realized in a cooperation between Technical University Munic (Freising), Helmholtz Centre for Environmental Research - UFZ (Leipizg) and German Aeorospace Centre (DLR, Oberpaffenhofen).

 Tyson Research Center: The Tyson Research Center Forest Dynamics Plot (TRCP) is supported by Washington University in St. Louis' Tyson Research Center. Funding was provided by the International Center for Advanced Renewable Energy and Sustainability (I-CARES) at Washington University in St. Louis, the National Science Foundation (DEB 1557094), and the Tyson Research Center. We thank the Tyson Research Center staff for providing logistical support, and the more than 100 high school students, undergraduate students, and researchers that have contributed to the project.

University of Maryland, Baltimore County: The two UMBC 6.25-ha forest dynamics plots are supported by University of Maryland, Baltimore County. Thank you to plot Principal Investigators Mathew Baker and Erle C. Ellis, as well as many field workers, research and data technicians, and support staff.

Utah Forest Dynamics Plot: The Utah Forest Dynamics Plot is a collaborative project of Utah State University and the Utah Agricultural Experiment Station. We thank Cedar Breaks National Monument for providing logistical support, and the students, volunteers and staff individually listed at http://ufdp.org for data collection.

Wabikon: The Wabikon Lake Forest Dynamics Plot, located in the Chequamegon-Nicolet National Forest of northern Wisconsin, is part of the Smithsonian Institution's ForestGEO network. Tree censuses at the site have been supported by the 1923 Fund, the Smithsonian Tropical Research Institute, and the Cofrin Center for Biodiversity at the University of Wisconsin-Green

Bay. More than 50 scientists and student assistants contributed to the first two plot censuses. We are particularly grateful for the leadership of Gary Fewless, Steve Dhein, Kathryn Corio, Juniper Sundance, Cindy Burtley, Curt Rollman, Mike Stiefvater, Kim McKeefry, and U.S. Forest Service collaborators Linda Parker and Steve Janke.

Wanang: The 50-ha Wanang Forest Dynamics Plot is a collaborative project of the New Guinea Binatang Research Center, the Forest Global Earth Observatory (ForestGEO) of the Smithsonian Tropical Research Institute, the Forest Research Institute of Papua New Guinea, the Czech Academy of Sciences, and the University of Minnesota. It has received financial support from the US National Science Foundation (DEB-0816749), the Czech Science Foundation (16-18022S), the Swire & Sons Ltd., Darwin Initiative for the Survival of Species (19-008), the Grant Agency of the Czech Republic (14- 36098G), and the Christensen Foundation. We acknowledge the government of Papua New Guinea and the customary landowners of Wanang for supporting and maintaining the plot.

Wind River: The Wind River Forest Dynamics Plot is a collaborative project of Utah State University and the Utah Agricultural Experiment Station. Funding has been provided by the Forest Global Earth Observatory (ForestGEO) of the Smithsonian Tropical Research Institute, Utah State University, the National Science Foundation (1542681), and the Utah Agricultural Experiment Station. We acknowledge the Gifford Pinchot National Forest and the Wind River Field Station for providing logistical support, and the students, volunteers and staff individually listed at http://wfdp.org for data collection. The Wind River Forest Dynamics Plot was made possible by a grant from Jennifer Walston Johnson to the Smithsonian ForestGEO.

Wytham Woods: The 18-ha Long-Term Forest Monitoring Plot is a collaborative project between the University of Oxford, the Centre for Ecology and Hydrology, and the Smithsonian Institution (ForestGEO) through the HSBC Climate Partnership.

Xishuangbanna: This research was supported by the National Science Foundation of China (31570380, 31300358), the Natural Science Foundation of Yunnan Province (2015FB185), the Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences (2016CASSEABRIQG002).

Yasuní: We gratefully acknowledge the professional help of numerous biologists and field collaborators of the Yasuní forest dynamics plot, particularly Álvaro Pérez, Pablo Alvia and Milton Zambrano, who provided invaluable expertise on plant taxonomy. Consuelo Hernández organized the data and improved its quality. Pontificia Universidad Católica del Ecuador (PUCE) and STRI co-financed the first two censuses of the plot. The third census was financed with funds of the Government of Ecuador and PUCE. Seed traps and seedling plots are monitored for over 10 years thanks to STRI and two awards from the NSF program LTREB (DBI 0614525 and 1122634). STRI also sponsored the Carbon Dynamics Initiative. This study was endorsed by the Ministerio de Ambiente del Ecuador permits MAE: No 004-2012-IC-FLO-MAE-DPO, 09-FLOMA-DPO-PNY and 06-2011-FAU-DPAP.

Yosemite: The Yosemite Forest Dynamics Plot is a collaborative project of Utah State University, the University of Montana, and Washington State University. Funding was provided by the Forest

Global Earth Observatory (ForestGEO) of the Smithsonian Tropical Research Institute, Utah State University, the National Park Service and the Joint Fire Science Program (16-1-04-2). We thank Yosemite National Park for providing logistical support, and the students, volunteers, and staff individually listed at http://yfdp.org for data collection. The Yosemite Forest Dynamics Plot was made possible by a grant from Jennifer Walston Johnson to the Smithsonian ForestGEO.

Žofin: We acknowledge the Department of Forest Ecology of the Silva Tarouca Research Institute for supporting and maintaining the long-term monitoring of the Žofin Forest Dynamics Plot (under GA CR grant No. P504/15-23242S). We have received support from the Czech Ministry of Education, Youth and Sports, project No. LH12038

 Conflict of Interest

Declaration of interests

oxtimes The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
□The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: