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Highlights: 

• Covid-19 vaccination program significantly reduces the realized volatility of global 

foreign exchange markets. 

• The stabilizing effect of vaccinations survives various robustness checks. 

• The stabilizing effect is asymmetric across the quantile levels of FX volatility 

distribution. 

• Vaccinations reduce FX volatility more in emerging markets, in countries with high 

economic policy uncertainty, and in nations with greater vaccine confidence. 
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The Role of Vaccinations 

 

  

Abstract 

By restoring economic openness, mitigating economic policy uncertainty, and regaining 

macroeconomic stability, the mass deployment of COVID-19 vaccinations should stabilize 

foreign exchange (FX) markets. This paper empirically examines the impact of COVID-19 

vaccinations on the realized volatility of exchange rates in 30 countries/regions from January 

1, 2020, to September 29, 2021. Using the heterogeneous autoregressive model with 

measurement errors, we find that the COVID-19 vaccine rollout stabilizes global FX markets; 

this result holds through a series of robustness checks. The stabilizing effect is asymmetric 

across the quantile levels of FX volatility distribution. Furthermore, the stabilizing effect is 

more pronounced in emerging markets, countries with high economic policy uncertainty, and 

nations with greater vaccine confidence. 
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1. Introduction 

The global outbreak of the coronavirus disease (COVID-19) has caused enormous damage to 

global economic activities and financial markets. World Economic Outlook Report April 

2021 indicates that the global economy contracted sharply by 3.5% in 2020. Given the 

unprecedentedness of the pandemic, a significant strand of literature has investigated the 

disastrous effects of COVID-19 on global financial markets, including stock markets (Ashraf, 

2020; Liu et al., 2020; Salisu et al., 2020; Topcu & Gulal, 2020; Zaremba et al., 2021), 

energy markets (Devpura & Narayan, 2020; Gil-Alana & Monge, 2020; Prabheesh et al., 

2020), and foreign exchange (FX) markets (Aslam et al., 2020; Bazán-Palomino & 

Winkelried, 2021; Fasanya et al., 2020; Feng et al., 2021; Narayan et al., 2020; Narayan, 

2020; Njindan Iyke, 2020). 

COVID-19 vaccination programs were deployed worldwide at the end of 2020 to mitigate the 

severe negative impacts of the pandemic, following various vaccine rollout plans that differed 

by country. These programs were deemed essential for a return to normalcy in our social and 

economic lives and aimed to stabilize global financial markets. To investigate the expected 

outcomes of the programs, researchers have recently started to pay attention to the effects of 

COVID-19 vaccinations on financial markets (Acharya et al., 2020; Chan et al., 2022; Li et 

al., 2023; Pham et al., 2023; Rouatbi et al., 2021; To et al., 2023; Yu & Xiao, 2023). Our 

study contributes to this literature by examining the relationship between vaccinations and 

FX market volatility, filling an apparent gap in the extant literature. 

There are two key motivations behind our study. First, the COVID-19 pandemic, as a global 

public health disaster, offers a unique opportunity to assess the impact of a worldwide 

vaccination program on financial markets (Hasan et al., 2023). Although the World Health 

Organization (WHO) declared an end to COVID-19 a public health emergency in May 2023, 
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the world still faces the risk of another variant emerging with even deadlier potential.2 

Consequently, investigating the impacts of such disastrous public health events on financial 

markets could provide important policy implications for global and national authorities when 

the next pandemic arises. Second, we focus on the impact of vaccinations on the FX market, 

as FX volatility is pivotal in affecting economic stability, international trade and capital 

flows, inflation, and interest rates. As the world’s largest financial market,3 FX volatility 

heavily influences exports and imports by changing relative production and transaction costs 

for international trade (Baum & Caglayan, 2010; Qian & Varangis, 1994; Rahman et al., 

2020). 

