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Abstract: To achieve sustainable development, the energy transition from lignite burning to renewable
energy resources for electric power generation is essential for Greece. Wind and solar energy have
emerged as significant sources in this transition. Surprisingly, numerous studies have examined the
potential for onshore wind based on land eligibility, while few studies on open-field photovoltaic (PV)
installations have been conducted. Therefore, based on the Specific Framework for Spatial Planning
and Sustainable Development for Renewable Energy Sources (SFSPSD-RES), along with insights
from previous relevant studies, this work conducts a land eligibility analysis of onshore wind and
open-field PV installations in Greece using the software Geospatial Land Availability for Energy
Systems (GLAES 1.2.1) and ArcGIS 10.2. Additionally, through an in-depth exploration of wind and
solar PV energy potential in decommissioned lignite mines integrated with wind power density
(WPD) and global horizontal irradiation (GHI) maps, this study compares the suitability of wind
versus solar as energy sources for the decarbonization of Greece. Overall, despite the greater spatial
eligibility for onshore wind turbines compared to open-field PV power plants, the relatively lower
wind energy potential and operational limitations of wind turbines lead to the study’s conclusion
that solar energy (PV) is more suitable for the decarbonization of Greece.

Keywords: land eligibility; renewable energy resources; onshore wind; open-field PV; GIS

1. Introduction

In order to keep the global average temperature rise well below 2 K above pre-
industrial levels and to pursue efforts to limit the temperature rise to 1.5 K, the Paris
Climate Agreement was signed by 196 countries in 2015 [1]. Greece, as one of the signa-
tory countries, has set national energy policies in different periods to achieve a phased
sustainable development. Since the early 1960s, Greece has met most of its electric power
demand from thermal power stations burning either lignite on the mainland or heavy fuel
oil on the islands. Based on the European Energy Policy, the goal of renewable energy
penetration in 2020 (Law 3851/2020) formulated at the national level in Greece in 2010
marked the start of the Greek energy transition [2]. As Figure 1 shows, Greek electric
power generation shifted from coal to natural gas by 2020 and wind and solar PV gradually
became important sources of electric power generation recently [3]. In terms of power
generation resources for Greece, solar accounted for 10.7% of the total installed capacity,
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while wind accounted for 23% of the total installed capacity in 2023 [4]. For the country’s
sustainable development, further electric power generation from renewable energy sources
(RESs) is needed. The Greek National Energy and Climate Plan (NECP) aims to deploy
renewable energy generation systems on the islands, interconnect them with the electricity
grid on the mainland, and phase out most of the heavy fuel oil-based power generation
on the islands by 2030. Another policy, the National Climate Law, enacted in May 2022,
set targets to achieve a 55% reduction in the total greenhouse gas emissions by 2030, an
80% reduction by 2040, and ultimately reach net zero emissions by 2050 [3]. It also outlined
the essential emissions reduction measures and set a binding target to end lignite power
generation by 2028.
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It is evident that the need for RESs to achieve energy transition in Greece is growing
rapidly. According to the National Climate Law [3], the energy transition plan of Greece
focuses on wind and solar PV. Therefore, it is very timely and topical to study Greece’s
wind and PV potential. While there are a plethora of studies about wind potential using
the Geographic Information System (GIS) for Greece [6–10], relatively few studies, such as
the one by Vagiona [11], have been conducted about the country’s PV potential.

This work aims to explore the prospective wind and PV energy prospects in Greece by
identifying the optimal locations for wind turbines and PV installations using geospatial
data. The approach contrasts with those of previous studies [6,8–11] in Greece, which
did not incorporate economic criteria into the land eligibility analysis, thereby providing
a more comprehensive evaluation of the viability of RESs. It also aims to compare the
electric-generating capacity of the existing wind turbines and PV power plants at their
present state with the predicted wind and PV potential to assess the most suitable RESs
for Greece, either wind or solar. Recognizing their untapped value, while mining areas
are normally excluded from such studies, special attention is dedicated to the potential of
wind and PV in former lignite mining areas that could markedly increase the efficiency of
RESs in Greece. This will not only broaden the scope of land use for energy production
but also support the transition to sustainable development by turning neglected sites into
productive assets.

2. Materials and Methods
2.1. Study Areas

Greece, a country located in southeastern Europe, consists of 13 regions with a total
area of about 132,000 km2. By 2023, according to statistics [12], the total population of
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Greece was 10,497,595 inhabitants and, among the more than 2000 Greek islands, only
about 170 islands were inhabited. Although many uninhabited islands host established
nature reserves for flora and fauna, other areas that meet the designated standards are
worthy of becoming sites of investment in renewable energy due to the abundance of wind
and solar resources [10]. Based on the Archaeological Cadastre of Greece [13], the current
inventory reveals the presence of 220 museums, 420 historical sites, 844 protected areas,
3100 archaeological sites, and 17,000 monuments in the entire territory of the country. In
the established network of nature protection areas in the European Union, Greece has
a total of 446 protected areas, including 239 Special Areas of Conservation (SAC) and
181 Special Protection Areas for birds (SPAs), with the remaining 26 areas falling into both
categories [14].

In this work, the operations were based on a shapefile of Greece [15]. Before the land
eligibility analysis, Natura 2000 areas were excluded first according to SFSPSD-RES [16]. In
order to determine the land position that can support the construction of wind turbines and
PV power plants in Greece, the open-source tool GLAES [17] and the Prior datasets contain-
ing typical criteria for variable RESs were utilized. A geographic analysis was conducted
to assess the wind and solar potential in Greece. This analysis involved the utilization of
the Digital Elevation Model of Greece obtained from the European Environment Agency
Digital Elevation Model (EU-DEM) [18]. Additionally, WPD data at a height of 100 m were
obtained from the Global Wind Atlas [19], while GHI data were obtained from the Global
Solar Atlas [20]. These datasets were employed to compare the approximate wind and solar
potential in Greece using a Geographic Information System digital platform, specifically
ArcGIS 10.8 (Esri, Aylesbury, UK).

