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Abstract

We give a formula for the geometric fixed-points spectrum of the real topological cyclic ho-
mology of a bounded below ring spectrum, as an equaliser of two maps between tensor products
of modules over the norm. We then use this formula to carry out computations in the fun-
damental examples of spherical group-rings, perfect Fp-algebras, and 2-torsion free rings with
perfect modulo 2 reduction. Our calculations agree with the normal L-theory spectrum in the
cases where the latter is known, as conjectured by Nikolaus.

Introduction
The trace methods were introduced in [BHM93] as an effective way of studying the algebraic
K-theory of suitable rings, by mapping it to more computable invariants which are typically
constructed from the topological Hochschild homology spectrum THH and its cyclic action.
One particularly successful invariant is the topological cyclic homology TC defined from suitably
derived fixed-points of the cyclic structure of THH. If one tries to extend these methods to the
algebraic K-theory of forms or to cobordisms of forms (that is Grothendieck-Witt and L-theory
respectively) one discovers the real topological Hochschild homology THR, a dihedral refinement
of THH, and the real topological cyclic homology TCR.

The real topological Hochschild homology THR(A) of a ring (or ring spectrum) with anti-
involution A has been introduced in unpublished notes of Hesselholt and Madsen. It is an O(2)-
equivariant spectrum whose underlying S1-spectrum is THH(A), and where the subgroup Z /2
of O(2) generated by a reflection acts via a combination of a reflection of the circle and the anti-
involution of A. The Z /2-equivariant homotopy type of THR(A) has been studied extensively:
In [Høg16] it has been computed for spherical group-rings in terms of free loop spaces. In
[DMPR21] we studied some of its fundamental structural properties and we computed it for Fp
and Z. In [HKY+20] it has been related to equivariant factorisation homology and calculated
for equivariant Thom spectra. In [HW21] the Hopf algebroid structure on the homotopy groups
of THR(F2) is described and used to give an independent proof of the Segal conjecture for the
group of order 2. A key feature which makes these calculations accessible is the description
of THR(A) as a derived tensor product, and in particular of its Z /2-geometric fixed-points
spectrum as the derived tensor product of module spectra

THR(A)φZ /2 ≃ AφZ /2 ⊗A AφZ /2,

where A acts on AφZ /2 on the left and on the right by the “Frobenius actions”, described
informally respectively by the formulas a ⋅ x = axw(a) and x ⋅ a = w(a)xa, and w is the anti-
involution of A.

The real topological cyclic homology TCR(A;p), for a prime number p, is a Z /2-equivariant
spectrum introduced in [Høg16], whose underlying spectrum is the p-typical topological cyclic
homology TC(A;p). Its construction is analogous to the classical definition of TC(A;p) of
[BHM93], by taking the homotopy limit over certain maps

R,F ∶THR(A)Cpn+1 Ð→ THR(A)Cpn
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in the category of Z /2-spectra, thus involving the equivariant structure of THR with respect
to the finite dihedral subgroups Dpn of O(2) and the Weyl actions of Z /2 ≅ Dpn/Cpn on
THR(A)Cpn . Alternatively, Quigley and Shah give in [QS19] a construction of TCR for bounded
below spectra as an equaliser analogous to Nikolaus and Scholze’s definition of TC of [NS18].
The goal of this paper is to describe the geometric fixed-points TCR(A;p)φZ /2 in terms of de-
rived smash products in the same spirit of the formula for THR(A)φZ /2 above, and use this
description to carry out calculations in some fundamental examples.

A ring spectrum with anti-involution A is canonically a left and a right module over the
Hill-Hopkins-Ravenel norm (see [HHR16]) of its underlying spectrum, by means of maps

(NZ /2
e A)⊗AÐ→ A A⊗ (NZ /2

e A)Ð→ A

described informally respectively by sending a⊗ b⊗ x and x⊗ a⊗ b to axw(b) and w(a)xb. By
taking Z /2-geometric fixed-points these give the left and right Frobenius A-module structure
on AφZ /2 mentioned above. By applying the monoidal functor NC2

e , we also obtain a left and a
right NC2

e A-module structure on NC2
e (AφZ /2). Here we are making the point of distinguishing

between the subgroups Z /2 and C2 of O(2), generated respectively by a reflection and the
rotation of order two.

Theorem A. Let A be a ring spectrum with anti-involution, and suppose that the underlying
spectrum and the Z /2-fixed-points of A are bounded below. Then for every odd prime p there is
a natural equivalence of spectra

TCR(A;p)φZ /2 ≃ THR(A)φZ /2 ≃ AφZ /2 ⊗A AφZ /2.

For the prime 2, there is a natural equivalence with the homotopy equaliser

TCR(A; 2)φZ /2 ≃ eq( (A⊗
N
C2
e A

NC2
e (AφZ /2))C2

f
//

r
// AφZ /2 ⊗A AφZ /2 ),

where f forgets the fixed-points and r maps to the C2-geometric fixed-points, followed by the
respective identifications of A ⊗A⊗A (AφZ /2 ⊗ AφZ /2) and (A ⊗

N
C2
e A

NC2
e (AφZ /2))φC2 with

AφZ /2 ⊗A AφZ /2.

We prove this Theorem in §2.1 for odd primes, and in §2.2 for the prime 2. Our proof
proceeds by identifying the Z /2-geometric fixed-points of THR(A)Cpn inductively over n ≥ 0,
together with the structure maps R,F ∶THR(A)Cpn+1 → THR(A)Cpn . The key ingredient is
a result of [LW12] which gives a certain pushout decomposition of the universal space of the
family of reflections of O(2). We suspect that our theorem could also be proved starting from
the description of TCR for bounded below spectra given in [QS19] using the same technique.
Our proof of Theorem A is given more generally for bounded-below real p-cyclotomic spectra,
see Theorem 2.14.

We use the formula of Theorem A to compute the geometric fixed-points of TCR in some
fundamental examples, starting with spherical group-rings. Every topological monoid M with
anti-involution w∶Mop → M has an underlying Z /2-equivariant homotopy type. The genuine
Z /2-equivariant suspension spectrum S[M] ∶= Σ∞

+ M of the latter gets canonically the structure
of a ring-spectrum with anti-involution. The monoid M acts on its fixed-points subspace MZ /2

by m ⋅x =mxw(m) and x ⋅m = w(m)xm, and the corresponding 2-sided bar construction admits
a “Frobenius endomorphism”

ψ∶B(MZ /2,M,MZ /2)Ð→ B(MZ /2,M,MZ /2)

defined simplicially by ψ(x,m1, . . . ,mn, y) = (x,m1, . . . ,mn, ymn . . .m1xw(m1) . . .w(mn)y). It
also has an involution which reverses the order of the factors of the bar construction and applies
w to each component. The following is analogous to the classical description of TC of spherical
group-rings of [BHM93] and [NS18, Theorem IV.3.6].
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Theorem B. Let M be a well-pointed topological monoid with anti-involution. Then there is a
pullback square

TCR(S[M]; 2)φZ /2 //

��

Σ∞
+ B(MZ /2,M,MZ /2)hC2

trf

��

Σ∞
+ B(MZ /2,M,MZ /2)

id−Σ∞

+
ψ
// Σ∞

+ B(MZ /2,M,MZ /2)

where the right vertical map is the transfer. In particular for M = ∗ there is an equivalence

TCR(S; 2)φZ /2 ≃ S⊕RP∞
−1,

where RP∞
−1 is the homotopy fibre of the transfer trf ∶Σ∞

+ RP∞ = ShC2 → S.

Let us point out that the pullback square of Theorem B does not require any 2-completion.
In particular the calculation of TCR(S; 2)φZ /2 of Theorem B confirms the expected equivariant
homotopy type of TCR(S; 2), that appeared in unpublished work of Høgenhaven [Høg16]. We
prove this theorem in section §3.1, and we calculate this pullback in §3.2 in the case where M
is a discrete group with various assumptions on the involution and the 2-torsion. In particular
we determine it fully for M = Z with the minus involution and with the trivial involution, and
for M = C2. In Corollary 3.4 for every pointed Z /2-space X, we consider the special case of the
equivariant loop space M = ΩσX = Map∗(Sσ,X), where Sσ is the sign representation sphere,
and Z /2 acts on the loop space by conjugation. We use Theorem B to describe the cofibre of
an assembly map

Σ∞
+ (XZ /2)⊗ (S⊕RP∞

−1)Ð→ TCR(S[ΩσX]; 2)φZ /2

in terms of the cofibre of the diagonal ∆∶XZ /2 →XZ /2 ×X XZ /2, where the homotopy pullback
is along the fixed-points inclusions. In particular if the involution on X is trivial these cofibres
vanish and we obtain a splitting

TCR(S[ΩσX]; 2)φZ /2 ≃ Σ∞
+ X ⊗ (S⊕RP∞

−1).

This calculation shows that TCR(S[ΩσX]; 2)φZ /2 is equivalent to Weiss and Williams’ hyper-
quadratic L-theory of the pointed space X, which satisfies the same decomposition by [WW14,
Theorem 4.3, Corollary 4.4].

There is in fact a deeper relationship between TCR and L-theory, especially in view of the
following result, which we explain in more details at the end of the introduction. Given a discrete
commutative ring A, and we write TCR(A; 2) for the TCR spectrum of the Z /2-equivariant
Eilenberg-MacLane commutative ring spectrum of A equipped with the trivial involution.

Theorem C. Let k a perfect field of characteristic 2, and Z the ring of integers. There are
equivalences of spectra

TCR(k; 2)φZ /2 ≃⊕
n≥0

(Σ2n−1Hk/⟨x + x2∣ x ∈ k⟩⊕Σ2nH F2)

TCR(Z; 2)φZ /2 ≃⊕
n≥0

(Σ4n−1H F2⊕Σ4nH Z /8⊕Σ4n+1H F2 ).

In the case of perfect fields, we are in fact able to calculate the full Z /2-equivariant homotopy
type of TCR(k; 2): In §4.2 we use the description of TRR(k; 2)φZ /2 from Theorem 2.7 to show
that TRR(k; 2) is the Eilenberg-MacLane spectrum of the constant Mackey functor on the ring of
2-typical Witt vectors W (k; 2), where F corresponds to its Frobenius. In particular in Theorem
4.9 we show that π0 THR(k; 2)D2n is isomorphic to the (n+ 1)-truncated 2-typical Witt vectors
of k (this is true for all commutative rings at odd primes by [DPJM22, Theorem C], but it fails
in general at the prime 2, see Remark 4.10). We are then able to conclude the following:
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Theorem D. For every perfect field k of characteristic 2, there is an equivalence of Z /2-
equivariant spectra

TCR(k; 2) ≃HZ2 ⊕Σ−1Hcoker(1 − F ),

where F ∶W (k; 2)→W (k; 2) is the 2-typical Witt vector Frobenius and the underline denotes the
constant Mackey functor.

A similar decomposition holds for odd primes by a much easier argument, see Proposition
4.2. Finally, we prove a flat base-change result for TCRφZ /2, showing that if f ∶A → B is a flat
map of discrete commutative rings such that the geometric fixed-points of B are base-changed
along f from those of A, then TCR(B; 2)φZ /2 is “almost” base-changed from TCR(A; 2)φZ /2,
up to some care with the different module structures on HAφZ /2 (see Corollary 5.11 for the
precise statement). This allows us to extend the calculations above as follows.

Theorem E. For every perfect F2-algebra A, there is an equivalence of spectra

TCR(A; 2)φZ /2 ≃⊕
n≥0

(Σ2n−1H(coker(id+(−)2)))⊕ (Σ2nH(ker(id+(−)2)))

where (−)2∶A→ A is the Frobenius of A. For every ring B with no 2-torsion and perfect modulo
2 reduction, TCR(B; 2)φZ /2 is a wedge of Eilenberg-MacLane spectra with homotopy groups

πnTCR(B; 2)φZ /2 ≅

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

B/⟨x + x2∣ x ∈ B⟩ n = 4l − 1

ker (pr+pr2∶B/⟨4(x + x2)∣ x ∈ B⟩→ B/2) n = 4l

ker ( id+(−)2∶B/2→ B/2) n = 4l + 1
0 n = 4l + 2

for all l ≥ 0, and zero for n ≤ −2.

Real TC and L-theory

The relationship between TC and L-theory was originally observed by Weiss and Williams and
studied by Weiss and Rognes. They were investigating whether, under certain conditions on a
ring spectrum with anti-involution A, the quadratic L-theory Lq(A) is equivalent to the Z /2-
Tate construction of the fibre of the trace map K(A) → TC(A) after 2-completion. Nikolaus
then formulated an uncompleted version of this statement, conjecturing that TCR(A; 2)φZ /2

should be equivalent to the genuine normal L-theory of A, defined as the cofibre

Ln(A) ∶= cof(Lq(A)Ð→ L(ModωA,ϘA))

of the canonical symmetrisation map. Here ModωA is the∞-category of compact A-modules, and
ϘA∶ (ModωA)op → Sp is a certain Poincaré structure in the sense of Lurie’s formalism of L-theory,
which is defined using the Frobenius module structure of AφZ /2 (see [CDH+23, 3.2.6 and 3.2.10]
for the details). A proof of this conjecture will appear in work of Harpaz, Nikolaus, and Shah
[HNS21].

By construction, L(ModωA,ϘA) is the symmetric L-theory spectrum Ls(A) if A is Borel-
complete, that is if the canonical map AφZ /2 → AtZ /2 is an equivalence. One can then see that
Nikolaus’ conjecture implies the original conjecture of Weiss and Williams provided the fibre of
the trace map becomes Borel-complete after 2-completion.

In the case of spherical group-rings, Ln(S[ΩσX]) is the hyperquadratic L-theory of [WW14]
by [CDH+20a, Corollary 4.6.1], and as mentioned above it is equivalent to TCR(S[ΩσX]; 2)φZ /2

by [WW14, Theorem 4.3, Corollary 4.4] and Corollary 3.4. The normal L-theory Ln(k) is also
well-understood if k is a perfect field of characteristic 2, for example by work of Kato and
Ranicki, and its homotopy groups agree with the ones of the geometric fixed-points of TCR of
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Theorem C (see Remark 4.6 for more details on the description of these L-groups). Finally,
Ln(Z) is calculated by Taylor and Williams in [TW79] (see also [HLN21, Corollary 3.9 and 6.2])
and agrees with our calculation of TCR(Z; 2)φZ /2 of Theorem C. We are not aware of a flat
base-change type of result analogous to Corollary 5.11 for these normal L-spectra, nor if they
have been computed for all the rings of Theorem E.
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1 Preliminaries

1.1 Equivariant spectra
Let G be a compact Lie group. In this paper we will be interested in the case where G is the
orthogonal group O(2), or one of its subgroups. We write SpG for the stable model category of
orthogonal spectra with an action of G, equipped with the flat model structure of [Sto11]. This
is a model for the homotopy theory of genuine G-spectra. We recall that the weak equivalences
are the π∗-isomorphism, where π∗ is the equivariant homotopy groups Mackey-functor.

We denote by ⊗ the derived smash product of G-spectra and of modules in G-spectra, which
can be obtained by applying the smash product to a flat replacement of the orthogonal G-spectra
(that is to a cofibrant replacement in the flat model structure). We also denote by ⊗ the tensor
of a pointed G-space Z and a G-spectrum X:

Z ⊗X ∶= (Σ∞Z)⊗X.

For every closed subgroup H ≤ G, we denote the genuine fixed-points (which is the strict fixed-
points of a fibrant replacement) and the geometric fixed-points functors respectively by

(−)H , (−)φH ∶SpG → SpWG(H),

where WG(H) = NG(H)/H is the Weyl group of H in G. We recall that the geometric fixed-
points functor can be defined from the genuine fixed-points functor as

XφH = (Ẽ(⊉H)⊗X)H

where (⊉ H) is the family of subgroups of NG(H) which do not contain H, the NG(H)-space
E(⊉ H) is its universal space, and Ẽ(⊉H) is the pointed NG(H)-space defined as the cofibre
of the map (E(⊉ H))+ → S0 which collapses E(⊉ H) to the non-basepoint of S0. This induces
a fibre sequence of WG(H)-spectra

((E(⊉H))+ ⊗X)H Ð→XH Ð→XφH

called the isotropy separation sequence.
We will be particularly interested in the case where G = O(2) and H = Cp is the cyclic

subgroup of O(2) of rotations of order p, for some prime p. Then for any O(2)-spectrum X, we
have a fibre sequence of O(2)/Cp-spectra

((E(⊉ Cp))+ ⊗X)Cp Ð→XCp Ð→XφCp ,

and hence for any n ≥ 0, there is a fibre sequence of O(2)/Cpn+1 -spectra

((E(⊉ Cp))+ ⊗X)Cpn+1 Ð→XCpn+1 Ð→ (XφCp)Cpn+1 /Cp .

By choosing the reflection over the real coordinate axis, we can identify O(2) with the semi-direct
product Z /2 ⋉ S1. Here the nontrivial element τ of Z /2 corresponds to the latter reflection. In
particular, one has the dihedral subgroups Dpn = Z /2 ⋉ Cpn ≤ Z /2 ⋉ S1 = G. If we restrict the
family (⊉ Cp) to the dihedral group Dpn+1 for n ≥ 0, then it becomes the family R consisting
of the trivial group and of those subgroups generated by the reflections in Dpn+1 . Hence by
restricting to Dpn+1/Cp, we get a fibre sequence of Dpn+1/Cp-spectra

(ER+ ⊗X)Cp Ð→XCp Ð→XφCp ,

and by taking fixed-points a fibre sequence of Dpn+1/Cpn+1 = Z /2-spectra

(ER+ ⊗X)Cpn+1 Ð→XCpn+1 Ð→ (XφCp)Cpn+1 /Cp . (1)
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We will abuse notation and always write R for the family of reflections in Dpn+1 , for different p
and n. Although these families are different, their classifying spaces ER are always modelled by
the restriction to the appropriate dihedral group of the O(2)-space defined by the unit sphere
S(C∞).

In what follows we will always consider homotopy limits and homotopy colimits of spaces
and spectra and will just refer to them as limits and colimits.

1.2 Ring spectra with anti-involution and real topological Hochschild
homology
We give a short recollection of the construction and main properties of the dihedral structure
on topological Hochschild homology, mainly from [BHM93] and [DMPR21].

We recall that a ring spectrum with anti-involution is an orthogonal ring spectrum A
equipped with a morphism of orthogonal ring spectra w∶Aop → A such that w2 = id. We
endow A with the genuine Z /2-equivariant homotopy type defined by w. More precisely, a
morphism of ring spectra f ∶A → B commuting with the involutions w is an equivalence if it
is a genuine Z /2-equivariant equivalence in the category SpZ /2 of orthogonal Z /2-spectra (see
[DMPR21, A1] for a model structure on their category). Ring spectra with anti-involution are
equivalent to Eσ-algebras in equivariant spectra, see [DMPR21, Remark 2.3], and presumably
also to E1-rings with genuine anti-involution as defined in [CDH+23, Example 3.2.9] (at least a
ring spectrum with anti-involution defines an E1-ring with genuine anti-involution, see [CDH+23,
Example 3.2.10]).

The cyclic nerve of A in the category of orthogonal spectra inherits a levelwise involution,
which acts on A⊗A⊗n by applying in each factor w, fixes the first tensor factor, and reverses the
order of the remaining n factors. This involution, together with the levelwise Cn+1-actions which
rotate the tensor factors, defines a dihedral spectrum in the sense of [FL91, S 1.5, Example 5]
and [Lod87] that we denote by NdiA. Its geometric realisation

THR(A) ∶= ∣NdiA∣ = ∣[n]↦ A⊗n+1∣

is then an orthogonal spectrum with O(2)-action ([FL91, Theorem 5.3] and [Lod87, Proposition
3.10]), which we regard as a genuine O(2)-equivariant spectrum.

In [DMPR21] we studied the Z /2-equivariant homotopy type of THR(A), where Z /2 is the
subgroup of O(2) generated by the reflection over the x-axis. In particular we provided an
equivalence of Z /2-spectra

THR(A) ≃ B(A,NZ /2
e A,A) = A⊗

N
Z /2
e A

A,

(under the standing assumption that A is flat) where ⊗
N

Z /2
e A

denotes the derived smash product

in the category of modules over the Hill-Hopkins-Ravenel norm construction N
Z /2
e A of the

underlying ring spectrum A of [HHR16]. The norm acts on A respectively on the left and on
the right by

NZ /2
e A⊗A = A⊗3 A⊗τÐÐ→ A⊗3 A⊗2⊗wÐÐÐÐ→ A⊗3 µÐ→ A

A⊗NZ /2
e A = A⊗3 τ⊗AÐÐ→ A⊗3 w⊗A⊗2

ÐÐÐÐ→ A⊗3 µÐ→ A,

where τ ∶A⊗2 → A⊗2 is the symmetry isomorphism and µ is the multiplication map of A. Here
B(A,NZ /2

e A,A) is the two-sided bar construction of these actions, which computes the derived
smash product. We then deduced an equivalence of spectra

THR(A)φZ /2 ≃ B(AφZ /2,A,AφZ /2) = AφZ /2 ⊗A AφZ /2,
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where A acts on AφZ /2 via the geometric fixed-points of the actions of NZ /2
e A on A, using

the diagonal equivalence (NZ /2
e A)φZ /2 ≃ A. We refer to these actions as the Frobenius module

structures of AφZ /2.
The present paper will focus on the equivariant homotopy type of THR(A) with respect to

the finite dihedral subgroups of O(2). We now give a recollection of materials on dihedral objects
and simplicial subdivisions, which we use to model the equivariant homotopy type of THR(A)
with respect to the finite dihedral subgroups simplicially. We recall that a dihedral orthogonal
spectrum is a simplicial orthogonal spectrum X●∶∆op → Sp whose n-simplices Xn are equipped
with an action of the dihedral group Dn+1 = Z /2 ⋉Cn+1, which is suitably compatible with the
simplicial structure [FL91, Proposition 3.4]. The geometric realisation of X● has an induced
action of O(2) = Z /2 ⋉ S1 by [FL91, Theorem 5.3]. The action of the reflection generating Z /2
on ∣X●∣ is induced by the maps

Xn ⊗∆n
+
w⊗ωnÐÐÐ→Xn ⊗∆n

+

where w is the action of the generator of Z /2 ≤ Dn+1 on the n-simplices, and ωn sends
(t0, . . . , tn) ∈ ∆n to (tn, . . . , t0) [FL91, Lemma 5.6(ii)]. The description of the cyclic action
is more involved, and it requires simplicial subdivision.

Let sdr ∶∆op →∆op be the functor which sends the finite totally ordered set [n] = {0,1, . . . , n}
to the r-fold join [n]⋆[n]⋆⋅ ⋅ ⋅⋆[n], defined as the set [r−1]×[n] with the total order (a, i) ≤ (b, j)
if either a < b or if a = b and i ≤ j. Given a dihedral spectrum X●∶∆op → Sp, we let

sdrX● ∶=X● ○ sdr

be the r-fold subdivision of X. Let gn be the generator of Cn+1 and w the generator of Z /2.
The action of gn+1

rn+r−1 on the n-simplices (sdrX●)n = Xrn+r−1 defines a simplicial action of Cr
on sdrX●, and there is a Cr-equivariant isomorphism

∣ sdrX●∣ ≅ ∣X●∣

induced by the maps

(sdrX)n ⊗∆n =Xrn+r−1 ⊗∆n
+

id⊗δrÐÐÐ→Xrn+r−1 ⊗∆rn+r−1
+

where δr sends t ∈ ∆n to (t, t, . . . , t)/r ∈ ∆rn+r−1 [BHM93, §1]. This isomorphism is moreover
Z /2-equivariant, where the action of Z /2 on the left-hand side is defined from the maps w⊗ωn
above as for ∣X●∣. Let us finally make this Z /2-action simplicial.

Let sde∶∆op → ∆op be the functor that sends [n] to [n] ⋆ [n]op, where [n]op is the set
{0,1, . . . , n} with the canonical order reversed. Let Y●∶∆op → Sp be a simplicial orthogonal
spectrum with involutions wn on Yn for every n ≥ 0, such that for every θ∶ [n]→ [m]

θ∗ ○wm = wn ○ (θop)∗.

For example, Y● could be a dihedral object X● where wn acts by the action of the generator of
Z /2 as a subgroup of Dn+1, or Y● = sdrX● where wn acts as the generator of Z /2 as a subgroup
of Dr(n+1). The geometric realisation of Y● has a Z /2-action defined as above from the maps
wn ⊗ ωn. We now let

sde Y● ∶= Y● ○ sde

be the corresponding subdivision. The action of w2n+1 on the n-simplices (sde Y●)n = Y2n+1

defines a simplicial Z /2-action on sde Y●. There is an isomorphism

∣ sde Y●∣ ≅ ∣Y●∣
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induced by the maps

(sde Y )n ⊗∆n = Y2n+1 ⊗∆n
+

id⊗δeÐÐÐ→ Y2n+1 ⊗∆rn+r−1
+

where δe sends t ∈ ∆n to (t, ωn(t))/2 ∈ ∆2n+1, and this isomorphism is clearly Z /2-equivariant.
Combining these subdivisions we obtain a Dr-equivariant isomorphism

∣ sde sdrX●∣ ≅ ∣X●∣

for every dihedral orthogonal spectrum X●, and in particular an isomorphism

∣ sde sdrN
diA∣ ≅ THR(A)

of genuine orthogonal Dr-spectra for every r ≥ 1.

Remark 1.1. By the latest isomorphism it follows that THR sends equivalences of ring spectra
with anti-involution to equivalences of genuine Dr-spectra, for every r ≥ 1. Indeed, the n-
simplices of sde sdrN

diA are the orthogonal spectrum

(sde sdrN
diA)n = (NdiA)r(2n+1)+r−1 = A⊗r(2n+2)

where Cr acts cyclically on r and the generator of Z /2 acts as described above (and we recall
that the tensor product indicates the smash product of a flat replacement). This indexed smash
product sends an equivalence of orthogonal spectra to a genuine Dr-equivalence by [BDS16,
Theorem 3.2.16] (see also [HHR16, Proposition B.209]), and thus its realisation is also a genuine
Dr-equivalence (since sde sdrN

diA is a good simplicial spectrum by the argument of [DMPR21,
Lemma 2.14]).

The equivalence THR(A)φZ /2 ≃ AφZ /2 ⊗A AφZ /2 above is in fact induced by the Z /2-
equivariant isomorphism THR(A) ≅ ∣ sdeNdiA∣. We can now refine this equivalence to an
equivariant equivalence with respect to the action of the Weyl group. The normaliser of Z /2
inside of O(2) is Z /2 ×C2, where C2 is generated by the rotation of order 2, and therefore the
Weyl group of Z /2 inside of O(2) is isomorphic to C2. In particular THR(A)φZ /2 is a genuine
C2-spectrum, that we now describe in terms of derived smash products.

Lemma 1.2. There is an equivalence of C2-spectra

THR(A)φZ /2 ≃ B(A,NC2
e A,NC2

e (AφZ /2)) = A⊗(NC2
e A) (N

C2
e (AφZ /2))

where A is regarded as a C2-spectrum via the isomorphism Z /2 ≅ C2, the norm NC2
e A acts on

A by the right action defined above, and on NC2
e (AφZ /2) by applying the monoidal functor NC2

e

to the left Frobenius action of A on AφZ /2.

Proof. The equivalence of genuine D4 = C2 ×Z /2-equivariant spectra THR(A) ≅ ∣ sde sd2N
diA∣

defined above gives rise to an equivalence of C2-spectra

THR(A)φZ /2 ≅ ∣ sde sd2N
diA∣φZ /2 = ∣[n]↦ AφZ /2 ⊗A2n+1 ⊗AφZ /2∣

≅ ∣[n]↦ A⊗ (NC2
e A)⊗n ⊗NC2

e (AφZ /2)∣ = B(A,NC2
e A,NC2

e (AφZ /2))

= A⊗(NC2
e A) (N

C2
e (AφZ /2))

where C2 acts on the third term by reversing the order of the smash products, and the isomor-
phism rearranges the factors by pairing the factors which are swapped.
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1.3 Real cyclotomic spectra and real topological cyclic homology
We now review the definitions of the main objects of study of the paper. These are completely
analogous to the classical definitions surrounding topological cyclic homology of [BHM93], and
are carried out by carefully lifting all the constructions to the category of Z /2-equivariant
spectra. These constructions were laid out in [Høg16] using Bökstedt’s model for real topological
Hochschild homology, and we recast them here for the model of THR above. The two approaches
are equivalent by the comparison results of [DMPR21] and [DMP+19].

Definition 1.3. Let p be a prime. A real p-cyclotomic spectrum is an O(2)-spectrum T ∈ SpO(2)

equipped with a map of O(2)-spectra

TφCp
≃Ð→ T,

whereO(2) acts on the left-hand side by restriction along the root isomorphismO(2)→ O(2)/Cp,
and which is a Dpn -equivalence for all n ≥ 0.

The prime example of a real p-cyclotomic spectrum (for all prime p) is the real topological
Hochschild homology spectrum THR(A) of a ring-spectrum with anti-involution A. The cyclo-
tomic structure maps are in fact isomorphisms, defined on the dihedral bar construction from
the diagonal isomorphisms

A ≅ (A⊗p)φCp

(see e.g. [ABG+18], or [DMP+19, §5], and we remind that this is an isomorphism since A is
assumed to be flat). In particular, they induce a S1/Cp-equivalence and a Z /2-equivalence on
realisations, and thus an O(2)-equivalence (see [DPJM22, §3.3]). For every real p-cyclotomic
spectrum T , the isotropy separation sequence (1) defines fibre sequences of Z /2-spectra

(ER+ ⊗ T )Cpn+1 Ð→ TCpn+1 Ð→ (TφCp)Cpn+1 /Cp ≃ TCpn

for every n ≥ 0, and the composite of the right-hand arrow and the equivalence is denoted by
R∶TCpn+1 → TCpn . Since the cyclotomic structure map is O(2)-equivariant, using appropriate
root isomorphisms, we see that R is O(2)-equivariant.

Definition 1.4. Let T be a real p-cyclotomic spectrum. For every integer n ≥ 0, we let
TRRn+1(T ;p) be the Z /2-spectrum

TRRn+1(T ;p) ∶= TCpn ,

where Z /2 is identified with the subgroup of O(2)/Cpn generated by the reflection of the x-axes,
and

TRR(T ;p) ∶= lim ( . . . RÐ→ TRRn+1(T ;p) RÐ→ TRRn(T ;p) RÐ→ . . .
RÐ→ TRR1(T ;p) = T).

If A is a ring spectrum with anti-involution, we write

TRRn+1(A;p) ∶= TRRn+1(THR(A);p) and TRR(A;p) ∶= TRR(THR(A);p).

The inclusion of subgroups Cpn−1 ≤ Cpn defines a map F ∶TRRn+1(T ;p)→ TRRn(T ;p), which
is equivariant for the Weyl actions and thus in particular Z /2-equivariant. It also commutes
with the map R since R is O(2)-equivariant and therefore induces a map of Z /2-spectra

F ∶TRR(T ;p)Ð→ TRR(T ;p)

by passing to the limit, whose underlying map is the Frobenius of [BHM93].
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Definition 1.5. Let T be a real p-cyclotomic spectrum. The real topological cyclic homology
of T is the Z /2-spectrum defined as the equaliser

TCR(T ;p) = eq( TRR(T ;p)
id //

F
// TRR(T ;p) ).

If A is a ring spectrum with anti-involution, we let the real topological cyclic homology of A be
the Z /2-spectrum

TCR(A;p) = eq( TRR(A;p) id //

F
// TRR(A;p) ).

As in the classical definition of TC, since R and F commute one can alternatively define

TFR(T ;p) ∶= lim ( . . . FÐ→ TRRn+1(T ;p) FÐ→ TRRn(T ;p) FÐ→ . . .
FÐ→ TRR1(T ;p) = T )

and
TCR(T ;p) = eq( TFR(T ;p) id //

R
// TFR(T ;p) ).

The underlying spectrum of TCR(T ;p) is by construction the topological cyclic homology spec-
trum TC(T ;p) of [BHM93] (see also [DMP+19, Theorem 1.3]). The focus of the paper is to
understand the Z /2-equivariant homotopy type of TCR(T ;p), and in particular its geometric
fixed-points spectrum.

2 The Geometric fixed-points of TCR
The aim of this section is to give a simple formula for the Z /2-geometric fixed-points of
TCR(A;p), when A and its Z /2-fixed-points are bounded below. This object turns out to
be interesting only for the prime p = 2, but we will start with the easier case of odd primes.

2.1 The odd primary case
In the odd primary case the geometric fixed-points of TRR admit a very simple description, as
they split as a product.

Theorem 2.1. For any odd prime p, real p-cyclotomic spectrum T , and n ≥ 1, there is a natural
equivalence

TRRn(T ;p)φZ /2 ≃
n

⊕
i=1

TφZ /2,

under which the maps F,R∶TRRn+1(T ;p)φZ /2 → TRRn(T ;p)φZ /2 respectively project off the
first and the (n + 1)-st summand.

Before diving into the proof, we observe that if T = THR(A) is the real topological Hochschild
homology of a ring spectrum with anti-involution A, we have an explicit description of the
geometric fixed-points

THR(A)φZ /2 ≃ AφZ /2 ⊗A AφZ /2.

In particular if A is the Eilenberg-MacLane ring spectrum of a discrete ring with anti-involution
and 1

2
∈ A, then we have that THR(A)φZ /2 = 0, and we obtain the following.

Corollary 2.2. If A is a discrete ring with anti-involution and 1
2
∈ A, then

TRRn(A;p)φZ /2 ≃ TRR(A;p)φZ /2 ≃ TCR(A;p)φZ /2 = 0

for every odd prime p.
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The crucial combinatorial ingredient that makes the odd-primary case so simple compared
to the prime 2 is that for p odd, any two reflections in Dpn are conjugate, and the Weyl group
of a reflection is trivial. Applying [LW12, Corollary 2.8] to the trivial family {1} ⊂ R, one gets
a pushout square of Z /2-spaces

Dpn ×Z /2 E Z /2 //

��

EDpn

��

Dpn/Z /2 // ER.

(2)

This pushout is the main ingredient for establishing the following result, of which Theorem 2.1
is an immediate consequence.

Proposition 2.3. Let T be a real p-cyclotomic spectrum with p odd. Then for every n ≥ 1, the
square

TRRn+1(T ;p)φZ /2

F

��

R // TRRn(T ;p)φZ /2

F

��

TRRn(T ;p)φZ /2 R // TRRn−1(T ;p)φZ /2

is a pullback whose horizontal fibres are equivalent to TφZ /2. Here we interpret TRR0(T ;p) = 0.

Proof. Let us start by identifying the fibre of the map R. For any group G and G-space E, we
write Ẽ for the cofibre of the based map E+ → S0 which takes E to the non-basepoint of S0.
By definition, the geometric fixed-points of the map R fits into the commutative square

TRRn+1(T ;p)φZ /2 R //

≃
��

TRRn(T ;p)φZ /2 ≃ ((TφCp)Cpn−1 )φZ /2

((T ⊗ ẼDpn)Cpn )φZ /2 // ((T ⊗ ẼR)Cpn )φZ /2 ,

where the left vertical map and the bottom horizontal map are induced by the canonical maps
S0 → ẼDpn → ẼR. The left vertical map is an equivalence since its fibre is

((T ⊗EDpn+)
Cpn )φZ /2 = ((T ⊗EDpn+)

Cpn ⊗ Ẽ Z /2)Z /2 ≃ ((T ⊗ (ε∗Ẽ Z /2 ∧EDpn+))
Cpn )Z /2,

where ε∶Dpn → Dpn/Cpn = Z /2 is the quotient map, and ε∗Ẽ Z /2 ∧ EDpn+ is a contractible
Dpn -space.

By mapping the pushout square (2) with additional disjoint base points to the pushout of
Dpn ⋉Z /2 S

0 = Dpn ⋉Z /2 S
0 → S0 (where Dpn ⋉Z /2 − denotes the induction) and taking cofibres,

we get a pushout of pointed Dpn -spaces

Dpn ⋉Z /2 Ẽ Z /2 //

��

ẼDpn

��

∗ // ẼR.
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The fibre of R is therefore given by the spectrum

((T ⊗ (Dpn ⋉Z /2 Ẽ Z /2))Cpn )φZ /2 ≃ ((T ⊗ ε∗Ẽ Z /2)⊗ (Dpn ⋉Z /2 Ẽ Z /2))Dpn

≃ (Dpn ⋉Z /2 (T ⊗ (Ẽ Z /2 ∧ Ẽ Z /2)))Dpn

≃ (Dpn ⋉Z /2 (T ⊗ Ẽ Z /2))Dpn

≃ (T ⊗ Ẽ Z /2)Z /2

≃ TφZ /2.

By restricting the map ẼDpn → ẼR toDpn−1 , we recover the map ẼDpn−1 → ẼR. Using this and
that the Frobenius map F ∶TRRn+1(T ;p) → TRRn(T ;p) is induced by the subgroup inclusion
Cpn−1 ⊂ Cpn , under the equivalences above the map between the horizontal fibres identifies with
the map

(Dpn ⋉Z /2 (T ⊗ Ẽ Z /2))Dpn Ð→ (Dpn ⋉Z /2 (T ⊗ Ẽ Z /2))Dpn−1

induced by the subgroup inclusion Dpn−1 ⊂ Dpn . By applying the double coset formula on the
source and target this map corresponds to the identity of TφZ /2, showing that the Frobenius on
horizontal fibres is an equivalence.

We want to conclude the section with a similar splitting for TRR(T ;p)φZ /2, by commuting
geometric fixed-points with an infinite limit. This can be done by means of the following well-
known result originally observed by Adams (see e.g. [Ada95, Section III.15.2]), and we sketch an
argument for completeness. We say that a G-spectrum is bounded below if all of its fixed-points
are bounded below, and in case G is infinite we also require that there is a uniform bound over
all the closed subgroups of G.

Lemma 2.4. Let . . .Xn → Xn−1 → . . .X2 → X1 → X0 be a tower of uniformly bounded below
G-spectra, where G is finite. Then (limnXn)φG ≃ limn (Xn)φG.

Proof. Since equivariant homotopy groups commute with infinite products it suffices to show
that ẼG⊗ limnXn ≃ limn(ẼG⊗Xn). This reduces to showing that

ẼG⊗∏
n

Xn ≃∏
n

(ẼG⊗Xn).

For a fixed homotopy group only the finite skeleta of ẼG matter since the Xi are uniformly
bounded below, and using that ẼG is of finite type, the statement reduces to showing that S⊗−
and G+ ⊗ − commute with infinite products. The first is obvious and the second follows from
the Wirthmüller isomorphism.

Corollary 2.5. Let T be a bounded below real p-cyclotomic spectrum, with p odd. Then there
are natural equivalences

TRR(T ;p)φZ /2 ≃
∞
∏
i=1

TφZ /2 and TCR(T ;p)φZ /2 ≃ TφZ /2.

Proof. The first equivalence follows from Lemma 2.4 and Theorem 2.1, since the tower defining
TRR(T ;p) is uniformly bounded below since the spectra TCpn and TDpn are by assumption
bounded below with a uniform bound over n. For the second equivalence we observe that by
the same results the Frobenius of TRR(T ;p)φZ /2 is equivalent to the map

F ∶
∞
∏
i=1

TφZ /2 Ð→
∞
∏
i=1

TφZ /2

which projects off the first component. The equaliser of F and the identity is thus TφZ /2

mapping diagonally to the infinite product.
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2.2 The prime 2

2.2.1 The geometric fixed-points of TRR

In this section we give a formula for TRRn(T ; 2)φZ /2 for any bounded below real 2-cyclotomic
spectrum T . As mentioned earlier, the subgroups structure of the dihedral groups D2n is more
involved than the one of Dpn for odd p, and this makes our formula for TRRn(T ; 2)φZ /2 more
interesting. The idea of the proof is again to compute TRRn(T ; 2)φZ /2 inductively, by finding
a suitable replacement for the square of Proposition 2.3.

Recall that we have chosen the reflection along the x-axis τ inside D2n = Z /2 ⋉C2n , where
Z /2 is the subgroup generated by τ . If we denote by σn = e2iπ/n the generator of C2n , then
σnτ is a reflection which is not conjugate to τ . The normaliser and Weyl group of Z /2 inside
D2n/C2n−1 are identified as follows:

ND2n /C2n−1
(Z /2) = Z /2 ×C2n/C2n−1 ≅ Z /2 ×C2 , WD2n /C2n−1

(Z /2) = C2n/C2n−1 ≅ C2,

where C2n/C2n−1 is generated by the image of σn, which we denote again by σn. In particular
when n = 1, we have WD2(Z /2) = C2 which is generated by the rotation of degree π. The
group C2n/C2n−1 acts on the spectrum TRRn(T ; 2)φZ /2, for all n ≥ 1 and any real 2-cyclotomic
spectrum T .

In the case n = 1 we are interested in two maps

r∶ (TφZ /2)C2 Ð→ (TφZ /2)φC2 ≃ TφZ /2 and f ∶ (TφZ /2)C2 Ð→ TφZ /2

analogous to the restriction and the Frobenius. The map r is induced by the canonical map
from the fixed-points to the geometric fixed-points, followed by the equivalence given by the
cyclotomic structure of T , and f is the canonical map induced by the subgroup inclusion 1 ⊂ C2.

Example 2.6. Suppose that T = THR(A) is the real topological Hochschild homology spectrum
of a ring spectrum with anti-involution A. Under the equivalence

THR(A)φZ /2 ≃ A⊗(NC2
e A) (N

C2
e (AφZ /2))

of Lemma 1.2, the identification (TφZ /2)φC2 ≃ TφZ /2 coming from the cyclotomic structure
corresponds to the equivalence

(A⊗(NC2
e A) (N

C2
e (AφZ /2)))φC2 ≃ AφZ /2 ⊗A AφZ /2 ≃ A⊗(A⊗A) (AφZ /2 ⊗AφZ /2)

where the first equivalence is the monoidality of the geometric fixed-points combined with the
diagonal isomorphism (NC2

e A)φC2 ≅ A, and the second is the general canonical equivalence
X ⊗A Y = A ⊗A⊗A (X ⊗ Y ) for respectively right and left A-modules X and Y , where X is
regarded as a left A-module via the anti-involution.

The maps f and r are related to F and R respectively, in the following manner. Let c be
the map

c∶TRR2(T ; 2)φZ /2 = (TC2⊗Ẽ Z /2)Z /2 ≃ (T⊗ε∗Ẽ Z /2)C2×Z /2 → (T⊗ ̃E(⊉ Z /2))C2×Z /2 = (TφZ /2)C2

where ε∶C2 × Z /2 → Z /2 is the projection, and the arrow is induced by including families of
subgroups, by noticing that ε∗Ẽ Z /2 = ̃E{1,C2} as universal spaces of subgroups of C2 × Z /2.
The naturality of the canonical map from fixed-points to geometric fixed-points gives canonical
homotopies r ○ c ≃ R and f ○ c ≃ F . In particular, for every n ≥ 1 the iterated Frobenius map
factors as

Fn∶TRRn+1(T ; 2)φZ /2 F
n−1

Ð→ TRR2(T ; 2)φZ /2 cÐ→ (TφZ /2)C2
fÐ→ TφZ /2.

Finally, we recall from Section 1.3 that the maps R and F commute since R is O(2)-equivariant.
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Theorem 2.7. For every real 2-cyclotomic spectrum T and n ≥ 1, the square

TRRn+1(T ; 2)φZ /2 R //

cFn−1×cFn−1σn+1
��

TRRn(T ; 2)φZ /2

(Fn−1,σ1F
n−1σn)

��

(TφZ /2)C2 × (TφZ /2)C2
r×σ1r // TφZ /2 × TφZ /2

is a pullback of spectra, where the square commutes by the homotopies RF = FR, σnR = Rσn+1,
and r ○ c ≃ R. The Weyl action of σn+1 on TRRn+1(T ; 2)φZ /2 is given inductively by the strictly
commutative diagram

TRRn(T ; 2)φZ /2

σn

��

// TφZ /2 × TφZ /2

(σ1×σ1)τ
��

(TφZ /2)C2 × (TφZ /2)C2

τ

��

oo

TRRn(T ; 2)φZ /2 // TφZ /2 × TφZ /2 (TφZ /2)C2 × (TφZ /2)C2oo

where τ is the flip action. The Frobenius F ∶TRRn+1(T ; 2)φZ /2 → TRRn(T ; 2)φZ /2 is induced
inductively on pullbacks by

TRRn(T ; 2)φZ /2

F

��

// TφZ /2 × TφZ /2

((id×σ1)∆)∨0

��

(TφZ /2)C2 × (TφZ /2)C2oo

∆∨0

��

TRRn−1(T ; 2)φZ /2 // TφZ /2 × TφZ /2 (TφZ /2)C2 × (TφZ /2)C2oo

for all n ≥ 2, where the left hand square commutes since σnF = F . For n = 1 the Frobenius is
the composite

F ∶ (TφZ /2)C2
r×σ1r (TφZ /2)C2

proj1ÐÐÐ→ (TφZ /2)C2
fÐ→ TφZ /2.

where r×σ1r denotes the fibre product over TφZ /2 along the maps r and σ1r.

Remark 2.8. By inductively unravelling the formula of 2.7 we obtain an equivalence

TRRn+1(T ; 2)φZ /2 ≃
(Tφ)C2

r×f (Tφ)C2
r×f ⋯r×f (Tφ)C2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

r×σ1r (Tφ)C2
f×σ1r ⋯f×σ1r (Tφ)C2

f×σ1r (Tφ)C2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

,

for all n ≥ 1, where we wrote Tφ ∶= TφZ /2 for short and all the products denote fibre products
over Tφ, subscripts indicating along which maps we are taking the pullbacks. We can then fur-
ther unravel the structure maps. The restriction map R∶TRRn+1(T ; 2)φZ /2 → TRRn(T ; 2)φZ /2

corresponds to projecting away the outer two factors for n ≥ 2, and for n = 1 to the composite

R∶ (Tφ)C2
r×σ1r (Tφ)C2

proj1ÐÐÐ→ (Tφ)C2
rÐ→ Tφ.

The Weyl action σn+1∶TRRn+1(T ; 2)φZ /2 → TRRn+1(T ; 2)φZ /2 is induced by the map which
reverses the order of the product factors.

The Frobenius F ∶TRRn+1(T ; 2)φZ /2 → TRRn(T ; 2)φZ /2 is slightly more delicate to describe.
For n = 1 we have already mentioned the description. For n ≥ 2 it is induced by the map defined
schematically on the product by

(x−n, . . . , x−3, x−2, x−1, x1, x2, . . . , xn)↦ (x−n, . . . , x−3, x−2, x−2, x−3, . . . , x−n),
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interpreted as follows. In order to map into the pullback TRRn(T ; 2)φZ /2 we need to exhibit
homotopies γ−i∶ r(x−i) ∼ f(x−i+1) and γi∶σ1r(x−i) ∼ f(x−i+1) for i = n, . . . ,3, as well as a
homotopy γ0∶ r(x−2) ∼ σ1r(x−2). The identifications γ−i are already present in the pullback
TRRn+1(T ; 2)φZ /2, and γi is the composite

γi∶σ1r(x−i)
σ1γ−i∼ σ1f(x−i+1) ∼ f(x−i+1)

where the second is the canonical homotopy provided by the equivariance of f with respect to
the Weyl action. Similarly, γ0 is given by

γ0∶ r(x−2)
γ−2∼ f(x−1) ∼ σ1f(x−1)

σ1γ−2∼ σ1r(x−2)

where γ−2 is the identification present in TRRn+1(T ; 2)φZ /2.

The rest of the section will be devoted to the proof of Theorem 2.7. Our proof relies on a
pushout relating ED2n and ER which we now deduce from [LW12, Corollary 2.8].

Recall that τ and σn are the respective generators of Z /2 and C2n inside D2n ≅ Z /2 ⋉C2n ,
and that σnτ is a reflection which is not conjugate to τ . We let Hn be the subgroup generated
by σnτ . We denote the respective normalisers and Weyl groups inside D2n by

N(Z /2) = Z /2×C2 , W (Z /2) ≅ C2 , N(Hn) = {1, σnτ, σ
2n−1

n , σ2n−1+1
n τ} , W (Hn) ≅ C2.

We observe that N(Hn) is abstractly isomorphic to Z /2 × C2 but one has to be careful with
this identification, since Z /2 and Hn represent different conjugacy classes. By [LW12, Corollary
2.8], there is a pushout of D2n-spaces

D2n ×N(Z /2) EN(Z /2)∐D2n ×N(Hn) EN(Hn) //

��

ED2n

��

D2n ×N(Z /2) EW (Z /2)∐D2n ×N(Hn) EW (Hn) // ER.

(3)

We observe that the classifying spaces that show up in [LW12, Corollary 2.8] at the lower left
corner are indeed equivalent to EW (Hn) and EW (Z /2). This pushout square leads to the
following analogue of Proposition 2.3.

Proposition 2.9. For every n ≥ 2, the Frobenius induces a commutative diagram

(TφZ /2)hW (Z /2) ⊕ (TφHn)hW (Hn)

( 1 0
σn 0 )

��

// TRRn+1(T ; 2)φZ /2 R //

F

��

TRRn(T ; 2)φZ /2

F

��

(TφZ /2)hW (Z /2) ⊕ (TφHn−1)hW (Hn−1)
// TRRn(T ; 2)φZ /2 R // TRRn−1(T ; 2)φZ /2

where the rows are fibre sequences, and σn∶ (TφZ /2)hW (Z /2)
≃Ð→ (TφHn−1)hW (Hn−1) is induced by

the generator σn ∈ C2n which conjugates Z /2 to Hn−1 in D2n .

Remark 2.10. We note that the spectra (TφZ /2)hW (Z /2), (TφHn)hW (Hn) and (TφHn−1)hW (Hn−1)
are all equivalent. This is because Hn−1 and Z /2 become conjugated in D2n , and consequently
Hn and Hn−1 are conjugated in D2n+1 . It is however important to point out that Hn−1 and Z /2
are not conjugated in D2n−1 , and this plays a role while identifying the map F on the fibres of
R.

16



Proof of 2.9. Let us start by calculating the fibres of the horizontal maps. The pushout square
(3) induces a pushout square of pointed D2n -spaces

D2n ⋉N(Z /2)
̃EN(Z /2) ∨D2n ⋉N(Hn)

̃EN(Hn) //

��

ẼD2n

��

D2n ⋉N(Z /2)
̃EW (Z /2) ∨D2n ⋉N(Hn)

̃EW (Hn) // ẼR.

(4)

The map R is, just as in the proof of Proposition 2.3, given by the map

R∶TRRn+1(T ; 2)φZ /2 ≃ ((T ⊗ ẼD2n)C2n )φZ /2 Ð→ ((T ⊗ ẼR)C2n )φZ /2 ≃ TRRn(T ; 2)φZ /2

induced by the right vertical map of square (4) (this part of 2.3 does not use that p is odd).
Since square (4) is a pushout, the cofibre of R is equivalent to

((T ⊗D2n ⋉N(Z /2) ΣE ⟨Z /2⟩)C2n )φZ /2 ⊕ ((T ⊗D2n ⋉N(Hn) ΣE ⟨Hn⟩)C2n )φZ /2,

where E ⟨Z /2⟩ and E ⟨Hn⟩ are pointed N(Z /2) and N(Hn)-spaces which fixed-points S0 only
at Z /2 and Hn, respectively, and have contractible fixed-points at all other subgroups. Let
us now identify the first summand, the identification of the second one being similar. By the
projection formula and untwisting the action on T , we see that

(((T ⊗D2n ⋉N(Z /2) ΣE ⟨Z /2⟩))C2n )φZ /2 ≃ (D2n ⋉N(Z /2) (T ⊗ (ε∗Ẽ Z /2 ∧ΣE ⟨Z /2⟩)))D2n

≃ (T ⊗ (ε∗Ẽ Z /2 ∧ΣE ⟨Z /2⟩))N(Z /2)

where ε∶N(Z /2) ≅ C2×Z /2→ Z /2 is the projection. Now we observe that since (ε∗Ẽ Z /2)Z /2 =
S0 and E ⟨Z /2⟩ has fixed-points S0 at Z /2 and contractible otherwise, we have that ε∗Ẽ Z /2 ∧
E ⟨Z /2⟩ ≃ E ⟨Z /2⟩, and therefore that the first summand of the fibre of R is equivalent to

(T ⊗E ⟨Z /2⟩)N(Z /2).

The other summand is identified similarly. Now the N(Z /2)-space E ⟨Z /2⟩ is equivalent to
̃E(⊉ Z /2) ∧ π∗EW (Z /2)+, where (⊉ Z /2) is the family of subgroups of N(Z /2) not containing

Z /2 and π∶N(Z /2)→W (Z /2) is the projection, again by observing that this smash product also
has fixed-points S0 at Z /2 and contractible at all other subgroups (using Elmendorf’s theorem
[Elm83]). By definition of the geometric fixed points with respect to a normal subgroup, we get
that one summand of the fibre of R is

(T ⊗E ⟨Z /2⟩)N(Z /2) ≃ (T ⊗ ( ̃E(⊉ Z /2) ∧ π∗EW (Z /2)+))N(Z /2)

≃ ((T ⊗ ( ̃E(⊉ Z /2) ∧ π∗EW (Z /2)+))Z /2)W (Z /2)

≃ (TφZ /2 ⊗EW (Z /2)+)W (Z /2) ≃ (TφZ /2)hW (Z /2)

where the last equivalence uses the Adams isomorphism.
Let us now identify the map F on the fibres ofR. As we have just seenR∶TRRn+1(T ; 2)φZ /2 →

TRRn(T ; 2)φZ /2 is equivalent to the appropriate fixed-points of the map T ⊗ ẼD2n → T ⊗ ẼR.
For simplicity let us denote the summands of its fibre by

An ⊕Bn ∶= (T ⊗D2n ⋉N(Z /2) E ⟨Z /2⟩)⊕ (T ⊗D2n ⋉N(Hn) E ⟨Hn⟩).
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Since ED2n and ED2n−1 are equivalent as D2n−1-spaces, the diagram of Proposition 2.9 is then
equivalent to the outer diagram of

(AC2n

n )φZ /2 ⊕ (BC2n

n )φZ /2 //

F⊕F
��

((T ⊗ ẼD2n)C2n )φZ /2 R //

F

��

((T ⊗ ẼR)C2n )φZ /2

F

��

(AC2n−1

n )φZ /2 ⊕ (BC2n−1

n )φZ /2 // ((T ⊗ ẼD2n)C2n−1 )φZ /2 R // ((T ⊗ ẼR)C2n−1 )φZ /2

(AC2n−1

n−1 )φZ /2 ⊕ (BC2n−1

n−1 )φZ /2 ⊕ 0 //

≃

OO

((T ⊗ ẼD2n−1)C2n−1 )φZ /2

≃

OO

R // ((T ⊗ ẼR)C2n−1 )φZ /2

≃

OO

where the maps F are the restriction maps on fixed-points, and the vertical arrows are induced
by the inclusion D2n−1 ⊂ D2n . Let us analyse the bottom left vertical equivalence. The sum-
mand (BC2n−1

n )φZ /2 is contractible, since there is a single double coset D2n−1/D2n/N(Hn), and
therefore

(BC2n−1

n )φZ /2 ≃ (D2n ⋉N(Hn) (T ⊗E ⟨Hn⟩))D2n−1 ≃ (T ⊗E ⟨Hn⟩)C2 = 0,

where we used that N(Hn) ∩D2n−1 = C2 and that E ⟨Hn⟩ is trivial when restricted to C2. The
first equivalence follows from the projection formula as in the identification of the summands
of the fibre of R above. This shows that F is trivial on the second summand of the fibres. Let
us now apply the double coset formula to the first summand (AC2n−1

n )φZ /2. This time there
are two double cosets D2n−1/D2n/N(Z /2) = {1, σn}, where σn is the generator of C2n , with
N(Z /2) ∩D2n−1 = N(Z /2) and σn conjugating Z /2 and Hn−1. We therefore find that

(AC2n−1

n )φZ /2 ≃ (D2n⋉N(Z /2)(T ⊗E ⟨Z /2⟩))D2n−1 ≃ (T ⊗E ⟨Z /2⟩)N(Z /2)⊕(T ⊗E ⟨Hn−1⟩)N(Hn−1)

and F ∶ (AC2n

n )φZ /2 → (AC2n−1

n )φZ /2 corresponds to (1, σn).

The previous proposition holds as stated only for n ≥ 2. The correct analogue for n = 1 is
the following:

Proposition 2.11. The map c induces id⊕0 of horizontal fibres in the following diagram

(TφZ /2)hW (Z /2) ⊕ (TφH1)hW (H1)

id⊕0

��

// TRR2(T ; 2)φZ /2 R //

c

��

TφZ /2

(TφZ /2)hW (Z /2) // (TφZ /2)C2
r // TφZ /2 .

Proof. The top horizontal fibre sequence is from 2.9, and the bottom one is immediate from the
isotropy separation sequence of the C2-spectrum TφZ /2 and the definition of r.

In order to describe F on the fibre we observe that there is a commutative diagram of pointed
D22 -spaces

ε∗Ẽ Z /2 ≃ ε∗Ẽ Z /2 ∧ ẼD22 //

��

ε∗Ẽ Z /2 ∧ ẼR

̃E(⊉ Z /2) // ̃E(⊉D22)

≃

OO

where ε∶D22 = C2 × Z /2 → Z /2 is the projection, (⊉ Z /2) and (⊉ D22) are the families of
subgroups of D22 which do note contain Z /2 andD22 respectively, and the arrows in the diagram
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are induced by the inclusions of families. By Elmendorf’s theorem [Elm83], the induced map on
horizontal cofibres is the projection

id∨0∶ΣE ⟨Z /2⟩ ∨ΣE ⟨H1⟩Ð→ ΣE ⟨Z /2⟩ ,

where we have used the identifications of Proposition 2.9. By the calculations of Proposition 2.9,
by smashing the square above with T and taking C2 ×Z /2-fixed-points, we obtain the diagram
of the statement.

The identification of the Weyl action follows immediately from the proof of Proposition 2.9:

Lemma 2.12. For any n ≥ 1, the Weyl action on fibres is described by the diagram

(TφZ /2)hW (Z /2) ⊕ (TφHn)hW (Hn)

( 0 σ−1n+1
σn+1 0

)
��

// TRRn+1(T ; 2)φZ /2 R //

σn+1

��

TRRn(T ; 2)φZ /2

σn

��

(TφZ /2)hW (Z /2) ⊕ (TφHn)hW (Hn)
// TRRn+1(T ; 2)φZ /2 R // TRRn(T ; 2)φZ /2

.

Proof. As seen in the proof of Proposition 2.9, the fibre of R consists of two summands

(AC2n

n+1 )
φZ /2 ⊕ (BC2n

n+1 )φZ /2,

where An+1 ∶= (T ⊗ D2n+1 ⋉N(Z /2) E ⟨Z /2⟩) and Bn+1 ∶= (T ⊗ D2n+1 ⋉N(Hn+1) E ⟨Hn+1⟩), and
(BC2n

n+1 )φZ /2 vanishes. The first summand (AC2n

n+1 )φZ /2 decomposes into the wedge of two sum-
mands according to the double cosets D2n/D2n+1/N(Z /2) = {1, σn+1}, and the action of σn+1

permutes these two summands.

Proof of 2.7. By iterating Proposition 2.9 and Proposition 2.11 the map Fn−1 induces an equiv-
alence between the first summands of the horizontal fibres of the diagram of Theorem 2.7.
Similarly by 2.12 the maps Fn−1σn+1 and Fn−1σn induce an equivalence between the second
summands of the horizontal fibres.

Let us now identify the Frobenius F ∶TRRn+1(T ; 2)φZ /2 → TRRn(T ; 2)φZ /2 for n ≥ 1. The
identification for n = 1 follows from the pullback description and the canonical homotopy c ○ f ≃
F . For n ≥ 2, we consider the following diagram whose front and back faces are pullbacks:

TRRn+1(T ; 2)φZ /2

F

))

R //

(cFn−1,cFn−1σn+1)

��

TRRn(T ; 2)φZ /2

F

((

(Fn−1,σ1F
n−1σn)

��

TRRn(T ; 2)φZ /2 R //

(cFn−2,cFn−2σn)

��

TRRn−1(T ; 2)φZ /2

(Fn−2,σ1F
n−2σn−1)

��

(TφZ /2)C2 × (TφZ /2)C2

∆∨0
))

r×σ1r // TφZ /2 × TφZ /2

((id×σ1)∆)∨0

((

(TφZ /2)C2 × (TφZ /2)C2

r×σ1r
// TφZ /2 × TφZ /2

This diagram is a homotopy commutative cube, since its front and back faces and its arrows are
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equivalent to those of the outer part of the strictly commutative diagram

(TC2n )φZ /2

F

''

φ
//

(Fn−1,Fn−1σn+1)

��

((T ⊗ ẼR)C2n )φZ /2

F

))

(Fn−1,σ2F
n−1σn+1)

��

(TC2n−1 )φZ /2 φ
//

(Fn−2,Fn−2σn)

��

((T ⊗ ẼR)C2n−1 )φZ /2

(Fn−2,σ1F
n−2σn)

��

((TC2)φZ /2)×2

∆∨0
''

φ×σ2φ //

c×c

��

(((T ⊗ ẼR)C2)φZ /2)×2

((id×σ2)∆)∨0

))

c×c

��

((TC2)φZ /2)×2 φ×σ2φ //

c×c

��

(((T ⊗ ẼR)C2)φZ /2)×2

c×c

��

((TφZ /2)C2)×2

∆∨0
''

φ×σ2φ // (((T ⊗ ẼR)φZ /2)C2)×2

((id×σ2)∆)∨0

))

((TφZ /2)C2)×2 φ×σ2φ // (((T ⊗ ẼR)φZ /2)C2)×2

where the maps φ are induced by the canonical map S0 → ẼR. This identifies the Frobenius
map. The Weyl action can be identified with a similar argument.

2.2.2 The geometric fixed-points of TFR and TCR

In this section, we use Theorem 2.7 to identify the Z /2-geometric fixed-points of TCR(T ; 2) for
every bounded-below real 2-cyclotomic spectrum T .

It turns out that it is simpler to describe the endomorphism R on the limit

TFR(T ;p) ∶= lim ( . . . FÐ→ TRRn+1(T ;p) FÐ→ TRRn(T ;p) FÐ→ . . .
FÐ→ TRR1(T ;p) = T).

taken over the Frobenius, rather than describing the Frobenius on TRR(T ; 2). For simplicity,
we will again write Tφ for TφZ /2.

Theorem 2.13. Let T be a bounded below real 2-cyclotomic spectrum. Then TFR(T ; 2)φZ /2 is
equivalent to the homotopy inverse limit

TFR(T ; 2)φZ /2 ≃ lim
n

((Tφ)C2
r×f (Tφ)C2

r×f ⋯r×f (Tφ)C2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

)

along the maps projl∶ (Tφ)C2
r×f (Tφ)C2

r×f ⋯r×f (Tφ)C2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n+1

→ (Tφ)C2
r×f (Tφ)C2

r×f ⋯r×f (Tφ)C2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

which project away the last factor, i.e. given by (x1, x2, . . . , xn+1) ↦ (x1, . . . , xn). Under this
identification, the endomorphism R∶TFR(T ; 2)φZ /2 → TFR(T ; 2)φZ /2 corresponds to the map
induced on limits by the projection

projf ∶ (Tφ)C2
r×f (Tφ)C2

r×f ⋯r×f (Tφ)C2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n+1

→ (Tφ)C2
r×f (Tφ)C2

r×f ⋯r×f (Tφ)C2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

off the first factor (x1, x2, . . . , xn+1)↦ (x2, . . . , xn+1).
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Proof. Let us first observe that since T is bounded-below, by Lemma 2.4, TFR(T ; 2)φZ /2 is
equivalent to the homotopy inverse limit of

⋯ // (TRRn(T ; 2))φZ /2 F // ⋯ F // (TRR2(T ; 2))φZ /2 F // (TRR1(T ; 2))φZ /2 .

For convenience we introduce the notation:

An ∶= (Tφ)C2
r×f (Tφ)C2

r×f ⋯r×f (Tφ)C2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

r×σ1r (Tφ)C2
f×σ1r ⋯f×σ1r (Tφ)C2

f×σ1r (Tφ)C2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

and
Bn ∶= (Tφ)C2

r×f (Tφ)C2
r×f ⋯r×f (Tφ)C2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

.

Projecting onto the first n factors gives maps An → Bn. These maps commute with the Frobenius
F on An and the projection projl on Bn by the description of F in Remark 2.8, thus defining
a morphism of towers. We will now show that this morphism is a pro-equivalence and thus
induces an equivalence on homotopy inverse limits. Hence by Theorem 2.7 and Remark 2.8 we
obtain the description of TFR(T ; 2)φZ /2.

Let us define a homotopy pro-inverse Bn+1 → An, for n ≥ 2, by the map induced by

(x1, x2, . . . , xn, xn+1)z→ (x1, x2, . . . , xn, xn, . . . , x2, x1).

The identifications between the components in the pullback An are defined exactly as in Remark
2.8 for the Frobenius, in particular

rxn ≃ fxn+1 ≃ σ1fxn+1 ≃ σ1rxn

where the middle homotopy is the canonical one and the last path is just σ1 applied to the first
homotopy. That this map is indeed a pro-inverse [BK72, Section III-§2], follows immediately
from the description of F in Remark 2.8.

Let us now identify R on TFR(T ; 2)φZ /2. By the description of the map R in Remark 2.8
we see that for any n ≥ 1, the diagram

An+1

R

��

proj
// Bn+1

projf

��

An
proj

// Bn

commutes. Since the horizontal maps are entries of a pro-equivalence, passing to limits along F
gives the desired result.

Finally we are ready to prove the main result of this section:

Theorem 2.14. Let T be a bounded below real 2-cyclotomic spectrum. Then there is a natural
equivalence

TCR(T ; 2)φZ /2 ≃ eq
⎛
⎝

(TφZ /2)C2

f
//

r
// T
φZ /2 ⎞

⎠
.

Proof. Recall that TCR(T ; 2)φZ /2 is equivalent to the equaliser

TCR(T ; 2)φZ /2 ≃ eq
⎛
⎝

TFR(T ; 2)φZ /2
id //

R
// TFR(T ; 2)φZ /2 ⎞

⎠
.
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Now consider the commutative diagram

⋯
projl// (Tφ)C2

r×f (Tφ)C2
r×f (Tφ)C2

r×f (Tφ)C2
projl//

projf

��

projl
��

(Tφ)C2
r×f (Tφ)C2

r×f (Tφ)C2
projl//

projf

��

projl
��

(Tφ)C2
r×f (Tφ)C2

projf

��

projl
��

⋯
projl // (Tφ)C2

r×f (Tφ)C2
r×f (Tφ)C2

projl // (Tφ)C2
r×f (Tφ)C2

projl // (Tφ)C2 .

By Theorem 2.13 if we pass to the inverse limits horizontally and then take the equaliser we get
TCR(T ; 2)φZ /2. Equivalently we can take equalisers in each degree vertically and then pass to
the inverse limit. In general, given maps a, b∶X → Y , the equaliser of the projections

Xa×bXa×b ⋯a×bX
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n+1
projf

//

projl // Xa×bXa×b ⋯a×bX
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n

,

off the first and last component (and where all the products denote fibre products over Y ), is
equivalent to the equaliser of a and b. Thus each vertical equaliser above is equivalent to

eq
⎛
⎝

(TφZ /2)C2

f
//

r
// T
φZ /2 ⎞

⎠

and the induced maps are equivalences.

3 TCR of spherical monoid-rings
We apply the formulas of the previous section to calculate the geometric fixed points of the real
topological cyclic homology of spherical monoid-rings, and in particular for the sphere spectrum.
In §3.1 we give the general formula and analyse a certain assembly map, and in §3.2 we carry
out some calculations for discrete groups.

3.1 TCR of spherical monoid-rings and assembly
LetM be a topological monoid with anti-involution, that is a map of monoids w∶Mop →M such
that w2 = id (e.g. M is a group and w is inversion). The Z /2-equivariant suspension spectrum
of the underlying Z /2-equivariant space

S[M] ∶= Σ∞
+ M

is then a ring spectrum with anti-involution, where the multiplication is inherited from the
multiplication of M . We recall that, since S is the monoidal unit of the tensor product of
spectra, there is an equivalence of O(2)-spectra

THR(S[M]) ≃ Σ∞
+ B

diM,

where BdiM is the dihedral bar construct of the monoid M with respect to the product of
spaces (see [DMPR21, Proposition 5.12]). Thus from Corollary 2.5 we immediately obtain that
for every odd prime p

TCR(S[M];p)φZ /2 ≃ THR(S[M])φZ /2 ≃ Σ∞
+ (BdiM)Z /2 ≅ Σ∞

+ B(MZ /2,M,MZ /2),

where the two-sided bar construction is for the left and right actions of M on its fixed-points
subspace MZ /2 defined respectively by m ⋅ x = mxw(m) and x ⋅m = w(m)xm. The right-hand
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isomorphism is the space-level analogue of the equivalence which describes THR(A)φZ /2 as a
derived tensor product from [DMPR21], reviewed in §1.2. It is the composite

(BdiM)Z /2 ≅ ∣ sdeNdiM ∣Z /2 ≅ ∣(sdeNdiM)Z /2∣ ≅ B(MZ /2,M,MZ /2)

of the isomorphism with the realisation of the subdivision of §1.2, the canonical isomorphism
commuting fixed-points and geometric realisations, and the simplicial isomorphism that sends
an n-simplex (x,m1, . . . ,mn, y,w(mn), . . . ,w(m1)) of (sdeNdiM)Z /2, with x, y ∈MZ /2, to the
n-simplex (x,m1, . . . ,mn, y) of the two-sided bar construction.

For the prime 2 the situation is more delicate, as the description of TCR of Theorem 2.14
now involves the action of the Weyl group C2 on

THR(S[M])φZ /2 ≃ Σ∞
+ B(MZ /2,M,MZ /2).

This involution arises from the simplicial C2-action on the simplicial object (sde sd2N
diM)Z /2,

as in Lemma 1.2, which is given levelwise by the rotation of order two of the product components.
The levelwise isomorphism (M×4n+4)Z /2 ≅ MZ /2 ×M×2n+1 ×MZ /2 described above determines
a simplicial C2-equivariant isomorphism

(sde sd2N
diM)Z /2 ≅ sdeN(MZ /2,M,MZ /2)

where the action of C2 on the right-hand side reverses levelwise the order of the product factors
and applies w on the M -factors. There are therefore isomorphisms

B(MZ /2,M,MZ /2)C2 ≅ ∣(sdeN(MZ /2,M,MZ /2)C2 ∣ ≅ B(MZ /2,M,MZ /2),

where the second one sends a fixed-point (x,m1, . . . ,mn,mn+1,w(mn), . . . ,w(m1), x), with
mn+1 = w(mn+1), to (x,m1, . . . ,mn,mn+1). This isomorphism corresponds to the residual
cyclotomic structure on the Z /2-geometric fixed-points of THR(S[M]) (cf. Example 2.6).
Under this identification, the fixed-points inclusion corresponds to the endomorphism ψ of
B(MZ /2,M,MZ /2) given in simplicial degree n by

ψ(x,m1, . . . ,mn, y) = (x,m1, . . . ,mn, yw(mn) . . .w(m1)xm1 . . .mny),

that is to say there is a homotopy commutative diagram

B(MZ /2,M,MZ /2)C2

))

B(MZ /2,M,MZ /2)≅oo

ψ

��

B(MZ /2,M,MZ /2)

where the diagonal map is the fixed-points inclusion. This follows readily from the commutative
diagram

B(MZ /2,M,MZ /2)C2

��

∣(sdeN(MZ /2,M,MZ /2)C2 ∣≅oo

��

B(MZ /2,M,MZ /2)≅oo

B(MZ /2,M,MZ /2) ∣(sdeN(MZ /2,M,MZ /2)∣≅oo

where the vertical arrows are the inclusions of the fixed-points, by observing that the bottom
horizontal map is homotopic to the realisation of the "last vertex map" (defined by iterating the
last face map of N(MZ /2,M,MZ /2)), and that the composite of the top right horizontal map
followed by the inclusion of fixed points and the last vertex map is by definition ψ.
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Example 3.1. The typical example of a monoid with anti-involution is the signed loop space

M = ΩσX ∶= Map∗(Sσ,X)

where X is a pointed Z /2-space, Sσ is the sign representation sphere, and Z /2 acts on the loop
space by conjugation. In this case the dihedral bar construction is equivalent to the free loop
space

BdiΩσX ≃ ΛσX ∶= Map(Sσ,X)

again with the conjugation action of Z /2 (see [DMPR21, Remark 5.13]). Let us spell out the
map ψ under this identification. By passing to the upper half-circle, the Z /2-fixed points of
ΛσX can be identified with those paths in X which start and end at a fixed-point, or in other
words the homotopy pullback

(ΛσX)Z /2 ≃XZ /2 ×X XZ /2

of the fixed-points inclusion along itself. Since the C2-action on ΛσX is given by the 180○ degrees
rotation followed by the involution of X pointwise, the residual C2-action on XZ /2 ×X XZ /2

flips the direction of the path and applies the involution of X pointwise. Hence, there is an
isomorphism

(XZ /2 ×X XZ /2)C2 ≅XZ /2 ×X XZ /2

that restricts a C2-fixed path γ∶ [0,1]→X to [0,1/2]. Under this identification the fixed-points
inclusion corresponds to the map

ψ∶XZ /2 ×X XZ /2 Ð→XZ /2 ×X XZ /2

which sends a path γ to the concatenation γ ⋆w(γ), where γ is the inverse path. This is some
sort of squaring operation reminiscent of the Frobenius.

We are finally able to describe the geometric fixed-points of TCR(S[M]; 2) (notice the anal-
ogy with [BHM93] and [NS18, Theorem IV.3.6]):

Theorem 3.2. Let M be a well-pointed topological monoid with anti-involution. Then there is
a pullback square

TCR(S[M]; 2)φZ /2 //

��

Σ∞
+ B(MZ /2,M,MZ /2)hC2

trf

��

Σ∞
+ B(MZ /2,M,MZ /2)

id−Σ∞

+
ψ
// Σ∞

+ B(MZ /2,M,MZ /2)

where the right vertical map is the transfer from orbits to fixed-points, followed by the forgetful
map to the underlying spectrum. In particular for M = ∗ there is an equivalence

TCR(S; 2)φZ /2 ≃ S⊕RP∞
−1,

where RP∞
−1 is the fibre of the transfer trf ∶Σ∞

+ RP∞ = ShC2 → S.

Proof. From the identification of THR(S[M]) with the dihedral bar construction ofM we obtain
an equivalence of C2-spectra

THR(S[M])φZ /2 ≃ (Σ∞
+ B

diM)φZ /2 ≃ Σ∞
+ B(MZ /2,M,MZ /2).

By the tom-Dieck splitting (see e.g. [Sch20, Section 6]), the isotropy separation sequence

Σ∞
+ B(MZ /2,M,MZ /2)hC2 Ð→ (Σ∞

+ B(MZ /2,M,MZ /2))C2 Ð→ (Σ∞
+ B(MZ /2,M,MZ /2))φC2
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canonically splits, giving equivalences

(THR(S[M])φZ /2)C2 ≃ (Σ∞
+ B(MZ /2,M,MZ /2))C2

≃ (Σ∞
+ (B(MZ /2,M,MZ /2))φC2 ⊕Σ∞

+ B(MZ /2,M,MZ /2)hC2

≃ Σ∞
+ (B(MZ /2,M,MZ /2)C2)⊕Σ∞

+ B(MZ /2,M,MZ /2)hC2

≅ Σ∞
+ B(MZ /2,M,MZ /2)⊕Σ∞

+ B(MZ /2,M,MZ /2)hC2 .

The map r is by definition the projection map of the isotropy separation sequence, followed with
the cyclotomic structure which corresponds to the last two equivalences. Thus r identifies with
the projection

(1,0)∶Σ∞
+ B(MZ /2,M,MZ /2)⊕Σ∞

+ B(MZ /2,M,MZ /2)hC2 → Σ∞
+ B(MZ /2,M,MZ /2)

onto the first summand. The map f is by definition the restriction map to the underlying
spectrum. Under the tom-Dieck splitting, this is the suspension of the fixed-points inclusion
on the first summand, and the transfer on the second. Since, after applying the cyclotomic
structure on the first summand, the fixed-points inclusion agrees with ψ, we obtain that f is
given by

(ψ, trf)∶Σ∞
+ B(MZ /2,M,MZ /2)⊕Σ∞

+ B(MZ /2,M,MZ /2)hC2 → Σ∞
+ B(MZ /2,M,MZ /2)

where trf is the transfer map.
It follows that the equaliser of r and f is computed by the pullback above, and it is equivalent

to TCR(S[M]; 2)φZ /2 by Theorem 2.1.
If M = ∗ the bottom horizontal map of the pullback square is zero, and the pullback splits

as the fibre of trf and S.

Remark 3.3. The explicit identification of the maps r, f of the proof of 3.2 in fact gives a
description of the full TR-tower of S[M]. Indeed, one can see by direct calculation that for
every 2 ≤ n ≤∞ there is an equivalence of spectra

TRRn(S[M]; 2)φZ /2 ≃ Σ∞
+ B(MZ /2,M,MZ /2) ×

2n−2

∏
j=1

Σ∞
+ B(MZ /2,M,MZ /2)hC2 ,

and the maps R,F ∶TRRn+1(S[M]; 2)φZ /2 → TRRn(S[M]; 2)φZ /2 are given respectively by the
projection

R(a, x−n, . . . , x−1, x1, . . . , xn) = (a, x−n+1, . . . , x−1, x1, . . . , xn−1)

and by

F (a, x−n, . . . , x−1, x1, . . . , xn) = (ψ(a) + trf(x−1), x−n, . . . , x−2, x−2, . . . , x−n).

Let us now turn our attention to the case where G is a group-like topological monoid with
involution, that is a topological monoid with involution G such that π0G is a group. In this
case the canonical map

GÐ→ ΩσBσG

is an equivalence (see [Moi20]), whereBσG is the subdivision ofBG with the simplicial involution
that sends (g1, . . . , g2n+1) to (w(g2n+1), . . . ,w(g1)). The fixed-points space of X = BσG is then
the one-sided bar construction

(BσG)Z /2 ≃ B(GZ /2,G)
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of G acting on its fixed-points set by x ⋅ g = w(g)xg. We will therefore phrase the next results
in terms of signed loop spaces G = ΩσX, where X is any pointed Z /2-space. We also note that
the fixed-points subspace of G = ΩσX is the fibre of the inclusion

GZ /2 = (ΩσX)Z /2 = fib(XZ /2 →X)

where α ∈ ΩX acts on a path γ from the base-point to a fixed-point by concatenation γ ⋅ α =
ω(α) ⋆ γ.

Corollary 3.4. For every well-pointed Z /2-space X there is a fibre sequence

(Σ∞
+ X

Z /2)⊗ (S⊕RP∞
−1)

∆Ð→ TCR(S[ΩσX]; 2)φZ /2 → Q,

where Q is the pullback of Σ∞
+ C

id−Σ∞

+
ψ

ÐÐÐÐÐ→ Σ∞
+ C

trf←Ð Σ∞
+ ChC2 and C the cofibre of the diagonal

∆∶XZ /2 →XZ /2 ×X XZ /2.
If the involution of X is trivial, Q is zero and there is a natural equivalence

TCR(S[ΩσX]; 2)φZ /2 ≃ (Σ∞
+ X)⊗ (S⊕RP∞

−1).

Proof. The diagonal ∆∶XZ /2 → XZ /2 ×X XZ /2 is clearly equivariant for the Weyl C2-action on
the pullback and the trivial action on XZ /2. It therefore induces a commutative diagram

Σ∞
+ (XZ /2 ×X XZ /2)

id−Σ∞

+
ψ
// Σ∞

+ (XZ /2 ×X XZ /2) Σ∞
+ (XZ /2 ×X XZ /2)hC2

trfoo

Σ∞
+ (XZ /2) 0 //

∆

OO

Σ∞
+ (XZ /2)

∆

OO

Σ∞
+ (XZ /2)hC2

trfoo

∆

OO

where the bottom left map is zero since ψ is the identity on constant paths. The limit of the
top row is TCR(S[ΩσX]; 2)φZ /2 by Theorem 3.2 and Example 3.1 the limit of the bottom row
is (Σ∞

+ X
Z /2) ⊗ (S ⊕ RP∞

−1). By taking cofibres vertically we obtain the fibre sequence of the
statement.

If the involution on X is trivial the diagonal map ∆∶X →X ×XX is an equivalence and thus
Q is trivial.

If the involution of X is not trivial the cofibre Q need not be zero, as illustrated in the
following example.

Example 3.5. Suppose that X is a pointed space, and let us consider the pointed free Z /2-
space Xb = X ∧ E Z /2+. Since its fixed-points are contractible, the fixed-points of G = ΩσXb

are
GZ /2 = (ΩσXb)Z /2 ≃ ΩX,

since this is the space of paths from the base-point to a fixed-point of Xb. In this case

B(GZ /2,G,GZ /2) ≃ B(ΩX,ΩX,ΩX) ≃ ΩX,

and the map ψ∶ΩX → ΩX sends a loop γ to γ ⋆γ and it is therefore null. By Theorem 3.2 there
is a pullback

TCR(S[ΩσXb]; 2)φZ /2 //

��

(Σ∞
+ ΩσX)hC2

trf

��

Σ∞
+ ΩX

id−0+ // Σ∞
+ ΩX
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where C2 acts on ΩσX by the loop inversion. There is therefore a splitting

TCR(S[ΩσXb]; 2)φZ /2 ≃ S⊕RP∞
−1 ⊕ (Σ∞ΩσX)hC2 .

In this case the map ∆ of Corollary 3.4 is easily seen to split, and the homotopy orbits summand
corresponds to the summand Q.

3.2 TCR of spherical group-rings for some discrete groups
Let us now consider a discrete group G with anti-involution. The map ∆ of Corollary 3.4
corresponds to the simplicial map

B(GZ /2,G)Ð→ B(GZ /2,G,GZ /2)

that sends (x, g1, . . . , gn) to (x, g1, . . . , gn, g
−1
n . . . g−1

1 x−1w(g−1
n . . . g−1

1 )). This follows from iden-
tifying

B(GZ /2,G) ×BG B(GZ /2,G)

with B(GZ /2,G,GZ /2) via the map

(x, g1, . . . , gn, y, h1, . . . , hn)↦ (x, g1, . . . , gn, h
−1
n . . . h−1

1 y−1w(h−1
n . . . h−1

1 )).

Example 3.6. Suppose that the involution of G is inversion w = (−)−1∶Gop → G. Then the
fixed-points space of G consists of the set of elements of order 2. If G has no 2-torsion we are
in the situation of Corollary 3.4 where GZ /2 = 1 and (BσG)Z /2 ≃ BG, and

TCR(S[G]; 2)φZ /2 ≃ (Σ∞
+ BG)⊗ (S⊕RP∞

−1).

For example let us consider the spherical Laurent polynomial ring S[t, t−1] ∶= S[Z], where the
involution acts by inversion in Z, i.e. swaps t and t−1. Then

TCR(S[t, t−1]; 2)φZ /2 ≃ (Σ∞
+ S

1)⊗ (S⊕RP∞
−1).

Now suppose that G is a discrete group with a general anti-involution w∶Gop → G. The
bar construction B(GZ /2,G,GZ /2) is the nerve of a groupoid, and therefore after a choice of
representatives for its isomorphism classes it decomposes as

B(GZ /2,G,GZ /2) ≅ ∐
[x,y]∈(GZ /2×GZ /2)/∼

BAut(x, y)

where the equivalence relation identifies (w(g)xg, y) with (x, gyw(g)), and the automorphism
group of (x, y) ∈ GZ /2 ×GZ /2 is the subgroup Aut(x, y) = {g ∈ G ∣ w(g)xg = x , gyw(g) = y}.
Let us now determine the map ψ and the Weyl action, so that all the ingredients of Theorem
3.2 are in place.

Lemma 3.7. The maps ψ and the action of the generator τ of the Weyl group (as a homotopy
coherent action) are given, under the decomposition of B(GZ /2,G,GZ /2) above, respectively by
the maps

ψ([x, y], g) = ([x, yxy], g) and τ([x, y], g) = ([y, x],w(g−1)).

In particular the homotopy orbits of B(GZ /2,G,GZ /2) for the Weyl action can be computed using
this strict action of τ .
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Proof. The description of ψ is immediate from the formula before Example 3.1. The description
of the action of the generator follows from the well-known fact that if G is a groupoid with strict
duality, that is a functor w∶Gop → G such that w2 = id, then the Z /2-actions on BG defined
respectively by the levelwise duality together with inverting the order of the simplex coordinates,
as in §1.2, and the one defined by the endofunctor

G
(−)−1
ÐÐÐ→ Gop wÐ→ G,

are homotopy coherently equivalent. We were not able to track down a proof, so we include
an argument for the reader’s convenience. After applying the subdivision functor sde from §1.2
to the nerve of G, the two actions are respectively equivalent to the simplicial actions defined
levelwise on sdeNG by w and w ○ (−)−1. The subdivided nerve sdeNG is isomorphic to the
nerve of the twisted arrow category of G, and the two actions correspond respectively to the
ones induced by the (covariant) endofunctors w and w ○ (−)−1, defined on the objects of the
twisted arrow category respectively by

w(x gÐ→ y) = (w(y)
w(g)
ÐÐ→ w(x)) and w((x gÐ→ y)−1) = (w(x)

w(g−1)
ÐÐÐÐ→ w(y)).

Let us regard these actions as functors Z /2 → Gpd to the category of groupoids, where both
send the unique object of Z /2 to the twisted arrow category of G. Then the diagram

w(y)
w(g)

//

w(g)
��

w(x)

w(x)
w(g−1)

// w(y)

w(g)

OO

exhibits the 2-cells of a pseudonatural isomorphism on the identity transformation between
the functors Z /2 → Gpd. Thus the two actions on the geometric realisations are homotopy
coherently equivalent.

With these formulas at hand one should in principle be able to determine the pullback of
Theorem 3.2, as its maps consist of products of diagonals and transfers Σ∞

+ RP∞ → S. The
combinatorics of which components are hit by the diagonals are complicated in this generality,
but we compute them fully in the following special cases.

Example 3.8. Suppose that the order-two elements of G are included in the centre of G, and
that the involution on G is inversion. This is exactly the situation where the action of G on
GZ /2 is trivial. It follows that GZ /2 = G2 consists of the elements of order 2, and

B(G2,G,G2) = ∐
G2×G2

BG.

The map ψ sends the component (x, y) to the component is (x,x) via the identity of BG, and
the involution freely permutes the components indexed by pairs (x, y) with x ≠ y, and is trivial
on the components (x,x). There is therefore a splitting

TCR(S[G]; 2)φZ /2 ≃ ((Σ∞
+ G2)⊕ P )⊗Σ∞

+ BG,

where P is the pullback

P //

��

(G2)+ ⊗Σ∞
+ RP∞

id⊗ trf

��

(∆c/C2)+ ⊗ S
q

// (G2)+ ⊗ S
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where ∆c ⊂ G2 ×G2 is the complement of the diagonal with the involution that flips the factors,
and q is the sum of the maps that send the component [x ≠ y] respectively to the components
x and y.

For example for G = Z with the minus involution we recover the calculation for S[t, t−1] of
the example above, since in this case G2 = 1. On the other hand for G = C2 the map q is the
diagonal, and P is the pullback of the transfer Σ∞

+ RP∞ → S along itself, and

TCR(S[C2]; 2)φZ /2 ≃ ((Σ∞
+ C2)⊕ (Σ∞

+ RP∞ ×S Σ∞
+ RP∞))⊗Σ∞

+ BC2.

Here we also see that TCR(S[C2]; 2)φZ /2 splits off an RP∞
−1⊗Σ∞

+ BC2-summand, since the pull-
back of the two transfers splits as RP∞

−1 ⊕Σ∞
+ RP∞, but this splitting is however non-canonical.

Notice that P depends only on the order-two elements of G, so in fact for every even integer
n ≥ 2

TCR(S[Cn]; 2)φZ /2 ≃ ((Σ∞
+ C2)⊕ (Σ∞

+ RP∞ ×S Σ∞
+ RP∞))⊗Σ∞

+ BCn

where again the involution on Cn is inversion.

Example 3.9. Now suppose that G is abelian and endowed with the trivial involution. Then
GZ /2 = G with left and right G-actions g ⋅ x ∶= 2g + x. The components of the two-sided bar
construction are described by a bijection

(G ×G)/ ∼ ≅ G ×G/2

which sends [x, y] to (x+y, [y]). Under this equivalence the C2-action sends (x, z) to (x, [x]+z),
and ψ to

ψ(x, z) = (2x, [x] + z).
The C2-fixed-points set of G×G/2 is therefore the set of pairs of the form (2g, x), and G×G/2
decomposes C2-equivariantly as

G ×G/2 ≅ (2G ×G/2) ∐ (((G ∖ 2G) ×G/2)/C2) ×C2.

If we assume additionally that G has no 2-torsion, then the fundamental groups of the two-sided
bar construction vanish since the corresponding groupoid has only trivial automorphisms. The
pullback diagram describing TCR(S[G]; 2)φZ /2 then takes the form

TCR(S[G]; 2)φZ /2 //

��

((2G ×G/2)+ ⊗Σ∞
+ RP∞)⊕ (((G ∖ 2G) ×G/2)/C2)+ ⊗ S

incl⊗ trf ⊕∆

��

(G ×G/2)+ ⊗ S
id−Σ∞

+
ψ

// (G ×G/2)+ ⊗ S

where ∆ sends the component of an orbit [g, x] with g ∉ 2G diagonally to the components (g, x)
and (g, [g] + x).

Let us now identify this pullback under the additional assumption that G does not have
elements infinitely divisible by 2, that is for any 0 ≠ g ∈ G, there exists n ∈ N such that g = 2nx
does not have a solution. This in particular implies that G is torsion-free (but not vice versa,
take e.g. G = Q). Under this assumption we can easily compute the cofibre of id−Σ∞

+ ψ. Indeed,
from the commutative diagram

(2G ×G/2)+ ⊗ S
id−Σ∞

+
ψ
//

� _

��

(2G ×G/2)+ ⊗ S� _

��

(G ×G/2)+ ⊗ S
id−Σ∞

+
ψ
//

��

(G ×G/2)+ ⊗ S

��

((G ∖ 2G) ×G/2)+ ⊗ S ≃ // ((G ∖ 2G) ×G/2)+ ⊗ S
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we see that the lower horizontal map induced on cofibres is an equivalence. Hence the cofibre
of id−Σ∞

+ ψ is equivalent to the cofibre of its restriction

id−Σ∞
+ ψ∶ (2G ×G/2)+ ⊗ S→ (2G ×G/2)+ ⊗ S.

Since ψ(0, z) = (0, z), we see that the zero map 0∶ (G/2)+ ⊗ S → (G/2)+ ⊗ S splits off from the
given map and hence the cofibre contains the summand (G/2)+⊗ (S⊕S1). Let us now compute
the cofibre of

id−Σ∞
+ ψ∶ ((2G ∖ 0) ×G/2)+ ⊗ S→ ((2G ∖ 0) ×G/2)+ ⊗ S.

By the non-divisibility condition, this morphism induces an injection on homotopy groups.
The morphism ψ maps the summand indexed by (g, x) identically to the summand indexed
by (2g, x) since g ∈ 2G. By inspecting the cokernel of the difference on homotopy groups, all
(2ng, x) summands get identified with the (g, x) summand for n ≥ 0, g ∈ 2G ∖ 4G and x ∈ G/2.
Hence we see that the cofibre is ((2G ∖ 4G) ×G/2)+ ⊗ S. All in all we get a cofibre sequence

(G ×G/2)+ ⊗ S
id−Σ∞

+
ψ
// (G ×G/2)+ ⊗ S

ζ
// (((2G ∖ 4G) ×G/2)+ ⊗ S)⊕ ((G/2)+ ⊗ (S⊕ S1)),

where ζ includes (0× (G/2))+⊗S into (G/2)+⊗S, sends the (2nh×G/2)+⊗S-summand via the
identity to the summand (2h×G/2)+ ⊗S for any h ∈ G∖ 2G and n ≥ 1, and sends the summand
((G ∖ 2G) ×G/2)+ ⊗ S) to (((2G ∖ 4G) ×G/2)+ ⊗ S) via (g, x)↦ (2g, g + x).

From the pullback square above we find that TCR(S[G]; 2)φZ /2 is the fibre of the map

ζ ○ (incl⊗ trf ⊕∆) ∶((2G ×G/2)+ ⊗Σ∞
+ RP∞)⊕ (((G ∖ 2G) ×G/2)/C2)+ ⊗ SÐ→

(((2G ∖ 4G) ×G/2)+ ⊗ S)⊕ ((G/2)+ ⊗ (S⊕ S1)),

which is given by the wedge
((G/2)+ ⊗ (S⊕RP∞

−1))⊕ P
where P is the pullback

P //

��

((2G ∖ 0) ×G/2)+ ⊗Σ∞
+ RP∞

��

(((G ∖ 2G) ×G/2)/C2)+ ⊗ S // (((2G ∖ 4G) ×G/2)+ ⊗ S).

By using that any non-zero element g ∈ G can be uniquely written as 2nγ, where n is a non-
negative integer and γ ∈ G ∖ 2G, we can write P as

P ≃ (((G ∖ 2G) ×G/2)/C2)+ ⊗ ((N+ ⊗Σ∞
+ RP∞) ×S (N+ ⊗Σ∞

+ RP∞)).

We note that ((N+ ⊗Σ∞
+ RP∞) ×S (N+ ⊗Σ∞

+ RP∞)) is non-canonically equivalent to

RP∞
−1 ⊕Σ∞

+ RP∞ ⊕Σ∞
+ RP∞ ⊕Σ∞

+ RP∞ ⊕ . . . .

To summarise, for every abelianG with trivial involution, no 2-torsion, and no elements infinitely
divisible by 2

TCR(S[G]; 2)φZ /2 ≃ ((G/2)+ ⊗ (S⊕RP∞
−1))

⊕ (((G ∖ 2G) ×G/2)/C2)+ ⊗ ((N+ ⊗Σ∞
+ RP∞) ×S (N+ ⊗Σ∞

+ RP∞)).

In particular the group G = Z with the trivial involution gives rise to the spherical Laurent
polynomials S[t, t−1] ∶= S[Z] with the involution which acts trivially on the generators, and

TCR(S[t, t−1]; 2)φZ /2 ≃ ((Z/2)+ ⊗ (S⊕RP∞
−1))⊕ (Z+ ⊗ ((N+ ⊗Σ∞

+ RP∞) ×S (N+ ⊗Σ∞
+ RP∞)))

where we took the liberty of enumerating the summands non-canonically.
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4 TCR of perfect fields
In [HM97], Hesselholt and Madsen identified the p-typical topological cyclic homology spectrum
TC(k;p) of a perfect field k of characteristic p as the sum

TC(k;p) ≃H Zp⊕Σ−1H coker(1 − F ),

where F ∶W (k;p) → W (k;p) is the Frobenius homomorphism of the ring W (k;p) of p-typical
Witt vectors. Their calculation relies on the fact that the ring π0 THR(A)Cpn is isomorphic
to the ring Wn+1(A;p) of (n + 1)-truncated p-typical Witt vectors, which holds for every com-
mutative ring A (see [HM97, Theorem F]). The situation for π0 THR(A)Dpn is not completely
analogous, and requires particular care.

We start by recalling from [DMPR21, Corollary 5.2] that, for every commutative ring with
involution A, there is an isomorphism of rings

π0(THR(A)Z /2) ≅ AZ /2 ⊗N AZ /2 ∶= (AZ /2 ⊗AZ /2)/⟨1⊗ aa − aa⊗ 1⟩,

where AZ /2 is the subring of invariants of A, and the quotient is by the ideal generated by the
elements of the form 1⊗aa−aa⊗1 for some a ∈ A (here we use that a+a = (a+1)(a + 1)−aa−1
to simplify the second relation of [DMPR21, 5.2], so that in particular 2b ⊗ 1 = 1 ⊗ 2b in the
quotient AZ /2 ⊗N AZ /2, if b ∈ AZ /2). The restriction map π0(THR(A)Z /2) → π0 THR(A) then
corresponds to the multiplication map

AZ /2 ⊗N AZ /2 µÐ→ AZ /2 Ð→ A,

where the second map is the inclusion. For perfect fields, the map µ induces an isomorphism
AZ /2 ⊗N AZ /2 ≅ AZ /2, and the same is true in the following cases:

Remark 4.1.

i) Let us start by noticing that for every additive generator a⊗b ∈ AZ /2⊗N AZ /2 we have that

2µ(a⊗ b)⊗ 1 = (2ab)⊗ 1 = a⊗ 2b = 2(a⊗ b),

and therefore all the elements of the kernel of µ are 2-torsion (where the second equality
follows from the fact that 2b⊗1−1⊗2b belongs to the ideal defining the quotient AZ /2⊗NAZ /2

as remarked above). Thus µ is an isomorphism when A is 2-torsion free, for example for
fields of odd characteristic.

ii) There is a section for µ∶AZ /2 ⊗N AZ /2 → AZ /2, that sends a to a⊗ 1. Therefore µ is always
surjective, and it is an isomorphism if and only if this section is itself surjective.

iii) If the multiplication map AZ /2 ⊗AZ /2 → AZ /2 is an isomorphism, for example for A = Z /n
for any integer n, then so is µ.

iv) If the involution of A is trivial and the modulo 2 reduction of A is semi-perfect (that is the
mod 2 Frobenius is surjective), then every element a ∈ A can be written as a = c2 + 2d for
some c, d ∈ A. Then we can write a generator of A⊗N A as

a⊗ b = (c2 + 2d)⊗ b = 1⊗ (c2 + 2d)b = 1⊗ ab,

which shows that the section A → A ⊗N A is surjective. This example covers the case of
perfect fields of characteristic 2.

v) If the involution of A is not trivial, a similar argument shows that the section AZ /2 →
AZ /2⊗N AZ /2 is surjective if every element a ∈ AZ /2 can be written as a = cc+d+d for some
c, d ∈ A, or in other words if the composite

A
NÐ→ AZ /2 ↠ AZ /2/ tran

is surjective, where N(a) = aa and tran(a) = a + a.
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vi) Suppose that there exists an element e ∈ A with the property that e+w(e) = 1, for example
if 2 ∈ A is a unit. By Frobenius reciprocity, this is equivalent to the surjectivity of tran∶A→
AZ /2, since any element x ∈ AZ /2 can be written as

x = 1 ⋅ x = tran(e) ⋅ x = tran(e res(x))

(explicitly, x = ex +w(ex)). Thus this condition is equivalent to the vanishing of HAφZ /2.
By the previous item µ is an isomorphism.

An example where the multiplication map is not an isomorphism is provided by the group-
ring Z[C2] with the trivial involution, where

Z[C2]Z /2 ⊗N Z[C2]Z /2 ≅ Z[C2]⊕ (Z /2)⊕2

is not isomorphic to Z[C2]Z /2 (see [DMPR21, Section 5.2]).

If the multiplication µ∶AZ /2 ⊗N AZ /2 → AZ /2 is an isomorphism, it follows from [DMPR21,
Theorem 5.1] that the Z /2-Mackey functor π0 THR(A) is the fixed-points Mackey functor of the
ring with involution A. On the other hand, if the prime p odd we show in [DPJM22, Theorem
3.7] that π0 THR(A)Dpn is also a ring of Witt vectors, and combining these results we obtain a
ring isomorphism

π0 THR(A)Dpn ≅Wn+1(AZ /2 ⊗N AZ /2;p) ≅Wn+1(A;p),

for every odd prime p and commutative ring A satisfying any of the assumptions of Remark 4.1.
In the next section we use this last isomorphism to determine TCR of perfect fields of odd

characteristic. In the subsequent ones we examine the relationship between π0 THR(A)D2n and
the Witt vectors for the prime 2, and determine TCR of perfect fields of characteristic 2.

4.1 TCR of perfect fields of odd characteristic
Let p be an odd prime, and A a commutative ring with involution. We let W (A;p) denote
the ring of p-typical Witt vectors of A. By Remark 4.1 and [DPJM22, Theorem D] there is an
isomorphism of Z /2-Mackey Functors

π0 TRR(A;p) ≅W (A;p),

between the components of TRR(A;p) and the the fixed-points Mackey functor of W (A;p)
with the involution induced functorially by the involution of A. In particular πZ /2

0 TRR(A;p) ≅
W (A;p)Z /2 =W (AZ /2;p), where the latter holds since the Z /2 action is given coordinate-wise
and fixed points commute with products.

Proposition 4.2. Let p be an odd prime, and k a perfect field of characteristic p with involution.
Then there are equivalences of genuine Z /2-spectra

TRR(k;p) ≃HW (k;p)

and
TCR(k;p) ≃HZp ⊕Σ−1Hcoker(1 − F ),

where F ∶W (k;p)→W (k;p) is the Witt vector Frobenius.

Proof. The 0-th Postnikov section provides a map of Z /2-equivariant spectra

TRR(k;p)Ð→HW (k;p).
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This map is an equivalence on underlying spectra by [HM97, Theorem 5.5], and it is therefore suf-
ficient to prove that it is an equivalence on geometric fixed-points. The spectrum TRR(k;p)Z /2

has the structure of a ring spectrum. Moreover there is an isomorphism π0(TRR(k;p)Z /2) ≅
W (k;p) and therefore 2 = tran(1) is a unit in π0(TRR(k;p)Z /2), see [DPJM22, Corollary 3.14].
Since the transfers vanish in the geometric fixed points, we have that 2 is both a unit and zero
in π0(TRR(k;p)φZ /2), and therefore π0(TRR(k;p)φZ /2) is the zero ring. Since TRR(k;p)φZ /2

is a ring spectrum its homotopy groups are a module over the zero ring, and therefore it must
be contractible.

According to Definition 1.5 and the previous paragraph, the Z /2-spectrum TCR(k;p) is
equivalent to the equaliser of Z /2-spectra

eq( HW (k;p)
id //

F
// HW (k;p) ).

The kernel of id−F ∶W (k;p)→W (k;p) is equal to W (Fp;p) which is isomorphic to Zp, and this
completes the proof.

4.2 TCR of perfect fields of characteristic 2
The calculation of TCR(k; 2) for a perfect field of characteristic 2 is more involved than the
odd primary case. This is because the geometric fixed-points spectrum of TRR(k; 2) is not
trivial, and thus we cannot directly apply the argument of Proposition 4.2. The first step is to
understand the geometric fixed-points of TRRn(k; 2), using the formula of Theorem 2.7.

4.2.1 The geometric fixed points of TRRn for perfect fields of characteristic
2

Let us fix a perfect field k of characteristic 2, and let us compute additively TRRn(k; 2)φZ /2,
TRR(k; 2)φZ /2 and TCR(k; 2)φZ /2 using Theorem 2.7. We let k denote the constant Mackey
functor of k.

By splitting HkφZ /2 using the Frobenius Hk-module structure we obtain a decomposition

HkφZ /2 ≃⊕
n≥0

ΣnHk.

This uses that k is perfect and hence k considered as a k-module via the Frobenius is again a 1-
dimensional k-vector space. This induces a decomposition of the corresponding THR spectrum,
which we analyse in greater generality in the following situation. Let A be a ring spectrum with
anti-involution, and suppose that, as an A-module, AφZ /2 with its Frobenius module structure
splits as a sum of A-modules

AφZ /2 ≃⊕
n≥0

ΣnH(πnAφZ /2),

for some A-module structure on H(πnAφZ /2). Then by expressing THR(A)φZ /2 as a tensor
product we immediately obtain an equivalence of spectra

THR(A)φZ /2 ≃ AφZ /2 ⊗A AφZ /2 ≃ ⊕
(n,m)
n,m≥0

Σn+mH(πnAφZ /2)⊗AH(πmAφZ /2).

In the following Lemma we further identify the C2-structure induced by the Weyl group action
and the maps required for calculating TRR and TCR of Theorem 2.7.
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Lemma 4.3. Let A be a ring spectrum with anti-involution with a splitting of A-modules

AφZ /2 ≃⊕
n≥0

ΣnH(πnAφZ /2).

Then there is an equivalence of C2-spectra

THR(A)φZ /2 ≃⊕
n≥0

ΣnρA⊗
N
C2
e A

NC2
e (H(πnAφZ /2))⊕

⊕
(n,m)
0≤n<m

Σn+m(C2)+ ⊗ (H(πnAφZ /2)⊗AH(πmAφZ /2)).

In particular, the C2-fixed-points spectrum decomposes as

(THR(A)φZ /2)C2 ≃⊕
n≥0

(ΣnρA⊗
N
C2
e A

NC2
e (H(πnAφZ /2)))C2⊕

⊕
(n,m)
0≤n<m

Σn+mH(πnAφZ /2)⊗AH(πmAφZ /2).

Under these decompositions, the map r identifies with the map which kills the (n,m)-summands,
and on the n-summand is given by the composite

(ΣnρA⊗
N
C2
e A

NC2
e (H(πnAφZ /2)))C2 → (ΣnρA⊗

N
C2
e A

NC2
e (H(πnAφZ /2)))φC2 ≃

(ΣnAφC2 ⊗AH(πnAφZ /2)) ≃ (Σn(⊕
m≥0

ΣmH(πmAφZ /2))⊗AH(πnAφZ /2))

≃ ⊕
m≥0

Σn+mH(πmAφZ /2)⊗AH(πnAφZ /2)

of the canonical map, the monoidality of the geometric fixed-points combined with the diagonal
equivalence, and a further application of the splitting of AφZ /2.

The map f identifies with the composite

⊕
n≥0

(ΣnρA⊗
N
C2
e A

NC2
e (H(πnAφZ /2)))C2 ⊕ ⊕

(n,m)
0≤n<m

Σn+mH(πnAφZ /2)⊗AH(πmAφZ /2) res
C2
e ⊕∆ÐÐÐÐÐ→

⊕
n≥0

Σ2nA⊗A⊗A (H(πnAφZ /2)⊗H(πnAφZ /2))⊕ ⊕
(n,m)

0≤n,m,n≠m

Σn+mH(πnAφZ /2)⊗AH(πmAφZ /2) ≃

⊕
(n,m)
0≤n,m

Σn+mH(πnAφZ /2)⊗AH(πmAφZ /2)

where resC2
e is the forgetful map, and ∆ maps the summand (n,m) diagonally into the sum of

the summands (n,m) and (m,n).

Proof. By using inductively that for A-modules X and Y there is an equivalence of NC2
e A-

modules
NC2
e (X ⊕ Y ) ≃ NC2

e (X)⊕NC2
e (Y )⊕ ((C2)+ ⊗X ⊗ Y ),

we find that the C2-norm of AφZ /2 decomposes as a NC2
e A-module as

NC2
e (AφZ /2) ≃⊕

n≥0

ΣnρNC2
e (H(πnAφZ /2))⊕ ⊕

(n,m)
0≤n<m

Σn+m(C2)+⊗ (H(πnAφZ /2)⊗H(πmAφZ /2)).

By tensoring with A over NC2
e A and applying the formula of Lemma 1.2 we obtain the first

equivalence of the Lemma.
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Let us now identify r. Recall that by Example 2.6 the map r is the composite

(A⊗(NC2
e A) (N

C2
e (AφZ /2)))C2 → (A⊗(NC2

e A) (N
C2
e (AφZ /2)))φC2 ≃ AφZ /2 ⊗A AφZ /2

of the canonical map and the monoidal structure of the geometric fixed-points combined with
the diagonal equivalence. The first map corresponds with the first map of the description of
r in the lemma, by naturality with respect to maps of C2-spectra and because the geometric
fixed-points vanish on the induced summands. Thus we need to show that the outer diagram

(A⊗(NC2
e A) (N

C2
e (AφZ /2)))φC2

≃ //

≃
��

(⊕n≥0 ΣnρA⊗
N
C2
e A

NC2
e (H(πnAφZ /2)))φC2

≃
��

AφC2 ⊗(NC2
e A)φC2

(NC2
e (AφZ /2))φC2

≃ // ⊕n≥0 ΣnAφC2 ⊗(NC2
e A)φC2

(NC2
e (H(πnAφZ /2)))φC2

AφZ /2 ⊗A AφZ /2 ≃ //

≃
OO

⊕n≥0 ΣnAφC2 ⊗AH(πnAφZ /2)

≃
OO

commutes, where the horizontal arrows are induced by the splitting of AφC2 , the vertical arrows
in the first row by the monoidality of geometric fixed-points, and the vertical arrows in the
second row by the diagonal. The top square commutes by naturality of the monoidal structure
of the geometric fixed-points. For the lower square, we observe that its n-th component is
obtained by tensoring the square of A-modules

(NC2
e (AφZ /2))φC2

≃ // (NC2
e (ΣnH(πnAφZ /2)))φC2

AφZ /2 ≃ //

≃ δ

OO

ΣnH(πnAφZ /2)

≃ δ

OO

where the horizontal arrows are induced by the n-th component of the splitting of AφC2 , and the
top row is regarded as a map of A-modules via the diagonal δ∶A ≃Ð→ (NC2

e A)φC2 . This commutes
by naturality of δ.

The description of f is immediate by naturality of the forgetful map from the fixed-points
to the underlying spectrum, and the fact that for induced spectra this map is the diagonal
inclusion.

Lemma 4.4. There is an equivalence of genuine C2-equivariant spectra

THR(k)φZ /2 ≃⊕
n≥0

ΣnρHk ⊕ ⊕
(n,m)
0≤n<m

Σn+mC2+ ⊗Hk,

where ρ is the regular representation of C2. In particular there is an equivalence of spectra

(THR(k)φZ /2)C2 ≃ (⊕
n≥0
⊕

0≤j≤n
Σn+jHk)⊕ ( ⊕

(n,m)
0≤n<m

Σn+mHk).

Proof. Recall that the geometric fixed-points of Hk decompose as

HkφZ /2 ≃⊕
n≥0

ΣnHk.

35



The description of THR(k; 2)φZ /2 therefore follows from Lemma 4.3, and the equivalence

Hk
≃Ð→Hk ⊗

N
C2
e (Hk) (N

C2
e (Hk))

given by tensoring with the unit of the norm of Hk.
Now let us identify the fixed-points. Notice that ΣnρHk is a module over Hk and therefore

its fixed-points spectrum is a wedge of Eilenberg-MacLane spectra. Moreover a straightforward
calculation in Bredon homology shows that

πC2

i (ΣnρHk) =HC2

i (Snρ;k) ≅ k

when n ≤ i ≤ 2n, and πC2

i (ΣnρHk) = 0 otherwise.

In the following proposition the summands are arranged exactly as in Lemma 4.4. In par-
ticular, the summands indexed on (n,m) with n < m in the source come from the induced
summands. Similarly, the summands indexed on (n,m) with n ≠ m in the target corresponds
to the induced summands.

Proposition 4.5. For any perfect field k of characteristic 2, the maps r, f ∶ (THR(k)φZ /2)
C2

→
THR(k)φZ /2 induce on π∗ the maps

r, f ∶ ⊕
(n,m)

n,m≥0,n+m=∗

k → ⊕
(n,m)

n,m≥0,n+m=∗

k,

where r kills the (n,m)-summands with n <m and maps the (n,m)-summands with m ≤ n to the
(n,m)-summand via the inverse Frobenius of k, and f kills the (n,m)-summands with m < n,
includes the summand (n,n), and embeds diagonally the (n,m)-summands with n <m into the
sum of the summands (n,m) and (m,n).

Proof. The map r vanishes on the summands (n,m) with n <m by Lemma 4.3. The identifica-
tion of r on the other summands follows from observing that the canonical map

πC2
∗ (ΣnρHk)→ π∗((ΣnρHk)φC2) ≅ π∗(Σn(Hk)φC2) ≅ π∗(⊕

l≥0

Σn+lHk)

induces the inverse Frobenius of k in degrees n ≤ ∗ ≤ 2n (cf. with [NS18, Example IV.1.2]).
Similarly, f is the diagonal on the summands (n,m) with n < m by Lemma 4.3. The

identification on the other summands follows from the fact that the restriction map

resC2
e ∶HC2

∗ (Snρ;k)→H∗(S2n;k)

is the identity only in degree ∗ = 2n, and zero otherwise.

Remark 4.6. From Proposition 4.5 and Theorem 2.14 we obtain that

π∗ TCR(k; 2)φZ /2 =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

F2 ∗ = 2l ≥ 0
k/⟨x + x2∣ x ∈ k⟩ ∗ = 2l − 1 ≥ −1
0 ∗ ≤ −2.

Indeed by 4.5, the map r − f is an isomorphism in π∗ when restricted and corestricted to the
summands with n ≠ m. It is therefore an isomorphism in odd degrees, and its long exact
sequence decomposes into exact sequences

0→ π2l TCR(k; 2)φZ /2 → ⊕
(n,m)

n,m≥0,n+m=2l

k
r−fÐÐ→ ⊕

(n,m)
n,m≥0,n+m=2l

k → π2l−1 TCR(k; 2)φZ /2 → 0
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for every l ≥ 0. Again by 4.5, the kernel of r − f is the kernel of id−
√

(−)∶k → k. Since k is
a field this is F2. Similarly the cokernel of r − f is the cokernel of id−

√
(−), which since k is

perfect it is also the cokernel of id+(−)2.
We also remark that these groups agree with the homotopy groups of the cofibre Ln(k) of

the canonical map
Lq(k)Ð→ L(ModωA,Ϙ

gs
k ).

induced by the symmetrisation map from the quadratic to the genuine Poincaré structure,
as defined in [CDH+23, CDH+20a, CDH+20b]. Indeed the even homotopy groups of Lq(k)
are the Witt groups of quadratic forms over k, and since k is a field the odd groups vanish
[Ran92, Proposition 22.7]. The map above is an isomorphism in degrees lass than or equal to
−3 and surjective in degree −2 by [CDH+20b, Theorem 5], and therefore the cofibre Ln(k) is
−1-connected. In degrees greater or equal to −1 the homotopy groups of the target are the
symmetric Witt groups of k in even degrees and zero in odd degrees, by [CDH+20b, Corollary
1.3.5]. The map is the symmetrisation map from quadratic to symmetric Witt groups, which is
zero since k has characteristic 2. Thus the homotopy groups of Ln(k) are the symmetric Witt
groups of k in even non-negative degrees, and the quadratic ones in odd non-negative degrees.
The (−1)-st homotopy group of Ln(k) is the kernel of the symmetrisation map, and therefore
again the quadratic Witt group. The quadratic and symmetric Witt groups of a perfect field of
characteristic 2 are respectively k/⟨x + x2∣ x ∈ k⟩ and F2, see e.g. [Kat82, Theorem (1)].

In order to understand the full equivariant homotopy type of TCR(k; 2) will need to calculate
the homotopy groups of TRR(k; 2)φZ /2.

Theorem 4.7. Let k be a perfect field of characteristic 2. For any l ≥ 1, there is an isomorphism

π∗TRRl(k; 2)
φZ /2

≅ ⊕
(n,m)

n,m≥0,n+m=∗

k.

The maps R,F ∶TRRl+1(k; 2)
φZ /2

→ TRRl(k; 2)
φZ /2

and the Weyl action are described on ho-
motopy groups as follows. The map R kills the (n,m)-summands with n ≠m and is the inverse
Frobenius of k on the summands (n,n). The map F kills the (n,m)-summands with m < n,
is the identity of k on the summands (n,n), and embeds the (n,m)-summands with n < m di-
agonally into the sum of the (n,m) and (m,n)-summands. The Weyl action of σl swaps the
(n,m)-summand and the (m,n)-summand for all n,m ≥ 0. In particular the homotopy groups
and the maps are all independent of l.

Proof. We prove the theorem by induction on l, using the pullbacks of Theorem 2.7. For n = 1

the pullback of 2.7 implies that TRR2(k; 2)φZ /2
is equivalent to the pullback (Tφ)C2×Tφ(Tφ)C2

(since the right vertical map is the diagonal for n = 1 in 2.7). Consider the Mayer-Vietoris
sequence associated to (Tφ)C2×Tφ(Tφ)C2 :

⋅ ⋅ ⋅ ∂Ð→ π∗TRR2(k; 2)φZ /2 Ð→ ( ⊕
(n,m)

n,m≥0,n+m=∗

k)⊕ ( ⊕
(n,m)

n,m≥0,n+m=∗

k) r−σ1rÐ→ ⊕
(n,m)

n,m≥0,n+m=∗

k
∂Ð→ . . .

where r is determined in Proposition 4.5. Since r − σ1r is clearly surjective on each homotopy
group, the Mayer-Vietoris sequence decomposes into short exact sequences and π∗TRR2(k; 2)φZ /2

is the kernel of r−σ1r. This kernel consists of the pairs of finite sequences (x, y) indexed on the
pairs of non-negative integers (n,m), such that

0 = r(x)(n,m) = (σ1r(y))(n,m) = r(y)(m,n) =
√
y(m,n), for n <m,

√
x(n,m) = r(x)(n,m) = (σ1r(y))(n,m)) = r(y)(m,n) = 0, for n >m,

√
x(n,n) = r(x)(n,n) = (σ1r(y))(n,n) = r(y)(n,n) =

√
y(n,n)
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where
√

(−) denotes the inverse of the Frobenius (−)2∶k → k. These are the pairs (x, y) where
x(n,m) = 0 and y(n,m) = 0 for n > m, and x(n,n) = y(n,n), which gives the description of the
homotopy groups of TRR2(k; 2)φZ /2. The maps R,F ∶TRR2(k; 2)φZ /2 → THR(k; 2)φZ /2 are
described in 2.7 and send such a pair (x, y) to r(x) and f(x) respectively, and are therefore the
maps of Theorem 4.7. The Weyl action flips x and y by 2.7.

Now let l ≥ 2 and suppose inductively that the decomposition holds for π∗TRRh(k; 2)
φZ /2

for

all h ≤ l and that the maps R,F ∶TRRh(k; 2)
φZ /2

→ TRRh−1(k; 2)
φZ /2

and σh are given in ho-

motopy groups by the formulas of 4.7. We will show that the same holds for π∗TRRl+1(k; 2)
φZ /2

and the maps R,F ∶TRRl+1(k; 2)
φZ /2

→ TRRl(k; 2)
φZ /2

and σl+1. The Mayer-Vietoris sequence
of the pullback square of 2.7 is then (we recall σ1F = F , and that n,m ≥ 0)

. . .

∂
��

π∗TRRl+1(k; 2)
φZ /2

// (( ⊕
(n,m)
n+m=∗

k)⊕ ( ⊕
(n,m)
n+m=∗

k))⊕ ( ⊕
(n,m)
n+m=∗

k)
r⊕σ1r−(F l−1,F l−1σl)

// ( ⊕
(n,m)
n+m=∗

k)⊕ ( ⊕
(n,m)
n+m=∗

k)

∂��. . .

By the inductive assumption the iterated map F l−1 is in fact equal to a single map F . The right
horizontal map then sends a triple (x, y, z) of finite sequences indexed on the pairs of integers
n,m ≥ 0 to the pair of sequences

(r(x) − F (z))(n,m) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

√
x(n,m) − z(m,n) , n >m

−z(n,m) , n <m√
x(n,n) − z(n,n) , n =m

(σ1r(y) − Fσl(z))(n,m) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

−z(n,m) , n >m√
y(m,n) − z(m,n) , n <m

√
y(n,n) − z(n,n) , n =m.

This map is clearly surjective for all ∗, and therefore π∗TRRl+1(k; 2)
φZ /2

is isomorphic to its
kernel. This consists of those triples (x, y, z) such that x(n,m) = y(n,m) = 0 for n > m and
z(n,m) = 0, for n ≠ m, and √

x(n,n) =
√
y(n,n) = z(n,n), which is isomorphic to the direct sum

on all pairs of natural numbers by setting w(n,m) = y(m,n) for n > m, and w(n,m) = x(n,m), for
n <m, and w(n,n) = x(n,n). Let us now describe R and F under these isomorphisms. By 2.7 the
map R sends (x, y, z) to z, and therefore under the isomorphism above

R(w)(n,m) = { 0 , n ≠m√
w(n,n) , n =m.

Again by 2.7 the map F sends (x, y, z) to (x,x,F (z)). Thus under the identification above

F (w)(n,m) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

x(m,n) = w(m,n) , n >m
x(n,m) = w(n,m) , n <m
x(n,n) = w(n,n) , n =m.

Finally, the Weyl action σl+1 sends (x, y, z) to (y, x, σl(z)), and under the isomorphism above
σl+1(w)(n,m) = w(m,n).
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Corollary 4.8. Let k be a perfect field of characteristic 2. There is a natural isomorphism

π∗TRR(k; 2)φZ /2 ≅ { k if ∗ is even
0 otherwise,

and the Frobenius endomorphism F ∶TRR(k; 2)φZ /2 → TRR(k; 2)φZ /2 is the Frobenius of k on
homotopy groups.

Proof. By Theorem 4.7 the map R on homotopy groups is the map

⊕
(n,m)
n+m=∗

k → ⊕
(n,m)
n+m=∗

k

(where n,m ≥ 0) which is the inverse Frobenius on the summands (n,n), and zero everywhere
else. It is an idempotent up to isomorphism, and therefore it satisfies the Mittag-Leffler condi-
tion. It follows that

π∗ TRR(k; 2)φZ /2 ≅ lim
R
π∗ TRRl(k; 2)φZ /2 ≅ lim

R
⊕

(n,m)
n+m=∗

k ≅ ⊕
2n=∗

k,

where the last isomorphism is induced by the projection onto the first component of the limit
and onto the summand 2n = ∗ when ∗ is even, and it is zero otherwise. After composing with
the shift automorphism of the limit, R becomes by definition the identity, and F the Frobenius
of k.

4.2.2 The components of TRR and the ring of Witt vectors of perfect fields

As we will show in Remark 4.10 below, the ring π0 THR(A)D2n is not necessarily the ring of
Witt vectors of π0 THR(A)Z /2, not even when the latter is isomorphic to A. However, this is
still the case for perfect fields, as we show now.

Theorem 4.9. Let k be a perfect field of characteristic 2, equipped with the trivial involution.
Then for every n ≥ 0, the restriction map

resD2n

C2n
∶π0 THR(k)D2n Ð→ π0 THH(k)C2n ≅Wn+1(k; 2)

is an isomorphism, and the Verschiebung, Frobenius, and restriction maps of the Witt vectors
correspond respectively to tranD2n

D2n−1
, resD2n

D2n−1
, and R.

Proof. Let us start with a commutative ring with involution A, and follow the strategy of [HM97]
and [DPJM22] of analysing the long exact sequence induced on homotopy groups by the fibre
sequence

ER+ ⊗C2n
THR(A)Ð→ THR(A)C2n Ð→ THR(A)C2n−1 .

The components of the fixed-points of the fibre are then calculated by the colimit

π0(ER+ ⊗C2n
THR(A))Z /2 ≅ colim

OR
π0 THR(A),

where OR is the full subcategory of the orbit category of D2n generated by the reflections and
the trivial group (this follows for example from the fact that ER is the colimit over OR of
the funtor that takes D2n/H to the discrete space D2n/H, see e.g. [LO01, Lemma 2.2]). The
crucial difference between 2 and the odd primes is that for the prime 2 the category OR has two
components, generated by the distinct conjugacy classes of the reflections τ and στ , where σ is
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the generator of the cyclic group C2n . Therefore the colimit above is isomorphic to the pushout
of abelian groups

π0(ER+ ⊗C2n
THR(A))Z /2 ≅ colim

OR
π0 THR(A) ≅ (π0 THR(A)Z /2)C2 ⊕A (π0 THR(A)Z /2)C2

along the transfer maps tran
Z /2
e ∶A→ (π0 THR(A)Z /2)C2 , where the coinvariants are taken with

respect to the action of the Weyl group C2. Under this identification, the transfer map to
π0 THR(A)D2n is the transfer tranD2n

Z /2 on the first summand, and σn+1 tranD2n

Z /2 on the second
summand, where σn+1 is the action of the generator of the Weyl group. The corresponding long
exact sequence on homotopy groups is then

. . .

∂
��

(π0 THR(A)Z /2)C2 ⊕A (π0 THR(A)Z /2)C2

tran
D2n

Z /2 +σn+1 tran
D2n

Z /2
// π0 THR(A)D2n

R // π0 THR(A)D2n−1

��

0.

Let us now compute the boundary map of this sequence in the case where k is a perfect field of
characteristic 2 with the trivial involution. Since k is a field of characteristic 2, the isomorphism
of [DMPR21, Corollary 5.2] is

π0 THR(k)Z /2 ≅ k ⊗S k

where S ⊂ k is the subfield of squares. Moreover since k is perfect, the restriction map

π0 THR(k)Z /2 ≅ k ⊗S k Ð→ k ≅ π0 THH(k),

which is induced by the multiplication map of k, is an isomorphism. Since this map is an
isomorphism and is Weyl equivariant, and the action of the Weyl group on k is trivial, the Weyl
action on the source must also be trivial. The transfer map

k ≅ π0 THH(k)
tranZ /2

e // π0 THR(k)Z /2 res

≅
// k

is multiplication by 2 by the double-coset formula, and therefore zero. Thus the long exact
sequence above becomes

. . .
∂ // k ⊕ k

tran
D2n

Z /2 +σn+1 tran
D2n

Z /2
// π0 THR(k)D2n

R // π0 THR(k)D2n−1 // 0.

Now suppose inductively that the restriction map res∶π0 THR(k)D2n−1 → π0 THR(k)C2n−1 is an
isomorphism, and identify the target with Wn(k; 2) by the isomorphism of [HM97, Theorem
F]. Under this isomorphism the maps R, V and F on π0 of the cyclic fixed-points of THH
correspond to the homonymous operators on the Witt vectors by [HM97, Theorem 3.3]. Thus
the restriction map defines a commutative diagram with exact rows

. . .
∂ // k ⊕ k

(1,1)
��

tran
D2n

Z /2 +σn+1 tran
D2n

Z /2
// π0 THR(k)D2n

R //

res

��

π0 THR(k)D2n−1 //

res≅
��

0

. . .
0 // k

V // Wn+1(k; 2) R // Wn(k; 2) // 0
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where the right vertical map is an isomorphism. It is therefore sufficient to show that the image
of ∂ is equal to the kernel of (1,1), which is the diagonal ∆ ⊂ k ⊕ k. Since the connecting
homomorphism of the bottom sequence is zero (see [HM97, Proposition 3.3]), we know at least
that the image of ∂ is included in ∆, and that the middle restriction map res is surjective. In
order to understand the image of ∂, we map the sequence above to the corresponding sequence
on geometric fixed-points of Proposition 2.9. Since k is perfect, this last sequence is determined
by Theorem 4.7, giving a diagram with exact rows

. . . // π1 THR(k)D2n−1

φ

��

∂ // k ⊕ k

id

��

tran
D2n

Z /2 +σn+1 tran
D2n

Z /2
// π0 THR(k)D2n

R //

��

π0 THR(k)D2n−1 //

��

0

. . .
0

R // k ⊕ k // k ⊕ k V

0
// k ≅

R // k // 0.

The second vertical map is the identity because it is induced by the sum of two copies of the
canonical map π0 THR(k)Z /2 → π0 THR(k)φZ /2, which is the canonical projection k ⊗S k →
(k/2)⊗k (k/2) where k acts on k/2 via the Frobenius, which under our chosen identifications of
source and target with k is the identity. Since the map below ∂ must be an isomorphism, the
image of ∂ is isomorphic to the image of the vertical map φ. The isotropy separation sequence
for the Z /2-spectrum THR(A)C2n−1 gives a long exact sequence

π1 THR(k)D2n−1
φ
// π1(THR(k)C2n−1 )φZ /2 // (π0 THR(k)C2n−1 )Z /2

tran
D

2n−1

C
2n−1// π0 THR(k)D2n−1 .

By the inductive assumption the Z /2-action on π0 THR(k)C2n−1 is trivial (since res is surjective)
and the transfer tran

D2n−1

C2n−1
identifies with the multiplication by 2 map on the Witt vectors

Wn(k; 2), whose kernel is k. It follows that the cokernel of φ, and therefore that of ∂, is
isomorphic to k. Thus, if k is finite, the image of ∂ must have as many elements as k does, and
therefore since it is included in ∆ it must be equal to it. This concludes the proof in the case
where k is finite.

Let us point out that ∂ is generally not k-linear, and therefore we cannot conclude that its
image is the diagonal if k is infinite. In this case, we only know that (k ⊕ k)/ Im∂ and k are
isomorphic as abelian groups. We do however know that the image of ∂ is ∆ for the finite field
F2, and the naturality of ∂ with respect to the morphism of fields F2 → k shows that at least
(1,1) must belong to Im∂. Since R∶THR(k)D2n → THR(k)D2n−1 is a map of ring spectra, ∂ is
a map of π0 THR(k)D2n -modules. Moreover the isomorphism

π0(ER+ ⊗C2n
THR(k))Z /2 ≅ colim

OR
π0 THR(k) ≅ π0 THR(k)Z /2 ⊕k π0 THR(k)Z /2 ≅ k ⊕ k

is an isomorphism of π0 THR(k)D2n -modules, where π0 THR(k)D2n acts on each πH0 THR(k)
via the restriction map, and the transfers are linear over these restrictions by the Frobenius
reciprocity formula of the D2n -Mackey functor π0 THR(k). In particular π0 THR(k)D2n acts
diagonally on k ⊕ k, via the restriction map resD2n

e ∶π0 THR(k)D2n → π0 THH(k) = k. This map
factors as

π0 THR(k)D2n
resÐ→ π0 THR(k)C2n ≅Wn−1(k; 2) Fn−2ÐÐÐ→ k

where the first map is surjective by the argument above. Since k is of characteristic 2, the
iterated Frobenius is given by

Fn−2(a1, . . . , an−1) = a2n−2

1

(see e.g. [Hes15, Lemma 1.8]), which is surjective since k is perfect. Thus given any x ∈ k, we
can choose an element z of π0 THR(k)D2n which maps to x by the restriction resD2n

e . Then
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since the image of ∂ is a submodule of k ⊕ k containing (1,1), we have that (x,x) = z ⋅ (1,1) is
also in the image of ∂, and thus Im∂ = ∆.

The identification of the Witt vectors operators V , F and R follows from the commutative
diagrams

π0 THR(k)D2n−1

tran
D2n

D
2n−1 //

res≅
��

π0 THR(k)D2n

res≅
��

π0 THR(k)C2n−1

tran
C2n

C
2n−1 // π0 THR(k)C2n

π0 THR(k)D2n

res
D2n

D
2n−1 //

res≅
��

π0 THR(k)D2n−1

res≅
��

π0 THR(k)C2n

res
C2n

C
2n−1 // π0 THR(k)C2n−1

π0 THR(k)D2n
R //

res≅
��

π0 THR(k)D2n−1

res≅
��

π0 THR(k)C2n
R // π0 THR(k)C2n−1

and the fact that the maps of the bottom row correspond respectively to V,F and R by [HM97,
Theorem F]. Note that to show that the first diagram commutes one needs to use the double-
coset formula and the fact that the quotient D2n−1/D2n/C2n is trivial.

Remark 4.10. The restriction map of Theorem 4.9 is not generally an isomorphism. For
example for the ring of integers, there is a map of short exact sequences

0 // Z⊕2 Z //

��

π0 THR(Z)D2
R //

res

��

π0 THR(Z)Z /2

res≅
��

// 0

0 // Z V // W2(Z; 2) // Z // 0

where Z⊕2 Z is the pushout of the transfer 2∶Z→ Z along itself, which is isomorphic to Z×Z /2,
and the left-hand map is the identity on each summand. Thus the middle restriction is not an
isomorphism, and moreover π0 THR(Z)D2 has 2-torsion.

The top row of the diagram comes from the long exact sequence on homotopy groups for
the map R of the proof of Theorem 4.9, upon showing that its connective homomorphism ∂ is
in this case zero. To see this, we map the sequence to the analogous sequence for F2 via the
canonical quotient map Z→ F2, and obtain a commutative diagram with exact rows

π1 THR(Z)Z /2

��

∂ // Z⊕2 Z //

��

π0 THR(Z)D2
R //

��

π0 THR(Z)Z /2

��

// 0

π1 THR(F2)Z /2 ∂ // F2⊕F2
V // W2(F2; 2) // F2

// 0

where the second vertical map from the left is induced by the projection on each summand.
Thus if we can show that the left vertical map is zero, we will have that the upper ∂ maps
into the kernel of the projection Z⊕2 Z → F2⊕F2, which is the subgroup of elements [2n,2k]
in Z⊕2 Z, and isomorphic to Z. The group π1 THR(Z)Z /2 is however isomorphic to Z /2 by
[DMPR21, Proposition 5.22], and therefore ∂ is 0.

We still need to verify that the left vertical map is zero. We look at its effect on the isotropy
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separation sequences for the Z /2-spectrum THR, and obtain a diagram

π1 THR(Z)Z /2

��

φ
// π1 THR(Z)φZ /2 //

0

��

Z 2 //

��

Z

��

π1 THR(F2)Z /2 φ
// π1 THR(F2)φZ /2 // F2

0 // F2 ˙

The map π1 THR(Z)φZ /2 → π1 THR(F2)φZ /2 is equal to 0 by the calculation in the proof of
[DMPR21, Theorem 5.20]. In the bottom row the lower left map φ is injective. This follows by
the last part of the proof of [DMPR21, Theorem 5.15], where this map is explicitly identified.
Hence we conclude that the left vertical map is zero.

