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Abstract 

The aqueous environment inside cells is densely packed. A typical cell has a macromolecular 

concentration in the range 90-450 g/L, with 5-40% of its volume being occupied by 

macromolecules, resulting in what is known as macromolecular crowding. The space available 

for the free diffusion of metabolites and other macromolecules is thus greatly reduced, leading 

to so-called excluded volume effects. The slow diffusion of macromolecules under crowded 

conditions has been explained using transient complex formation. However, sub-diffusion 

noted in earlier works is not well characterized, in particular, the role played by transient 

complex formation and excluded volume effects. We have used Brownian dynamics 

simulations to characterize the diffusion of chymotrypsin inhibitor 2 (CI2) in protein solutions 

of bovine serum albumin (BSA) and lysozyme at concentrations ranging from 50 to 300 g/L. 

The predicted changes in diffusion coefficient as a function of crowder concentration are 

consistent with NMR experiments. The sub-diffusive behavior observed in the sub-

microsecond time scale can be explained in terms of a so-called cage effect, arising from 

rattling motion in a local molecular cage as a consequence of excluded volume effects. By 

selectively manipulating the nature of interactions between protein molecules, we determined 

that excluded volume effects induce sub-diffusive dynamics at sub-microsecond time scales. 

These findings may help to explain the diffusion-mediated effects of protein crowding on 

cellular processes.  

Statement of Significance 

Protein crowding governs cell processes by altering the diffusion of biomolecules. Using 

Brownian dynamics simulations of cell-like densely crowded environments, we show that 



volume exclusion is solely responsible for sub-diffusion of proteins at the sub-microsecond 

scale, and that molecules exhibit optimized search for interaction partners, wherein, spatially 

confined movement at short timescales (sub-diffusion) maximizes encounter probability, and 

the normal diffusion observed at long timescales facilitates long-range search. These findings 

show the importance of accounting for sub-diffusion while estimating reaction rates, especially 

for the purposes of modelling biochemical reaction networks regulated by protein-protein 

interactions that are facilitated by diffusion. We also highlight that a well-defined 

macromolecular composition is necessary to accurately describe the crowding effect in both 

computational and experimental studies.  

Introduction 

Living cells contain a variety of macromolecules that maintain their functional and structural 

integrity. The concentration of macromolecules inside the cells varies from 90 to 450 g/L(1, 2) 

depending on the type of cell (3), cell differentiation stage and the organelle of interest (4), 

occupying nearly 5-40% of cellular volume (2). The resulting intracellular macromolecular 

crowding is known to affect a variety of processes including but not limited to translation and 

growth (5), intracellular signalling (6) and transport mediated by molecular motors like kinesin-

1 (7). Moreover, extracellular crowding is known to play a significant role in accelerating the 

development of the extracellular matrix necessary in tissue engineering approaches (8). These 

effects arise from altered molecular interactions, transport properties, and excluded volume 

effects due to crowding (9)(10–21). A more detailed understanding of the molecular 

mechanisms through which crowding mediates its effects is crucial to explain the above 

phenomena. 

Diffusion is one of the major transport properties affected by crowding. Decreased diffusion 

rate as a result of crowding has been documented experimentally, through in vivo (22–25) and 

in vitro (26–28) approaches, as well as various computational approaches (20, 29, 30). 

Einstein’s equation describes the relationship between the 3D diffusion coefficient (D) of a 

particle and its mean squared displacement (<x2 (t)>) (MSD), which is the second moment of 

displacement distribution (Equation 1) (31).  

< 𝑥!(𝑡) >	= 6𝐷𝑡" Equation 1. 

Here <x2(t)> and D are the ensemble average of the mean squared displacement (EAMSD) and 

diffusion coefficient, respectively. The diffusion coefficient is a measure of the rate (slow or 



fast) of diffusion and deviation from normal (linear) diffusion is determined by the α-exponent 

(Eq.1). Normal diffusion is characterized by an α-exponent of 1.0, whereas α > 1.0 and 0 <α 

<1.0 correspond to super- and sub-diffusion, respectively.   

Sub-diffusion has been observed in multiple experimental studies. Fluorescence recovery after 

photobleaching (FRAP), extended to three dimensions, was used to establish sub-diffusion of 

green fluorescent protein (GFP) in HeLa cells (32). Using fluorescence correlation 

spectroscopy, sub-diffusion of microinjected dextran was established in vivo (33), and 

fluorescence-fluctuation analysis of raster scans was used to study GFP sub-diffusion (34). In 

all of these studies the best time-resolution was in the order of microseconds. Sub-diffusive 

behavior has been observed in coarse-grained simulations of bacterial cytoplasm (35), 

atomistic simulations of the cytoplasm of E.coli (18), lipid bilayer systems (36, 37) especially 

at low hydration (38), and Brownian dynamics and atomistic simulations of crowded protein 

solutions (39)(20). Additionally, in the case of bacterial cytoplasm, Ando and Skolnick have 

shown, using both Brownian dynamics simulations without hydrodynamic interactions (HI) 

and Stokesian dynamics simulations with HI, that sub-diffusion is observed in timescales <1 

μs (29). The sub-diffusive behavior in the cytoplasmic systems and protein solutions was 

observed in the sub-microsecond scale and, therefore, it is challenging to characterize this 

behavior using experimental approaches (39). Although sub-diffusion has been predicted in 

multiple simulation studies, there is limited understanding of the mechanism through which 

protein crowders induce this phenomenon.  

