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Abstract 1 

Croplands account for ~1/3 of global anthropogenic nitrous oxide (N2O) emissions. A 2 

number of recent field experiments found substantial fallow-period N2O emissions, 3 

which have been neglected for decades. However, the global contribution of the fallow-4 

period emissions and the associated drivers remain unclear. Based on 360 observations 5 

across global agroecosystems, we simulated the ratio of the fallow to the whole-year 6 

N2O emissions (Rfallow) by developing a mixed-effect model and compiling cropping-7 

system-specific input data. Our results revealed that the mean global gridded Rfallow was 8 

44% (15−75%, 95% confidence interval), with hotspots mainly in the northern high 9 

latitudes. For most cropping systems, soil pH was the dominant driver of global 10 

variation in Rfallow. Global cropland emission factors (i.e., the percentage of fertilizer N 11 

emitted as N2O, EFs) in EF-based models doubled to 1.9% when the fallow-period N2O 12 

emissions were included in our simulation, similar to EFs estimated by process-based 13 

and atmospheric inversion models (1.8−2.3%). Overall, our study highlights the 14 

importance of fallow-period N2O emissions in annual totals, especially for single 15 

cropping systems and croplands in acidic areas. To accurately estimate N2O emissions 16 

for national greenhouse gas inventories, it is crucial to update current EFs with full 17 

consideration of the fallow-period N2O emissions in the Intergovernmental Panel on 18 

Climate Change (IPCC) Tier 1 method. 19 
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1 Introduction 24 

N2O is one of the major agricultural greenhouse gases (GHGs) and the most significant 25 

atmospheric ozone-depleting substance (Ravishankara et al., 2009). Most countries in 26 

the world are requested by the United Nations Framework Convention on Climate 27 

Change (UNFCCC) to compile and report their national GHG and N2O inventories 28 

(Deng et al., 2022). About one-third of anthropogenic N2O emissions are derived from 29 

croplands (Tian et al., 2020). Cropland N2O emissions are mainly from microbial 30 

processes in soils (Butterbach-Bahl et al., 2013), such as nitrification and denitrification, 31 

contributing to N loss from the management-driven climate-soil-crop systems. 32 

Management practices, such as N fertilizer inputs, cropping period and cropping system 33 

selection, play important roles in the cropland N2O emissions (Cui et al., 2021). 34 

Therefore, accurate estimates of regional cropland N2O emissions are crucial for 35 

developing and adjusting agricultural management strategies aimed at mitigating both 36 

climate change and ozone depletion. 37 

Cropland N2O emission can be estimated through different methodologies (e.g., EF-38 

based, atmospheric inversion, and process-based models) with large discrepancies. One 39 

potential factor for the underestimation of N2O emissions in GHG inventories is the 40 

omission of emissions during fallow (non-growing) periods (Shang et al., 2020). Most 41 

N2O emission fluxes used for building the EF-based inventories are measured during 42 

growing seasons rather than whole years (Cui et al., 2021; Shang et al., 2020), since the 43 

fallow periods usually come with cold weather and limited residual N. However, field 44 



observations suggest that fallow-period N2O emissions accounted for 36% on average 45 

of the annual emissions for wheat and maize in Canada (Ekwunife et al., 2022; Pelster 46 

et al., 2022), and even more for rice paddies in Asia. Since the soil condition in fallow 47 

rice paddies after harvest drainage is usually moist but non-waterlogged, it can 48 

stimulate N2O production and inhibit the reduction of N2O to N2 in denitrification 49 

(Shang et al., 2020). To convert growing-season emissions to annual emissions, a 50 

limited number of correction factors are currently available for a few cropping systems, 51 

or are restricted for application in specific regions (Pelster et al., 2022). Therefore, it is 52 

critical to quantify the contribution of fallow-period N2O emissions to the annual total 53 

emissions at global scale, and to provide reliable correction factors. 54 

The contribution of the fallow period to annual total N2O emissions varies with 55 

management practices, soil properties and climatic conditions. The type of cropping 56 

system is an integrated indicator of the specific crops cultivated within a year, 57 

management practices and the surrounding environmental conditions. For example, the 58 

single rice cropping system, which is generally adopted in humid high-altitude regions, 59 

has a longer and cooler fallow period compared to double rice cropping in humid low-60 

altitude regions. In contrast, rice-wheat and maize-wheat systems have the shortest 61 

fallow periods in all cropping setups, ranging from two to three months. A recent study 62 

revealed that precipitation and temperature are key driving factors for fallow-period 63 

N2O emissions in the US Midwest (Yang et al., 2023). In a previous study, we revealed 64 

the role of factors like crop types, annual precipitation, soil pH, and soil organic carbon 65 

in determining the difference in N2O EF caused by the omissions of fallow period 66 



(Shang et al., 2020). However, the global pattern of the contribution of fallow-period 67 

N2O emissions and the associated drivers remain unclear. This is mainly due to the lack 68 

of a quantitative model and a fallow calendar for different cropping systems. It hinders 69 

our understanding of the importance of fallow-period N2O emissions and our ability to 70 

accurately estimate national and global N2O emissions in GHG inventories. 71 

To address these gaps, we quantified the ratio of fallow to whole-year emissions (Rfallow) 72 

using a mixed-effect model that connected crop-specific Rfallow variations to climate, 73 

soil and agricultural management practices. We conducted our analysis using 360 74 

chamber-based field observations, spanning 53 sites globally. By combining the spatial 75 

datasets of the physical areas of multiple cropping systems, crop calendar and crop-76 

specific fertilizer N inputs (including synthetic fertilizers, manure, and crop residues), 77 

we compiled datasets of gridded N input and the duration of fallow period for each 78 

cropping system. Using the datasets with management and environmental variables, 79 

and the model constrained by the global observations, we mapped crop-specific Rfallow 80 

at the spatial resolution of five-arcminute and identified the key drivers of spatial 81 

variations in Rfallow. Finally, we converted growing-season N2O emissions to whole-82 

year emissions at global scale, aiming to reconcile the discrepancies in cropland N2O 83 

emissions estimated by different methodologies. 84 



2 Data and Methods 85 

2.1 Observations for quantifying Rfallow 86 

We compiled a global observation dataset consisting of 360 Rfallow values from 87 

currently available literature databases and online data repositories (Supplementary 88 

Text 1). The observed Rfallow values were calculated based on fallow and annual N2O 89 

emissions for different single (i.e., legumes, maize, wheat, rice, and others) or double 90 

cropping systems (i.e., rice-rice, rice-upland, upland-upland). Triple cropping systems 91 

(e.g., rice-rice-rapeseed) are very rare in modern global food production (Waha et al., 92 

2020), and their fallow-period N2O emission measurements are rather limited. Thus, 93 

these systems were excluded from the analysis. Studies with the following 94 

measurements were further excluded: (i) experiments conducted in laboratories, pots or 95 

greenhouses, (ii) measurements conducted in organic (peaty) soils where N2O are much 96 

higher than those in mineral soils (IPCC, 2006), and (iii) measurements with the use of 97 

controlled-release fertilizers, nitrification inhibitors, or urease inhibitors. The full 98 

dataset is a combination of data from 57 sites globally and 49 peer-reviewed papers and 99 

dissertations, including 71 observations for rice-rice, 25 for rice-upland, 20 for upland-100 

upland systems, 25 for legumes, 49 for maize, 75 for wheat, 60 for rice, and 35 for other 101 

single cropping systems (Fig. S1 and Table S1). 102 

For each record, four categories of information were collected: (i) N2O emissions, (ii) 103 

climatic conditions, (iii) soil properties, (iv) management practices, and (v) sampling 104 

information. The N2O emissions for the whole year and fallow period were obtained 105 



from the studies identified to calculate the ratios. The fallow period was defined as the 106 

period between harvesting crop and sowing or transplanting the next crop. Climatic 107 

conditions include mean annual air temperature (MAT) and mean annual precipitation 108 

(MAP), fallow-period mean air temperature (FT) and precipitation (FP). Soil properties 109 

contain soil organic carbon content (SOC), pH, bulk density (BD), and clay and sand 110 

content. Along with climatic conditions, these soil properties influence the substrate 111 

availability and soil aeration and determine the rates of microbial processes underlying 112 

N2O emissions (Bouwman et al., 2013; Butterbach-Bahl et al., 2013). Management 113 

practices include cropping system type, N fertilizer application rate and fallow duration. 114 

These practices are significant due to their known impacts on agroecosystem C and N 115 

cycling and fallow period emissions (Cui et al., 2021; Shang et al., 2020). Sampling 116 

information include mean sampling interval during fallow period, and whether 117 

sampling frequency is intensified at N2O flux peaks when the mean interval during 118 

fallow period is greater than 7 days (Supplementary Text 2 and Fig. S2). Most 119 

information was obtained from the original papers; values not reported in the original 120 

papers were obtained from climate and soil databases (Supplementary Text 1). The 121 

definition and unit of each variable and related information can be found in 122 

Supplementary Table S2. 123 

The representativeness of the observations in terms of a per-pixel representation of the 124 

relative proportion of interpolation, was assessed according to the method van den 125 

Hoogen et al. (2019). To investigate how well our compiled observation dataset spread 126 

throughout the full multivariate covariate space (for all soil, climate and management 127 



practice-related variables in the model), we performed a principal component analysis 128 

(PCA)-based approach. Firstly, we utilised the centring values, scaling values, and 129 

eigenvectors to transform the composite image into the same PCA space. Subsequently, 130 

we generated convex hulls for each of the bivariate combinations from the first seven 131 

principal components, which collectively accounted for over 90% of the sample space 132 

variation. Based on the coordinates of these convex hulls, we classified each pixel as 133 

falling within or outside of them, that is a per-pixel representation of the relative 134 

proportion of interpolation and extrapolation. The relative percentage of interpolation 135 

reflects how adequately our dataset captured the multivariate covariate space of the 136 

global layers. 137 

2.2 Linear mixed-effect model for Rfallow 138 

We developed a linear mixed-effect (LME) model to generate an interpretable 139 

regression of Rfallow in response to various environmental and management-related 140 

factors. The LME is capable of capturing the fixed effects quantified by the key factors 141 

and identifying the random effects for N2O emissions, which can be represented by the 142 

sites (Cui et al., 2021). First, to enhance the ability of model to capture the variance, 143 

Rfallow was converted from the original range of 0 to 1 (11 negative values were 144 

excluded) to an infinite range with normal distribution using equation E1, and 145 

independent variables were re-scaled using “scale” function in R v.4.2.2.  146 

Second, partial correlation and a generalized boosted regression mode (GBM) were 147 

used to determine the key variables for the model. GBM was performed using the “gbm” 148 



package in R v.4.2.2. GBM is an ensemble tree-based method that combines multiple 149 

weak models to form a single strong model, based on the prior trees, to quantify the 150 

relative importance of each variable. Third, the Akaike information criterion (AIC) was 151 

implemented by adding variables based on the priority order and the most relevant 152 

variables for the LME model were selected to avoid over-fitting (Table S3). Fourth, we 153 

checked for interactions among variables. An analysis of variance (ANOVA) test 154 

indicated that the model with an interaction between cropping system type and N 155 

fertilization rate outperformed other models. Eventually, the LME model included 156 

cropping system type, soil pH, N fertilization rate, and fallow duration as fixed-effect 157 

terms. Additionally, the model incorporated the site identity in the intercept as a 158 

random-effect term (Equation E2). The interaction between the cropping system and N 159 

application rate was considered in the LME model through distinguishing slopes 160 

corresponding to different cropping systems and N fertilization rates. Rfallow for each 161 