One can in fact show that the connecting homomorphism is zero also for the larger dihedral
groups, by calculating the first part of the long exact sequence for R on geometric fixed points
using the calculations of section 5.1. One then obtains short exact sequences

0 // Z⊕2 Z // π0 THR(Z)D2n+1
R // π0 THR(Z)D2n // 0

for every n ≥ 1. We will address this in future work.

Proposition 4.11. Let k be a perfect field of characteristic 2. The tower of abelian groups

⋅ ⋅ ⋅→ π1 THR(k)D2n
RÐ→ π1 THR(k)D2n−1

RÐ→ ⋅ ⋅ ⋅ RÐ→ π1 THR(k)Z /2

satisfies the Mittag-Leffler condition, and therefore there is an isomorphism of rings

π0 TRR(k; 2)Z /2 ≅W (k; 2).

Proof. We need to analyse the images in π1 of the composite maps Rj . Let (⊉ C2j) be the
family of subgroups of D2n+j that do not contain C2j (it is the family R when j = 1). By taking
the D2n+j /C2j -fixed points of the isotropy separation sequence for the subgroup C2j ⊂D2n+j we
obtain a fibre sequence of spectra

(THR(k)⊗E(⊉ C2j)+)D2n+j Ð→ THR(k)D2n+j Ð→ (THR(k)φC2j )D2n+j /C2j ,

and after identifying the third term with THR(k)D2n using the real cyclotomic structure we
obtain a fibre sequence

(THR(k)⊗E(⊉ C2j)+)D2n+j Ð→ THR(k)D2n+j
RjÐ→ THR(k)D2n .

The group of components of the fibre can be calculated as the colimit

π0(THR(k)⊗E(⊉ C2j)+)D2n+j ≅ colim
O(⊉C

2j
)

π0 THR(k)

where O(⊉C2j ) is the full subcategory of the orbit category of D2n+j spanned by the subgroups
in (⊉ C2j). Under this identification, the left map of the fibre sequence is induced on the colimit
by the transfer maps tran

D2n+j

H ∶πH0 THR(k) → π
D2n+j

0 THR(k) for H ∈ O(⊉C2j ). The category
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O(⊉C2j ) is equivalent to the category

Z /2

Z /2

'' // D2

Z /2

��
// D4

Z /2

��
// . . . // D2j−2

Z /2

��
// D2j−1

Z /2

��

eD2n+j ::

??

  

// C2

D2n+j−1

��

==

!!

// C4

D2n+j−2

��

>>

  

// C8

D2n+j−3

��

>>

  

// . . . //

==

!!

C2j−1

D2n+1

��

;;

##

Z /2 //

Z /2

77 D2

Z /2

FF
// D4

Z /2

FF
// . . . // D2j−2

Z /2

GG
// D2j−1

Z /2

GG

Since the dihedral actions extend to an action of O(2), the cyclic groups C2n−i ≤ D2n−i act
trivially on π0 THR(A)C2i and one can replace the dihedral groups of automorphisms of the
middle row by the groups Z /2 =D2n+j−i/C2n+j−i . Thus this is the colimit over a product category,
and it is isomorphic to

(colim ( π0 THR(k)D2j−1 THR(k)C2j−1
tranoo tran // π0 THR(k)D2j−1 ))Z /2.

Since the restriction map for the inclusion C2j−1 ⊂D2j−1 is an isomorphism, the Weyl actions on
π0 THR(k)D2j−1 are trivial, and by the previous calculation this is

π0(THR(k)⊗E(⊉ C2j)+)D2n+j ≅ colim ( Wj(k; 2) Wj(k; 2)2oo 2 // Wj(k; 2) )

≅Wj(k; 2)⊕ (Wj(k; 2)/2).

The last isomorphism sends the class of (x, y) to (x + y, [y]). We then obtain a long exact
sequence

. . . // π1 THR(k)D2n+j
Rj // π1 THR(k)D2n

∂ // Wj(k; 2)⊕Wj(k; 2)/2
(V n+1,0)

//

(V n+1,0)
// Wn+j+1(k; 2) Rj // Wn+1(k; 2) // 0 ,

where the map V n+1 comes from the identification of the Verschiebung with the transfer of
Theorem 4.9.

We need to show that after a sufficiently large value of j the image of Rj is constant, that
is that the projection map

π1 THR(k)D2n / ImRj+l Ð→ π1 THR(k)D2n / ImRj

is an isomorphism. By exactness, the target of this map is isomorphic to

π1 THR(k)D2n / ImRj = π1 THR(k)D2n /ker∂ ≅ Im∂ = ker(V n+1,0) =Wj(k; 2)/2,

and similarly for the source. Thus the images stabilise if and only if the map

Rl∶Wj+l(k; 2)/2Ð→Wj(k; 2)/2

is an isomorphism, which is the case since k is perfect as both sides identify with k and R with
the identity.
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4.2.3 TCR of perfect fields of characteristic 2

We now combine the results of the previous two sections to prove the following theorem.

Theorem 4.12. For any perfect field k of characteristic 2, there is an equivalence of Z /2-
equivariant ring spectra

TRR(k; 2) ≃HW (k; 2),

where W (k; 2) is the constant Green functor of the abelian group with trivial involution W (k; 2).

Proof. By Theorem 4.9 and Proposition 4.11, we understand the Mackey functor of components
of TRR(k; 2). Let TRR(k; 2)→HW (k; 2) be the zeroth Postnikov section. The diagram

TRR(k; 2)

��

// HW (k; 2)

��

THR(k; 2) // Hk

commutes, where the right vertical map is induced by the projection W (k; 2)→ k which induces
an isomorphism W (k; 2)/2 ≅ k.

The map TRR(k; 2) → HW (k; 2) is an underlying equivalence by [HM97, Theorem 4.5].
Hence it suffices to show that it is an equivalence after applying the geometric fixed points. By
the calculation of Theorem 4.7 (and in particular using the formula for R) we see that the map
TRR(k; 2)φZ /2 → THR(k; 2)φZ /2 induces injections on homotopy groups. Hence it suffices to
show that after applying the geometric fixed points the lower horizontal map induces an injection
on the image of the left vertical map. Indeed, this will imply that the upper horizontal map
induces an injection on the homotopy groups of the geometric fixed points, and since these are
either 0 or 1 dimensional k-vector spaces (the target has homotopy groupsW (k; 2)/2 ≅ k in even
non-negative degrees) it must also be surjective. The lower map is, on geometric fixed-points,
the multiplication map

HkφZ /2 ⊗Hk HkφZ /2 →HkφZ /2.

By [DMPR21, Proposition 5.19] the induced map on homotopy groups

k[w1,w2]Ð→ k[v],

where ∣w1∣ = 1, ∣w2∣ = 1 and ∣v∣ = 1, sends both w1 and w2 to v. This implies that its restriction

k[w1w2]Ð→ k[v]

is injective, and by the description of R of Theorem 4.7 k[w1w2] is exactly the image of the left
vertical map on homotopy groups after applying geometric fixed points.

Corollary 4.13. For any perfect field k of characteristic 2, one has an equivalence of genuine
Z /2-spectra

TCR(k; 2) ≃HZ2 ⊕Σ−1Hcoker(1 − F ),

where F ∶W (k; 2)→W (k; 2) is the Witt vector Frobenius.

Proof. It follows from Theorem 4.9 that F ∶TRR(k; 2) → TRR(k; 2) corresponds to the Witt
vector Frobenius HF ∶HW (k; 2) → HW (k; 2) under the equivalence of Theorem 4.12. It is an
easy exercise in Witt vectors to see that ker(1 − F ) ≅W (F2; 2) ≅ Z2. Hence we get

π0 TCR(k; 2) ≅ Z2
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and
π−1 TCR(k; 2) ≅ coker(1 − F ),

and all the other homotopy Mackey functors of TCR(k; 2) vanish. Since coker(1 − F ) is a Z2-
module coming from a Z2-module, its homological dimension over the Green functor Z2 is less
than or equal to 1. The universal coefficient theorem in the category of modules over the Green
functor Z2 now implies that in fact TCR(k; 2) splits as claimed (in case k = F2 this is obvious
since F = id).

5 TCR of the integers and perfect rings
In this section we will calculate the homotopy type of TCR(A; 2)φZ /2 where A is either a perfect
F2-algebra or 2-torsion free ring with a perfect mod 2 reduction (for example the Witt vectors
of a perfect F2-algebra). We will first calculate TCR(Z; 2)φZ /2, and then deduce TCR(A; 2)φZ /2

by a base-change formula from F2 and Z.

5.1 The geometric fixed-points of TCR(Z; 2)
Let us denote by NA ∶= NC2

e HA the C2-equivariant norm of the Eilenberg-MacLane ring spec-
trum of a commutative ring A. We regard HZ (the C2-equivariant Eilenberg-MacLane spectrum
for the constant Mackey functor Z) as an N Z-module via the multiplication map N Z → HZ.
We then consider HZφZ /2 as an H Z-module via the induced map on geometric fixed-points
H Z ≃ (N Z)φZ /2 →HZφZ /2, and obtain a splitting of H Z-modules

HZφZ /2 ≃⊕
n≥0

Σ2nH F2 .

Again using the description of THR(Z)φZ /2 as the derived smash product of Lemma 1.2 and
the splitting above just as in Lemma 4.4 , we obtain an equivalence of genuine C2-spectra

THR(Z)φZ /2 ≃⊕
n≥0

Σ2nρ((N F2)⊗N ZHZ)⊕ ⊕
(n,m)
0≤n<m

Σ2n+2m(C2)+⊗((H F2⊗H F2)⊗H Z⊗H ZH Z).

In order to apply Theorem 2.14 to compute TCR(Z; 2)φZ /2, we need to understand the genuine
C2-fixed points of this spectrum. By the Wirthmüller isomorphism, the genuine C2-fixed point
spectrum of the induced summands are

(Σ2n+2m(C2)+ ⊗ ((H F2⊗H F2)⊗H Z⊗H ZH Z))C2 ≃ Σ2n+2m((H F2⊗H F2)⊗H Z⊗H ZH Z)
≃ Σ2n+2mH F2⊕Σ2n+2m+1H F2 .

The genuine fixed points of the terms Σ2nρ((N F2) ⊗N Z HZ) are more laborious, and require
some preliminary lemmas.

Lemma 5.1. Let R be a ring spectrum, and f ∶A → B a map of R-modules. Then the total
cofibre of the square of NR-modules

IndC2
e (A⊗A)

Ind
C2
e (A⊗f)

//

ĩd
��

IndC2
e (A⊗B)

f̃⊗B
��

NA
Nf

// NB
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is naturally equivalent to the norm N(cof(f)) of the cofibre of f . Here IndC2
e is left adjoint

to the forgetful functor from NR-modules in C2-spectra to R ⊗ R-modules in spectra, and the
vertical maps are adjoint respectively to the identity of A⊗A and to f ⊗B.

Proof. When R = S this follows readily from [HHR16, A.43(1), B.97] in the special case where
G = C2. We believe their argument generalises to a general base ring spectrum R, but in the
special case of C2 we can give the following, simpler argument. Let us work in the category
of orthogonal spectra, and suppose without loss of generality that the underlying orthogonal
spectra of R, A and B are flat cofibrant, that f ∶A→ B is a cofibration of orthogonal R-module
spectra. In this case the cofibre of f is equivalent to the strict cofibre C of f , and the diagram
of the lemma is equivalent to the (strictly commutative) diagram of orthogonal C2-spectra

(A⊗A)⊕ (A⊗A)
(A⊗f)⊕(A⊗f)

//

��

(A⊗B)⊕ (A⊗B)

��

A⊗A
f⊗f

// B ⊗B

where the C2-action on the bottom row switches the two smash factors (see our working definition
of the norm in §1.2), and on the top row it switches the two summands. The left vertical map
is the identity on the first summand and the C2-action of the norm on the second, and the
right vertical map is f ⊗ B on the first summand and f ⊗ B followed by the C2-action of the
norm of B on the second. The projection π∶B → C onto the strict cofibre of f induces a map
of NR-modules π ⊗ π∶B ⊗B → C ⊗C, which is (strictly) trivial when restricted respectively to
the top-right and bottom-left corner of the square. It therefore induces a map of NR-modules
from the total cofibre of the square to the norm C ⊗C of C. Let us show that this map is an
equivalence on underlying spectra and on geometric fixed-points.

On underlying spectra, the square above is equivalent to the square

(A⊗A)⊕ (A⊗A)
(A⊗f)⊕(f⊗A)

//

∇
��

(A⊗B)⊕ (B ⊗A)

��

A⊗A
f⊗f

// B ⊗B ,

by applying the flip isomorphism to the second summands of the top row. Since we are pushing
out the coproduct of two maps along the fold map, a standard argument shows that the total
cofibre of this square is equivalent to the total cofibre of the commutative square of spectra

A⊗A
A⊗f

//

f⊗A
��

A⊗B

f⊗B
��

B ⊗A
B⊗f

// B ⊗B

and the map from the total cofibre to C ⊗C is again induced by π ⊗ π. This map is clearly an
equivalence of spectra (for example by computing the cofibres horizontally, and then vertically).

Let us now verify the claim on geometric fixed-points. By applying geometric fixed points
to the square of NR-spectra above, we find the square of spectra

0 //

��

0

��

(A⊗A)φC2

(f⊗f)φC2

// (B ⊗B)φC2 ,
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whose total cofibre is the cofibre of (f ⊗ f)φC2 . Since (f ⊗ f)φC2 is naturally equivalent to f ,
(π ⊗ π)φC2 is an equivalence.

Lemma 5.2. There is a fibre sequence of C2-spectra

H(Z⊕Z /2,w)
H(2,0)
ÐÐÐÐ→HZÐ→ (N F2)⊗N ZHZ

where the left-hand spectrum is the Eilenberg MacLane spectrum of the abelian group Z⊕Z /2
with involution w(a, x) = (a, [a] + x), and the projection is induced by tensoring with the norm
of the unit map Nη∶N Z→ N F2. In particular the homotopy Mackey functors of the cofibre are

π0((N F2)⊗N ZHZ) ≅ ( Z /2
//
Z /4oo )

where the restriction is the canonical projection and the transfer is injective, π1((N F2) ⊗N Z
HZ) ≅ Z /2 which is the constant Mackey functor of Z /2, and the other homotopy groups vanish.

Proof. By Lemma 5.1, there is an equivalence of N Z-modules between the total cofibre of the
square of N Z-modules

IndC2
e (H Z⊗H Z)

Ind
C2
e (H Z⊗2)

//

ĩd
��

IndC2
e (H Z⊗H Z)

2̃⊗H Z
��

N Z
N(2)

// N Z

and N(Z /2), induced by the projection map Z→ Z /2. By applying the functor (−)⊗N ZHZ to
this square, we obtain the square of C2-spectra

IndC2
e (H Z)

Ind
C2
e (2)

//

ĩd

��

IndC2
e (H Z)

2̃

��

HZ
4

// HZ.

In the first row, IndC2
e is left adjoint to the forgetful functor from HZ-modules C2-spectra to

H Z-modules spectra, and for the identification of the first row we used that induction and
base-change commute (since their right adjoints do). Since (−) ⊗N Z HZ preserves pushouts,
the total cofibre of the last square is (N F2) ⊗N Z HZ. Thus, the fibre sequence of the Lemma
follows once we show that the square of C2-spectra

IndC2
e (H Z)

Ind
C2
e (2)

//

ĩd

��

IndC2
e (H Z)

(̃id,0)
��

HZ
(2,0)

// H(Z⊕Z /2,w)

is a pushout, where the right vertical, adjoint to the inclusion of the first summand, sends (a, b)
to (a + b, [b]). Indeed, the unique map H(Z⊕Z /2,w) → H Z compatible with the maps of
the squares will then be the map (2,0) appearing as the left-hand map of the sequence of the
Lemma, whose cofibre is the total cofibre (N F2)⊗N ZHZ as calculated above.

To see that the last square is a pushout, we check that it is so on underlying spectra and
on geometric fixed-points. The pushout of underlying spectra is H((Z⊕Z)/(2,−2)) with the
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vertical map given by the projection onto the cokernel and the horizontal map [2,0]∶H Z →
H((Z⊕Z)/(2,−2)). This is equivalent to H(Z⊕Z /2) by the isomorphism of abelian groups
that sends [a, b] to (a+ b, [b]), and under this isomorphism the maps correspond to those of the
last square.

Let us now check that the square is a pushout on geometric fixed-points. The C2-geometric
fixed-points square is

0 //

��

0

��

HZφC2

(2,0)φC2

// H(Z⊕Z /2,w)φC2

and therefore we need to verify that the bottom map (2,0)φC2 is an equivalence. To this end,
let us compute the cofibre of (2,0)∶HZ → H(Z×Z /2,w) in C2-spectra. The quotient of (2,0)
is Z /2⊕Z /2 with the involution w(y, x) = (y, y + x). Its fixed-points are 0⊕Z /2, which is also
the quotient of the map (2,0)∶Z→ (Z⊕Z /2)C2 = (2Z)⊕Z /2. Thus there is a fibre sequence of
C2-spectra

HZ
(2,0)
ÐÐÐ→H(Z⊕Z /2,w)Ð→H(Z /2⊕Z /2,w).

The cofibre is equivariantly equivalent toH(Z /2⊕Z /2, τ) where τ flips the summands. Therefore
its geometric fixed-points vanish, and (2,0)φC2 is an equivalence.

Finally, the description of the homotopy Mackey functor of (N F2) ⊗N Z HZ follows imme-
diately from the long exact sequence induced by the fibre sequence, after identifying the kernel
and cokernel of the first map.

Lemma 5.3. The C2-equivariant homotopy groups of Σkρ((N F2)⊗N ZHZ) for even k are

πC2
∗ Σkρ((N F2)⊗N ZHZ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

Z /2 k ≤ ∗ ≤ 2k − 1
Z /4 ∗ = 2k
Z /2 ∗ = 2k + 1

0 otherwise.

Proof. We calculate the equivariant homotopy groups from the fibre sequence of C2-spectra

ΣkρH(Z⊕Z /2,w)
(2,0)
ÐÐÐ→ ΣkρHZÐ→ Σkρ(N F2)⊗N ZHZ

from Lemma 5.2. We start by calculating the equivariant homotopy groups of the first two
spectra. These are respectively the Bredon homology groups of Skρ with coefficients in the
Mackey functors of the abelian groups Z with the the trivial involution, and Z⊕Z /2 with the
involution w(a, x) = (a, [a] + x). These are respectively the homology of the chain complexes

(0→ Z 0Ð→ Z 2Ð→ . . .
0Ð→ Z 2Ð→ Z 0Ð→ Z 2Ð→ Z→ 0)

where the non-zero groups are sitting between degree k and 2k (and k is even), and

(0→ Z×Z /2 1−wÐÐ→ Z×Z /2 1+wÐÐ→ . . .
1−wÐÐ→ Z×Z /2 1+wÐÐ→ Z×Z /2 1−wÐÐ→ Z×Z /2 1+wÐÐ→ (2Z)×Z /2→ 0)

with the non-zero groups sitting in the same degrees. The first complex has homology groups
Z /2 in even degrees between k and 2k − 2, a Z in degree 2k, and zero everywhere else. The
differentials of the second complex are respectively

(1 +w)(a, x) = (2a, [a]) (1 −w)(a, x) = (0, [a])
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for all (a, x) ∈ Z×Z /2. Its homology is then concentrated in even degrees between k and 2k,
with

((2Z) ×Z /2)/⟨(2a, [a])⟩ ≅ Z /2

in even degrees between k and 2k − 2 and (2Z) ×Z /2 in degree 2k. The long exact sequence of
the above fibre sequence therefore splits and gives rise to exact sequences

0→ πC2

2k+1(Σ
kρ(N F2)⊗N ZHZ)Ð→ (2Z) ×Z /2

(2,0)
ÐÐÐ→ ZÐ→ πC2

2k (Σ
kρ(N F2)⊗N ZHZ)→ 0

and

0→ πC2

2k−1(Σ
kρ(N F2)⊗N ZHZ)Ð→ Z /2 0Ð→ Z /2Ð→ πC2

2k−2(Σ
kρ(N F2)⊗N ZHZ)→ 0

0→ πC2

2k−3(Σ
kρ(N F2)⊗N ZHZ)Ð→ Z /2 0Ð→ Z /2Ð→ πC2

2k−4(Σ
kρ(N F2)⊗N ZHZ)→ 0

⋮

0→ πC2

k+1(Σ
kρ(N F2)⊗N ZHZ)Ð→ Z /2 0Ð→ Z /2Ð→ πC2

k (Σkρ(N F2)⊗N ZHZ)→ 0

which give the groups of the statement.

Since HZ → (N F2)⊗N Z HZ is a map of C2-equivariant algebras, the fixed point spectrum
(Σkρ(N F2) ⊗N Z HZ)C2 is a module over HZ and therefore splits as a wedge of Eilenberg-
MacLane spectra. As a consequence of the decomposition of Lemma 4.3 and the calculation of
Lemma 5.3, we obtain an equivalence

(THR(Z)φZ /2)C2 ≃ ⊕
(n,m)
n>m≥0

(Σ2n+2m(H F2⊕ΣH F2))⊕⊕
n≥0

(Σ4n(H Z /4⊕ΣH F2))

⊕ ⊕
(n,m)
0≤n<m

(Σ2n+2m(H F2⊕ΣH F2)).

We recall that the underlying non-equivariant spectrum of THR(Z)φZ /2 is equivalent to

⊕
(n,m)
n>m≥0

(Σ2n+2m(H F2⊕ΣH F2))⊕⊕
n≥0

(Σ4n(H F2⊕ΣH F2))⊕ ⊕
(n,m)
0≤n<m

(Σ2n+2m(H F2⊕ΣH F2)),

and we now want to identify the maps r, f ∶ (THR(Z)φZ /2)C2 → THR(Z)φZ /2 under these split-
tings.