Atomistic simulations have shown that chymotrypsin inhibitor 2 (CI2) exhibits significant sub-

diffusive behavior in the presence of bovine serum albumin (BSA) as the crowder protein, 

whereas no appreciable sub-diffusive behavior was observed in the presence of lysozyme (20). 

We note that the spatio-temporal scale explored in these simulations was relatively small, 

whereby a single molecule of CI2 was simulated in the presence of eight protein crowder 

molecules for 117-244 ns at a crowder concentration of 100 g/L. Lysozyme exhibited a 

propensity to interact more strongly with CI2, whereas BSA crowders mostly interacted with 

each other. Nawrocki et al. later explained that the absence of substantial interactions between 

CI2 and BSA resulted in cage effects (i.e., where the motion of a molecule is akin to that of a 

particle trapped in a cage), which led to sub-diffusive dynamics (21). However, to the best of 

our knowledge, no attempt has yet been made to quantitatively associate cage effects and sub-

diffusive behavior in crowded protein solutions.  



There are multiple stochastic processes that display anomalous, sub-diffusive behavior. These 

include continuous time random walk (CTRW), fractional Brownian motion (fBm), 

heterogeneous diffusion process, and scaled Brownian motion to name a few, each exhibiting 

different features (40, 41). For example, fBm is an ergodic process, whereas CTRW is non-

ergodic, and other stochastic processes like scaled Brownian motion and heterogeneous 

diffusion process exhibit sub-diffusion and weak ergodicity breaking (40). Anomalous 

diffusion in dextran solutions has been explained using fractional Brownian motion (fBm) (42). 

A continuous time random walk (CTRW) was used to explain the lateral diffusion of potassium 

channels in cells (43), and a hybrid CTRW and fBm approach was invoked to explain sub-

diffusive transport of insulin granules inside cells (44). Therefore, prior to calculating the 

diffusion coefficient and α-exponent, it is important to verify whether the system is ergodic, so 

that the ensemble average of the mean squared displacement (EAMSD) can be estimated using 

the time-averaged mean squared displacement (TAMSD) (40).  

Slow diffusion has been explained in terms of excluded volume effects or cluster formation. 

Depending on the time scale, three types of cluster formation have been identified in proteins: 

transient, dynamic, and permanent clusters (in increasing order of lifetime) (45). Clusters that 

have a lifetime shorter than the time it takes for them to diffuse a distance equivalent to one 

protein diameter are defined as transient clusters, and the diffusion properties of the system 

mimic that of monomers. If the lifetime is longer, the short-time dynamic behavior is then 

determined by so-called dynamic clusters. On the other hand, permanent clusters have a 

lifetime longer than experimental timescales (45). The slow diffusion observed in crowded 

protein solutions of hen egg white lysozyme, ubiquitin, villin, and the third IgG-binding 

domain of protein G headpiece has been explained by the formation of dynamic clusters (19). 

By contrast, formation of transient clusters was invoked to explain the slow diffusion in villin 

crowded systems at 135 g/L (21). Stokesian dynamics simulations of bacterial cytoplasm 

showed the importance of HI in regulating diffusion in crowded environments (29). On the 

other hand, the diffusion measured in the microsecond time scale in solutions crowded with 

myoglobin and hemoglobin was found to be largely dependent on excluded volume effects 

(46). However, the extent to which cluster formation and excluded volume effects influence 

sub-diffusion is not clearly understood; therefore, these phenomena need to be further 

characterized in order to explain sub-diffusion in crowded protein solutions.  



We have investigated the causal relationships of sub-diffusion in crowded protein solutions. A 

CI2 tracer in a protein crowded environment of BSA and lysozyme were chosen as a model 

system since they have been studied experimentally (26). Simulations were performed at a 

range of concentrations (50-300 g/L) of both protein crowders using a grid-based Brownian 

dynamics approach (47, 48). The role of excluded volume effects and protein clustering in 

inducing sub-diffusive behavior was discerned by selectively altering the forces between 

molecules. Our findings suggest that excluded volume effects, via cage effects, cause sub-

diffusive dynamics at sub-microsecond time scales in crowded protein solutions.  

Methods 

The experimentally determined 3D structures of BSA (PDB: 3V03), CI2 (PDB: 2CI2) and LYS 

(PDB: 1AKI) were obtained from the Protein Data Bank (PDB). The Simulation of Diffusional 

Association (SDA, version 7.2.2) program was used to conduct Brownian dynamics 

simulations (47). Pre-processing of the proteins, as described below, was done with webSDA 

(48). The protonation states of amino acids in all proteins were assigned assuming a pH of 5.4 

in order to emulate experimental conditions. Atomic charges and radii were taken from the 

AMBER force field 99 (49). Electrostatic grids of 1.0 Å resolution were calculated assuming 

an ionic strength of 200 mM (to also reproduce experimental conditions), with an ion radius of 

