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Abstract

The black rat (Rattus rattus) poses a severe threat to food security and public health in Madagascar, where it is a
major cause of pre- and post-harvest crop losses and an important reservoir for many zoonotic diseases, including
plague. Elsewhere, ecologically based rodent management (EBRM) strategies have been developed using ecologi-
cal information to inform decisions on where and when to target control. EBRM could deliver improved health and
well-being outcomes in Madagascar if adapted to the local ecological context. Using data collected from removal
studies, we explored spatio-temporal patterns in the breeding activity of the black rat (R. rattus) in domestic and
agricultural habitats across Madagascar and investigated to what extent these trends are influenced by rainfall and
rat density. We identified clear spatio-temporal variation in the seasonality of R. rattus reproduction. Reproduction
was highly seasonal both inside and outside of houses, but seasonal trends varied between these two habitats. Sea-
sonal trends were explained, in part, by variation in rainfall; however, the effect of rainfall on reproductive rates
did itself vary by season and habitat type. A decline in breeding intensity with increasing rat density was recorded
outside of houses. This has important implications for control, as populations may compensate for removal through
increased reproduction. We recommend that sustained control initiated before the main breeding season, combined
with improved hygiene and adequate rodent-proofing in homes and grain stores, could curtail population growth
and reduce pre- and post-harvest losses provided that these measures overcome the compensatory response of
rodent populations.
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INTRODUCTION

Globally, rodent pests pose a serious threat to food se-
curity and public health (Meerburg et al. 2009; Capizzi
et al. 2014). Control efforts largely depend on the use
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of rodenticides and other lethal methods (Capizzi et al.
2014); however, owing to their behavioral plasticity, high
mobility, and reproductive potential, rodent populations
can compensate for removal through immigration (Krebs
et al. 1978; Sullivan et al. 2001, 2003), increased survival
(Brown & Tuan 2005), and better breeding performance
(Singleton et al. 1999).

Ecologically based rodent management (EBRM)
(Singleton et al. 1999) can provide environmental and
economic benefits by limiting negative impacts of con-
trol on the environment and non-target species and re-
ducing reliance on chemical controls (Singleton et al.
2005, 2007; Brown et al. 2006). So far, EBRM has been
successfully applied in agricultural settings, but its appli-
cation within domestic settings could help to reduce post-
harvest losses (Belmain et al. 2003, 2015; Htwe et al.
2021) and lessen the risk of rodent-borne disease (Lee
et al. 2018).

The key to an EBRM approach is understanding the
spatial and seasonal population dynamics of the target
species, including density- and resource-dependence of
reproduction, and using this to inform decisions on when
and where to target control. For example, in agricultural
settings, implementing controls before the main breed-
ing season and when population numbers are low can
reduce rodent crop damage and subsequent yield losses
compared with controls implemented arbitrarily or af-
ter detection of damage (Singleton et al. 2005; Brown
et al. 2006; Huan et al. 2010; Palis et al. 2011; Stuart
et al. 2020).

In Madagascar, non-native small mammals are reser-
voirs of many zoonotic diseases, including the plague
(Chanteau et al. 1998; Duplantier et al. 2005). Rodent
pests also threaten food security. Surveys in Madagas-
car’s eastern regions estimated that rodent pests cause av-
erage pre-harvest losses of 53% of maize crops (range:
30–80%) and 38% of rice crops (20–100%), while post-
harvest losses were estimated at 11.5 kg (3–20 kg) and
13.3 kg (1.5–60 kg) per household per annum for maize
and rice, respectively (Constant et al. 2020).

Madagascar’s current strategy of rat management fo-
cuses on managing plague outbreaks, with an emphasis
on using chemical insecticides to control the flea vec-
tor rather than the rat reservoir (Belmain et al. 2018);
however, the occurrence of insecticide resistance is of
major concern in the Madagascar’s public health context
(Miarinjara & Boyer 2016; Rajonhson et al. 2017). The
public are also provided with information on non-lethal
rodent control measures (e.g. habitat management, lo-
cally made live capture traps) but uptake of this advice is

limited (Belmain et al. 2018; Soarimalala et al.
2019; Constant et al. 2020). Instead, lethal con-
trol methods are more common (e.g. locally made
snap-traps, acute poisons) (Soarimalala et al. 2019;
Constant et al. 2020). Whether these efforts are
effective at reducing rodent numbers or rodent dam-
age is unclear; however, studies elsewhere in sub-
Saharan Africa concluded that ad hoc control by
smallholder farmers is largely ineffective, while inad-
equate and incorrect use of poisons fuels resistance
(Belmain 2010).

EBRM has the potential to improve rodent pest man-
agement within Madagascar (Constant et al. 2020).
Strategies must, however, be adapted to the local agri-
cultural and ecological context (Singleton 1999). While
research elsewhere has linked the breeding activity of
rodent crop pests to the timing of agricultural cycles
(e.g. Brown et al. 2005; Htwe et al. 2012; Stuart et al.
2015), our understanding of the reproductive cycles of
rodent pests in agricultural and domestic habitat in Mada-
gascar is based on a limited number of studies con-
ducted at a small number of sites (Duplantier & Rako-
tondravony 1999). Moreover, the ecology and population
dynamics of rodent pests will vary across Madagascar’s
heterogeneous landscape: Madagascar is a vast country
encompassing arid, temperate, and tropical climates
which, combined with complex topography, produce di-
verse vegetation types and ecosystems. Further modi-
fied by human activity, this diversity is mirrored in the
agricultural landscapes which characterize the different
bioclimate regions. Large rodent outbreaks are uncom-
mon in Madagascar, but seasonal trends in abundance
have been observed to vary with location, land-use, and
habitat type (Duplantier & Rakotondravony 1999). To be
effective, EBRM programs must likewise reflect this di-
versity. With a view to informing the development of
EBRM in Madagascar, we combined data collected by
different studies (investigating rodent-borne disease) to
examine the breeding activity of the black rat, Rattus rat-
tus (Linnaeus, 1758), in domestic and agricultural habi-
tats across the country. Several key reproductive rates
contribute to rodent fecundity, including sexual maturity
(the physiological ability to reproduce), pregnancy rates,
and litter size. We first explored seasonal patterns in these
reproductive rates within different habitats and bioclimate
regions, before investigating to what extent they are influ-
enced by rainfall and rat density, and whether the effect
of these processes on reproduction varies spatially and
temporally. Based on our findings, we make recommenda-
tions for implementing EBRM strategies in Madagascar.
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K. Scobie et al.

Figure 1 Map of sampling locations in the National (●), Antsirabe/Betafo (+), and Moramanga studies (×). Colored circles indicate
local bioclimate: arid (n districts [sites] = 4 [8]), temperate-wet (n = 1 [27]), temperate-dry (n = 8 [38]), tropical rainforest (n = 6
[12]), and tropical savannah (n = 10 [20]).

MATERIALS AND METHODS

Small mammal trapping

Study areas

Data used in this study were collected as part of three
studies into rodent-borne disease. The first study was con-
ducted in the districts of Antsirabe (Latitude: 19.8659°S,
Longitude: 47.0333°E) and Betafo (Lat: 19.8333°S,
Long: 47.85°E) in Madagascar’s Central Highlands. The
region has a temperate climate with a cool–dry sea-
son (May–October) and warm–wet season (November–
April). Small mammal trapping was conducted at 12 vil-
lages in Antsirabe and 12 in Betafo between January 2009
and February 2010 (one village per district sampled each

month). Four of the villages were resampled a further four
times between June 2010 and March 2011.

In the second study, sampling was carried out at 28 dis-
tricts across Madagascar (Fig. 1), encompassing arid, tem-
perate, and tropical bioclimates (National study, herein).
Sampling was carried out once per site during the dry
season only (October–April) between 2011 and 2013.

The third study was conducted in the Moramanga dis-
trict (Lat: 19.9495°S, Long: 48.2301°E), central eastern
Madagascar, between 2013 and 2016. Moramanga’s cli-
mate is temperate with no well-defined dry season and
hot–wet summers (December–April). Here, sampling was
conducted at 20 village sites and five forest sites. Each
site was sampled twice. Eleven of the sites were sampled
first during the rainy season (December–April) and for a

68 © 2023 The Authors. Integrative Zoology published by International Society of Zoological Sciences,
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Reproductive ecology of Rattus rattus

Table 1 Description of outdoor habitats sampled. In the Antsirabe/Betafo and National studies, habitats sampled outside of the
village comprised irrigated rice and low-lying agriculture typically within 150–300 m from the village. In the Moramanga study,
habitats sampled outside of the village included a range of habitat types within approximately 350 m from the village

Antsirabe/Betafo Moramanga National Habitat Definition

Outside of village

x Forest Trees with closed-canopy

x Savoka Re-generating forest and woodland

x Tanety Hillside agriculture

x x x Rice fields Irrigated rice fields and low-lying agriculture

x Plantation Forested areas comprising plantations of pine or
eucalyptus

Within village

x x Village proximity Vegetation within and bordering the village
(dominated by sisal, bamboo, and bushes)

x x Household proximity The private space immediately surrounding a house

second time during the drier months (July–October).
Fourteen of the sites were sampled first during the dry
season and for a second time during a subsequent rainy
season.

Sampling protocol

With permission from local authorities and household
heads, live-capture small mammal traps were set both in-
side houses and outside. We highlight that the trapping
protocol followed in these studies was not implemented
with the intention of rodent control but rather to sample
the small mammal population.

Inside houses, all three studies followed the same pro-
tocol: one wire-mesh BTS trap (30L × 10W × 10H cm,
BTS Company, Besançon, France) and one Sherman trap
(23L × 7.5W × 9H cm, H.B. Sherman Traps Inc., Talla-
hassee, Florida, USA) placed in areas thought to be used
by rats but out of reach of children and non-target species
(4–32 houses/site, median = 17).

Outside of houses, three habitat types were sampled:
(i) the private space immediately surrounding the ex-
terior of the house (“household proximity”), (ii) areas
of vegetation within approximately 150 m from houses
(“village proximity”), and (iii) other habitats within
150–350 m from houses (“outside of village”) and in-
cluding agricultural land, plantations, woodland, and for-
est (Table 1).

Where such habitat was available, the household
proximity was sampled using one BTS trap per house
(1–19 houses/site, median = 5.5). The village proxim-

ity and habitat outside of the village were sampled us-
ing traplines comprising 10–20 Sherman, BTS, and/or
wire-mesh National traps (39.2L × 12.3W × 12.3H cm,
Tomahawk Trap Company, Hazelhurst, Wisconsin, USA)
positioned at 10–20 m intervals. Between 1 and 10
traplines were set at each site. All traps were baited either
with dry fish and onion or raw manioc root and peanut
butter and set for three (Antsirabe/Betafo and National
studies) or five consecutive nights (Moramanga study).
Traps were checked daily. No pre-baiting took place.

Small mammal sampling in Moramanga included areas
with natural habitat and was conducted under the fol-
lowing authorizations for research from the Madagascar
Ministry of Environment and Forests: 154/13/MEF/SG/
DGF/DCB.SAP/SCB, dated 3 July 2013; 312/13/MEF/
SG/DGF/DCB.SAP/SCB (27 December 2013); 178/14
/MEF/SG/DGF/DCB.SAP/SCB, (2 July 2014); and
11/15/MEF/SG/DGF/DCB.SAP/SCB (19 January
2015). Rodent handling was done in accordance
with directive 2010/63/EU of the European Parlia-
ment (http://eur-lex.europa.eu/Lex-UriServ/LexUriServ.
do?uri=OJ:L:2010:276:0033:0079:EN:PD) and the
guidelines of the American Society of Mammalogists for
the use of wild animals in research and education (Sikes
et al. 2016).

Defining reproductive rates

Captured animals were humanely euthanized by
cervical dislocation. Sex, weight, head–body length
(HBL), and other morphometric measurements were
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recorded. Species identification was based on phenotypic
characteristics.

Female reproductive status was determined using in-
ternal observations made at necroscopy. The following
metrics were used as a proxy measure for population fe-
cundity: proportion of females which were sexually ma-
ture (“female maturity”), proportion of sexually mature
females which were pregnant (“gestation rate”), and lit-
ter size of pregnant females (number of visible embryos
without magnification). We defined sexually mature fe-
males as those which were visibly pregnant or showed
signs of previous pregnancy (uterine scars). Females be-
low 45.0 g (the minimum weight at which an individual
was found to be sexually mature) were excluded from the
analysis.

Statistical analysis

We used generalized linear mixed models (GLMMs)
to examine the effect of rainfall and rat density on R.
rattus reproduction and to explore spatio-temporal vari-
ation in these effects. Female maturity and gestation
rate were modeled using GLMMs with binomial errors
and a logit link function. Litter size was modeled us-
ing generalized Poisson GLMMs with a log link func-
tion. The package glmmTMB (Brooks et al. 2017) in
the software R (R Core Team 2020) was used to fit
models.

As seasonal variation in reproduction has been ob-
served between rats trapped inside and outside of houses
(Duplantier & Rakotondravony 1999), to limit model
complexity in-house and external captures were modeled
separately. To account for an expected effect of age on
reproduction, models included an additive effect of cen-
tered and standardized HBL. HBL is correlated with age
in wild R. rattus populations (Miller & Miller 1995) but
is not influenced by reproductive state. Models also in-
cluded a random effect of site and of sampling occasion
(“mission”) nested within site.

Hypotheses and matching covariates

We first conducted an exploratory analysis of patterns
related to season, bioclimate, and habitat. To explore
whether seasonal trends vary between different bioclimate
regions, global models included two-way interactions be-
tween season and bioclimate region. Season was modeled
using a sine and cosine term to test for cyclic seasonal pat-
terns depending on date of capture, where date was con-
verted to Julian day.

Spatial variation in climate (especially aridity) may
influence primary productivity, and thus resource avail-

ability. To account for this potential variation, we consid-
ered four different bioclimate characterizations based on
Köppen–Geiger climate classifications (Peel et al. 2007;
Beck et al. 2018). The most complex of these (Bio.5) al-
lowed seasonality in reproductive rates to vary across five
bioclimate classes and was sensitive to differences in tem-
perature and precipitation. Bio.4 grouped temperate sites
(warmest month ≥ 10°C and the coldest month 0–18°C).
As rainfall may play an important role in driving repro-
duction, the third characterization (Bio.3) grouped tropi-
cal and arid sites (where the coldest month ≥ 18°C and/or
mean annual temperature ≥ 18°C) but divided temperate
sites (representing the largest proportion of our dataset)
into those with dry winters (temperate–dry) and those
with no dry season (temperate–wet). Finally, Bio.2 dif-
ferentiated between temperate sites and sites with hotter
climates.

In external areas, resource availability may also be in-
fluenced by proximity to houses and agricultural fields. To
account for this potential variation in our external anal-
yses, and to explore whether the effect of habitat varies
seasonally, global models included an effect of habitat
type in a two-way interaction with season. We initially
considered two different habitat characterizations which
grouped captures by their proximity to human habita-
tion and agriculture: Habitat distinguished between habi-
tat within the household proximity (the private space
immediately surrounding the exterior of the house), the
village proximity, and outside of the village. The sec-
ond characterization, Household.proximity, distinguished
between habitat within the household proximity and all
other external habitat. In subsequent analyses investigat-
ing the effect of rat density on reproductive rates (see
below), we removed data from the household proximity
as low sampling effort (due to lower availability of suit-
able habitat in which to place traps) meant we had lim-
ited data to estimate rat density in these areas. In these
analyses, habitat was therefore characterized as a 2-level
categorical variable, allowing reproductive rates to vary
between habitat within and outside of the village proxim-
ity (Within_village.vs.Outside_village).

Following the exploratory analysis, we investigated
the effects of rainfall and rat density on reproductive
rates. Rainfall effects may vary seasonally as well as
between different bioclimates and habitat types; there-
fore, global models included rainfall in two-way inter-
actions with season, bioclimate, and habitat. Eight rain-
fall characterizations were considered: total 30-day rain-
fall with a 0–3 month lag (Lag.n) and total 90-day ac-
cumulated rainfall with a 0–3 month lag (Acc.lag.n).
District-level precipitation data were obtained from the

70 © 2023 The Authors. Integrative Zoology published by International Society of Zoological Sciences,
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Reproductive ecology of Rattus rattus

Climate Hazards group Infrared Precipitation with Sta-
tions (CHIRPS) dataset (Funk et al. 2015) and variables
were centered and standardized. As described above, data
from the household proximity were excluded from these
analyses.

The effect of population density on reproductive rates
may vary by season, habitat, and by age. To account for
this potential variation, global models included density in
two-way interactions with season, habitat, and HBL. For
both in-house and external analyses, four indices of rat
density were evaluated (eight total), reflecting total popu-
lation density (including adults and subadults but exclud-
ing juveniles) and adult-only population density at the
site-level and at the household- or trapline-level. To es-
timate population density, abundance estimates were cal-
culated in Program MARK (White & Burnham 1999;
Supporting Information 1). For external captures, den-
sity per hectare was estimated at the site (External.site)
and trapline-level (External.trapline) by dividing the re-
spective abundance estimates by the approximate area
sampled. Using published estimates of R. rattus home
ranges in Madagascar (Rasolozaka 1999; Ratsimanosika
1999) and forested areas of New Caledonia (Duron et al.
2020) and California (Whisson et al. 2007), this calcu-
lation assumed a 30-m buffer around traps. For in-house
captures, abundance estimates calculated at the site-level
were corrected for the number of houses trapped and are
thus expressed as the number of rats per house (House-
hold.site.level). As small sample sizes meant that abun-
dance estimates could not be calculated at the individual
household-level, household-level capture rates were used
as a measure of relative abundance per house (House-
hold.capture.rate), calculated as the number of captures
divided by the number of traps containing rodents or not
sprung plus half the number of traps which were sprung
but which had not caught a rodent (Theuerkauf et al.
2011).

To explore whether density effects varied between
younger individuals potentially breeding for the first time
and older individuals, we considered an interaction be-
tween density and HBL. Two characterizations of HBL
were considered: a continuous variable (Length.cont) and
categorical variable (Length.cat) which grouped individ-
uals <150 mm in HBL and those ≥150 mm.