Furthermore, increased exchange rate volatility leads to higher corporate profits and 

investment uncertainty, slowing productivity and gross domestic product (GDP) growth 

(Aghion et al., 2009; Braun & Larrain, 2005). Moreover, a rise in exchange rate volatility 

also induces inflation uncertainty, leading to higher interest rates and dampening consumer 

and investor sentiment (Grier & Grier, 2006). Finally, it has become a consensus that 

maintaining a constant exchange rate, hence making its volatility nonexistent, can eliminate 

exchange rate risk and facilitate cross-border capital flows; the advent of the Euro and the 

creation of other fixed exchange rate regimes, such as that in Hong Kong, represent this goal. 

Thus, stabilizing FX volatility also has important implications for cross-border capital flows. 

Given these reasons, studies on how FX volatility may be affected by COVID-19 

vaccinations should interest FX traders, investors, and policymakers. 

 
2 During the announcement of the end of COVID-19 as a global public health emergency, WHO chief Tedros 

Adhanom Ghebreyesus said, “The end of COVID-19 as a global health emergency is not the end of COVID-19 

as a global health threat. The threat of another variant emerging that causes new surges of disease and death 

remains, and the threat of another pagothen emerging with even deadlier potential remains.” Source: 

https://news.un.org/en/story/2023/05/1136912 
3 The daily turnover of the global FX market was about 6.6 trillion USD in 2019; see the Triennial Survey of 

Turnover in OTC FX markets, Bank for International Settlements (BIS), April 2019. 
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Following Wang and Yang (2009) and Bubák et al. (2011), we employ the realized volatility 

(RV) calculated from intraday data to proxy the volatility in foreign exchange markets. 

Andersen et al. (2003) suggest that RV is a more informative measure of volatility. 

Consequently, various studies, such as Albulescu (2021) and Li et al. (2020), have used RV 

as a volatility proxy to assess the impacts of COVID-19 on global financial markets; 

however, these studies did not consider the heteroscedasticity in measurement errors that 

cause bias in computing RV, a critical issue raised by Bollerslev et al. (2016). To overcome 

this problem, we apply the heterogeneous autoregressive quarticity (HARQ) model proposed 

by Bollerslev et al. (2016) to model the RV in FX markets, which distinguish our study from 

the above-cited studies. This approach is necessary and novel in terms of methodological 

contribution to investigate the linkage between COVID-19 and financial market volatility. 

Furthermore, our sample data cover 30 free-floating exchange rates from January 1, 2020, to 

September 29, 2021. We also utilize a comprehensive, publicly available, and reliable global 

vaccination database named Our World in Data. 

Our empirical works center around testing four hypotheses derived from economic theories 

and empirical evidence. These hypotheses involve determining whether an attenuating effect 

of COVID-19 vaccinations on FX volatility exists and whether it is affected by the country-

specific economic-development stage (emerging versus developed economies), the economic 

policy uncertainty (EPU), and the country-level vaccine confidence. Our study indicates that 

massive vaccinations can significantly reduce the exchange rate volatility after controlling for 

the effects of the long-memory characteristic, the varying measurement errors in RV, and the 

pandemic’s dynamics. Furthermore, we find that the variations in the administered number of 

daily first vaccine doses reduce FX volatility. In contrast, the changes in the number of daily 

second (or third) doses are insignificant in explaining the fluctuations of FX volatility. 
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Several additional interesting results are worth noting. First, the effect of COVID-19 

vaccinations on FX volatility is more severe in emerging than in developed markets. Second, 

this stabilizing effect is more pronounced in countries with higher EPU during the pandemic. 

Third, COVID-19 vaccinations significantly reduce the volatility of FX markets in a country 

whose people have higher vaccine confidence. 

Our main finding of the stabilizing effect of vaccinations on FX volatility holds after a series 

of robustness checks. These robustness checks include (1) allowing for alternative measures 

of vaccinations, (2) controlling additional exogenous variables relevant to FX volatility, (3) 

using different sampling periods, (4) employing various HARQ-type models to account for 

the investor fear gauge or the signed semivariances in estimating FX-RV, (5) considering 

estimations at different conditional distributions of FX volatility, and (6) accounting for the 

time difference bias. 