2.2. Current State Analysis

At present, Greece has established many wind and PV farms based on previous or
recently designated standards. Data affecting the construction of wind turbines and PV
power plants under the current conditions were analyzed to develop a series of land
constraints for the suitable placing of wind turbines and PV power plants in Greece.
Meanwhile, the data of 2023 from the Geoinformation Map of the Regulatory Authority for
Energy [21] were used to present the existing construction areas of wind and solar energy.
Subsequently, the areas with installed wind turbines and PV power plants were combined
with the DEM map and mean WPD and GHI maps of Greece to understand the topography
of the current construction locations and assess the current electric-generating capacity
of Greece.

2.3. Geospatial Land Availability for Energy Systems (GLAES)

Land eligibility is a process that evaluates the suitability of a land parcel for imple-
menting a specific technology based on a predetermined set of exclusion constraints and
serves as a fundamental and widely utilized procedure through which geospatial criteria
shape the distribution patterns across a given region [22]. Since not all open fields are
eligible for the installation of wind turbines and PV power plants, land eligibility analysis
based on geospatial data is an essential step before analyzing RES potential.

GLAES is based on Python 3 language, providing a simple and efficient way to
analyze land eligibility using the Prior datasets [17]. Ryberg et al. [23] examined more
than 50 literature sources that independently conducted a land eligibility analysis for
prevalent variable RES technologies, documenting the approaches and frequencies used in
defining the criteria. In this study, 28 typical criteria were identified, which included the
distance from settlements and the distance from airports. Meanwhile, depending on the
underlying motivations driving their exclusion, the identified criteria were divided into
4 distinct groups, namely, socio-political, physical, conservation, and economic. The typical
criteria were further subdivided into multiple sub-criteria, for example, the exclusion
distance from settlements is different for urban and rural areas. Finally, a collection of
standardized datasets called Prior was developed [23], which defined common criteria
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related to variable RESs in the European context. There were 46 Priors in total, each of which
represented the values of a criterion or sub-criterion across Europe and was georeferenced
using the EPSG:3035 spatial reference system at a spatial resolution of 100 m by 100 m.
The comprehensive documentation of each Prior dataset can be found in the work of
Ryberg et al. [23]. The GLAES model and the Prior datasets can be obtained via GitHub [17].
The threshold of each criterion in the Prior datasets was determined considering the social,
technical, environmental, and economic factors specific to Greece. These are discussed in
Sections 2.4 and 2.5.

2.4. Onshore Wind Land Eligibility Analysis

For onshore wind energy, there are already many studies on land eligibility considering
different series of land constraints. For instance, the European Environment Agency
conducted a land eligibility analysis of onshore wind only excluding protected areas, such
as Natura 2000, and found that the available area for onshore wind is 85.3% in Europe [24].
In contrast, other studies opted to apply multiple land constraints to analyze land eligibility.
McKenna et al. [25] and Eurek et al. [26] both selected agricultural areas, settlement areas,
protected areas, forests, waterbodies, slope, and elevation as land constraints, although
the set thresholds for each exclusion constraint were different. Eurek et al. [26] found that
40% of the area in Europe is eligible for wind energy. In comparison, in addition to the
land constraints mentioned above, McKenna et al. [25] also excluded buffer areas around
airports, harbors, roads, and railways and used higher resolution maps, revealing that
23% of land surface in Europe is eligible. Moreover, Ryberg et al. [27] reviewed 53 land
eligibility studies to develop a set of common land constraints for Europe considering
social, technical, environmental, and economic factors and found that the total eligible area
amounts to 1,352,260 km2 for onshore wind turbines in Europe overall, which includes an
eligible area of 28,326 km2 in Greece. However, according to the specific circumstances
of different countries, there will be certain differences in the formulated exclusion criteria
and thresholds. At the national level in Greece, a Special Framework for the Spatial
Planning and the Sustainable Development of Renewable Energy Sources (SFSPSD-RES)
was formulated, which in addition to considering common land constraints, such as
settlements and protected areas, also excluded archaeological reserves and considered
visual factors, i.e., the esthetic impact of wind turbines on the landscape [16]. Several
subsequent studies on wind farms’ site selection in Greece were based on this framework.
Tsoutsos et al. [7] conducted a study in Crete and found that 2517 km2 on the island are
available. Latinopoulos and Kechagia [8] also conducted a study in the region of Kozani
based on SFSPSD-RES, but they excluded the areas where the average wind speed is
below 4.5 m/s and the slope above 25%, concluding that there are 550 km2 available for
wind farms.

In this study, the series of land constraints that were used to analyze the land eligibility
of onshore wind in Greece are summarized in Table 1. These were based on SFSPSD-RES, a
previous study conducted in Greece [16], and a generalized land constraints list for onshore
wind developed by Ryberg [27]. In order to estimate the eligible area and distributions for
onshore wind turbines, a reference wind turbine was used (Table 2). The parameters of this
reference wind turbine correspond to the Vestas V136 wind turbines available at present
and to technology changes for future wind turbines by 2050 [28].
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Table 1. Land constraints for onshore wind turbines.