Definitions of levels included within the categorical ex-
planatory variables of habitat type and bioclimate region
are provided in Table 2, along with definitions of the dif-
ferent density and rainfall variables tested.

Model selection

We adopted an AIC-based approach to covariate and
model selection using Akaike’s information criterion val-

ues corrected for small sample size (AICc) where mod-
els with an AICc value of within 2 of the lowest AICc
(�AICc ≤ 2) were considered competitive (Burnham &
Anderson 2002). First, the following global models (GM1
and GM2) were defined based on the a priori hypotheses
outlined above:

GM1: Reproduction outside of houses ∼ (Rainfall ∗
Season) + (Rainfall ∗ Bioclimate) + (Rainfall ∗ Habitat)
+ (Density ∗ Season) + (Density ∗ Habitat) + (Density
∗ HBL)

GM2: Reproduction inside houses ∼ (Rainfall ∗ Sea-
son) + (Rainfall ∗ Bioclimate) + (Density ∗ Season) +
(Density ∗ HBL)

Model selection was then carried out in three stages
(a flow diagram outlining the process is provided in Sup-
porting Information 2). In Stage 1, we identified which
characterizations of the different explanatory variables
to include in global models. Specifically, we evaluated
characterizations of habitat, bioclimate, rainfall, and den-
sity when modeled in a two-way interaction with season.
Density characterizations were also modeled in a two-
way interaction with HBL. Rainfall characterizations ap-
pearing in models with �AICc ≤ 2 were also modeled
in interaction with bioclimate. To reduce complexity, we
considered each interaction separately. Simple additive
models with no interactions were also considered. Sep-
arate models were thus run containing different charac-
terizations of the same variable; these models were then
compared using AICc. Characterizations which gener-
ated models with �AICc ≤ 2 were retained and used
to construct a set of global models, each of which con-
tained only a single characterization of each explanatory
variable.

In Stage 2, we assessed simplifications of each global
model using the “dredge” function in R’s MuMIn pack-
age (Barton 2020), exploring all possible combinations of
the variables of interest and generating a set of candidate
models. Candidate models were subsequently grouped
by response variable, ranked by AICc, and subset to
include only those with �AICc ≤ 2 (“top model set”
herein).

In Stage 3, we identified which model(s) from the top
model set were most informative for interpretation. To
avoid interpreting parameters which cannot be consid-
ered truly independent, models which included alterna-
tive characterizations of a variable included in a model
with a lower AICc were excluded from the top model set.
We also excluded models which were nested within the
top model (Arnold 2010; Richards et al. 2011) and mod-
els that differed from other models with a lower AICc by
the inclusion of a single parameter for which the 95%

© 2023 The Authors. Integrative Zoology published by International Society of Zoological Sciences,
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K. Scobie et al.

Table 2 Definition of habitat type, bioclimate region, density, and rainfall variables (or levels, for categorical variables) tested in
generalized linear mixed model (GLMM) analysis of variables predicting the reproductive rates of female Rattus rattus. Bioclimate
classifications are taken from Beck et al. (2018) and adapted from Peel et al. (2007). MAP, mean annual precipitation (mm y−1);
MAT, mean annual air temperature (°C). Precipitation threshold (Pthreshold) = 2 × MAT if >70% of precipitation falls in winter; 2 ×
MAT + 28 if >70% of precipitation falls in summer; or 2 × MAT + 14

Variable characterisation or level Definition

Habitat type:

Household proximity The private space immediately surrounding the exterior of the house.

Village proximity Vegetation within and bordering the village, up to ∼150 m from houses (dominated by sisal,
bamboo, and bushes)

Outside of village Other habitats within 150–350 m from houses and including agricultural land, plantations,
woodland, and forest.

Bioclimate region:

Temperate Air temperature in the hottest month is >10°C; air temperature in the coldest month is >0°C and
<18°C; MAP is ≥10 × Pthreshold

Temperate-dry As for temperate, but with dry winters and summers are hot or warm

Temperate-wet As for temperate, but with hot summers and no dry season

Tropical rainforest Air temperature of the coldest month is ≥18°C; MAP is ≥10 × Pthreshold and precipitation in the
driest month is ≥60 mm

Tropical savannah Air temperature of the coldest month is ≥18°C; MAP is ≥10 × Pthreshold and precipitation in the
driest month is <100-MAP/25 and <60 mm

Arid Mean annual temperature is ≥18°C and MAP is <10 and ≥5 × Pthreshold

Density:

External.site Total or adult-only population density of Rattus rattus outside of houses (ha–1). Abundance
estimates were generated at the site-level and divided by the approximate area sampled.

External.trapline Total or adult-only population density of R. rattus outside of houses (ha–1). Abundance estimates
were generated at the trapline-level and divided by the approximate area sampled by each
trapline.

Household.site.level Total or adult-only population density of R. rattus inside houses. Abundance estimates were
generated at the site-level and divided by the number of households sampled, generating a
density estimate per household.

Household.capture.rate Total or adult-only capture rate of R. rattus inside houses.

Rainfall:

Lag.n Total rainfall over the previous 30 consecutive days prior to trapping with a lag of n (0–3) months

Acc.lag.n Total rainfall over the previous 90 consecutive days prior to trapping with a lag of n (0–3) months

CIs overlap zero (Arnold 2010; Leroux 2019). Model
validation was performed using R’s DHARMa package
(Hartig 2021). Residual and QQ-plots for final models are
provided in Figs S3, S4, Supporting Information 4, and
Figs S5, S6, Supporting Information 5.

RESULTS

Of 9670 R. rattus captured, 5105 were male, 4564 were
female, and 1 was of unrecorded sex. Among females,

4280 (93.8%) were ≥45 g. Of these, 1284 (30.0%) were
visibly sexually mature, 382 (29.8%) of which were preg-
nant. Median litter size was 6 both inside houses (IQR
4–7) and outside (IQR 5–7). A breakdown of captures per
dataset, bioclimate, and habitat type is provided in Table 3
and Fig. S2, Supporting Information 3.