Our paper makes several contributions to the relevant literature. The existing finance 

literature regarding the COVID-19 pandemic focused on the role of the pandemic itself—

including infections and casualties—or the related government policy responses (Albulescu, 

2021; Baek et al., 2020; Topcu & Gulal, 2020; Zaremba et al., 2021). We diverge from this 

routine and contribute to the growing literature that examines the effects of the COVID-19 

vaccine rollout on global financial markets (Acharya et al., 2020; Chan et al., 2022; Li et al., 

2023; Pham et al., 2023; Rouatbi et al., 2021; To et al., 2023; Yu & Xiao, 2023). 

Furthermore, our paper distinguishes itself from the aforementioned studies in several ways. 

First, various papers (Acharya et al., 2020; Li et al., 2023; Pham et al., 2023; Rouatbi et al., 

2021; To et al., 2023; Yu & Xiao, 2023) focus on the role of vaccinations on stock markets, 

we are the first to examine the effect of mass vaccination program on FX markets. Second, 

Rouatbi et al. (2021) and To et al. (2023) employ volatility measures from latent volatility 
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models4 to examine the impact of vaccinations on the volatility of stock markets. However, as 

McAleer and Medeiros (2008) indicated, latent volatility models fail to satisfactorily describe 

several stylized facts observed in financial time series. Our paper overcomes this shortcoming 

by using intraday trading data to calculate the RV of FX rates. According to Andersen et al. 

(2003), RV is considered a consistent and more effective estimate of unobservable integrated 

variance of assets. 

In addition to the above contribution, we provide more insights into the socioeconomic 

impacts of vaccinations by investigating the effect of vaccinations on global FX markets 

(Bhargava et al., 2001; Bloom et al., 2010; Well, 2007). Rouatbi et al. (2021) and To et al. 

(2023) examined the heterogeneity of the vaccination effects based on economic 

development (i.e., developed and emerging markets). We augment our analysis by 

considering other country-specific factors, such as EPU and societal trust. Moreover, 

documenting that vaccinations stabilize FX fluctuations during the pandemic, we enrich the 

literature on the determinants of FX volatility (Chen et al., 2020; Eichler & Littke, 2018; 

Gelman et al., 2015; Mueller et al., 2017). 

Finally, while the COVID-19 pandemic has been shown to destabilize global financial 

markets, our research provides credible evidence that mass vaccinations have been a “game 

changer” in restoring financial stability. Our findings have important implications for public 

health and macrofinance policies if COVID-19, its potential variants, or similar events occur 

in the future. 

The remainder of this article proceeds as follows. Section 2 develops hypotheses for 

empirical tests, Section 3 describes the methodology used, and Section 4 presents our data 

 
4 Rouatbi et al. (2021) used two proxies for stock volatility. The first is the natural logarithm of absolute daily 

returns. The second is the natural logarithm of absolute residual returns from the CAPM model. To et al. (2023) 

employed the volatility estimated from the GJR-GARCH (1,1) model. 
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and conducts preliminary analyses. Section 5 reports and discusses the results of hypothesis 

tests and robustness checks, while Section 6 concludes. 

 

2. Literature review and hypothesis development 

2.1. The nexus between vaccinations and FX volatility 

Exchange rate fluctuations are driven by FX market participants’ forward-looking 

expectations formed on the news regarding the current macroeconomic fundamentals (Evans 

& Lyons, 2002; 2005; 2008; Rime et al., 2010). The COVID-19 pandemic and the rollout of 

COVID-19 vaccines have shaped the global economy via their contrasting effects on human 

health, productivity, cross-country border controls, and, eventually, international capital and 

trade flows worldwide. Based on the expectations, which incorporate the information from all 

these aspects, FX market participants will act accordingly concerning currency trading. Thus, 

which of the two opposite effects dominates is a crucial determinant of the direction in which 

FX volatility changes. 