cropping system was then quantified as follows: 162 

𝑅𝑓𝑎𝑙𝑙𝑜𝑤 𝑖 = 𝑒𝑦𝑖 (1 + 𝑒𝑦𝑖)⁄ ,                                            E1 163 

𝑦𝑖 = (𝛼 + 𝜑𝑖) + (𝛽 + 𝜃𝑖) ∙ 𝑁𝑟𝑎𝑡𝑒𝑖 + 𝛾 ∙ 𝑝𝐻 + 𝛿 ∙ 𝐷𝑖 + (1|𝑆𝑖𝑡𝑒) + 𝑖,          E2 164 

where y is the mediator between Rfallow and driving variables selected to facilitate the 165 

normal distribution of Rfallow; i denotes the type of eight cropping systems mentioned 166 

above; Nrate is nitrogen (N) fertilizer application rate (kg N ha-1); pH is soil pH; D is 167 

the duration of a fallow period in days; Site means the location of the observational 168 

field experiments; 𝛼, 𝛽, 𝛾, 𝛿, 𝜑, and 𝜃 are variable coefficients;  is the residual 169 



term. (𝛼 + 𝜑𝑖) + (𝛽 + 𝜃𝑖) ∙ 𝑁𝑟𝑎𝑡𝑒  represents the interactive effect between N 170 

fertilizer application rate and cropping system, allowing for the eight different cropping 171 

systems in our analysis to vary in their response (i.e., slope and intercept) to changes in 172 

N application rate; 1|𝑆𝑖𝑡𝑒  represents the random-effect term in the mixed-effect 173 

model. All the model parameters were quantified using the “lmer” function in the R 174 

package “lme4”.  175 

The model was trained and tested on a tenfold cross-validation repeated ten times. 176 

Cross-validation has been widely used in many studies (Viscarra Rossel et al., 2019; 177 

Bo et al., 2022; Malakouti, 2023). The tenfold cross-validation involves splitting all the 178 

observations into 10 equal parts, training the model on 9 parts, and testing it on the 179 

remaining part. This process is repeated 10 times, with each part used as the test set 180 

exactly once. To avoid bias due to subsets randomly divided, we repeated the above 181 

steps by 10 times for possible subdivisions. The advantage of cross-validation is that it 182 

provides a more reliable estimate of model performance compared to a single train-test 183 

split. By averaging the results of different test sets, it reduces the variability of a single 184 

partition and provides a more accurate assessment of how the model is likely to perform 185 

on unseen data. The coefficients of the model based on 100 trainings were stored for 186 

spatial prediction. The performance and robustness of the model were evaluated by 187 

comparing simulated and observed Rfallow by cropping system, using the 1:1 line, R2 of 188 

fixed effect (R2c), R2 of mixed effect (R2m), slope and root mean square error (RMSE). 189 

Additionally, the responses of Rfallow to the key variables selected were estimated for 190 

each cropping system in the sensitivity tests, with the uncertainty of one standard error 191 



using the “sjPlot” package in R. The ranges of the key variables in the sensitivity tests 192 

were constrained by those of the observations. 193 

2.3 Global prediction of Rfallow 194 

The global patterns of Rfallow for each cropping system were simulated using the 195 

“predict” function in the LME model at a spatial resolution of 5-arcminutes, which were 196 

driven by the duration of the fallow period, the N application rate, and the soil pH. Soil 197 

pH was derived directly from the HWSD v1.2 at a resolution of 30-arc-second. Data 198 

regarding the spatial distribution of the eight cropping systems, the duration of the 199 

fallow period, and the N application rate for each cropping system were specifically 200 

compiled for this study. 201 

Physical areas of cropping systems were derived from Waha et al. (2020), which 202 

reported multiple attributes including cropping intensity (single, double, or triple), 203 

types of crops grown in the system (out of a pool of 26 crops from MIRCA2000 204 

(Monfreda et al., 2008)). Crops without planting and harvesting calendars (e.g., citrus 205 

and grapes) were excluded from this study. In the end, 45 out of the initial 70 cropping 206 

systems were identified and obtained for this study. The global gridded physical areas 207 

for these 45 cropping systems were first resampled from 30 ×́30  ́resolution to a 5 ×́5  ́208 

resolution using the nearest resampling method, then directly summed to obtain the 209 

physical area for each of the eight cropping systems. We grouped the double cropping 210 

systems into rice-rice, rice-upland, and upland-upland systems, the single cropping 211 

systems into legumes, maize, wheat, rice, and the remaining falling under the other 212 



cropping system, producing a total of 8 cropping systems. We did not distinguish 213 

between rain-fed and irrigated systems.  214 

Crop planting and harvesting dates from Sacks et al. (2010) were used as the reference 215 

to establish the duration of the fallow period for each cropping system. We firstly 216 

classified each of the obtained 45 cropping system layers as either a single or double 217 

cropping. For single cropping systems, the duration of the fallow period in each grid 218 

cell was calculated as the interval between the harvesting (H) and planting (P) dates of 219 

the corresponding crop, as provided by Sacks et al. (2010) (Equation E3). 220 

𝐹𝐷𝑠𝑖,𝑗 = {
365 − 𝐻𝑖,𝑗 + 𝑃𝑖,

𝑃𝑖,𝑗 − 𝐻𝑖,𝑗 ,
 
𝑃𝑖,𝑗 < 𝐻𝑖,𝑗

𝑃𝑖,𝑗 > 𝐻𝑖,𝑗
                                    E3 221 

Where FDsi,j represents the duration of the fallow period for cropping system i in grid 222 

cell j; Hi,j and Pi,j correspond to the harvesting date and planting date, respectively, for 223 

crop i in grid cell j. 224 

For double cropping systems, the duration of the fallow period was calculated as the 225 

period without a crop actively growing within a calendar year. For each grid cell, the 226 

planting and harvesting dates for both the initial and subsequent crops in the rotation 227 

were identified. The duration of the fallow period for each double cropping system was 228 