Traps also captured the house mouse Mus muscu-
lus (in-house: n = 742; outside: n = 287), the Asian
shrew Suncus murinus (in-house: n = 139; outside: n =
157), and R. norvegicus (in-house: n = 91; outside: n =
124). The remainder of captures comprised native species,

72 © 2023 The Authors. Integrative Zoology published by International Society of Zoological Sciences,
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Reproductive ecology of Rattus rattus

Table 3 Female captures (n and, in brackets, as a percentage of the total population) per dataset, bioclimate, and external habitat type,
excludes juveniles (non-reproductive individuals < 45 g). Mature refers to sexually mature females (pregnant or showing signs of
previous pregnancy). Pregnant females were those with embryos at autopsy. Percentage of total is given in brackets. Litter refers to
median (IQR) litter size (number of embryos at autopsy) of pregnant females

Outside houses Inside houses

Total Mature Pregnant Litter Total Mature Pregnant Litter

Dataset

Antsirabe-Betafo 698 217 (31.1%) 43 (6.2%) 6 (5–7) 141 64 (45.4%) 22 (15.6%) 5 (4–6)

Moramanga 2028 637 (31.4%) 166 (8.2%) 6 (5–8) 178 92 (51.7%) 38 (21.3%) 6 (6–7)

National 271 106 (39.1%) 43 (15.9%) 6 (5–7) 339 168 (49.6%) 70 (20.6%) 5 (4–6.75)

Bioclimate

Temperate-dry (n = 27) 846 266 (31.4%) 65 (7.7%) 6 (5–7) 210 94 (44.8%) 35 (12.7%) 6 (4–7.5)

Temperate-wet (n = 38) 2038 646 (31.7%) 170 (8.3%) 6 (5–7) 182 95 (52.2%) 41 (22.5%) 6 (6–7)

Tropical rainforest (n = 12) 28 18 (64.3%) 9 (32.1%) 5 (4–6) 66 36 (54.5%) 13 (19.7%) 5 (4–6)

Tropical savannah (n = 20) 46 21 (45.7%) 5 (10.9%) 6 (6–7) 133 68 (51.5%) 31 (23.3%) 5 (4–6)

Arid (n = 8) 39 9 (23.1%) 3 (7.7%) 4 (4–6) 67 31 (46.3%) 10 (14.9%) 5 (4–6.5)

Habitat (external captures only)

House proximity 163 61 (37.4%) 22 (13.5%) 6 (5–6)

Village proximity 421 134 (31.8%) 31 (7.4%) 6 (5–7)

Outside of villages 2413 765 (31.7%) 199 (8.2%) 6 (5–7)

specifically Nesomyinae rodents and Tenrecidae tenrecs
(in-house: n = 4; outside: n = 156).

Preliminary findings: season, bioclimate, and

habitat effects

Our initial exploratory analysis explored patterns in re-
production related to season, habitat, and bioclimate. Full
model selection results are provided in Supporting Infor-
mation 4 (Tables S9, S10 for variable selection; Tables
S11–S16 for top model sets; Tables S17, S18 for final
models).

Results indicated that R. rattus reproduction was highly
seasonal both inside houses and outside, typically increas-
ing during the rainy season (November–April) and de-
creasing during the dry season (May–October) (Fig. 2).
However, the timing and amplitude of the seasonal cycle
varied between different habitats and bioclimates.

For female maturity, populations found outside of
the village had the highest amplitude seasonal cy-
cle; however, the timing of the seasonal cycle was
similar across all habitat types (Fig. 2, top row).
Additionally, the proportion of females which were

sexually mature was highest inside houses year-round.
For gestation rates, seasonal patterns differed substan-
tially between different habitat types and bioclimate
regions (Fig. 2, bottom row). In particular, in temper-
ate regions, gestation rates peaked in April–May inside
houses, but peaked earlier outside of houses (December–
January in the household proximity, February outside of
villages). In contrast, in arid and tropical regions, the in-
house population appears to breed earlier or at a similar
time compared to external populations. We cannot draw
robust conclusions about differences between bioclimates
in reproductive rates during the dry period due to lim-
ited sampling of non-temperate regions between May and
September. Female maturity and litter size also varied
by bioclimate, primarily driven by low maturity and de-
creased litter size in arid sites, but we found no evidence
that seasonal trends varied between bioclimates.

Rainfall and density effects

Outside houses

Model selection produced one final model of female
maturity and of gestation rate outside of houses, and two

© 2023 The Authors. Integrative Zoology published by International Society of Zoological Sciences,
Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
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K. Scobie et al.

Figure 2 Predicted female maturity (above) and gestation rates (below) of Rattus rattus in different habitat types. Values (and 95%
CI) are derived from binomial generalized linear mixed models (GLMMs) illustrating the effect of season and (for gestation rate)
bioclimate region (temperate = solid line; non-temperate = dotted line). Vertical dotted lines indicate the approximate start and end
of the dry season (May–October). Tick marks indicate the distribution of observations within the full dataset (temperate regions at 0.0
on the y-axis; non-temperate regions at 1.0 on the y-axis).

final models of litter size within 2 �AICc (Table 4).
Models of female maturity and gestation rate included
rainfall in two-way interactions with habitat and season,
with rainfall characterized as 90-day accumulated rainfall
lagged by 2 months (Acc.lag.2) and 3 months (Acc.lag.3),
respectively. Both models also included bioclimate
(Bio.4) as an additive effect (female maturity) or in inter-
action with rainfall (gestation rate), and population den-
sity as an additive effect (gestation rate) or in interaction
with HBL (female maturity). The best models of gestation
rate and litter size included HBL as an additive effect. The
best models of litter size also included an additive effect
of either season or of 90-day rainfall with a 1-month lag
(Acc.lag.1). See Supporting Information 5 for full model
selection results (Tables S19–S22 for variable selection;
Tables S23–S25 for top model sets).

The effect of lagged rainfall on maturity and gesta-
tion rates varied seasonally and between different habi-
tat types. Figure 3 illustrates these effects in temperate
regions. In the village proximity, female maturity was
negatively associated with Acc.lag.2 (Fig. 3a). Outside of
the village, however, there was a positive association be-
tween Acc.lag.2 and female maturity between April and
June (when female maturity was highest), corresponding
to increased rates of maturity with increased November–
February rainfall (Fig. 3b).