Constraint Threshold Data Source

Socio-political:
Distance from Rural Settlements >500 m CLC [29]
Distance from Urban Settlements >1000 m EuroStat [30]

Distance from Roadways >120 m Open Street Map [31]
Distance from Railways >120 m Open Street Map [31]

Distance from Power Lines >120 m Open Street Map [31]
Distance from Touristic Areas >1500 m Open Street Map [31]

Distance from Airports >3000 m CLC [29], EuroStat [30]
Distance from Agricultural Areas Excluded CLC [29]

Physical:
Terrain Slope <17◦ EuroDEM [18]

Distance from Coastlines >1500 m CLC [29]
Distance from Sandy Areas Excluded CLC [29]
Distance from Woodlands Excluded CLC [29]
Distance from Waterbodies Excluded CLC [29]

Distance from Rivers Excluded EuroStat [30]
Distance from Wetlands Excluded CLC [29]

Conservation:
Distance from Natural Monuments >800 m WDPA [32]

Distance from Parks >800 m WDPA [32]
Distance from Landscapes >1000 m WDPA [32]

Natura 2000 Areas Excluded Natura 2000 [14]

Economic:
Wind Speed <4 m/s Global Wind Atlas [19]

Access Distance <5 km Open Street Map [31]
Connection Distance <20 km Open Street Map [31]

Table 2. Summary of the parameters of the reference wind turbine [28].

Parameter Value

Hub Height 120 m
Rotor Diameter 136 m

Capacity 4200 kW
Specific Power 289 W/m2

In the socio-political group of criteria, SFSPSD-RES set a safe distance to urban (popu-
lation > 2000 inhabitants) and rural (population < 2000 inhabitants) settlements considering
noise and safety factors that could cause a negative impact on society [33]. At the same time,
it clearly stipulated that wind turbines must be installed at least 1500 m away from touristic
areas. For safety reasons, wind turbines should be installed at a distance from airports due
to the possible interference with aviation radar signals [33]. Also, they should be installed
at a certain distance from roads, railways, and power lines, but to reduce transportation
and transmission cost, the distance should not be too large [34]. Land use covers, such as
agricultural, industrial, and mining areas, were excluded in related studies of Greece [6–8].
However, this work sought to explore the RES potential of deserted and decommissioned
lignite mines in Greece without excluding mining sites.

In the physical group, slope was assessed as the third most significant factor affect-
ing the construction of wind turbines in the study of Karamountzou and Vagiona [10].
Less steep land provides a better access to construct and maintain wind turbines [33,35];
therefore, the present study excluded areas with slopes greater than 17◦. According to
SFSPSD-RES [16], wind turbines are not allowed to be constructed in the areas of sand,
wetland, and woodland and should be constructed 1500 m away from the coastline. Wa-
terbodies and rivers are often covered by protected area status and are important for the
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functioning of biodiversity and ecosystems [36]. Therefore, waterbodies and rivers were
excluded in this work.

Natura 2000 areas are explicitly excluded by SFSPSD-RES. However, Natura 2000 sta-
tus only includes protected bird and habitat areas. Considering the cultural environment
and heritage protection of Greece, it is worth setting a certain exclusion threshold around
protected natural monuments, parks, and landscapes [8].

In order not to reduce the performance and increase the cost of construction and
maintenance of wind turbines, the study by Karamountzou and Vagiona [10] combined
technology and economics to evaluate the criteria, and found four important economic
criteria, one of which was slope and the remainder were wind velocity, access distance (the
distance from accessible roadways), and connection distance (the distance from a power
line). Wind speed is an extremely important factor affecting the operation of wind turbines.
The wind turbine starts to work when the wind speed reaches a certain value, at which
the wind speed is called cut-in speed [28]. According to the power curve of the reference
turbine, the cut-in speed is 4 m/s [28]. Therefore, areas where the average wind speed is
below 4 m/s were excluded. Under the condition of ensuring that the wind turbines are at
a certain safe distance from roadways and power lines, the distance should not be too large,
because it will lead to increased construction, maintenance, and electricity production and
transmission costs [9,35]. Finally, the thresholds for access and connection distance were
determined based on the study by Ryberg et al. [27].

2.5. Open-Field PV Land Eligibility Analysis

While there are many studies on the land eligibility analysis of onshore wind, studies
on the suitable construction of open-field PV power plants are relatively few. However, the
analysis of land eligibility for PV in open areas adopts the analysis method of multi-criteria
exclusion, considering the factors of society, technology, environment, and economy as well
as that of onshore wind. A detailed study of European wind and solar energy potential
by Ryberg [28] presented a consilient list that included 26 criteria that could be applied
as exclusion constraints to select eligible areas for PV at the country level of Europe and
found that the area eligible for open-field PV is 294,851 km2 in Europe and the eligible
area in Greece is 11,740 km2. Although these established exclusion criteria cannot be fully
generalized for open-field PV studies in a specific country, it lays the foundation for related
studies in Europe. Based on exclusion criteria listed by Ryberg [28], Tlili et al. [37] conducted
a literature review [38] about the areas that need to be excluded for the construction of PV
power plants in France and found that the potential area for PV in France is 40,694 km2.
Likewise, on the basis of the general exclusion criteria list, Maestre et al. [39] reduced the
threshold for some criteria, such as adjusting the distance from settlements areas from
200 m to 100 m, because the work was based on a hypothetical framework favorable to
Spanish decarbonization goals between 2030 and 2050, and added some criteria in line
with Spanish national conditions, such as historical sites. Finally, Maestre et al. [39] found
that there was 143,820 km2 eligible for open-field PV panels in Spain. Few studies have
been conducted on the suitable sites of open-field PV in Greece. Vagiona [11] conducted a
study on Rhodes Island (Greece), which considered 6 exclusion criteria, such as land cover,
distance from protected areas, and altitude, based on SFSPSD-RES and showed that nine
sites were eligible for open-field PV on Rhodes Island without mentioning the total eligible
area. Unlike other studies [37,39], the criteria chosen for excluding land constraints in the
study by Vagiona [11] did not include the slope and northward slope factors, which could
lead to a poor performance of the PV panels due to shading [28].