then calculated accordingly by equation E4, as shown below. 229 

𝐹𝐷𝑠𝑖,𝑗 = {

𝑃𝑖2,𝑗 − 𝐻𝑖1,𝑗 + 365 − 𝐻𝑖2,𝑗 + 𝑃𝑖1,𝑗 ,   𝑃𝑖1,𝑗 < 𝐻𝑖1,𝑗, 𝑃𝑖2,𝑗 < 𝐻𝑖2,𝑗

𝑃𝑖2,𝑗 − 𝐻𝑖1,𝑗 + 𝑃𝑖1,𝑗 − 𝐻𝑖2,𝑗,   𝑃𝑖1,𝑗 < 𝐻𝑖1,𝑗 , 𝑃𝑖2,𝑗 > 𝐻𝑖2,𝑗

𝑃𝑖2,𝑗 − 𝐻𝑖1,𝑗 + 𝑃𝑖1,𝑗 − 𝐻𝑖2,𝑗,   𝑃𝑖1,𝑗 > 𝐻𝑖1,𝑗 , 𝑃𝑖2,𝑗 < 𝐻𝑖2,𝑗

        E4 230 



Where FDsi,j represents the duration of the fallow period for double cropping system i 231 

in grid cell j; 𝐻𝑖1,𝑗 , 𝑃𝑖1,𝑗 , 𝐻𝑖2,𝑗 , and 𝑃𝑖2,𝑗  correspond to the harvesting date and 232 

planting date for the first crop 𝑖1 in cropping system i in grid cell j, harvesting date 233 

and planting date for the second crop 𝑖2 in cropping system i in grid cell j, respectively. 234 

Lastly, the average duration of the fallow period for the eight cropping systems was 235 

obtained by weighting the physical areas of the different cropping systems.  236 

Crop-specific N application rates per unit of harvested area and total N inputs from 237 

Adalibieke et al. (2023) were used to calculate the N application rates per unit of 238 

physical area for the eight cropping systems in our study. Firstly, we re-organized the 239 

abovementioned physical areas of the 45 cropping systems into 15 crop groups (without 240 

accounting for differences in cropping frequency) out of 21 crops from Adalibieke et 241 

al. (2023). To address the differences in the physical area reported by Waha et al. (2020) 242 

and Adalibieke et al. (2023), missing N application rates for some specific physical 243 

areas in 2000 were imputed from nationally averaged N application rates, with the sum 244 

of N inputs for a crop and a country kept consistent as the original dataset (Adalibieke 245 

et al., 2023). N application rates per physical hectare were calculated for the 45 246 

cropping systems. For a single cropping system, it was set to be the N application rate 247 

per harvested hectare of the corresponding crop, while for a double cropping system, 248 

the rate was equal to the sum of N application rates per harvested hectare for the 249 

corresponding first and second crops. Next, total N application inputs for the eight 250 

cropping systems investigated at each grid were aggregated by summing the products 251 

of the corresponding physical areas and N application rates from 45 cropping systems. 252 



Lastly, the N application rate per unit of physical area for each cropping system was 253 

generated by dividing the total N input by the corresponding physical area. The 254 

maximum N application rates were capped at 1,000 and 2,000 kg N ha-1 for single and 255 

double cropping systems to avoid extremes, respectively. 256 

We conducted 100 simulations of global Rfallow with the 100 sets of coefficients from 257 

the tenfold cross-validation repeated ten times, and then obtained the global prediction 258 

by averaging the predictions from the 100 simulations (Viscarra Rossel et al., 2019). 259 

To calculate the weighted Rfallow for all cropping systems, we firstly calculated the 260 

mediator y for each cropping system, and then averaged them based on their 261 

corresponding areas to get the weighted y. Finally, we transformed the weighted y to 262 

weighted Rfallow according to Equation E1. In this case, we prefer to weight y rather than 263 

Rfallow, because y is more sensitive to small differences among cropping systems with 264 

its infinite range. For the global prediction of Rfallow, their results are quite comparable 265 

(Fig. S3) with almost the same mean values (mean  standard error of the mean: 266 

44.650.23% and 44.030.24% for weighted Rfallow-based and weighted y-based 267 

methods respectively).  268 

For the attribution of spatial variation in Rfallow, the dominant driver was defined as the 269 

factor with the largest absolute value of the partial correlation coefficient (par) in each 270 

grid cell, where par between Rfallow and predictors is done for 3.75°-by-3.75° moving 271 

windows (Beer et al., 2010; Cui et al., 2021; Peng et al., 2014). To identify the dominant 272 

driver for all cropping systems, we multiplied the area percentage of each cropping 273 



system (i.e., the ratio of area for single rice to the area for all cropping systems) and the 274 

par of each factor for that system. Then, the factor with the largest absolute value of par 275 

across all cropping systems, was regarded as the most important variable determining 276 

the variation of Rfallow. 277 

3 Results and Discussion 278 

3.1 Modelling performance and response functions 279 

Soil pH, cropping system type, N application rate and fallow duration were identified 280 

as the most important determinants of Rfallow than the environmental factors (i.e., soil 281 

sand and clay content, BD, SOC, MAP, MAT, FP and FT) included in our analysis (Fig. 282 

1a, Fig. S4 and Table S7). The repeated tenfold cross-validation results indicate that 283 

LME model, with the four most important factors as fixed effects and site as a random 284 

effect, captured 63% of the observed variation in Rfallow (Fig. 1b). The combination of 285 

the four key fixed effects, i.e., soil pH, cropping system, N application rate and fallow 286 

duration, explained 41% of the observed variation in Rfallow. This means that the fixed 287 

effect in the model developed explained more variation in Rfallow than the random effect 288 

did (Supplementary Text 3). The slope between simulated and observed Rfallow is 0.73. 289 

These results are comparable with those using all the observations for both training and 290 

testing (Table S4). The representativeness analysis shows that the observations used for 291 

model development covered the vast majority of global variations, with 76% of global 292 

pixel values falling within the sampled range of at least 90% of all bands (Fig. S5). 293 

Together, the results indicate that our model is effective and robust (Cui et al., 2021; 294 



Philibert et al., 2012). The corresponding means and standard errors of the model 295 

coefficients are listed in Table S5. 296 

Among the eight cropping systems included in our analysis, the results show that the 297 

single rice system had the largest Rfallow at 536% (mean  95% confidence interval of 298 

the mean), followed by double rice-rice (467%), single other crops (397%), legumes 299 