Gestation rates showed a positive association with
Acc.lag.3 rainfall during the main breeding season
(April–June), corresponding to October–January rainfall
(Fig. 3c,d). This trend was most pronounced within the
village proximity (Fig. 3c), where predicted gestation
rates for May range from 21.1% (7.8–45.8%) at the lowest
recorded Acc.lag.3 rainfall (282.3 mm) to 74.6% (27.7–
95.7%) at the highest (1100.0 mm). During the rest of the
year, gestation rates remained low irrespective of previous
rainfall.

The additive effect of bioclimate on female maturity
appeared to be driven by a relatively low proportion of
sexually mature females in arid bioclimates (Table 4).
Meanwhile, the relationship between rainfall and gesta-
tion rates varied between different bioclimates. In partic-
ular, gestation rates at tropical rainforest sites were nega-
tively associated with Acc.lag.3 (odds ratio for a 10-unit
increase in Acc.lag.3 = 0.14 [0.02–0.82]). We also found
evidence that seasonality in gestation rates shifted within
these bioclimates, peaking earlier in the year than at tem-
perate and tropical-rainforest sites; however, our sample
of sexually mature females from non-temperate regions
was small (n = 39), and so this relationship requires fur-
ther investigation.

Litter size increased throughout the rainy season to
a peak in April, coinciding with the main breeding

74 © 2023 The Authors. Integrative Zoology published by International Society of Zoological Sciences,
Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
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K. Scobie et al.

Figure 3 Predicted female maturity (a,b) and gestation rates (c,d) of Rattus rattus in external habitat. Values (and 95% CI) are derived
from binomial generalized linear mixed models (GLMMs) illustrating the rainfall-season interaction (comparing lines within the
same plot) and rainfall-habitat interaction (comparing plots a,b and c,d). Rainfall was characterized as 90-day rainfall with a 2-month
(Acc.lag.2, female maturity) or 3-month lag (Acc.lag.3, gestation rate). Predictions are based on the minimum, median, and maximum
Acc.lag.2 and Acc.lag.3 values recorded at temperate sites between 2008 and 2020. Date of capture = 1st of each month; bioclimate
region = temperate. (e) Monthly rainfall recorded at temperate sites between 2008 and 2020. Vertical dotted lines indicate approximate
start and end of the dry season (May–October).

season, and decreased during the dry season when ges-
tation rates were low (Fig. 4). We found no evidence that
seasonality varied between bioclimates or habitat types,
or that it was modified by the influence of rainfall. How-
ever, the seasonal pattern did mirror seasonal fluctuations
in 90-day rainfall with a 1-month lag (Acc.lag.1); notably,
in the second model within top model set for litter size,
season was replaced by an additive effect of Acc.lag.1

rainfall (�AICc = 1.4), suggesting that seasonal varia-
tion in litter size may be driven by variation in rainfall.

Density estimates ranged from 0 to 45.3 individu-
als/hectare (or 0–25.5 adults/hectare), recorded in Jan-
uary and July, respectively (median: 10.8 inds/ha and
7.4 adults/ha). An increase in adult population density
was associated with a decrease in gestation rates among
sexually mature individuals (odds ratio 0.96 [0.92–1.00]).

76 © 2023 The Authors. Integrative Zoology published by International Society of Zoological Sciences,
Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
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Reproductive ecology of Rattus rattus

Figure 4 Predicted litter size of Rattus rattus in habitat outside
of houses (solid line). Values (and 95% CI) derived from bino-
mial generalized linear mixed model (GLMM) illustrating the
effect of season (litter size model “m1” in Table 4). Head–body
length (HBL) is set to the median value. Dashed line indicates
median 90-day rainfall with a 1-month lag (Acc.lag.1) recorded
across all study sites between 2008 and 2020. Vertical dotted
lines indicate the approximate start and end of the dry season
(May–October). Tick marks indicate the distribution of obser-
vations within the full dataset.

This relationship was not found to be influenced by sea-
son, habitat, or HBL.

Meanwhile, an increase in total population density was
associated with a decrease in female maturity, though
this relationship was modified by HBL. The HBL of fe-
males ≥ 45g captured outside of houses ranged from 92 to

210 mm (median: 156 mm). Using HBL as a proxy for
age, our results indicate that population density has lit-
tle effect on the probability that a young individual (i.e.
90–150 mm) will reach sexual maturity (Fig. 5). As indi-
viduals age, they are more likely to have reached sexual
maturity, though the effect of density-dependent breed-
ing suppression also increases. As such at high popula-
tion densities, the probability that a 210-mm female has
reached sexual maturity remains as low as 38.3% (5.7 –
86.4%).

The best model predicted a 7.0% increase in litter size
for every 10-mm increase in HBL (3.6–10.6%). Con-
versely, the best model of gestation rate found that in-
dividuals <150 mm in HBL had a higher probability of
being pregnant than larger individuals (odds ratio 1.78
[0.85–3.73]). It is not clear from our data whether this
effect represents genuine senescence or a bias in the ges-
tation dataset, with younger individuals having a lower
probability of having completed their first pregnancy.

Inside houses

Model selection produced one final model for each of
the three reproductive rates inside houses (Table 5). The
best model of female maturity included an additive effect
of 90-day rainfall with a 1-month lag (Acc.lag.1) and a
two-way interaction between HBL (Length.cont) and to-
tal population density estimated at the site-level (House-
hold.site.level). The best model of gestation rate included
an effect of 30-day rainfall with a 3-month lag (Lag.3)

Figure 5 Predicted maturity of female Rattus rattus in habitat outside of houses. Values (and 95% CI) are derived from binomial
generalized linear mixed model (GLMM) illustrating the interaction effect of total population density and head–body length (HBL).
Tick marks indicate the distribution of observations within the full dataset.