Proposition 5.4. Under the above equivalences the map f ∶ (THR(Z)φZ /2)C2 → THR(Z)φZ /2

corresponds to the map

⊕
(n,m)
n>m≥0

(Σ2n+2m(H F2⊕ΣH F2))⊕⊕
n≥0

(Σ4n(H Z /4⊕ΣH F2))⊕ ⊕
(n,m)
0≤n<m

(Σ2n+2m(H F2⊕ΣH F2))→

⊕
(n,m)
n>m≥0

(Σ2n+2m(H F2⊕ΣH F2))⊕⊕
n≥0

(Σ4n( H F2 ⊕ΣH F2))⊕ ⊕
(n,m)
0≤n<m

(Σ2n+2m(H F2⊕ΣH F2))

which kills the (n > m)-summands, embeds diagonally the (n < m)-summands into the sum of
the summands (n >m) and (n <m), and on the remaining summands it is given by

pr⊕ id∶Σ4n(H Z /4⊕ΣH F2)→ Σ4n(H F2⊕ΣH F2).
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Proof. That f sends the (n <m)-summands diagonally into the sum of the summands (n >m)
and (n <m) follows from Lemma 4.3. For the remaining summands, we need to understand the
restriction map

resC2
e ∶ (Σ2nρ((N F2)⊗N ZHZ))C2 → Σ4n((H F2⊗H F2)⊗H Z⊗H ZH Z).

For every fixed n ≥ 0, the sequence

Σ2nρH(Z⊕Z /2,w)
(2,0)
ÐÐÐ→ Σ2nρHZÐ→ Σ2nρ(N F2)⊗N ZHZ

is a fibre sequence of HZ-modules, and it thus induces a commutative diagram of H Z-modules

(Σ2nρH(Z⊕Z /2,w))C2

res
C2
e

��

(2,0)
// (Σ2nρHZ)C2

res
C2
e

��

// (Σ2nρ(N F2)⊗N ZHZ)C2 //

res
C2
e

��

(Σ2nρ+1H(Z⊕Z /2,w))C2

res
C2
e

��

Σ4n(H Z⊕H Z /2)
(2,0)

// Σ4nH Z // Σ4n(H F2⊕ΣH F2) // Σ4n+1(H Z⊕H Z /2).

Using the Bredon complexes in the proof of Lemma 5.3, we see that the left hand square in the
latter diagram is equivalent to the commutative square

Σ4n(H(2Z⊕Z /2))⊕ ( ⊕
(n,m)
n>m≥0

Σ2n+2mH F2)

(incl⊕ id)⊕0

��

(2,0)⊕0
// Σ4nH Z⊕( ⊕

(n,m)
n>m≥0

Σ2n+2mH F2)

id⊕0

��

Σ4n(H Z⊕H F2)
(2,0)

// Σ4nH Z .

After taking horizontal cofibres it induces the map

resC2
e ∶Σ4nH Z /4⊕Σ4n+1H F2⊕ ⊕

(n,m)
n>m≥0

(Σ2n+2m(H F2⊕ΣH F2))→ Σ4nH F2⊕Σ4n+1H F2,

which is given by pr⊕ id⊕0.

The identification of the map r∶ (THR(Z)φZ /2)C2 → THR(Z)φZ /2 in terms of the above
splittings will contain higher stable cohomology operations, and this complicates the calculation
of the equaliser of r and f . However, like in the case of fields, it is possible to compute r on
homotopy groups and after identifying only a portion of the matrix describing r we will be able
to compute TCR(Z; 2)φZ /2 using Theorem 2.14.

Proposition 5.5. Under the above splittings, the map r∶ (THR(Z)φZ /2)C2 → THR(Z)φZ /2

corresponds to the map

r∶ ⊕
(n,m)
n>m≥0

(Σ2n+2m(H F2⊕ΣH F2))⊕⊕
n≥0

(Σ4n(H Z /4⊕ΣH F2))⊕ ⊕
(n,m)
0≤n<m

(Σ2n+2m(H F2⊕ΣH F2)) →

⊕
(n,m)
n>m≥0

(Σ2n+2m(H F2⊕ΣH F2))⊕⊕
n≥0

(Σ4n( H F2 ⊕ΣH F2))⊕ ⊕
(n,m)
0≤n<m

(Σ2n+2m(H F2⊕ΣH F2))

with the following properties. It is zero on the (n < m)-summands. On the summands (n > m)
it has components

Σ2n+2m(H F2⊕ΣH F2)→ Σ2n′+2m′

(H F2⊕ΣH F2)
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which are zero if n ≠ n′ or m′ <m, and the identity if n = n′ and m =m′. The entry

Σ4n(H Z /4⊕ΣH F2)→ Σ4n(H F2⊕ΣH F2)

is given by the matrix ( pr 0

Σ4nβ id
), where β∶H Z /4 → ΣH F2 is the Bockstein associated to the

short exact sequence
0→ Z /2→ Z /8→ Z /4→ 0.

The remaining entries are zero on homotopy groups, but generally contain higher stable coho-
mology operations (cf. [NS18, Section IV.1]).

Proof. From Lemma 4.3 we know that r vanishes on the summands (n < m), and that since
r preserves the wedge decomposition over n its components vanish for n ≠ n′. It remains to
identify

r∶ (Σ2nρ(N F2)⊗N ZHZ)C2 Ð→ (Σ2nρ(N F2)⊗N ZHZ)φC2

for every fixed n ≥ 0. The fibre sequence of Lemma 5.2 induces a commutative diagram

(Σ2nρH(Z⊕Z /2,w))C2

��

(2,0)
// (Σ2nρHZ)C2

��

// (Σ2nρ(N F2)⊗N ZHZ)C2 //

��

(Σ2nρ+1H(Z⊕Z /2,w))C2

��

Σ2nH(Z⊕Z /2,w)φC2
(2,0)

// Σ2nHZφC2 // Σ2n((N F2)⊗N ZHZ)φC2 // Σ2n+1H(Z⊕Z /2,w)φC2 .

For any underlying connective C2-spectrum X, the canonical map πC2
∗ (ΣlρX)→ π∗((ΣlρX)φC2)

induces an isomorphism in degrees ∗ < 2l and a surjection in degree ∗ = 2l, since the homotopy
orbits of ΣlρX are (2l− 1)-connected. By applying this fact to the vertical maps of the commu-
tative diagram above we obtain the description of r on the summands (n > m). Let us finally
compute the map

r∶Σ4n(H Z /4⊕ΣH F2)→ Σ4n(H F2⊕ΣH F2).

Using that the fibre sequence of Lemma 5.2 is HZ-linear, by considering the relevant summands
in the diagram above we get a morphism of exact triangles

Σ4n(H2Z⊕H F2)

(pr,id)
��

(2,0)
// Σ4nH Z

pr⊕0
//

pr

��

Σ4nH Z /4⊕Σ4n+1H F2
Σ4nβZ⊕id

//

r

��

Σ4n+1(H2Z⊕H F2)

(pr,id)
��

Σ4nH F2
0 // Σ4nH F2

id⊕0
// Σ4nH F2⊕Σ4n+1H F2

0⊕id
// Σ4n+1H F2,

where r is the map we are trying to compute, and βZ is the Bockstein of

0→ 2Z 2Ð→ Z→ Z /4→ 0.

Composing the Bockstein βZ with the projection H2Z→H F2 gives the Bockstein for

0→ Z /2→ Z /8→ Z /4→ 0

which gives the desired result.

Theorem 5.6. There is an equivalence of spectra

TCR(Z; 2)φZ /2 ≃⊕
n≥0

(Σ4n−1H F2⊕Σ4nH Z /8⊕Σ4n+1H F2 ).
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Proof. For simplicity we use the symbol⊕n>m≥0 to denote⊕(n,m),n>m≥0(Σ2n+2m(H F2⊕ΣH F2))
and a similar symbol for the summands indexed by the pairs (n,m) with 0 ≤ n < m. Consider
the commutative diagram in the stable homotopy category, where the vertical sequences are
fibre sequences:

⊕n>m≥0⊕⊕0≤n<m

incl

��

ω

≃
// ⊕n>m≥0⊕⊕0≤n<m

α=(id,ϕ,id)
��

⊕
n>m≥0

⊕(⊕
n≥0

(Σ4n(H Z /4⊕ΣH F2)))⊕ ⊕
0≤n<m

pr

��

r−f
// ⊕
n>m≥0

⊕(⊕
n≥0

Σ4n(H F2⊕ΣH F2))⊕ ⊕
0≤n<m

pr

OO

(−ϕ,id)
��

⊕n≥0 Σ4n(H Z /4⊕ΣH F2)
M // ⊕n≥0 Σ4n(H F2⊕ΣH F2)

We explain the maps in the diagram: The top map ω is the composite pr ○(r − f) ○ incl and is
an equivalence since by Propositions 5.4 and 5.5 it is an isomorphism on homotopy groups. The
map α is then defined to be (r − f) ○ incl ○ω−1 and by construction is of the form (id, ϕ, id), for
some map

ϕ∶ ⊕
n>m≥0

⊕ ⊕
0≤n<m

→⊕
n≥0

Σ4n(H F2⊕ΣH F2).

The lower right vertical map is −ϕ on the outer summands and the identity on the middle
summand. The map M is the induced map on the cofibres. Propositions 5.4 and 5.5 imply
that the map ϕ is zero on the summand ⊕0≤n<m. On the other hand, the restriction of r − f
to the summand Σ4n(H Z /4⊕ΣH F2) cannot hit ⊕n>m≥0, since the cohomology operations do
not decrease degrees and r preserves the n-coordinate. Thus M is given in matrix form by the
wedge

⊕
n≥0

( 0 0
Σ4nβ 0 ) .

The fibres of r − f and M are equivalent since ω is an equivalence. This completes the proof by
Theorem 2.14.

5.2 Flat base-change and perfect rings
We recall that we always regard the geometric Z /2-fixed points of a ring spectrum with anti-
involution A as a left A-module via the geometric fixed-points of the map of Z /2-spectraNZ /2

e A⊗
A → A, and similarly as a right A-module via A ⊗NZ /2

e A → A. We call these respectively the
left and right Frobenius module structures on AφZ /2. We will always denote by ⊗A the derived
tensor product of A-modules.

Definition 5.7. A map α∶A→ B of ring-spectra with anti-involution is called φ-flat if the map

B ⊗A AφZ /2 Ð→ BφZ /2,

induced by the map of left A-modules α∶AφZ /2 → α∗BφZ /2, is an equivalence of spectra.

Example 5.8. Let α∶A→ B be a map of commutative rings with trivial involution which is flat
2-locally. Then the induced map on Eilenberg-MacLane spectra is φ-flat precisely if the maps

B ⊗A ϕA/2→ ϕB/2 and B ⊗A ϕA2 → ϕB2

adjoint to α/2 are isomorphisms, where ϕ(−) denotes the module structure r ⋅x ∶= r2x, and (−)2

the two-torsion (they both send b ⊗ a to b2α(a)). Indeed since α is flat 2-locally, α is φ-flat
precisely if

B ⊗A π∗(HAφZ /2)→ π∗(HBφZ /2)
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is an isomorphism. Since HAφZ /2 is the connective cover of HAtZ /2 which is 2-periodic, and
similarly for HBφZ /2, this is equivalent to showing that B ⊗A ϕĤ

i(Z /2,A)→ ϕĤ
i(Z /2,B) are

isomorphisms for i = 0,1, and this is exactly the assumption above. In particular:

i) If B is a perfect F2-algebra with trivial involution, then the map F2 → B is φ-flat. Indeed
the maps above are both isomorphic to the Frobenius (−)2∶B → B.

ii) If B is a commutative ring with trivial involution with no 2-torsion, and B/2 is perfect,
then Z → B is φ-flat. Indeed the maps above are in this case respectively the Frobenius of
B/2 and the map 0→ B2.

Recall that, as a C2-spectrum, THR(A)φZ /2 is equivalent to B(A;NC2
e A;NC2

e (AφZ /2)),
where A is regarded as a C2-spectrum via the identification C2 ≅ Z /2 (see Lemma 1.2). In
particular THR(A)φZ /2 is canonically a module over A in the category of C2-spectra, by acting
on the left copy of A in the bar construction.

Proposition 5.9. Let α∶A → B be a φ-flat map of commutative Z /2-equivariant ring spectra.
Then the canonical map

B ⊗A (THR(A)φZ /2) ≃Ð→ THR(B)φZ /2

induced by α∶THR(A)φZ /2 → α∗ THR(B)φZ /2 is an equivalence of C2-spectra. Here B is con-
sidered as a C2-spectrum via the isomorphism C2 ≅ Z /2 (see Lemma 1.2).

Proof. Let us first show that the map is an equivalence on underlying spectra. This is the
map B ⊗A (AφZ /2 ⊗A AφZ /2) → BφZ /2 ⊗B BφZ /2 induced by the map of left A-modules α ⊗
α∶AφZ /2 ⊗A AφZ /2 → α∗(BφZ /2 ⊗B BφZ /2), where the left A-module structure on the source
is the left Frobenius structure on the right AφZ /2-factor (or equivalently the right one on the
left factor), and similarly for the B-module structure on the target. Since A is commutative
this A-module structure agrees with the left Frobenius structure on the first AφZ /2-factor, and
therefore the map factors as

B ⊗A (AφZ /2 ⊗A AφZ /2) = (B ⊗A AφZ /2)⊗A AφZ /2 ≃Ð→ BφZ /2 ⊗A AφZ /2

≃ BφZ /2 ⊗B B ⊗A AφZ /2 ≃Ð→ BφZ /2 ⊗B BφZ /2

where the two right pointing arrows are equivalences since α is φ-flat.
Let us now verify that this map is an equivalence on C2-geometric fixed-points. From the

bar construction we see that, this is the map

(B⊗A (THR(A)φZ /2))φC2 ≃ BφZ /2⊗AφZ /2 THR(A)φZ /2 Ð→ THR(B)φZ /2 ≃ (THR(B)φZ /2)φC2

induced by the map α∶THR(A)φZ /2 → α∗ THR(B)φZ /2, where THR(A)φZ /2 = AφZ /2⊗AAφZ /2

is a left AφZ /2-module via left multiplication on the left factor (notice that AφZ /2 is a ring
spectrum since A is commutative), and similarly for the left BφZ /2-module structure on the
target. This map then factors as

BφZ /2 ⊗AφZ /2 THR(A)φZ /2 = BφZ /2 ⊗AφZ /2 AφZ /2 ⊗A AφZ /2 ≃ BφZ /2 ⊗A AφZ /2

≃ BφZ /2 ⊗B B ⊗A AφZ /2 ≃Ð→ BφZ /2 ⊗B BφZ /2 = THR(B)φZ /2

where for the last equivalence we used that α is φ-flat.

Proposition 5.10. Under the assumptions of 5.9, suppose moreover that the restriction maps
AZ /2 → A and BZ /2 → B are equivalences (for example if A and B are the Eilenberg-MacLane
spectra of commutative rings with trivial involutions). Then there is an equivalence

(B ⊗A (THR(A)φZ /2))C2 ≃ BC2 ⊗AC2 ((THR(A)φZ /2))C2 ,
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and the maps f, r∶ (THR(B)φZ /2)C2 → THR(B)φZ /2 correspond under the equivalences of Propo-
sition 5.9 respectively to the tensor of the restriction maps

f ∶BC2 ⊗AC2 ((THR(A)φZ /2))C2
res⊗ resÐÐÐÐ→ B ⊗A (THR(A)φZ /2)

and to the tensor of the canonical map to the geometric fixed-points and the map r of THR(A)φZ /2

r∶BC2 ⊗AC2 ((THR(A)φZ /2))C2
can⊗rÐÐÐ→ BφZ /2 ⊗AφZ /2 (THR(A)φZ /2) ≃

B ⊗A AφZ /2 ⊗AφZ /2 (THR(A)φZ /2) ≃ B ⊗A (THR(A)φZ /2),

where the first equivalence is from the fact that α is φ-flat, and the second is the canonical one.

Proof. The first statement follows from the fact that if the restriction maps of A and B are
equivalences, the canonical map

BC2 ⊗AC2 X
C2 Ð→ (B ⊗AX)C2

is an equivalence for every A-module X (which is cofibrant under our standing assumption).
Indeed since the source and target of this map commute with colimits in X, it is sufficient to
check it on the generators A and A ⊗ (C2)+ of the category of A-modules. For A this is the
canonical equivalence

BC2 ⊗AC2 A
C2 ≃ BC2 ≃ (B ⊗A A)C2 .

For A⊗ (C2)+ this is the map

BC2 ⊗AC2 (A⊗ (C2)+)C2 ≃ BC2 ⊗AC2 AÐ→ B ≃ ((B ⊗ (C2)+))C2 ≃ (B ⊗A (A⊗ (C2)+))C2

where the arrow is induced by the map of AC2 -modules α∶A→ α∗B, where A is an AC2-module
via the restriction AC2 → A, and similarly for B. This is an equivalence since the restrictions of
A and B are. The identifications of f and r follow by naturality and unravelling the definitions,
using Example 2.6 for the cyclotomic structure.

Corollary 5.11. Let α∶A→ B be a φ-flat map of commutative flat Z /2-equivariant ring spectra,
and suppose that the restriction maps AZ /2 → A and BZ /2 → B are equivalences. Then there is
an equaliser diagram

TCR(B; 2)φZ /2 // BC2 ⊗AC2 (THR(A)φZ /2)C2

res⊗f
//

(ν−1can)⊗r
// B ⊗A THR(A)φZ /2

where ν∶B ⊗A AφZ /2 → BφZ /2 is the equivalence from the φ-flatness condition, and can∶BC2 →
BφC2 is the canonical map.

Remark 5.12. One cannot conclude from Corollary 5.11 that TCR(B; 2)φZ /2 is the base-change
of TCR(A; 2)φZ /2, nor that it is a B-module. This is because the maps f and r computing
TCR(A; 2)φZ /2 are A-linear with respect to two different A-module structures.

Corollary 5.13. Let B be a perfect F2-algebra with the trivial involution. Then there is an
equivalence of spectra

TCR(B; 2)φZ /2 ≃⊕
n≥0

(Σ2n−1 coker(id+(−)2))⊕Σ2n(ker(id+(−)2))

where (−)2∶B → B is the Frobenius of B.
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Proof. By Example 5.8 we can apply Corollary 5.11 and find that the maps r and f computing
TCR(B; 2)φZ /2 are, on homotopy groups, given by the same maps

⊕
(n,m)
0≤n,m
n+m=∗

B ⇉ ⊕
(n,m)
0≤n,m
n+m=∗

B

as in the case of perfect fields of Proposition 4.5. The calculation then proceeds exactly as in
Remark 4.6.

Corollary 5.14. Let B be a ring with no 2-torsion and such that B/2 is perfect. Then
TCR(B; 2)φZ /2 is a wedge of Eilenberg-MacLane spectra, with homotopy groups given for all
l ≥ 0 by

πnTCR(B; 2)φZ /2 ≅

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

B/⟨x + x2∣ x ∈ B⟩ n = 4l − 1

ker (pr+pr2∶B/⟨4(x + x2)∣ x ∈ B⟩→ B/2) n = 4l

ker ( id+(−)2∶B/2→ B/2) n = 4l + 1
0 n = 4l + 2

and where πnTCR(B; 2)φZ /2 = 0 for n ≤ −2.

Proof. By Example 5.8 and Corollary 5.11 the maps r and f computing TCR(B; 2)φZ /2 are
maps

r, f ∶ ⊕
(n,m)
n>m≥0

Σ2n+2m(HB/2⊕ΣHB/2)⊕⊕
n≥0

Σ4n(HB/4⊕ΣHB/2)⊕ ⊕
(n,m)
0≤n<m

Σ2n+2m(HB/2⊕ΣHB/2)→

⊕
(n,m)
n>m≥0

Σ2n+2m(HB/2⊕ΣHB/2)⊕⊕
n≥0

Σ4n(HB/2⊕ΣHB/2)⊕ ⊕
(n,m)
0≤n<m

Σ2n+2m(HB/2⊕ΣHB/2).

On homotopy groups they are described by the same projections and diagonals as in the case
for Z of Propositions 5.4 and 5.5, except that r is postcomposed with the root isomorphism of
the perfect F2-algebra B/2. The same argument of the proof of 5.6 gives a fibre sequence

TCR(B; 2)φZ /2 Ð→⊕
n≥0

Σ4n(HB/4⊕ΣHB/2)
⊕n≥0 Σ4n(

pr+√pr 0√
β id+

√
(−)

)
ÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐÐ→⊕

n≥0

Σ4n(HB/2⊕ΣHB/2),

and in particular TCR(B; 2)φZ /2 splits as a wedge of Eilenberg-MacLane spectra, since the
projection map in the fibre sequence is H Z-linear. Moreover by composing with the Frobenius
of B/2, which is an isomorphism, we can trade

√
β for β, and replace all the other roots by

squares. The homotopy groups non-congruent to 0 modulo 4 follow immediately from the long
exact sequence on homotopy groups, and π4l is isomorphic to π0 for all l ≥ 0. In order to calculate
π0 we observe that the fibre of a triangular matrix such as the one above can be calculated by
the iterated pullback

TCR(B; 2)φZ /2

tt
**fib(pr+pr2)

ι

**vv

P
a

tt

b

))

∗

((

HB/4

pr+pr2tt
β **

ΣHB/2

id+(−)2uu

HB/2 ΣHB/2
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where the three squares are pullbacks. By the Mayer-Vietoris sequence of the top square we see
that there is an isomorphism

π0 TCR(B; 2)φZ /2 ≅ ker ((ker(pr+pr2) × π0P
ι−aÐÐ→ B/4).)

By looking at the long exact sequences induced by β and b, the right square gives a commutative
diagram with exact rows

B/2

id+(−)2

��

∂ // π0 fib(b)

≅
��

// π0P

a

��

// 0

B/2 4 // B/8 // B/4 // 0 .

Thus π0P ≅ (B/8)/ Im(4 ○ (id+(−)2)) = B/⟨4(x + x2)∣x ∈ B⟩, and the map a is the reduction
modulo 4. Thus π0 TCR(B; 2)φZ /2 consists of those elements y of B/⟨4(x+x2)∣x ∈ B⟩ such that
y = y2 modulo 2.

Remark 5.15. In §4.2 we have computed the Z /2-equivariant homotopy type of TRR(k; 2)
and TCR(k; 2) for perfect fields k of characteristic 2. We built our proof onto our knowledge
of THR(k)φZ /2 and TR(k; 2) without ever needing to know the equivariant homotopy type of
THR(k). We can in fact use the base-change results of this section to show that as a Z /2-
spectrum

THR(k) ≃ k ⊗F2 THR(F2) ≃⊕
n≥0

ΣnρHk.

Indeed the canonical map
k ⊗F2 THR(F2)Ð→ THR(k)

is an equivalence on Z /2-geometric fixed-points by Proposition 5.9 and its proof. It is also an
equivalence on underlying spectra by [HM97, Corollary 5.5]. Finally, the equivariant homotopy
type of THR(F2) is computed in [DMPR21].
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