1.5 Å, a protein dielectric constant of 4.0, a solvent dielectric constant of 78.0, and a 

temperature of 300 K, using the linearized Poisson-Boltzmann equation approach (50). The 

electrostatic grids of LYS and CI2 were 129 x 129 x 129 Å3 in size and the grid size of BSA 

was 193 x 129 x 161 Å3, reflecting the differences in size and shape of these proteins. Effective 

charges were calculated using webSDA. Electrostatic desolvation, hydrophobic desolvation 

and Lennard-Jones energy grids were calculated at a resolution of 1.0 Å.  The grid sizes of the 

electrostatic desolvation and Lennard-Jones (repulsive) energies of BSA, LYS and CI2 were 

133 x 92 x 109 Å3, 45 x 55 x 67 Å3, and 43 x 44 x 45 Å3, respectively. The size of the 

hydrophobic desolvation energy grids of BSA, LYS, and CI2 were 104 x 76 x 87 Å3, 45 x 52 

x 60 Å3, and 44 x 44 x 45 Å3, respectively. The energy grid files obtained were then used to set 

up simulations with protein crowder concentrations of 50, 100, 200 and 300 g/L, with CI2 as 

the tracer. Initial configurations were generated using the genbox tool in SDA by placing the 

proteins randomly in a cubic box of 350 Å length. To account for the potential influence of the 

initial configuration of the proteins in each system, three systems with different initial 

configurations were set up for every concentration.  



The simulations were performed using SDAMM (program used for simulations with multiple 

molecules) in SDA with a time step of 0.5 ps at the default SDA temperature of 300K. Each of 

the simulations was run with the softcore repulsive term only for one microsecond in order to 

remove any protein overlaps. The simulations were then run for one microsecond with the full 

energy term for equilibration purposes, followed by 5 microseconds of production runs. The 

self-diffusion coefficients of BSA and LYS were monitored to evaluate convergence, which 

was reached before one microsecond. Since both these crowders are larger than CI2, the 

convergence of the diffusion of BSA and LYS was expected to be slower and hence was used 

in this evaluation. Diffusion coefficients were calculated from the plots of TAMSD (obtained 

by averaging over all possible time origins) vs time (lag time). The simulations with the soft-

core repulsive term (decaying at a rate of 1/r6) only were performed using the same approach 

as above except that neither the equilibration nor the production run included attractive 

interactions (the scaling factor of electrostatic, electrostatic desolvation, and hydrophobic 

desolvation terms is set to zero) in the energy term. The trajectories were unfolded assuming 

that any given particle does not move more than half the simulation cell length between time 

frames considered (51).  

Calculation of the α-exponent 

The value of the α-exponent was calculated from the log(TAMSD/τ) vs log(τ) curve (the linear 

relationship between the two variables can be derived from a time-averaged equivalent of 

equation 1, where EAMSD is replaced with TAMSD and ‘t’ is replaced with lag time (τ)) using 

an approach similar to that of Balbo et al (39). Since the α-exponent is a time-varying quantity 

in our simulations, the straight-line region of the plot is chosen by fitting the parts of the curve 

to a linear fit in such a way that the R2 value is maintained above a cut-off of 0.95. The regions 

at long time scales usually showed high levels of noise, which affected the quality of the fit. 

This is due to the use of TAMSD in our calculations, such that the MSD calculation is affected 

at large lag time values due to poor statistics. Therefore, long time scale regions with poor 

statistics were omitted from the calculations of the α-exponent. The average values of the α-

exponents calculated using the data from the simulations with three different initial 

configurations are reported in Figure 3, 5, S13 and S14, and the error bars in the plots 

correspond to the standard deviation (σ). All p-values were calculated using two-tailed t-tests 

assuming unequal variance. It is important to note that, since log plots are used, the data at long 

time scales is crowded in a small region of the graph and, as a result, while one can reliably 

calculate diffusion coefficients up to the order of a microsecond (in the TAMSD vs τ plots), it 



is not feasible to do a similar calculation of the α-exponent at long time scales with a stringent 

cut-off. However, since the α-exponent converges back to normal diffusion values within the 

range of time scales explored, this does not have any impact on our conclusions. Additionally, 

as elaborately discussed in the supplementary, power law fits were also used to confirm our 

findings on sub-diffusion that were inferred from the log-log plots.  

Quantification of cage effects  

Cage effects were quantified using Doliwa and Heuer’s approach (52). Here, the displacement 

vector of a particle is given by rmn(τ) = r(nτ) - r(mτ), where r(nτ) and r(mτ) are the position 

vectors at corresponding time points (Figure 1). The first and second displacement vectors are 

therefore termed r01 (τ) and r12 (τ), respectively. The component of r12 (τ) along r01 (τ) is termed 

x12 (τ). The component of r12 (τ) along an arbitrary vector perpendicular to r01 (τ) is termed y12 

(τ). According to this approach, it is expected that x12 (τ) be negative and decrease linearly with 

an increase in the magnitude of r01 (τ) in the presence of cage effects. This anti-correlation is 

due to the rattling motion of the particles. The vector y12 (τ) acts as control since it is the 

component along an arbitrary vector, so it would be expected that in the absence of cage effects, 

y12 (τ) and x12 (τ) exhibit similar behavior upon the increase in the magnitude of r01 (τ) (52, 53) 

(Figure 1). The |r01| vs x12 (or y12) plot is obtained by calculating the values of |r01| and x12 (or 

y12) across all possible time origins along the length of the trajectory for a given protein and τ, 

and combining the data for all the protein molecules (of a given species) in the simulation. The 

values of (|r01|) are binned with a width of 0.05 Å and the corresponding x12 values are averaged. 