This subsection contemplates three mechanisms through which COVID-19 vaccinations help 

change expectations and reduce FX volatility. The first mechanism involves economic 

openness; according to the World Trade Organization, economic openness has been affected 

negatively by COVID-19. Hau (2002) theoretically demonstrated a negative link between the 

degree of economic openness and FX volatility; subsequent empirical findings supported this 

prediction (Bleaney, 2008; Calderón & Kubota, 2018; Calderón, 2004; Stancik, 2007). In 

contrast, Okonjo-Iweala (2021) predicted that the increasing rate of inoculation, which 

reverses the detrimental effects of COVID-19, will help the world return to the normalcy of 

international trade and economic openness. That is, the deployment of mass vaccinations 

would help attenuate global FX volatility by restoring economic openness. 
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The second mechanism is how COVID-19 vaccinations mitigate the effect of country-

specific EPU on FX volatility. As exchange rate movements are driven by expectations of 

economic fundamentals, including macroeconomic policies, a high level of EPU will widen 

expectation dispersions, leading to greater exchange rate volatility (Banerjee, 2011). 

Following this conjecture, Krol (2014) determined that EPU in the United States (US) and the 

home country directly increases exchange rate volatility. Subsequent studies by Balcilar et al. 

(2016), Beckmann and Czudaj (2017), and Mueller et al. (2017) also suggested that EPU 

helps predict FX return and (or) volatility. Intuitively, as EPU increases during the pandemic 

(Albulescu, 2020; Baker et al., 2020; Caggiano et al., 2020; Sharif et al., 2020), its FX-

volatility effect rises; therefore, the rollout of COVID-19 vaccines should alleviate the FX-

volatility effect of EPU. 

Finally, the extant literature also suggests that population health—a crucial aspect of human 

capital and productivity—is critical to economic development and stability (Bhargava et al., 

2001; Bloom et al., 2010; Well, 2007). As vaccination is the first level of a healthcare 

system,5 Schoenbaum (1987), Ryan et al. (2006), Bloom et al. (2008), and Smith et al. 

(2009), among others, have documented the positive impacts of vaccination programs on the 

economy. These impacts arise from increased labor productivity related to healthcare effects 

(i.e., longer life expectancy, fewer lost working days, and improved physical capacity and 

mental health). Vaccinations also help reduce mortality and morbidity, increasing 

consumption, tourism, and investment (Bärnighausen et al., 2014; Quilici et al., 2015; Rémy 

et al., 2015). This positive macroeconomic news could be incorporated into FX market 

participants’ forward-looking expectations, which affect their currency-trading activities and 

FX volatility. 

 
5 See Loeppke et al. (2008). 
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The mass deployment of COVID-19 vaccinations can help stabilize FX markets by restoring 

economic openness, mitigating the FX-volatility effect of EPU, and regaining 

macroeconomic stability to influence FX market participants’ expectations and currency-

trading behavior. Therefore, we conjecture our principal hypothesis as follows: 

H1: The rollout of COVID-19 vaccinations reduces exchange rate volatility. 

2.2. The roles of country-specific factors 

Extant literature suggests that the COVID-19 pandemic exerted a heterogeneous effect on 

global financial markets, depending on several country-specific factors such as economic 

strength (Harjoto et al., 2021; Uddin et al., 2021), national culture (Fernandez-Perez et al., 

2021), and societal trust (Engelhardt et al., 2021). Based on the above literature, this 

subsection develops three hypotheses to examine whether the impact of COVID-19 

vaccinations is contingent on country-specific factors, including the level of economic 

development, EPU, and the degree of vaccination confidence. 