(389%), wheat (375%), rice-upland (308%), upland-upland (218%), and single 300 

maize cropping systems (165%) (Fig. 1c). Single-cropping systems generally showed 301 

greater Rfallow than double-cropping systems. Rice-dominated cropping systems (i.e., 302 

single rice and double rice-rice) exhibited larger Rfallow than the other systems.  303 

Cropping system type is an integrated indicator representing local management 304 

practices and environmental conditions. Its influence can be largely attributed to factors 305 

such as MAT, MAP, and fallow duration, which collectively captured 50–99% of the 306 

variations observed for all cropping systems (Table S6). For instance, the single rice 307 

system in temperate and subtropical climate areas had the longest fallow duration (223 308 

days for single rice compared to 159 days for the remainder systems). The associated 309 

moisture soil conditions after harvest drainage in this extended fallow period are 310 

favourable for N2O emissions (Shang et al., 2020). In contrast, upland-upland and rice-311 

upland cropping systems, which have the shortest fallow durations (62 and 114 days on 312 

average, respectively) and relatively lower soil moisture levels, which limits N2O 313 

emissions during the fallow period. 314 



Sensitivity tests indicated that Rfallow was negatively correlated with soil pH (Fig. 1d) 315 

but positively correlated with the fallow duration (Fig. 1f). Specifically, Rfallow in double 316 

rice-rice, rice-upland, and wheat cropping systems responded more strongly to 317 

variations in soil pH and fallow duration than other cropping systems, while the single 318 

maize appeared at the lower end of all response curves (Fig. 1d and f). The results 319 

indicate that Rfallow for rice-related cropping systems was more sensitive to N 320 

application rate than the other cropping systems, especially at N application rates <400 321 

kg N ha-1 (Fig. 1e). This is probably because rice-related cropping systems had higher 322 

initial Rfallow (without N fertilization) than other cropping systems, due to the moist soil 323 

conditions during fallow period promoting N2O emissions. Fertilizer N additions 324 

further increased growing-season N2O emissions, which contributed the most to annual 325 

emissions, thereby reducing Rfallow. Together, these results suggest that the 326 

underestimation of cropland N2O emission inventory based on EF methodologies, due 327 

to the omission of fallow-period N2O emissions, can be potentially exaggerated for rice-328 

related systems, especially at low levels of N fertilizer inputs. 329 

3.2 Spatial pattern of Rfallow 330 

It is estimated that global average value of Rfallow (i.e., weighted by areas of global 331 

cropping systems and expressed as a percentage) was 44.0%, with a 95% confidence 332 

interval (CI) ranging from 14.5 to 74.6% (Table 1). The highest Rfallow was 56.6% 333 

(28.3–81.1%) for single wheat cropping, followed by 52.3% (14.1–79.7%) for rice, 334 

48.8% (27.0–71.6%) for legumes, and 44.9% (23.6–68.7%) for others, 34.6% (8.5–335 



65.4%) for maize, 26.2% (1.3–61.5%) for double rice-rice, 12.4% (1.9–30.2%) for rice-336 

upland crops, and 10.5% (1.6–24.1%) for upland-upland crops (Table 1). The hotspots 337 

of high Rfallow (>60%) estimated were concentrated in northern high-altitude areas, the 338 

Amazon Plain, and Southeast Asia (e.g., Myanmar, Thailand and Laos), while low 339 

Rfallow (<13%) areas were mainly located in southern high-altitude areas (e.g., Southern 340 

Africa, America and Australia), the North China Plain, Mexico and the Southwestern 341 

U.S. The areas with high Rfallow were dominated by single wheat or rice-related 342 

cropping systems, those with low Rfallow were mostly covered by other upland crops 343 

(Sacks et al., 2010; Waha et al., 2020).  344 

We found high Rfallow was concentrated in northern high-altitude areas. These areas 345 

generally have lower soil pH and more areas of single cropping systems (e.g., wheat, 346 

maize and other crops) (Fig. S6). Based on partial correlation of observations, lower 347 

soil pH is significantly related to greater Rfallow (r=-0.36, p<0.001, Table S7). 348 

Additionally, pH was strongly and negatively related to simulated Rfallow across all 349 

cropping systems at global scale (Fig. S7), and was identified as the dominant driver of 350 

simulated Rfallow over other factors in major high-altitude areas (Fig. 3). Single cropping 351 

system in northern high-altitude areas generally have longer fallow period and greater 352 

Rfallow than double cropping systems.   353 

The results indicate that cropping systems showed distinctive spatial variations in Rfallow 354 

(Fig. 2b-i). The Rfallow estimated for double rice-upland and upland-upland crops (mean 355 

± standard error of the mean: 12.4±0.2 and 10.5±0.1%, respectively) were only a 356 



quarter of the Rfallow observed for other cropping systems (46.4±0.3%), especially in 357 

regions such as the North China Plain, Northeastern China, the Indus Plain, Turkey, 358 

and Mexico. In contrast, Rfallow for single rice and wheat systems (52.3±0.3 and 56.6359 

±0.2%, respectively) were significantly greater than the average of all other systems 360 

(39.8±0.3%), with hotspots mainly in regions with tropical and sub-tropical croplands 361 

(e.g., Southeastern Asia and Amazon Plain) for single rice, and North high-altitude 362 

areas for single wheat. The intrinsic variation in Rfallow for these cropping systems can 363 

also been found in the observations included in our dataset (Fig. 1c). Single legumes, 364 

maize and other systems showed similar spatial variations in Rfallow as the area-weighted 365 

averages of all systems (Fig. 2a). 366 

3.3 Attribution of the spatial variation in Rfallow 367 

Soil pH was identified as the most important driver of spatial variation in Rfallow in 72% 368 

of the total global cropping area (Fig. 3a). For all cropping systems other than single 369 

rice, soil pH was the most important driver in most (>=59%) of their individual global 370 

cropping area (Fig. 3b-i). These results likely reflect that low soil pH inhibit the activity 371 

of N2O reductase in denitrification, and reduce the precursor concentration of N2O 372 

formation (i.e., NH2OH and NO2
-) in nitrification, thereby stimulating N2O emissions 373 