The plots are presented and discussed in Figure 2. This process is repeated for different 'τ’ 

values. The approach described here is similar to that of Weiss’ (42), where the function used 

(42) to infer anti-correlation is given by,  

𝐶#(𝑡) = 〈 $!(&)
|$!(&)|

. $!(&)*)
|$!(&)*)|

〉	& Equation 2,	  

where vτ(t)=r(t+τ)-r(t), ‘r’ being the position vector. When t= τ, the dot product (which is 

averaged across the time origins in the trajectory) is equivalent to the dot product of the unit 

vectors parallel to r01 and r12, which should carry the same sign as x12. In the presence of anti-

correlation, Cτ (t) <0 when t~ τ, which implies that x12 is negative, which is consistent with the 

above approach.  



 

Figure 1. Quantification of cage effects. The particle is shown in yellow. The arbitrary vector 
perpendicular to r01 is shown as a dotted line vector. 

Calculation of the α-exponent from cage effect 

Weeks and Weitz have shown analytically that the slope of the |r01| vs <x12> curve can be used 

to estimate the value of the α-exponent using the equation below (53): 

𝛼+,-.(𝜏) = 1 + /012)3/45.(#)6
/0(!)

  Equation 3. 

Using this approach, the α-exponent is calculated from cage effect data for a given lag time τ. 

The same data at different ‘τ’ values is obtained by skipping the appropriate number of time 

frames in a simulation trajectory whilst calculating the displacement vectors. 

Results 
 
Diffusion coefficients and sub-diffusive behavior 

Time-averaged translational diffusion coefficients of CI2, LYS and BSA were calculated from 

the curve of TAMSD vs lag time(τ), averaging over all time origins and the molecular species 

of interest. The experimental diffusion coefficient of CI2 at concentrations of 50, 100, 200, and 

300 g/L of LYS and BSA had been determined previously (26). The long-time diffusion 

coefficients were calculated in the 0-1000 ns time range and the predicted diffusion coefficients 

of CI2 were compared with experimental values. Figure 2A shows that the predicted diffusion 

coefficients are of the same order of magnitude as experimental values. However, the 

difference in the predicted and experimental diffusion coefficients increased at higher 



concentrations. This could potentially be due to the lack of molecular flexibility in the 

simulated protein structures, which could contribute to a reduction in the tendency to form 

clusters. A more detailed description of the role played by such clusters is provided further 

below. Figure 2B shows that the predicted diffusion coefficients of BSA and LYS decrease in 

magnitude with an increase in the concentration of the crowder, as expected.  

The sub-diffusive behavior of the proteins was characterized.  In solutions with a crowder 

concentration of 50 g/L, the α-exponent value of CI2 remained above 0.95 in the presence of 

both crowding proteins (Figure 3A and Figure 3C). The same behavior was observed for the 

self-diffusion of the crowders, as shown in Figure 3E and Figure 3G. The α-exponent did not 

exhibit pronounced variation with respect to lag time in each of the systems. The increase in 

the concentration of the crowder led to sub-diffusion. At a crowder concentration of 300 g/L, 

the value of the α-exponent decreased to 0.83 (σ = 0.002) in the range 10.4-38.8 ns for CI2 in 

BSA (Figure 3B), 0.87 (σ = 0.002) in the range 2.0-9.8 ns for CI2 in LYS (Figure 3D), 0.74 (σ 

= 0.005) in the range 8.0-39.8 ns for BSA (Figure 3H), and 0.80 (σ = 0.001) in the range 2.0-

10.0 ns for LYS (Figure 3F), in all cases indicating the presence of sub-diffusive behavior. 

However, the observed sub-diffusion dynamics were transient and normal diffusion was 

gradually reached after a few hundreds of nanoseconds. In all of these cases a clear trend can 

be discerned, whereby diffusion was close to normal at short time scales (less than 2 ns), sub-

diffusive in the sub-microsecond time scale, and showed a reverting trend towards normal in 

the regime closer to 0.5 μs. This behavior is observed in all the three proteins, which are of 

different sizes and have a different total charge. An intermediate behavior was observed in 

crowder concentrations of 100 and 200 g/L (Figure S13). Such transient sub-diffusive behavior 

has been predicted for γ-globulin and BSA self-crowded solutions. (39) 



 

Figure 2. Predicted diffusion properties in crowded protein solutions. (A) Comparison of 
experimental and predicted CI2 diffusion coefficients. The predicted values are within the same 
order of magnitude of experiment, revealing good agreement. (B) The predicted and 
experimentally-determined diffusion coefficients of the CI2 tracer in the presence of the protein 
crowders BSA and lysozyme, and of the protein crowders themselves are plotted as a function 
of crowder concentration. As expected, the increase in crowder concentration results in a 
downward trend of the diffusion coefficient of CI2. (C) Average x12 as a function of |r01| 
(green), whilst the dashed red line corresponds to the reference x = 0 curve, and the dotted 
vertical line separates the regions of low and high noise. The yellow line corresponds to the 
linear fit for the less noisy region, whose slope is used in the calculation of α-exponent. The 
slope is negative, indicating the presence of cage effects. (D) Average y12 as a function of |r01| 
(green), whilst the dashed dotted line corresponds to the reference y = 0 line, and the blue 
dotted line (which is very close to the y = 0 line) corresponds to the linear fit of the less noisy 
region. |r01|, x12 and y12 have units of Å. Plots C and D correspond to data at a BSA 
concentration of 300 g/L at τ = 5 ns. 