Although the SFSPSD-RES of Greece provides exclusion criteria for wind turbines’
construction and many related studies provide detailed land constraints and thresholds
based on this framework, the exclusion criteria for PV power plants have not been elabo-
rated. Therefore, in this section, the analysis of open-field PV land eligibility for Greece
was mainly based on some criteria for the site selection of PV parks mentioned in the
SFSPSD-RES and the detailed study by Ryberg [28] on analyzing PV potential in Europe
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(Table 3). Meanwhile, as Greece is very close to Turkey and the climate of the two countries
is similar, this section combined relevant studies conducted in Turkey to provide a more
informative analysis. Additionally, a specific PV panel (Table 4) was used as a reference to
determine the eligible areas for open-field PV power plants and to model their distribution
in decommissioned lignite mines. The selected PV panel offered the optimal representation
of distribution, while ensuring the highest number of full load hours [28].

Table 3. Land constraints for open-field PV.

Constraint Threshold Data Source

Socio-political:
Distance from Settlements >200 m CLC [29]

Distance from Airports >2000 m CLC [29], EuroStat [30]
Distance from Industrial Areas Excluded CLC [29]

Distance from Agricultural Areas Excluded CLC [29]

Physical:
Terrain Slope: Total <10◦ EuroDEM [18]

Terrain Slope: Northward <3◦ EuroDEM [18]
Distance from Elevation <1500 m EuroDEM [18]

Distance from Waterbodies >500 m CLC [29]
Distance from Woodlands Excluded CLC [29]
Distance from Wetlands Excluded CLC [29]
Distance from Coastlines Excluded CLC [29]

Distance from Sandy Areas Excluded CLC [29]

Conservation:
Distance from Natural Monuments >200 m WDPA [32]

Distance from Landscapes Excluded WDPA [32]
Distance from Parks Excluded WDPA [32]
Natura 2000 Areas Excluded Natura 2000 [14]

Economic:
Connection Distance <20 km Open Street Map [31]

Access Distance <10 km Open Street Map [31]

Table 4. Summary of the parameters of the reference open-field PV panels, Winaico WSx-240P6 [28].

Parameter Value

Max Power 240.4 W
Area 1.663 m2

Technology Polycrystalline

Initially, according to SFSPSD-RES [16], the construction of PV parks is prohibited in
areas of agriculture, wetlands, forests, natural monuments, protected landscapes, national
parks, and Natura 2000 areas.

In the group of socio-political criteria, PV power plants should be built close enough to
residential areas to provide a better energy demand and lower costs of electricity transmis-
sion without affecting the lives of residents [40]. In order to avoid accidents caused by the
reflection of PV panels, based on the study by Vagiona [10], airports and the surrounding
area within 2000 m were excluded. Most studies [11,28,41,42] considered some land covers,
such as operational industrial and mining areas, as exclusion criteria since activities on
them can stain PV panels leading to an inefficient performance. The same applies for land
eligibility for onshore wind; however, this study did not exclude mining sites.

In physical criteria, in addition to considering the overall terrain slope (steep terrain
can increase the construction cost), the northward slope should be also considered, because
the self-shading losses of PV panels can be significantly high even with only slightly north-
facing slopes [28]. Constructing PV power plants in high-altitude areas will increase the
cost of the installation and transportation of materials; therefore, it is suggested to set the
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exclusion threshold of elevation to 1500 m [11]. At the same time, in order not to pollute
environmental water resources when constructing PV panels, Ryberg’s study [28] suggested
that waterbodies and surrounding areas up to 500 m should be excluded. According to
several studies [41–43], since the topography and geological structure of sands and beaches
are not suitable for constructing PV power plants, sandy and beach areas were excluded.

Two significant economic indicators were considered in this section, namely, connec-
tion distance (the distance to power lines) and access distance (the distance to accessible
roads). It is suggested that PV power plants should be constructed as close as possible to
power lines, since the farther away from the power lines, the higher the cost and loss of
electricity power transmission [44]. Moreover, it is also necessary to ensure that the distance
between PV stations and the road is not too far, because a longer distance will increase
the transportation cost of construction and the cost of operation and maintenance [45]. In
summary, based on Ryberg’s study [28], this section excluded the areas that were more
than 20 km away from power lines and more than 10 km away from roads.

2.6. Deserted Lignite Mine Potential

According to the NECP, the Greek government has set a goal to completely eliminate
coal-fired power generation in the country by 2028 [46]. Based on this plan, some lignite
power stations, such as Kaida I and II as well as Amyndeo I and II, have been shut down
since 2019 [47]. However, for Greece, a country long dependent on lignite for power
generation, such an ideal and complete energy transition is difficult. In order to stabilize
the electricity power supply system for a future entirely powered by natural gas and
RESs, five lignite-burning power stations in Agios Dimitrios, Meliti, and Megalopolis are
scheduled to have their operations extended to 2025 by the Public Power Corporation
(PPC) in Greece [48]. It is obvious that the phasing out of lignite power generation is
inevitable based on the energy transition plan of the Greek government. In the context
of the shutdown of lignite-fired stations, lignite mines will be decommissioned, with
potentially large areas without conservation value becoming available for other uses, such
as renewable power generation. Meanwhile, there is an excellent connection to the power
grid at these locations, which can be used by the newly installed PV parks. Therefore, it is
important to analyze the RES potential of former lignite mines in Greece.

In this section, a lignite mining site in Megalopoli (Figure 2) and two lignite mining
sites in Ptolemaida (Figure 3) were chosen as the study areas. The Ptolemaida Mine of
Western Macedonia located in the northern part of Greece is the largest lignite mine in the
whole of Greece, followed by what is the largest lignite mine in the Peloponnese Peninsula
of Southern Greece, the Megalopoli Mine [49]. Due to the extension of operation at the
Megalopoli lignite power station until 2025 and the expected closure of the Ptolemaida
lignite power station in 2028, lignite mines in both regions are still in use. However,
with the mandatory and inevitable shutdown of lignite power station in Megalopoli, the
adjacent mine will be decommissioned in parallel, since lignite is not suitable for long-
distance transport.