© 2023 The Authors. Integrative Zoology published by International Society of Zoological Sciences,
Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
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Reproductive ecology of Rattus rattus

Figure 6 Predicted gestation rates of sexually mature Rattus rat-
tus inside houses (a). Values (and 95% CI) are derived from bi-
nomial GLMM illustrating the interaction effect of season and
30-day rainfall lagged by 3 months (Lag.3). Date of capture was
specified as the 1st of each month. Predictions are based on the
75% quartile (maximum), median, and 25% quartile (minimum)
Lag.3 rainfall recorded across all study sites between 2008 and
2020 (b). Vertical dotted lines indicate the approximate start and
end of the dry season (May–October).

in a two-way interaction with season, and an additive ef-
fect of Household.site.level. The best model of litter size
included an additive effect of bioclimate (Bio.2), 30-day
rainfall with a 1-month lag (Lag.1), and Length.cont. Full
model selection results are given in Supporting Informa-
tion 5 (Tables S26–S28 for top model sets).

A 10-mm increase in Acc.lag.1 rainfall was predicted
to increase the proportion of females which were sex-
ually mature by 1.2% (0.3–2.2%). This effect was not
modified by the influence of season or bioclimate. Be-
tween May and July, high Lag.3 rainfall (corresponding
to December–March rainfall) was also associated with
an increase in gestation rate (Fig. 6a). We found no ev-
idence that this effect varied between different biocli-
mates. These results indicate that the perceived seasonal
variation in female maturity inside houses was driven by
seasonal rainfall variation, and that while this lagged rain-
fall contributes to seasonal variation in gestation rates this
relationship itself varies seasonally.

When rainfall effects were incorporated, models of lit-
ter size inside houses no longer indicated an effect of
season. Instead, litter size was predicted to increase by
5.0% (1.0–9.0%) for every 100-mm increase in Lag.1
rainfall. This effect did not vary by season or bioclimate
and suggests that apparent seasonal trends may be driven

by seasonal variation in rainfall. Litter size was also in-
creased by 13.0% (0.0–28.0%) at temperate sites com-
pared with arid and tropical regions; however, our sample
size from non-temperate regions was small (n = 53).

Both female maturity and gestation rates were in-
fluenced by in-house population density measured at
the site level, which was estimated to range from 0 to
11 inds/house (median = 2 inds/house). For female ma-
turity, the effect of population density was again modified
by HBL (Fig. 7). In particular, at 120–170 mm, the prob-
ability of reaching sexual maturity was predicted to in-
crease with increasing HBL but with a negative effect of
population density. The nature of this interaction differed
substantially compared to that observed for external pop-
ulations and at low population densities, females inside of
houses are able to reach sexual maturity at a younger age
than those living outside of houses (compare Fig. 5 with
Fig. 7).

Meanwhile, we found a positive association between
population density and gestation rate which was mod-
ified by neither season nor HBL (Table 5). Litter size
was positively associated with HBL, increasing by 5.3%
(0.6–10.3%) for every 10-mm increase in HBL.

DISCUSSION

The reproductive rates of female R. rattus showed a
clear seasonal cycle, the timing and amplitude of which
varied between different habitats and bioclimate regions.
Seasonal variation in rainfall contributed to seasonal
patterns; however, the effect of rainfall on female matu-
rity and gestation rates did itself vary seasonally and be-
tween different habitats. We also recorded a decline in
breeding intensity with increasing rat density outside of
houses, whereas high population densities were associ-
ated with increased reproduction inside houses. Outside,
females living at low density were more likely to be sex-
ually mature and more likely to be pregnant than if living
at high density, especially those which were mid-sized. In-
side houses, however, gestation rates were higher among
sexually mature females living at high population densi-
ties than those living at low densities.

An association between rainfall and reproduction in
rodent crop pests is often attributed to the influence
of rainfall on primary productivity (Clark 1980; Leirs
et al. 1997; Sluydts et al. 2007; Previtali et al. 2009;
Andreo et al. 2009b). We found that, in temperate re-
gions of Madagascar, female reproductive rates outside of
houses increased during the rainy season and decreased
during the dry season, coinciding with the timing of
the agricultural calendar. Additionally, increased rainfall

© 2023 The Authors. Integrative Zoology published by International Society of Zoological Sciences,
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K. Scobie et al.

Figure 7 Predicted female maturity of female Rattus rattus inside houses. Values (and 95% CI) are derived from binomial generalized
linear mixed model (GLMM) illustrating the interaction effect of total population density and head–body length (HBL). Tick marks
indicate the distribution of observations within the full dataset (across all values of HBL).

during the early rainy season (November–January) was
associated with an increase in female maturity and gesta-
tion rates during the main breeding season (April–May),
particularly in habitats outside of villages and predomi-
nantly comprising agricultural land. Madagascar’s main
growing season begins in November–January (with the
onset of the rainy season) and lasts for several months
(Rigden et al. 2022). Our results therefore suggest that
high rainfall at the start of the growing season, when crops
are establishing, may provide optimal conditions for rat
reproduction later in the rainy season.

During the dry season, a decline in reproductive rates
coincided with the rice harvest, when the crop is brought
into villages to be threshed and dried before being stored
in granaries or houses or sold. At this time, gestation rates
are predicted to fall to 0.0–3.0% outside of houses, irre-
spective of previous rainfall. Therefore, the cessation of
reproduction during the dry season may be linked to the
timing of the agricultural calendar. This would be consis-
tent with observations from agricultural regions of Viet-
nam (Brown et al. 2005) and the Philippines (Htwe et al.
2012; Stuart et al. 2015), where the breeding activity of
Rattus species was associated with crop stage.

Initiating rodent controls ahead of the main growing
season is recommended to reduce pre-harvest losses in
agricultural settings, assuming that this also precedes the
species’ main breeding season (Brown et al. 2005, 2006;
Palis et al. 2011; Htwe et al. 2012). Our findings support
this assumption for Madagascar, with reproductive rates
peaking during the main growing season. Accordingly,
we recommend that rodent controls are initiated in habitat

outside of houses at the end of the dry season (before re-
productive rates increase and before crops are planted).
However, to deliver a net reduction in density, control
programs must also overcome the density-dependent re-
sponse of the target species (e.g. Melero et al. 2015). We
found that female maturity and gestation rates outside of
houses increased at lower densities. Additionally, the ef-
fect of density on gestation rates was not influenced by
age, suggesting that even large, sexually mature females
tend not to breed at high densities. Due to these density-
dependent effects, reducing population density via
removal risks expediting female maturation and increas-
ing gestation rates. However, if these density effects are
linked to changes in per capita resource availability (e.g.
Adler 1998; Lewellen & Vessey 1998; Zhang et al. 2003;
Andreo et al. 2009a), then reducing the carrying capacity
of the environment (e.g. through rat-proofing, improved
hygiene) could mitigate local compensatory responses to
control.