 

Figure 3. Sub-diffusive and non-Gaussianity properties of the crowders and tracer (50 and 300 
g/L concentration of crowder). The blue, orange and grey lines in all the curves represent the 
α-exponent calculated from the log (TAMSD/τ) vs log (τ) curves, α-exponent calculated from 
cage effects, and non-Gaussianity parameter (NGP) measured at different lag times, 
respectively. All the curves on the left side of the figure represent the data for low concentration 
of the crowder at 50 g/L and the ones on the right side represent data for high crowder 
concentration. The data for CI2 in BSA is in the first row highlighted in green, followed by 
data for CI2 in LYS in next row highlighted in yellow, followed by data for LYS and BSA 
highlighted in orange and red, respectively. Error bars represent the standard deviation of the 
value of the α-exponent between simulations started with different configurations. The time 
ranges in the individual graphs are different from each other due to the variation in the 
emergence of noise in the log (TAMSD/τ) vs log (τ) curves. 



Cage effects in the protein crowded solutions 

The protein dynamics of the above-described crowded systems are consistent with sub-

diffusive behavior arising due to macromolecular crowding. However, the underlying 

molecular mechanism by which protein crowding causes this phenomenon and its physical 

origins are not very well understood. The cage effect hypothesis21 is rigorously tested here. 

This hypothesis states that macromolecules in a crowded protein solution behave like colloidal 

particles and exhibit motion akin to rattling in a cage, termed cage effect (52), wherein they are 

trapped in a transient cage for a finite period of time before “hopping” to another cage. In 

contrast to regular Brownian motion, particles do not move freely whilst they are trapped in 

these cages. Therefore, these particles are expected to exhibit normal diffusion at very short 

time scales when they are not in close proximity to surrounding particles, but at intermediate 

time scales these particles would exhibit rattling dynamics, before exhibiting normal Brownian 

motion at sufficiently long-time scales. In order to quantitatively assess this, Doliwa and 

Heuer’s approach (52) was used to investigate the presence of rattling-in-a-cage type of motion 

in our simulations. A plot of <x12> against |r01| is shown in Figure 2C, which was obtained from 

unfolded trajectories. It is evident from these plots that there is a clear anti-correlation between 

r01 and x12. At higher values of |r01| the plots become noisy because there are very few particles 

that make very long jumps, reducing the number of data points available for analysis. There is 

also a higher probability for the particles that make long jumps to exit the transient cage, 

leading to cessation of the rattling motion (52). Figure 2D shows that, unlike x12, y12 does not 

depend on the magnitude of r01. These findings suggest the presence of a cage effect in crowded 

protein solutions. The slope of the linear section of the plot is an indicator of the strength of 

this cage effect. The slope calculated at different ‘τ’ values in solutions with crowders at 

concentrations of 50 g/L and 300 g/L is shown in Figure 4. As expected, the slope of the tracer 

CI2 and protein crowders in the 50 g/L solutions was ~0. In the 300 g/L solutions, the slope 

was initially ~0 but at intermediate time scales the slope decreased substantially, indicating the 

existence of a strong cage effect, whilst at longer time scales the slope recovered back to ~0. 

The x12 slopes calculated at intermediate time scales are significantly higher than y12 slopes 

calculated at the same time scales, indicating a pronounced cage effect as shown in Figure 4. 

These observations indicate low cage effect at short time scales, followed by maximum cage 

effect at intermediate time scales, and restoration of low cage effect at long time scales. (Figure 

4) 



 

Figure 4. Variation of the intensity of cage effects with respect to time and crowder 
concentration. The straight lines plotted are representative of the slope calculated from the less 
noisy regions of plots of <x12> or <y12> vs |r01|. The blue, red and yellow lines represent slopes 
at short, intermediate and long time scales, respectively. The first and second rows highlighted 
in green and yellow represent the data for the diffusion of CI2 in BSA and lysozyme, 
respectively. The next two rows highlighted in orange and red represent the data for the self-
diffusion of lysozyme and BSA, respectively. The first two columns of every row contain plots 
of <x12> vs |r01| and <y12> vs |r01| (in that order) at the low protein crowder concentration of 50 
g/L. The next two columns contain the same plots at the high protein crowder concentration of 
300 g/L. |r01|, x12 and y12 have units of Å. It should be noted that these plots are representative 
of slopes and the straight lines correspond to the fits made to the less noisy regions in the 
corresponding plots, as described in Figure 2. The timescales corresponding to different 
colored lines are presented in Table S2.  

The predicted values of the α-exponent (calculated from the cage effect using Equation 3) of 

the tracers and crowders in all the simulations (50-300 g/L of both crowders) were calculated 

and compared with the ones reported in the previous section, as shown in Figure 3 and Figure 



S13. The blue lines in Figures 3 and S13 show the value of the α-exponent calculated from the 

log plots as described in the ‘calculation of α-exponent’ section in the Methods section, and 

the orange lines represent the α-exponents calculated using Equation 3. The predicted values 

of the α-exponent are in good agreement with the calculated values for both crowders and tracer 

under all concentrations of the crowders at all lag times. The consistency in our predictions 

across different types of proteins with different sizes, net charges and other properties is 

encouraging. Since sub-diffusive behavior is the manifestation of multiple mechanisms that do 

not necessarily constitute anti-correlated displacements (40), the fact that the computed value 

of the α-exponent obtained from anti-correlated displacements induced by cage effect is 

consistent confirms the validity of the hypothesis of cage effects causing sub-diffusive behavior 

in crowded protein solutions. The same approach described here was earlier used to establish 

cage effects using experimental data of protein diffusion in the plasma membrane (54). 