Without excluding mining sites using GLAES, this section aimed to explore the wind
and solar energy potential in the mining areas of Megalopoli and Ptolemaida combined
with WPD and GHI. Meanwhile, a reference wind turbine (Table 2) and solar panels
(Table 4) were used to assess the renewable energy potential of these open-pit mines after
their decommissioning. The separation distance for wind turbines was based on 8D × 4D,
where D represents the rotor diameter of the turbine. The separation distance for PV parks
was 1000 m.
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3. Results
3.1. Current State of Wind Turbines and PV Power Plants

Figure 4 shows the current distribution of installed wind turbines in Greece, with the
areas featuring wind turbines highlighted in red. The total area occupied by wind turbines
is 2095 km2, accounting for 1.5% of Greece’s total land area.
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Figure 4. Currently installed wind farms’ area in Greece.

By the end of 2022, the cumulative installed wind power capacity in Greece reached
4681.4 MW [50]. Wind turbines are predominantly distributed in Thrace, Western Mace-
donia, Central Greece, and the Peloponnese. Meanwhile, the altitude at which the wind
farms were constructed is depicted in Figure 5a. The color of an area corresponds to its
altitude, with high altitudes being represented by lighter shades and lower altitude by
darker shades. The altitude values adhere to this color scheme in the subsequent diagrams
related to DEM. Additionally, Figure 5b presents a WPD map combined with the locations
of the existing wind farms. In this map, areas with a redder hue indicate higher mean WPD
values, whereas areas with lighter shades of red correspond to lower mean WPD values.
It is worth noting that the majority of the wind turbines were installed at relatively high
altitudes, as shown in Figure 5a, specifically on mountain ridges. These areas exhibit higher
mean WPD values in Greece, as indicated in Figure 5b, and higher average WPD values
signify more abundant and favorable wind resources [19].
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Figure 5. (a) The current wind farms combined with the DEM map of Greece. (b) Mean WPD map of
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Figure 6 displays the current areas in Greece where PV parks have been constructed.
The total land area occupied by PV parks is 1984 km2, accounting for 1.5% of the total land
area of Greece. According to Petrova [51], the cumulative capacity of PV parks in Greece
reached 5488 MWp in 2023. Meanwhile, it can be noted that the current PV parks are
predominantly situated in Western Macedonia and Thessaly, where they are constructed on
flat terrain with a relatively low elevation, as shown in Figure 7a. Since the GHI values can
accurately quantify the solar energy potential for PV [52], higher GHI values correspond to
a greater solar energy potential. Therefore, PV parks are strategically constructed in areas
with relatively high GHI values, as shown in Figure 7b.
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3.2. Onshore Wind Potential

As stated in Section 3.4, the Natura 2000 areas were excluded from the start of analy-
sis. The remaining socio-political, physical, conservation, and economic constraints were
excluded sequentially using GLAES (Figure 8). Upon the exclusion of the socio-political
criteria, the land eligibility for onshore wind turbines in Greece was determined to be
44.58%. However, after excluding the physical criteria, the land eligibility ratio dramati-
cally decreased to 16.21% and further dropped to 15.45% after excluding the conservation
criteria. Finally, after excluding the economic criteria, the land eligibility for onshore wind
turbines in Greece was determined to be 12.16%. Figure 8 clearly indicates that the physical
criteria significantly impact the feasibility of constructing onshore wind turbines in Greece.
Furthermore, among the economic criteria, the slope is the factor that most affects land
eligibility; if the slope criterion is not excluded, land eligibility for onshore wind in Greece
increases to 19.9%.
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Figure 8. Land eligibility prediction process for onshore wind in Greece.

To provide a visual representation of the land eligibility for onshore wind turbines,
Figure 9 presents a map where the eligible area constitutes 16,055 km2, accounting for
12.16% of the total Greek area. Additionally, Figure 10 combines the predicted wind turbine
locations with the mean WPD map of Greece. These figures demonstrate that the projected
wind turbine sites are concentrated in Western Macedonia and Northern Thessaly, the
eastern part of Central Greece, the Peloponnese, and the islands of Crete and Rhodes.
As mentioned in Section 4.1, areas with a higher mean WPD are predominantly situated
in mountainous regions with high altitudes. However, most eligible areas predicted by
GLAES are distributed across flat terrain with relatively low mean WPD values. Only a
few areas with a high mean WPD, such as the island of Crete and the junction area of the
southern part of Central Greece and Attica, can support wind turbine construction.
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3.3. Open-Field PV Potential

The four categories of the exclusion criteria were successively excluded using GLAES,
and the outcomes of each exclusion process are presented in Figure 11. Initially, the
exclusion of the socio-political criteria resulted in 50.19% of the land being deemed eligible
for open-field PV construction. However, this proportion drastically decreased to 7.71%,
marking a reduction of 42.48%, when the physical criteria were excluded. The exclusion
of the conservation criteria did not significantly impact the proportion of eligible land,
with the value remaining at 7.44%. Finally, after excluding the economic criteria, the area
suitable for PV power plants in open areas of Greece amounted to 4.67% of the country’s
total land area. Generally, physical criteria significantly influence the land eligibility for
open-field PV power plants, with slope being the most important factor. Without excluding
the slope criterion, the land eligibility for open-field PV increased to 18.17%.
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Figure 12 illustrates a map displaying the eligible areas for open-field PV power plants
as predicted by GLAES. The total eligible area in Greece encompasses 6166 km2, accounting
for 4.67% of the country’s total land surface. The predicted open-field PV power plant
locations are predominantly on flat terrain. Moreover, Figure 13 clearly shows the relatively
high mean GHI values in the eligible areas, particularly in the southern regions of Greece,
such as the Peloponnese and the islands of Crete and Rhodes. These regions present peak
GHI values, indicating the substantial solar energy potential of open-field PV installations
in the predicted eligible land areas.
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3.4. Renewables’ Potential of Decommissioned Lignite Mines

The potential installation of wind turbines and PV panels in the lignite mining areas
of Megalopoli (25 km2), Ptolemaida I (134 km2), and Ptolemaida II (57 km2) was simulated



Energies 2024, 17, 567 17 of 26

using GLAES as the basis. The investigation employed a baseline wind turbine (Table 2)
and a reference PV panel (Table 4) for the analysis. Table 5 presents the findings for wind
turbines’ and PV parks’ placements, along with the respective annual energy potential.