The first factor considers the heterogeneity of the COVID-19 vaccination on FX volatility 

across developed and emerging markets. Emerging economies have relatively weak public 

health systems, poor and financially stressful populations, and inadequate social safety nets; 

thus, they are generally more vulnerable to abrupt shocks than developed economies. For 

instance, Fisera et al. (2023) found that large-scale natural disasters increase government debt 

financing costs in middle- and low-income countries; however, these effects do not exist in 

developed economies. Concerning the impact of the pandemic, Harjoto et al. (2021) revealed 

that during the COVID-19 outbreak, emerging stock markets tend to react more to pandemic 

news (e.g., new cases and new deaths) than developed stock markets. Furthermore, emerging 

countries have comparatively limited monetary and fiscal capacity, which constrains their 

ability to provide economic stimulus programs to fight against the catastrophic effects of the 

COVID-19 pandemic. Consequently, we expect that the COVID-19 vaccine rollout would 
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impose a more substantial impact on restoring economic normalcy and stabilizing financial 

markets in emerging countries than in developed ones. Therefore, we formulate our second 

hypothesis as follows: 

H2: The rollout of COVID-19 vaccines reduces FX volatility more for emerging economies 

than developed economies. 

Economic policy uncertainty is the second country-specific factor that could affect the 

vaccination-FX-volatility linkage. Krol (2014) provided empirical evidence that FX volatility 

increases significantly with the rise in domestic EPU or foreign EPU (or both), especially 

during economic instability. This finding implies that the magnitude of EPU impact on FX 

volatility depends on economic conditions or (and) macroeconomic fundamentals and tends 

to be more severe in times of market turbulence. Similarly, we infer that during the COVID-

19 crisis, which created economic turbulence, high EPU will manifest its enlarged impact on 

FX volatility. Any improvement in economic conditions, such as an increase in COVID-19 

vaccine rollout, would send favorable signals to FX market participants to incorporate into 

their information sets. Based on the above discussion, we conjecture the third hypothesis: 

H3: The rollout of COVID-19 vaccines reduces the FX-volatility impact of a given high level 

of EPU. 

Finally, we expect the level of vaccine confidence to be a critical country-specific factor that 

could influence the impact of COVID-19 vaccinations on FX volatility. Our expectation is 

motivated by Engelhardt et al. (2021), who found that societal trust and government trust 

affect the nexus between the COVID-19 pandemic and stock market volatility. Specifically, 

the authors documented that stock market volatility is significantly lower in high-trust 

countries in response to COVID-19 case announcements. This finding can also be explained 

by the importance of credibility when assessing the effectiveness of macroeconomic policies. 

Extant literature suggests that economic agents use credible information to form expectations, 



13 

especially when such information involves government announcements (Calderón et al., 

2004; Taylor, 1982). If the credibility of government announcements is high, economic 

agents will be more likely to include the announcements in their information sets, which will 

significantly affect their expectations and decisions. Given the above discussion, we expect 

that when FX markets perceive the high credibility of announced vaccine efficacy and 

effectiveness, increases in the vaccination rate could improve confidence in the economic 

recovery to the preCOVID-19 path due to the perceived reduction in uncertainty. Along this 

line, we propose the fourth hypothesis as follows: 

H4: The stabilizing impact of COVID-19 vaccination programs on FX volatility in high 

vaccine-confidence countries will be stronger than in low vaccine-confidence ones. 

 

3. Methodologies 

Our paper follows Wang and Yang (2009) and Bubák et al. (2011), employing RV as a proxy 

of volatility in the foreign exchange markets.6 Section 4 presents our baseline model to 

investigate the impact of COVID-19 vaccinations on FX volatility based on the HARQ 

model. The HARQ model, advanced by Bollerslev et al. (2016) from the original 

heterogeneous autoregressive (HAR) model (Corsi, 2009),7 inherits the advantage of the 

HAR model by effectively capturing the long-memory behavior of RV. Furthermore, it 

accounts for the variation in measurement errors in RV estimation. Using the HARQ model is 

expected to model the volatility in foreign exchange markets better than the original HAR 

model. 

3.1. The RV estimator 

 
6 We do not use implied volatility as a proxy because Neely (2009) demonstrates that implied volatility is a biased 

forecast of foreign exchange variance and is not informationally efficient. 
7 The HAR model has been widely used to estimate realized volatility in the FX market (Bubák et al., 2011; Busch 

et al., 2011; Lyócsa et al., 2021; Wang & Yang, 2009) due to its capability to account for the long-memory 

property of realized volatility. 