However, the cage effect observed in those experiments was in the time scale of a few seconds. 

The observed anti-correlation of consecutive displacements is similar to the one noted in single 

particle tracking experiments with dextran crowded solutions, which was explained by 

fractional Brownian motion (42). 

Non-Gaussianity and ergodicity 

In order to probe further the nature of the sub-diffusive behavior described in the previous 

section, we investigated the magnitude of deviations from a Gaussian distribution of 

displacements (Δr) by using a non-Gaussian parameter (NGP, Equation 4), in an approach 

similar to that of previous studies: (55)  

𝑁𝐺𝑃 = 78∆:"(#);
<8∆:#;#

− 1  Equation 4.	 

When the distribution is Gaussian, NGP~0, and when it deviates from Gaussian NGP is either 

above or below zero. The NGP of both crowders and tracers was calculated at all the 

concentrations and different lag times by choosing appropriate values of τ. It is clear from 

Figure 3 and Figure S13 that at low concentrations NGP is very low for both the crowders and 

tracer with no significant variation with respect to lag time. However, at the highest 

concentration of 300 g/L there is a clear rise in NGP in all the cases at intermediate time scales. 

Non-Gaussianity is more prominent around the time scales where anomalous diffusion was 

identified, as described in the previous subsections. More importantly, there is a clear pattern 

with a slight deviation from Gaussian behavior at short time scales followed by a rise in non-



Gaussianity that eventually reduces at longer time scales. Xue et al. observed increased non-

Gaussianity in nanoparticles of comparable size to that of the mesh size of the polymer solution 

surrounding them (55). BSA molecules are larger than lysozyme molecules and, therefore, for 

a given concentration of the crowder, the BSA solution is expected to form larger voids 

compared to the lysozyme solution. Therefore, the tracer molecule CI2, which is a smaller 

protein than lysozyme, should exhibit a greater degree of non-Gaussianity in crowded BSA 

systems. In line with this argument, the maximum value of NGP for CI2 in a 300 g/L solution 

of BSA was predicted to be nearly twice as high as that predicted in LYS. The sudden increase 

in NGP observed in the case of BSA could be due to its larger size, which results in the 

molecule reaching the cage boundaries in a shorter time. This sudden increase in NGP also 

coincides with a steep decrease in the α-exponent and, in general, a negative correlation 

between NGP and ‘α’ is noted in all the simulations. These observations point to a non-

Gaussian origin of sub-diffusion, unlike fractional Brownian motion in the case of dextran 

solutions (42). 

Stochastic processes like fBm are predominantly ergodic in nature, whereas in CTRW 

deviation from ergodicity has been reported (40). Whilst investigating the transport of insulin 

granules inside cells, Tabei et al. used the convergence of TAMSD, which was in turn averaged 

over the number of particles to infer ergodicity. The authors argued that in an ergodic system, 

the average TAMSD calculated at a given lag time using simulation trajectories of different 

lengths should converge once sufficiently long trajectories are chosen (44). This approach 

mirrors the way we have assessed convergence in our simulations (Figures S1-S4). We chose 

trajectories of different lengths and calculated diffusion coefficients in all these cases and, for 

all trajectories beyond a certain length, minimal variation in diffusion coefficients was 

observed. It can thus be inferred that TAMSD had converged for sufficiently long trajectories, 

implying ergodicity in our simulation systems.  

The above findings on ergodicity, non-Gaussianity and anti-correlation show that the behavior 

of our simulation systems is similar to that of fBm in finite time intervals, as reported with the 

numerical simulations of Guggenberger et al (56). These authors showed that a space-confined 

particle, whose motion is calculated using a sub-diffusive fBm simulator, initially shows 

Gaussian behavior that becomes non-Gaussian at long time scales. This long term non-

Gaussianity is attributed to the presence of reflective boundaries. However, in our simulations, 

at longer time-scales a trend pointing to recovery of Gaussianity is observed. This is due to the 



fact that, unlike in simulations with a strict reflective boundary, in the case of crowded solutions 

a particle can cross this boundary at longer time scales and move to a different cage-like 

structure. Therefore, the movement of a particle at long time scales can be described as being 

more akin to slow Brownian motion, whereas at intermediate time scales non-Gaussianity 

manifests due to the reflective nature of cage-like structures.  

Excluded volume effects 

Protein molecules in crowded solutions are predicted to form dynamic/transient clusters and 

exhibit significantly low diffusion rate (19, 39, 46). The role played by attractive forces 

between protein molecules in regulating diffusion in time scales of the order of tens of 

nanoseconds has been previously reported (19). These studies indicate that the Stokes-Einstein 

equation is valid in crowded protein solutions, and the slow diffusion of proteins can be 

explained by the modified Stokes radius as a result of the formation of dynamic clusters (19). 