Inside houses, high and relatively consistent re-
source availability throughout the year can support year-
round reproduction in commensal rodents (Pocock et al.
2004; Gomez et al. 2008). Still, inconsistent resource
availability in the domestic environment can trigger
changes in demographic rates (Panti-May et al. 2012).
Indeed, we found that rat reproduction continued year-
round inside houses but was nonetheless highly sea-
sonal. Here, gestation rates peaked between May and
July, coinciding with the post-harvest period. Just as
masting events can trigger increases in rodent popu-
lations (Aplin & Lalsiamliana 2010; Belmain et al.
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Reproductive ecology of Rattus rattus

2010; Douangboupha et al. 2010; Jaksic & Lima 2003;
Htwe et al. 2010), our finding indicates that in-house
populations can respond rapidly to resource fluctua-
tions and increase reproduction when food availabil-
ity spikes. As was found in the uplands of Lao PDR
(Khamphoukeo et al. 2006), increases in the in-house
rodent population following the harvest have been at-
tributed to the resource-driven movement of rodents from
fields to houses in agricultural regions of Madagascar
(Rasolozaka 1999; Rahelinirina et al. 2010); however, our
result shows that enhanced reproduction is also contribut-
ing to this effect.

Gestation rates inside houses were also influenced by
rainfall. Specifically, increased rainfall during the rainy
season (December–March) was associated with higher
gestation rates between May and July. This suggests
there is connectivity between in-house rodent populations
and external conditions, which may be attributable to
the impact of rainfall on primary productivity and crop
growth: a more successful harvest may lead to an increase
in food availability when crops are brought into houses
for storage, providing optimal conditions for rodents to
reproduce. Alternatively, the relationship between rainfall
and in-house gestation rates could reflect functional
connectivity and the exposure to external conditions of
rodents that move into houses following the harvest
(Rasolozaka 1999; Khamphoukeo et al. 2006;
Rahelinirina et al. 2010).

As well as season and rainfall effects, we found that
females reached sexual maturity at a younger age in-
side houses compared with outside, particularly at low
population densities. This has implications for control,
as removing individuals from the household population
may expedite maturation among any remaining young fe-
males. Conversely, sexually mature females living inside
houses were more likely to reproduce when population
density was high compared to when population density
was low. There are few documented examples of posi-
tive density dependence in wild rodent populations, which
should theoretically occur only at small population sizes
(Morris 2002) such as when low mate encounters inhibit
reproduction (Courchamp et al. 1999). This is unlikely to
be the case in this system due to the connectedness of
in-house and external populations (Brouat et al. 2013).
Instead, increased reproduction at high population densi-
ties may reflect high resource abundance. Previous stud-
ies show substantial village-to-village variation in in-
house rodent abundance (Rahelinirina et al. 2021); vil-
lages with high rodent abundance inside houses may have
more resources in and around houses than other villages,

supporting reproduction even at high population densi-
ties. Further work is needed to explore relationships be-
tween reproductive rates and density inside houses, par-
ticularly in the context of active rodent management.

Although less attention has been paid to the applica-
tion of EBRM strategies within domestic settings, our re-
sults reinforce findings from Bangladesh and Myanmar
that controls initiated ahead of the main breeding sea-
son and before harvested crops are brought in for stor-
age could curtail reproduction and reduce post-harvest
losses (Belmain et al. 2015). Improving hygiene around
the home and rat-proofing stored food could help man-
age the in-house population in Madagascar by reducing
environmental carrying capacity and preventing bursts in
reproductive activity post-harvest. However, the connec-
tivity of in-house and external rat populations (Brouat
et al. 2013) will necessitate collective action among com-
munity members to reduce rodent access to resources.

Management implications: not a one-size-fits-all

approach

In Madagascar’s temperate regions, the proposed
measures would equate to initiating rodent control in
September–October outside of houses and in March–
April inside houses. However, rainfall patterns and agri-
cultural systems vary considerably across Madagascar,
contributing to spatial variation in season and rainfall ef-
fects. In particular, we found evidence that seasonality
and the effects of rainfall on gestation rates outside of
houses varied between different bioclimate regions. While
this study was only able to consider broad habitat cat-
egories, female reproductive rates and their seasonality
may also vary between different outside habitat types (e.g.
forest vs. non-forest). This highlights a fundamental as-
pect of EBRM: that control strategies must be specific
to the local ecological setting (Singleton et al. 1999). In
Madagascar, this necessitates an understanding of the lo-
cal agricultural and ecological context, at a fine scale,
when designing control strategies.

Where rodents are reservoirs of zoonotic diseases, con-
trol risks increasing disease prevalence through impacts
on movement and contact rates (e.g. Donnelly et al. 2006;
Bielby et al. 2016; Lee et al. 2018; Smith & Delahay
2018). Therefore, studies must also evaluate how the pro-
posed management strategies will impact on the move-
ment of rodents and the distribution and abundance of
disease vectors and infected rodents (Rahelinirina et al.
2021).

© 2023 The Authors. Integrative Zoology published by International Society of Zoological Sciences,
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Conclusions

In Madagascar, attempts to manage rodent pests gen-
erally depend on traps and poisons (Soarimalala et al.
2019; Constant et al. 2020). However, their application is
typically reactive, implemented in response to unaccept-
able levels of damage or rodent numbers. Based on our
findings, we recommend that future research should in-
vestigate the impact of sustained rodent control initiated
before the main breeding season, combined with im-
proved hygiene and adequate rodent-proofing inside
homes, on population growth and on pre- and post-harvest
losses in Madagascar. Additionally, we identified con-
siderable spatial variation in the seasonality of R. rattus
reproduction which must be reflected in the timing of
control measures. Finally, research is needed to identify
the plague risk associated with the proposed strategies.
Until then, program managers must evaluate the local
plague risk, balancing this against the risk of no control,
and consider how control strategies are communicated to
the general population to ensure that protocols are imple-
mented correctly and safely.
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