14 

We apply the notion of realized variance (RV) introduced by Andersen and Bollerslev (1998) 

in estimating the daily volatility of an exchange rate; the RV measure is constructed using the 

high-frequency intraday data of financial returns. First, define the ith ∆-period intraday return 

within day 𝑡 as, 

𝑟𝑖,𝑡  =  (𝑙𝑜𝑔𝑃𝑡−1 + 𝑖∆ − 𝑙𝑜𝑔𝑃𝑡−1 + (𝑖−1)∆)  ×  100% 

where 𝑃 is the mid-quote of the exchange rate, and 𝑟 is the intraday return. 

Then, compute the RV from the sum of squared intraday return: 

𝑅𝑉𝑡  =  ∑ 𝑟𝑖,𝑡
2

𝑀

𝑖 = 1
 

where M  1/ is the number of observations within a trading day, and  is the sampling 

frequency. Following Andersen et al. (2001), we employed a sampling frequency of five 

minutes. As  → 0 or M → , 𝑅𝑉𝑡 is an effective and consistent estimator for unobservable 

integrated variance (Andersen et al., 2003). 

3.2. The HARQ model and our baseline model 

With the availability of high-frequency intraday data, the recent literature focused on 

modeling time-varying return volatility using RV. Among these models, the HAR model 

proposed by Corsi (2009) has gained popularity due to its simplicity and consistent 

application forecasting performance. HAR can parsimoniously capture the high persistence of 

the volatility process through a hierarchical structure of three volatility components over 

short-, medium-, and long-term intervals. The original HAR model hinges on a linear 

function of past daily, weekly, and monthly RV components as follows: 

𝑅𝑉𝑡 + 1  =  𝛽0  +  𝛽𝑑𝑅𝑉𝑡  +  𝛽𝑤𝑅𝑉𝑡
𝑤  +  𝛽𝑚𝑅𝑉𝑡

𝑚  +  𝜀𝑡 + 1  

where 𝛽0, 𝛽𝑑, 𝛽𝑤, and 𝛽𝑚 are the autoregressive parameters to be estimated. 𝑅𝑉𝑡 + 1 is the 

realized variance of day 𝑡 +  1. 𝑅𝑉𝑡, 𝑅𝑉𝑡
𝑤  =  

1

5
∑ 𝑅𝑉𝑡−𝑗
4
𝑗 = 0 , and 𝑅𝑉𝑡

𝑚  =  
1

22
∑ 𝑅𝑉𝑡−𝑗
21
𝑗 = 0  
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denote daily, weekly, and monthly lagged realized variances, respectively. Finally, 𝜀𝑡 + 1 is 

the error term. 

With any nonzero sampling frequency, the estimate of RV contains measurement errors, 

which induce a bias of RV from the actual integrated volatility (Bollerslev et al., 2016).8 The 

HAR model does not address this problem of measurement errors; however, the HARQ 

model shown below, advanced by Bollerslev et al. (2016), remedies the problem: 

𝑅𝑉𝑡 + 1  =  𝛽0  +  (𝛽𝑑  +  𝛽𝑄𝑅𝑄𝑡

1

2
⏟        

 𝛽𝑑,𝑡

)𝑅𝑉𝑡  +  𝛽𝑤𝑅𝑉𝑡
𝑤  +  𝛽𝑚𝑅𝑉𝑡

𝑚  +  𝜀𝑡 + 1                           (1) 

where 𝑅𝑄 denotes the realized quarticity and is estimated by (
𝑀

3
)∑ 𝑟𝑖,𝑡

4𝑀
𝑖 = 1 . 𝑅𝑄1/2 is known 

as the asymptotic standard deviations of return time series, and 𝛽𝑄 is an additional 

autoregressive parameter to be estimated. According to Bollerslev et al. (2016), 𝑅𝑄 is a 

consistent estimator of integrated quarticity (𝐼𝑄) in case of no jumps. 𝛽𝑄𝑅𝑄𝑡

1

2 makes 𝛽𝑑,𝑡 

time-varying to capture the attenuation effects of measurement errors in the RV estimator 

while accounting for the strong persistence of volatility via 𝛽𝑑,𝑡. We expect 𝛽𝑄 to be negative 

and significant.9 The higher the measurement error captured by 𝑅𝑄 (i.e., the higher the value 

of 𝑅𝑄), the less the weight assigned to the historical component 𝑅𝑉𝑡 should be (i.e., the lower 

the value of 𝛽𝑑,𝑡). 