However, it is important to note that the pivotal role played by protein-protein interactions is 

dependent on the proteins under investigation. Furthermore, given that the time scales of 

dynamic cluster formation are predicted to be of the order of 1-50 ns (19), the effect of dynamic 

cluster formation on sub-microsecond scale anomalous diffusion needs further investigation. 

The slow diffusion, especially when the protein molecules form clusters with particularly slow 

diffusing partners, can potentially be modelled as trapping in CTRW (for a random amount of 

time), which then gives rise to anomalous diffusion, making cluster formation a possible cause 

of sub-diffusive behavior. On the other hand, cluster formation has been proposed as a potential 

hindrance to caging and, therefore, as reducing anomalous diffusive behavior (20, 21). 

However, the role of protein shape and size in regulating sub-diffusive behavior has not been 

explored.  

 



 

Figure 5. Properties of tracer and crowder in the absence of attractive interactions (at 
concentrations of 50 and 300 g/L of the crowder). The data is represented in the same way as 
in Figure 3. The value of the α-exponent calculated using the log plot and cage effect, and NGP 
are computed for systems without attractive interactions. 

In order to delineate the effects of cluster formation from those arising from excluded volume, 

the same set of simulations as described above were conducted using only a soft-core repulsive 

term to remove attractive interactions between protein molecules. The α-exponent of crowders 

and tracers was calculated at all concentrations, as shown in Figure 5 and Figure S14. It can be 



seen that sub-diffusion persists despite the lack of attractive interactions. As expected, anti-

correlation in the successive displacements due to cage effects is also observed in these 

simulations with a soft-core repulsive term. At a crowder concentration of 300 g/L, the 

anomalous diffusion coefficient of BSA reached a minimum value of 0.74 (σ = 0.005) in 

simulations with the full energy term, and a value of 0.70 (σ = 0.0008) in simulations with a 

soft-core repulsive term, whereas it had a value of 0.80 (σ is 0.001 for both the cases) in the 

case of LYS in both types of simulation. This is consistent with observations made by Feig and 

Sugita using all-atom simulations of a single CI2 molecule and eight molecules of BSA/LYS 

at a concentration of 100 g/L (20). In their simulations it was shown that BSA has stronger 

self-interactions than lysozyme does. Moreover, the dominance of monomers in LYS solutions 

at concentrations of less than 15% volume fraction (the maximum crowder concentration in 

our simulations is 13.5%) has also been shown experimentally (57). Therefore, the presence or 

absence of attractive forces did not significantly affect the α-exponents of LYS (p = 0.1). By 

contrast, due to the relatively stronger interactions between BSA molecules, the absence of 

attractive forces led to a significant drop in the value of the α-exponent (p = 0.006), indicating 

an increase in sub-diffusive behavior. In the presence of attractive forces, the value of the α-

exponent of CI2 in the crowded environment of LYS was 0.87 (σ = 0.002), indicating minimal 

sub-diffusion behavior. However, when attractive forces were turned off, the value of the α-

exponent reduced (p = 0.002) to 0.82 (σ = 0.006). With BSA as a crowder, the value of the α-

exponent reduced (p = 3x10-5) from 0.83 (σ = 0.002) to 0.80 (σ = 0.002) when attractive forces 

were turned off. These observations are also consistent with the findings of Feig and Sugita 

(20), since CI2 interacts more strongly with LYS compared with BSA, and hence there is a 

larger effect on the value of the α-exponent when attractive forces are turned off. In addition, 

the value of the α-exponent of BSA was 0.70 and that of LYS was 0.80 in the absence of 

attractive forces (the statistical significance of this difference was measured using a t-test, p = 

1.5 x 10-6). This suggests that cage effects vary between protein species even though neither of 

them forms clusters. The more pronounced sub-diffusion dynamics in BSA in the absence of 

attractive forces might be due to its larger size. Since large-sized crowders can create larger 

voids in the solution, the probability of protein localization is thus higher. This suggests that 

the extent of cage effects depends not only on the strength of protein-protein interactions but 

also on the size of the crowders (Table S3). Consequently, in systems with the full energy term, 

overall cage effects are likely to be a function of the basal cage effect (observed in the absence 

of attractive forces) and the strength of protein-protein interactions. Therefore, cage effects and 

sub-diffusion dynamics are specific to the crowders and tracers present. It is important to 



emphasize that the maximum cage effect in a given system is observed in the absence of 

attractive forces. Therefore, sub-diffusion beyond what is predicted from the maximum cage 

effect must arise from other phenomena. The more pronounced non-Gaussianity observed in 

the case of CI2 in BSA and LYS, compared with simulations with the full energy term, could 

be explained by an increase in excluded volume effects in the absence of attractive forces in 

the system, which can be inferred from the difference in the BSA-BSA and LYS-LYS radial 

distribution functions (RDFs) (at a concentration of 300 g/L) in the presence and absence of 

attractive interactions, as shown in Figure 6.  

The experimental diffusion coefficients of CI2 in the lower concentration (50 g/L) of BSA and 

LYS were 13.22 and 12.2 cm2/s, respectively, which decreased to 2.66 and 1.39 cm2/s, 

respectively, at the higher concentration of the crowders (300 g/L), resulting in a ~5-fold and 

~9-fold decrease in diffusion rate in BSA and LYS, respectively. In our simulations without 

attractive forces, we noted a ~3-fold and ~2-fold decrease in the diffusion coefficient of CI2 in 

BSA and LYS environments, respectively (when going from a crowder concentration of 50 g/L 

to 300 g/L). These findings suggest that the contribution of excluded volume effects towards 

decreased microsecond-scale diffusion in crowded protein solutions is not insignificant. 