(Barton et al., 2013; Qin et al., 2014; Russenes et al., 2016; Wang et al., 2021). 374 

Consistent with these findings, low soil pH values are associated with greater fallow-375 

period N2O emissions across the observations included in our dataset (Correlation 376 

coefficient=-0.31, p<0.001), leading to the increasing Rfallow values with decreasing soil 377 



pH. This is probably because lower temperature during the fallow period (e.g., winter 378 

season) further inhibits the N2O reductase activity (Qin et al., 2014). Additionally, 379 

lower pH levels are correlated with more precipitation in fallow periods in our dataset 380 

(Correlation coefficient=-0.1, p<0.05). High precipitation rates may stimulate fallow-381 

period N2O emissions when low soil water content is the limiting factor for N2O 382 

emissions especially in arid areas (Shang et al., 2020). Since about 50% of global arable 383 

soils are acidic, liming has been suggested as a potential practice to increase crop yield 384 

(Dai et al., 2017; Wang et al., 2021). In this case, soil liming can decrease the 385 

contribution of fallow-period to whole-year N2O emissions in severely acidic area 386 

(pH<5.5) concentrated in Eastern US, Northern Germany and Poland, Southern China, 387 

and Southeastern Brazil (Wang et al., 2021), and hence influence the growing-season 388 

to whole-year N2O correction factors for these areas. 389 

Fallow duration was identified as the most important driver for Rfallow in single rice 390 

cropping systems and the second most important factor in most other single cropping 391 

systems accounting for 20−34% of the variations in their cropping areas, especially in 392 

North America, Northern South America, and Northern China (Fig. 3e-i). A longer 393 

fallow period directly results in more N2O emissions during this fallow period, 394 

confirmed by the positive relationships between duration and Rfallow across our dataset 395 

(Fig. 1f). Compared to double cropping systems, single cropping systems generally 396 

have a longer and more variable fallow period that is constrained by local climates. For 397 

example, single rice systems have a longer fallow period (1−2 months more) in 398 

Northeastern compared to Southern China. These single rice systems in Southern China 399 



are usually transformed from double rice systems due to labour shortage (Han et al., 400 

2022), although the light, temperature and rainfall there are favourable for double rice 401 

growth. In contrast, the double cropping systems, such as maize-wheat and rice-wheat 402 

in Turkey, Northern and Eastern China, generally have a much shorter fallow period, 403 

ranging from two to three months. This relatively short fallow period likely explains 404 

the negligible effect of fallow duration on the spatial variation in Rfallow for double 405 

cropping systems (Fig. 3b-d).  406 

The results indicate N application rate was the most important driver in 11−32% of 407 

global cropping areas for both double cropping systems and single rice and maize 408 

systems (Fig. 3). Rfallow estimated generally decreases with increased N application rates 409 

(Fig. 1e). This is because fertilizer-induced N2O emissions mostly occurred during the 410 

crop growing seasons when crops need intensive N fertilizer inputs, with limited 411 

fertilizer N residues for N2O emissions during the fallow seasons. MAT was identified 412 

as a key factor only in limited areas for double upland crops. However, it emerged as 413 

the dominant driver for the variation weighted by cropping systems in Africa, South 414 

America, and Southeast Asia.  415 

3.4 Implications for updating N2O emission inventories 416 

We converted N2O emissions during the growing season to cover the whole-year 417 

emissions (Table 2), based on the estimated area-weighted Rfallow, the growing-season 418 

dominated default EFs from the IPCC Tier 1 method and our high-resolution cropping-419 

system-specific N application rate developed in this study. Estimated global fertilizer 420 



N-induced cropland N2O emissions in 2000 substantially increased from 1.0 to 2.1 Tg 421 

N, implying a global Rfallow of ~53%. Emission hotspots were located in several 422 

countries such as China, France, Germany, the U.S. and the U.K. (Fig. S8). Accordingly, 423 

the EF more than doubled from 0.9% (based on IPCC Tier1 defaults of 0.4% for paddy 424 

rice and 1.0% for upland crops) to 1.9% (0.6% for paddy rice and 2.1% for upland 425 

crops). High adjusted EFs (i.e., >2%) were concentrated in regions like Brazil, Middle 426 

Africa, Southeast Asia and high-altitude regions in Europe (Fig. 4a). The adjusted 427 

global EF is more than twice as large as those from EF-based models based on growing-428 

season N2O observations (Table 2), and is consistent with results from an ensemble of 429 

process-based models (1.8, 1.2−2.3%, Tian et al., 2020) and a recent top-down 430 

inversion model (2.3%, Thompson et al., 2019). The process-based models considered 431 

the legacy effect from historical soil N accumulation (Tian et al., 2019, 2020), which is 432 

the main source of N2O emissions during the fallow period without fertilization. Since 433 

the inversion model estimates EFs based on observed changes in atmospheric N2O 434 

concentrations, it accounts for both direct and indirect emissions. Indirect emissions 435 

were not included in our study but account for about one-third of total cropland N2O 436 

emissions (Harris et al., 2022). Comparing our findings with the IPCC Tier1 defaults, 437 

significant increases in EFs were found in Russia, Myanmar and some areas dominated 438 

with acidic soils and single cropping systems (e.g., wheat and maize) (Fig. 4b), while 439 

the increase was trivial in East India and Pakistan, probably due to the vast expansion 440 

of double cropping systems (e.g., rice-upland crops and upland-upland crops) with 441 

shorter fallow durations (Sacks et al., 2010; Waha et al., 2020), alongside the 442 



prevalence of alkaline soils in Pakistan. The consistency between the estimates of our 443 

corrected EF-based model and other independent models strongly suggests that most of 444 

the discrepancies between the models were caused by the omission of fallow-period 445 

N2O emissions. Our findings are also in alignment with previous findings that the global 446 