Table 5. The predicted placements of wind turbines and PV parks along with the energy potential of
both in the lignite mines of Megalopoli and Ptolemaida I and II.

Lignite Mine Megalopoli Ptolemaida I Ptolemaida II Total

Wind:
Wind Turbines 34 155 61 250

Wind Turbine Power (kW) 4200 4200 4200
Energy Yield (kWh/kW) 3000 3000 3000

Wind Energy Potential (GWh) 428 1953 769 3150

Solar:
PV Parks 21 102 37 160

Area for PV (km2) 11.5 68.9 22.1 102.5
PV Peak Power (GWp) 1.7 9.9 3.2

Energy Yield (kWh/kWp) 1400 1400 1400
PV Energy Potential (GWh) 2324 13,901 4465 20,690

In the context of wind turbines, the Megalopoli Mine has a capacity of 34 turbines,
possessing a total energy potential of 428 GWh annually. As for the Ptolemaida I Mine, it can
accommodate 155 turbines, producing 1953 GWh of energy potential annually. Meanwhile,
the Ptolemaida II Mine can host 61 turbines and is capable of producing 769 GWh of energy
potential. Furthermore, the Megalopoli Mine can accommodate 21 PV parks, covering an
area of 21 km2 and generating an energy potential of 2324 GWh. The Ptolemaida I Mine can
be covered by 102 PV parks, accounting for an area of 68.9 km2 and yielding an impressive
energy potential of 13,901 GWh annually. The Ptolemaida II Mine, on the other hand, has
the capacity for 37 PV parks, covering an area of 22.1 km2 with an energy potential of
4465 GWh per annum.

Overall, significantly, based on the results of the three lignite mines studied, the PV
parks have an almost 7-fold greater potential for electric energy generation compared to
wind turbines. A detailed breakdown of the distribution of the wind turbines and PV parks
is provided in Section 4.2, followed by a comprehensive discussion of the comparative
electric power generation potential of both technologies.

4. Discussion
4.1. Comparison between the GLAES-Defined Eligible Areas with the Current State

Compared to previous studies [6,8–11,16], this work incorporated wind speed, access,
and connection distance directly into the exclusion criteria. Based on the land eligibility
analysis conducted for onshore wind turbines and open-field PV power plants, it is evident
that the area identified as eligible by the GLAES model was considerably larger than
the areas presently developed for such use in Greece. Specifically, the land area deemed
eligible for onshore wind turbines surpassed the extent of wind farms by 13,960 km2,
while the eligible area for PV power plants exceeded the current coverage of PV parks by
4182 km2. These comparative findings emphasize the significant land capacity available
for the deployment of wind and solar projects in Greece.

Figure 14 illustrates a spatial comparison between the areas suitable for wind turbines’
construction according to GLAES and areas where wind turbines have already been in-
stalled. It is apparent that a significant number of predicted eligible areas are situated
on low-elevation and flat terrain, which differs from the current state of wind turbines’
placement. Notably, many wind turbines have been installed at high elevations, a practice
not accounted for in the GLAES model. Nevertheless, the identification of unsuitable
areas for wind turbine installation by GLAES does not imply that these areas are actually
unsuitable for constructing wind turbines. While considering land constraints, the actual
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construction also needs to evaluate the wind energy potential of specific locations. Given
that Greece exhibits a greater wind energy potential at higher elevations, the installation of
wind turbines in such areas is justifiable.
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Furthermore, the land eligibility maps, which indicate the predicted suitability of land
for onshore wind and open-field PV, were merged with the existing wind farms and PV
parks, as shown in Figures 15 and 16, respectively. Figure 15 reveals that a significant
proportion, specifically 76.5% of the established wind farms, are situated in regions that
were excluded from the onshore wind land eligibility analysis because of the terrain slope.
Moreover, with potential implications for nature conservation, it was observed that 10.1% of
wind farms have been constructed within Natura 2000 areas. Similarly, Figure 16 illustrates
that 49.3% of the existing PV parks have been constructed in regions that were excluded by
the land eligibility analysis for open-field PV installations. Additionally, 10.1% of these PV
parks are situated in Natura 2000 areas. It should be noted that the reason for this can be
attributed Greece’s early initiative in the construction of wind farms, which date back to
the early 1980s [53], before the implementation of Natura 2000. Additionally, the utilization
of solar PV technology commenced in 2006 with the introduction of feed-in tariffs [54].
However, it was not until 2012 that a specific framework for the development of RESs in
Greece, known as SFSPSD-RES, was proposed and implemented. Moreover, due to the
later start in constructing PV power plants compared to wind turbines, the area covered by
PV parks in the excluded regions is significantly smaller.
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4.2. Comparison of the Wind and Solar PV Energy Potential in the Mining Areas under Study

Figure 17 depicts the distribution of wind turbines in conjunction with the mean
WPD for each mining area. Additionally, Figure 18 illustrates the distribution of PV parks
combined with the mean GHI in each lignite mine.
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vealed that the average WPD for Greece is 797 W/m2 [19], whereas the average GHI is 1550 
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of 245.965 W/m2, 265.881 W/m2, and 318.608 W/m2, which are significantly lower than the 
average WPD. Furthermore, it is evident that there are only a few wind turbines situated 
in the regions with the peak WPD values of each mine, with a mere total of 15 wind 