 

Figure 6. BSA-BSA AND LYS-LYS radial distribution functions obtained from simulations at 
a concentration of 300 g/L using a soft-core repulsive term only (red curves) and the full energy 
term (blue curves). The effective radius was approximated as the maximum distance (r) at 
which RDF~0, increasing by 2.8 Å and 1.6 Å in BSA and LYS, respectively, when only the 
soft-core repulsive term is used. Due to the larger size of BSA compared with LYS, the change 
in excluded volume due to the small change in the effective radius is more pronounced in the 
former.  

Discussion 

Our findings suggest that sub-diffusive behavior is present in crowded protein solutions and 

the extent of it depends on the nature of the proteins under consideration. For a given protein 

solution with a certain crowder species at a given concentration, sub-diffusion dynamics 



mediated by cage effects have a maximum limit. This limit is a function of the proteins under 

consideration and, therefore, any sub-diffusion dynamics stronger than this limit would be the 

result of phenomena other than caging, such as non-specific interactions mediating sub-

diffusion and explained using CTRW models (58). However, it is evident from the use of a 

soft-core repulsive energy term only that such non-specific interactions do not play a role in 

the sub-diffusion observed in our systems, reinforcing the role of cage effects. In our 

simulations, the α-exponent of BSA decreased in the absence of attractive interactions, whereas 

that of LYS remained the same. On the other hand, McGuffee and Elcock (18) showed that the 

α-exponent (of some cytoplasmic proteins) increased in the absence of attractive interactions. 

These observations indicate that sub-diffusive behavior is highly specific to the protein of 

interest and its crowded environment. As explained above in the case of a CTRW model, it is 

possible that the underlying sub-diffusive process in the cytoplasmic proteins (noted by 

McGuffee and Elcock) relied on attractive interactions.  

Recently, it has been shown mathematically that extreme first passage time, the minimum time 

taken by a searcher in a group of searchers to reach a target, is lower in the case of sub-diffusive 

searchers compared with normally diffusing counterparts (59). This suggests that sub-diffusive 

behavior has a vital role to play in biological systems, where molecular encounters drive 

cellular processes. The implications of cage effects and the subsequent sub-diffusive 

phenomenon are important in the context of diffusion-limited reactions. Normal diffusion is 

the underlying assumption made in the derivation of rate constants of diffusion-limited 

reactions. However, since deviations from normal diffusion are apparent and with varying 

intensity depending on the protein species and time scales investigated, it is important to 

account for such deviations using approaches like that of Haugh’s(60), especially in the 

framework of treating biological reaction networks as complex systems. Combining the fact 

that protein crowded systems emulate the cellular environment (26) and our findings indicating 

that the strength of sub-diffusion dynamics is a result of such crowding, in light of the above 

mathematical findings, it is possible to infer that cells should maintain crowding for optimal 

execution of the cellular processes. In fact, such mechanism has already been proposed by Van 

Den Berg et al. and is termed ‘homeocrowding’(61).  

The sub-diffusive behavior in our systems exhibited features of fractional Brownian motion. 

However, a more rigorous numerical approach is necessary to establish whether there is 

fractional Brownian motion in crowded protein systems. It would be interesting to use soft 



reflective walls that allow particles to escape the confined space in order to explain the 

restoration of normal diffusion with Gaussian behavior over long time scales.  

Based on the simulations without attractive interactions, we have shown that excluded volume 

effects play a role in decreased diffusion. The diffusion coefficients predicted from the 

simulations are of the same order of magnitude as experimental values. However, due to the 

lack of precise agreement with experimental observations, further investigation is necessary to 

delineate the role of excluded volume effects and cluster formation.  

Conclusions 

The predictions of our Brownian dynamics simulation study clearly show that sub-diffusion in 

crowded protein solutions arises from cage effects. Moreover, deviations in the distributions of 

molecular displacements from that of Gaussian distribution is associated with the transient sub-

diffusion. Based on our findings, it is clear that the sub-diffusive behavior in crowded protein 

solutions can be explained by volume exclusion. Since the sub-microsecond scale anomalous 

diffusion observed is dependent on the properties of the proteins (i.e., surface properties such 

as charge, size, and shape), it is important to carefully account for the composition of the 

cytoplasmic protein and nucleic acid species when investigating the diffusive behavior of 

macromolecules in cell-like environments in these time scales.  

Supplementary Material  

The supplementary material contains the convergence plots labelled Figures S1-S4;  Figures 

S5-S8 show plots depicting TAMSD vs lag time and log(TAMSD/τ) vs log(τ) curves; figures 

S9-S12 depict variation of α-exponent calculated from power law fits. A description of the 

rationale behind power law fits is provided in the section titled ‘Fitting of a power law function 

to the MSD v lag time plots’. Table S1 shows the number of crowder and tracer molecules 

simulated. Table S2 provides the description of the timescales associated with different colored 

plots in Figure 4. Table S3 shows the properties of the proteins simulated. Figure S13 and S14 

show the α-exponent (predicted and calculated) and NGP of 100 and 200 g/L systems in the 

presence of full energy term and repulsive only conditions.  
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