EF for cropland N2O emissions is significantly higher than the IPCC default (Thompson 447 

et al., 2019; Tian et al., 2020). Thus, to improve estimates of N2O inventories, we 448 

suggest that fallow-period N2O emissions should be included in the EF-based models. 449 

For the datasets reporting growing-season N2O emissions only, without considering 450 

fallow-period emissions, they should not be further considered in the calculation of 451 

IPCC N2O EFs. IPCC should update the relevant EFs. 452 

3.5 Limitations and future perspective 453 

Although our approach considers the influences of various important factors, some 454 

limitations should be noted. First, to improve our estimation for various cropping 455 

systems (e.g., double rice-rice, single rice, and single wheat systems), more field 456 

measurements of fallow-period N2O emissions are needed for double rice-upland crops, 457 

upland-upland crops, and single legume systems. About 81% of the observations are 458 

based on averaged or intensified sampling intervals of no more than 7 days during 459 

fallow period (Supplementary Text 2), however, future field studies should ensure 460 

frequent fallow-period measurements especially during N2O peak-flux periods (e.g., 461 

spring thawing and tillage) to improve data reliability. Second, site-specific microscale 462 

variables were less recorded and their effects on local N2O emissions were not fully 463 



quantified due to limited understanding of the mechanisms of microbial N2O 464 

productions (Cui et al., 2021; Kravchenko et al., 2017). These can lead to some 465 

uncertainties in the global simulation, however, the fixed effect in the model developed 466 

explained more variation in Rfallow than the random effect (represented by site identity) 467 

did. Other uncertainties come from recently introduced or highly-localized practices in 468 

fallow periods, such as winter cover cropping, tillage and continuous flooding for water 469 

storage in hilly rice paddies. Although tillage showed an insignificant impact on 470 

growing-season or whole-year N2O emissions based on meta-analyses (van Kessel et 471 

al., 2013; Shang et al., 2021), it can increase fallow-period N2O emissions due to the 472 

favourable soil aeration and water content for N2O productions in field experiments 473 

(Mosier et al., 2006; Zhang et al., 2016). Similarly, the return of crop residue or green 474 

manure can increase fallow-period N2O emissions in the fields through providing more 475 

C and N substrates for nitrification and denitrification processes (Liu et al., 2015; Li et 476 

al., 2021). As indicated in the field studies above, fallow tillage and return of crop 477 

residue or green manure generally have a more positive impact on fallow-period over 478 

growing-season N2O emissions, and hence increase the value of Rfallow. However, these 479 

effects may vary with time (e.g., beginning or end of fallow period) and type of practice 480 

(e.g., straw mulching or incorporation, and residue composition), which needs more 481 

information and deserves further investigation. Constrained by the availability of crop-482 

specific spatial data, the global Rfallow was estimated using the spatial distribution of 483 

cropping systems in 2000. Some single cropping systems have evolved to double 484 

cropping systems and vice versa over the last 20 years (Han et al., 2022), which might 485 



slightly affect the contribution of fallow period emission in recent years. However, our 486 

model is not restricted to specific years and sites, and it can be applied universally based 487 

on essential factors such as soil properties and management practices, regardless of time 488 

and space.  489 

N2O emissions in fallow period have been ignored when calculating the whole-year 490 

emissions for decades, even though this will lead to the underestimation of N2O 491 

emission inventories. One major objective of our study was to understand the degree to 492 

which cropland N2O emissions have been underestimated in the EF-based models.  493 

Here we demonstrate that the inclusion of fallow-period N2O emissions is crucial for 494 

compiling accurate cropland whole-year N2O emission inventories. In particular, single 495 

wheat and other single cropping systems dominate most global fallow emissions, 496 

contributing up to 89% of their whole-year emissions. Overall, our estimates of the 497 

global average EF more than doubled from 0.9 to 1.9% when the emissions during the 498 

fallow periods were considered, with variations in Rfallow mainly driven by soil pH and 499 

management practices (i.e., cropping system type, N fertilizer application rate, and 500 

fallow duration). Current EF-based models systemically underestimate N2O fluxes 501 

without the corresponding adjustment for the fallow period. Additionally, process-502 

based models are barely capable of calibrating and validating against the measurements 503 

of fallow-period N2O emissions, due to the limitation of available fallow emission 504 

measurements. Hence, a sharing platform of global fallow-period N2O emission 505 

measurements is needed to gather more comprehensive data on fallow-period N2O 506 

emissions. Further research is required to check if historical trends and future 507 



projections of national cropland N2O emissions would be impacted by the inclusion of 508 

fallow period. Additionally, research on potential mitigation practices specific to 509 

reducing N2O emissions during fallow periods is needed, especially for single or rice-510 

related cropping systems. Overall, our study extends our understanding of the 511 

contribution of fallow-period N2O emissions – the global magnitude, spatial variation, 512 

and their environmental and anthropogenic drivers. We hope our approach can be used 513 

to improve future N2O inventories and to inform mitigation efforts to reduce cropland 514 

N2O emissions. 515 
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  731 

Fig. 1 Relative importance of selected variables (a), model performance (b) and 732 

the sensitivity of variable (e-f) for Rfallow. The four most important variables (i.e., soil 733 

pH, cropping system type, N application rate and fallow duration) were identified by 734 

partial correlation and generalized boosted regression mode, and selected in the mixed-735 

effect model based on model AIC. The model was evaluated by R2 of fixed effect (R2
c), 736 

R2 of mixed effect (R2
m) and root mean square error (RMSE) based on a repeated 737 

tenfold cross-validation. The mean and error bar of 95% confidence interval were 738 

generated by bootstrapping resampling. The shade of sensitivity curve represents one 739 

standard error. Color indicates cropping system type for a whole year. 740 
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 742 