Figure 17. (a) Simulated placements of wind turbines with the WPD map of the Megalopoli Mine.
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Although there is potential for constructing additional wind turbines in decommis-
sioned lignite mines, it should be noted that the wind energy potential of the three mining
areas may not surpass the solar energy potential when comparing Figures 17 and 18. This
observation is supported by the WPD and GHI maps for the entire country. The data
revealed that the average WPD for Greece is 797 W/m2 [19], whereas the average GHI is
1550 kWh/m2 [20]. Interestingly, Figure 17 clearly illustrates that the WPD peaks of the
three lignite mines correspond to low-value areas within the whole area of Greece, with
values of 245.965 W/m2, 265.881 W/m2, and 318.608 W/m2, which are significantly lower
than the average WPD. Furthermore, it is evident that there are only a few wind turbines
situated in the regions with the peak WPD values of each mine, with a mere total of 15 wind
turbines having been observed. On the contrary, the extreme GHI values in the three lignite
mines all exceed the average value of GHI for the entire region of Greece, amounting to
1707.5 kWh/m2, 1577.2 kWh/m2, and 1593.2 kWh/m2, as shown in Figure 18. Notably, the
peak GHI areas of the Megalopoli Mine and the Ptolemaida II Mine contain four PV parks
each, while almost all PV parks are concentrated in the extreme GHI area of the Ptolemaida
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I Mine. For robust verification, this study conducted a comprehensive examination by
consolidating the electric energy potential WPD values achievable from wind turbines
and the electric energy potential GHI values achievable from PV panels, revealing that
the potential of electric generation by PV panels in the three lignite mines significantly
surpasses that of wind turbines. The results from Table 5 further confirm that the potential
of wind energy in the three lignite mines is lower than that of solar PV. Therefore, it is
concluded that the total potential of solar PV in the lignite mines of Megalopoli, Ptolemaida
I, and Ptolemaida II is 20,690 GWh, which is almost 7-fold greater than that (3150 GWh)
of wind.

However, PV fields with such a high peak power output as the ones that can be
built on the areas of the three lignite mines from this study could be a critical component
in the electricity grid of Greece. Daily and seasonal variations in electricity production
need to be smoothed by employing means for the storage of electricity, e.g., hydrogen or
thermal energy storage. The seasonal storage of renewable energy using hydrogen involves
capturing excess energy during the times of high renewable generation, such as sunny
or windy days, and converting it into hydrogen through electrolysis. This hydrogen can
then be stored for extended periods, i.e., several months, serving as a clean and efficient
energy carrier. During low renewable energy periods, like calm or cloudy days, the
stored hydrogen can be utilized in fuel cells or natural-gas-fired power stations to generate
electricity, providing a reliable energy source. This approach addresses the intermittency of
renewable sources, enabling a more consistent and sustainable power supply throughout
the year. Additionally, the deployment of hydrogen in seasonal storage contributes to the
decarbonization of the energy sector by offering a versatile solution for large-scale energy
storage and distribution. What is more, the study of Schmidt et al. [55] showed that, for
a few load cycles per year, hydrogen storage is more cost effective than using batteries.
Another promising option for storing surplus renewable electrical energy is the application
of the so-called Carnot batteries, which can store large amounts of energy in the form of
high-temperature heat in inexpensive materials, such as water, stone, or molten salt, and are
much cheaper than batteries [56]. In conjunction with seasonal heat storage systems, they
can store heat energy for months. The size, capacity, and energy management of Carnot
batteries can be adapted to the specific demand, i.e., the capacities of several megawatts
are expected to be available from 2030 onwards.

In general, at the regional level in Greece, the potential for open-field PV is greater
than that of onshore wind. It is safe to assume that the potential is even greater when roof
areas, parking sites, and industrial areas are included (as they should be). At the same
time, although the adoption of PV power generation in Greece came after wind power
generation, a recent report indicated that the total installed PV capacity has exceeded
the total installed wind capacity for Greece in 2022 [57]. Additionally, the abundance of
sunshine in Greece allows for less restricted operations of PV power plants. In contrast,
wind turbine operations face more complex limitations. For instance, low wind speeds
generally make the installation of wind turbines unviable, while wind speeds that are
too high necessitate the shutdown of wind turbines for their protection. Moreover, the
construction of wind farms generally entails higher material and financial costs compared
to that of PV power plants [57]—the cost of photovoltaic energy has declined by about 90%
over the last decade, resulting in a remarkable 30% growth per year [58]. Furthermore, the
focus on PV power plants will potentially allow for the further enhancement of biodiversity
conservation in Greece. This is because the current focal areas for wind power production
(Thrace, Western Macedonia, Central Greece, and the Peloponnese as well as, overall, the
higher elevation areas) are regions of potentially high biodiversity value [59]. A focus on
PV power production provides an opportunity for the Natura network of protected areas to
expand further in those regions. In conclusion, the combination of the present analysis and
considering the wider efficiency, economic, and biodiversity protection factors, this study
concluded that solar energy (PV) is better suited than wind power for the decarbonization
efforts of Greece.
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Last but not least, a very important advantage of the proposed use of decommissioned
lignite mining areas is that no valuable agricultural land is consumed for the generation of
renewable electric energy.