Fig. 2 Global patterns of Rfallow. (a) ratios weighted by areas of different cropping 743 

systems, including the double (rice-rice (b), rice-upland crops (c) and upland-upland 744 

crops (d)) and single (legumes (e), maize (f), others (g), rice (h) and wheat (i)). Ratios 745 

were predicted with a linear mixed-effect model. Values are shown only where the 746 

proportion of harvested area within the grid cell is greater than 0.5%. Map lines 747 

delineate study areas and do not necessarily depict accepted national boundaries. 748 
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 749 

Fig. 3 Distribution of dominant drivers regulating variation in Rfallow. (a) ratios 750 

weighted by areas of different cropping systems, including the double (rice-rice (b), 751 

rice-upland crops (c) and upland-upland crops (d)) and single (legumes (e), maize (f), 752 

others (g), rice (h) and wheat (i)). The dominant driver is defined as the factor with the 753 

largest absolute value of the partial correlation coefficient (par) in each grid cell, where 754 

par between Rfallow and predictors is done for 3.75°-by-3.75° moving windows. 755 

Significant correlations (p < 0.05) are shown. Values are shown only where the 756 
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proportion of harvested area within the grid cell is greater than 0.5%. The inset pie plots 757 

represent the ratio (%) of harvested areas for which Rfallow variation is regulated by the 758 

dominant drivers. MAP: mean annual precipitation; MAT: mean annual temperature; 759 

Nrate: N application rate. Map lines delineate study areas and do not necessarily depict 760 

accepted national boundaries. 761 
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 763 

Fig. 4 Spatial variation of cropland N2O EF estimated in this study (a) and based 764 

on IPCC tier 1 EF defaults (b). The Rfallow used was the area-weighted of all cropping 765 

systems. Map lines delineate study areas and do not necessarily depict accepted national 766 

boundaries. 767 
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Table 1 Mean and 95% confidence interval (CI) for the stimulated Rfallow by 769 

cropping system. 770 

Category Cropping system Mean (%) 95% CI (%)  

Single 

Wheat 56.5 28.3–81.1  

Rice 52.3 14.1–79.7  

Legumes 48.8 27.0–71.6  

Others 44.9 23.6–68.7  

Maize 34.6 8.5–65.4  

Double 

Rice-rice 26.2 1.3–61.5  

Rice-upland crops 12.4 1.9–30.2  

Upland-upland crops 10.5 1.6–24.1  

Global  44.0 14.5–74.6  

 771 
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Table 2 Cropland fertilizer-induced N2O emissions and emission factor from main 773 

approaches. 774 

Methodology Year Emission (Tg N) EF(%) Citation 

This study 2000 2.1  1.9 This study 

Emission factor-based model 2000 1.0–1.4 0.9–1.0  

FAOa 2000 1.3  0.9 FAOSTAT, 2022 

EDGARa 2000 1.5  0.9 Crippa et al., 2021  

GAINSa 2000 1.4  0.9 Winiwarter et al., 2018  

SRNM 2000 1.1  1.0 Wang et al., 2020 

LME 2000 1.0  0.9 Cui et al., 2021 

Process-based model ensemble 2000s 2 (1.3–3.4)b 1.8 (1.2–2.3) Tian et al., 2020 

Atmospheric inversionc 1998–2016 - 2.3±0.6 Thompson et al., 2019 

a FAOSTAT and GAINS were normalized by removing the contribution from synthetic fertilizers applied 775 

to pasture; the EDGAR version 4.3.2 by excluding the contributions from synthetic fertilizers applied to 776 

pasture and soil mineralization. 777 

b The emission from the ensemble of process-based models includes cropland and pasture N2O emissions. 778 

c The inversion model includes direct and indirect N2O emissions. 779 
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Figure Legends 782 

Fig. 1 Relative importance of selected variables (a), model performance (b) and 783 

the sensitivity of variable (e-f) for Rfallow. The four most important variables (i.e., soil 784 

pH, cropping system type, N application rate and fallow duration) were identified by 785 

partial correlation and generalized boosted regression mode, and selected in the mixed-786 

effect model based on model AIC. The model was evaluated by R2 of fixed effect (R2
c), 787 

R2 of mixed effect (R2
m) and root mean square error (RMSE) based on a repeated 788 

tenfold cross-validation. The mean and error bar of 95% confidence interval were 789 

generated by bootstrapping resampling. The shade of sensitivity curve represents one 790 

standard error. Color indicates cropping system type for a whole year. 791 

Fig. 2 Global patterns of Rfallow. (a) ratios weighted by areas of different cropping 792 

systems, including the double (rice-rice (b), rice-upland crops (c) and upland-upland 793 

crops (d)) and single (legumes (e), maize (f), others (g), rice (h) and wheat (i)). Ratios 794 

were predicted with a linear mixed-effect model. Values are shown only where the 795 

proportion of harvested area within the grid cell is greater than 0.5%. Map lines 796 

delineate study areas and do not necessarily depict accepted national boundaries. 797 

Fig. 3 Distribution of dominant drivers regulating variation in Rfallow. (a) ratios 798 

weighted by areas of different cropping systems, including the double (rice-rice (b), 799 

rice-upland crops (c) and upland-upland crops (d)) and single (legumes (e), maize (f), 800 

others (g), rice (h) and wheat (i)). The dominant driver is defined as the factor with the 801 

largest absolute value of the partial correlation coefficient (par) in each grid cell, where 802 

par between Rfallow and predictors is done for 3.75°-by-3.75° moving windows. 803 

Significant correlations (p < 0.05) are shown. Values are shown only where the 804 

proportion of harvested area within the grid cell is greater than 0.5%. The inset pie plots 805 

represent the ratio (%) of harvested areas for which Rfallow variation is regulated by the 806 

dominant drivers. MAP: mean annual precipitation; MAT: mean annual temperature; 807 

Nrate: N application rate. Map lines delineate study areas and do not necessarily depict 808 

accepted national boundaries. 809 

Fig. 4 Spatial variation of cropland N2O EF estimated in this study (a) and based 810 

on IPCC tier 1 EF defaults (b). The Rfallow used was the area-weighted of all cropping 811 

systems. Map lines delineate study areas and do not necessarily depict accepted national 812 

boundaries. 813 
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