4.3. Limitations

Based on the SFSPSD-RES of Greece, this study incorporated land eligibility analysis
for onshore wind and open-field PV, combining insights from previous relevant research
conducted in Europe, particularly in Greece. In order to assess land suitability, a com-
prehensive list of land constraints was formulated, encompassing social, technological,
environmental, and economic factors. By imposing exclusion land constraints using GLAES,
the areas eligible for constructing wind turbines and PV power plants were obtained. How-
ever, it is important to note that the land eligibility analysis, based solely on the current
policies and previous empirical studies, can only provide indicative results. The overall
process of constructing renewable energy system entails complex aspects that must be
considered. These include assessing the potential of RESs, evaluating construction costs,
and analyzing topographic and geological conditions specific to the target area. Further
investigations can be carried out to examine the discrepancy between the estimated suitabil-
ity areas for wind turbines and the wind turbines actually built (see Figure 5). Especially on
mountain tops, the wind potential is systematically underestimated when using averaged
wind speed data, as shown in the study by Hu et al. [60]. In a future study, the effect of
topology at the sub-grid level will be included in the land suitability analysis.

Additionally, it is crucial to secure the support and involvement of local residents and
stakeholders, among other relevant considerations. Consequently, the successful imple-
mentation of wind turbines and PV power plants necessitates not only model simulations
but also thorough field investigations, which together enable optimizing electric power
generation efficiency and minimizing costs to ensure the utmost effectiveness of renewable
energy generation.

With the phasing out of lignite mines in Greece, there is a significant opportunity to
construct renewable energy systems in decommissioned lignite mines. However, there are
certain limitations in constructing wind turbines and PV power plants in these mining areas.
Geotechnical stability, slopes, and landslides, for Example, should be considered during
construction [61]. Moreover, this study compared the potential of wind energy and solar
PV energy in Greece, specifically focusing on decommissioned lignite mines. The analysis
mainly utilized the WPD and GHI maps of Greece for discussion. It should be noted that
there is no direct relationship between WPD and GHI values; rather, they serve as reference
indices for estimation proposes. The electric power output of wind energy and solar PV
predominantly depends on their respective power capacities. Therefore, this work used a
reference wind turbine and a reference PV panel to estimate the number of constructable
turbines and the area for PV parks so that the energy potential can be calculated under ideal
conditions. Finally, it was found that the PV energy potential significantly surpassed that of
wind energy in the decommissioned lignite mines under study. It is essential to recognize
that the estimated potential represents a technically possible maximum. The exploitable
potential may be substantially lower due to practical, ecological, or technological limitations
(which cannot be addressed in this work). Detailed site-specific studies are imperative for a
realistic assessment.

Furthermore, a comprehensive calculation of electric generation is an intricate process
that necessitates the consideration of numerous factors. In the case of wind energy, the
power generation capacity is determined by climatic factors, such as air density and temper-
ature, as well as physical factors, like wind speed and the spatial and temporal variations in
wind patterns. Similarly, the power generation capacity of solar PV is influenced by climatic
parameters, like air quality and sunshine hours, in addition to physical factors, such as
solar irradiance in combination with atmospheric conditions. Overall, the calculation of
wind energy and solar PV energy capacities for the whole territory of Greece is an intricate
and challenging task, thus representing a limitation.
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5. Conclusions

In the context of Greece’s energy transition dominated by wind and solar energy, this
work assessed the land eligibility of onshore wind turbines and open-field PV power plants
to provide insights of reference for their suitable construction. Meanwhile, the electric
generation potential of the two RESs in the decommissioned lignite mines of Megalopoli
and Ptolemeida were specifically compared to further discuss the most suitable RESs
for Greece, either wind or solar. This work concluded that solar (PV) energy in Greece
has a greater potential of electricity generation than that of wind energy. Considering
only land eligibility during optimal conditions, Greece’s 132,032 km2 of suitable areas for
PV could generate an electricity of 205 TWh, significantly surpassing the country’s total
electricity consumption of 52.8 TWh in 2020 provided by International Energy Agency. And
in decommissioned lignite mines, while wind turbines appear unsuitable for electricity
generation, PV systems have significant potential. Moreover, it is worth mentioning that a
joint venture between the German utility RWE and Public Power Corp. (PPC) of Greece is
already constructing solar projects, named Amynteo Cluster I and II, with a total capacity
of 210 MWp and 280 MWp, respectively, in the former Amynteo open-pit lignite mine of
Western Macedonia [62].

Through the land eligibility analysis of onshore wind turbines and open-field PV
power plants using GLAES, it was found that Greece has significant land potential for
both compared to the current state. It is worth noting that the construction locations
of wind turbines modeled using GLAES is quite different from the current installations.
Most of the current wind turbines are located at high altitudes with a high wind energy
potential, which is contrary to the predicted results. Additionally, although the eligible
area for wind turbines (12.16%) is much larger than that of PV power plants (4.67%), a
significant proportion of the predicted eligible land for wind turbines is located in low
electric generation potential areas, especially in the studied lignite mining areas. Meanwhile,
this study made a start to analyze the land eligibility for both the onshore wind and open-
field PV of Greece and compared the electric energy potential of wind and solar power. In
general, the successful construction of wind turbines and PV power plants not only needs to
be based on model predictions considering socio-politics, technology, the environment, and
economy, but also requires a thorough field investigation of the target construction areas.
Moreover, the most direct way to compare the potential of wind and solar energy sources is
to calculate their electric power capacity. However, due to the complexity of the calculation,
which needs to consider many climatic factors, this work did not conduct the calculation,
thus remaining a limitation. Overall, this work provided meaningful references for the
construction of wind turbines and open-field PV power plants for Greek decarbonization.
Notably, part of the wider significance of this study lies in the estimation of the potential
of renewable energy available by using the areas of three decommissioned lignite mines,
which is in the order of magnitude of the electricity produced by gas in 2020 in all of Greece.
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Abbreviations
DEM Digital Elevation Model
GLAES Geospatial Land Availability for Energy Systems
GHI Global Horizontal Irradiation
GIS Geographic Information System
NECP National Energy and Climate Plan
PV Photovoltaic
RES Renewable Energy Source
WPD Wind Power Density
SFSPSD-RES Specific Framework for Spatial Planning and Sustainable Development for

Renewable Energy Sources
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