To investigate the impact of COVID-19 vaccinations on volatility, we include the COVID-19 

vaccination-related variables and add exogenous variables to Equation (1) to control for the 

pandemic dynamics. Our principal empirical analysis used a panel data regression in the 

following baseline model: 

 
8 The measurement error in RV leads to the attenuation effects in estimated autoregressive parameters for the RV 

process and, hence, the inconsistency in the RV estimator. 
9 The incremental information of the heteroskedasticity in measurement errors characterized by 𝑅𝑄𝑡  proves to be 

effective in modeling the realized volatility of many assets, such as stocks (Bollerslev et al., 2016), energy markets 

(Bissoondoyal-Bheenick et al., 2020), and cryptocurrencies (Qiu et al., 2021). 
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𝑅𝑉𝑖,𝑡 + 1  =  𝛽0  + (𝛽𝑑  +  𝛽𝑄𝑅𝑄𝑖,𝑡

1

2 )𝑅𝑉𝑖,𝑡  +  𝛽𝑤𝑅𝑉𝑖,𝑡
𝑤  +  𝛽𝑚𝑅𝑉𝑖,𝑡

𝑚  +  𝛽𝑐𝐶𝑜𝑣𝑖𝑑𝑖,𝑡  +

 𝛽𝑣𝑉𝑎𝑥𝑖,𝑡  +  𝜀𝑖,𝑡 + 1                                                                                                                        (2) 

where 𝐶𝑜𝑣𝑖𝑑𝑖,𝑡 is a list of three variables as proxies for the pandemic intensity of country i. 

These include the natural logarithm of the reproduction rate (𝑅), the natural logarithm of the 

new cases per one million people (𝑁𝑒𝑤_𝑐𝑎𝑠𝑒𝑠), and the natural logarithm of the new deaths 

per one million people (𝑁𝑒𝑤_𝑑𝑒𝑎𝑡ℎ𝑠). While early studies tended to use the newly 

confirmed cases and (or) new deaths as the proxies of the COVID-19 pandemic, recent 

studies have shifted attention to the R number as a totemic figure of the pandemic (Díaz et al., 

2022; Sarkodie et al., 2022). R is the average number of people infected by an infectious 

person and helps evaluate the coronavirus’s ability to spread; when 𝑅 is greater than one, the 

pandemic is highly contagious as the number of infected people is expected to increase. In 

contrast, 𝑅 less than one indicates that the spread of the disease is slowing and will gradually 

stop. 

Following Rouatbi et al. (2021), we employ three vaccination-related variables to represent 

the key regressor, 𝑉𝑎𝑥𝑖,𝑡, in Equation (2). These variables measure the intensity of the 

COVID-19 vaccine rollout and include (1) 𝑁𝑒𝑤_𝑣𝑎𝑥, defined as the natural logarithm of the 

number of daily new COVID-19 vaccine doses per one million people. Furthermore, (2) 

𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 is a dummy variable that equals one if the daily change in 𝑁𝑒𝑤_𝑣𝑎𝑥 is strictly 

positive, and zero otherwise. Finally, (3) 𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑 is a dummy variable that equals one 

for the period starting the country’s first COVID-19 vaccine administration onward and zero 

otherwise. 

3.3. Other HARQ-type models used for robustness checks 
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We also use three extensions of the HARQ model to check the robustness of our main 

empirical results from Equation (2). The first incorporates the investor fear gauge (IFG) to 

create the HARQ-IFG model10: 

𝑅𝑉𝑡 + 1  =  𝛽0  +  (𝛽𝑑  +  𝛽𝑄𝑅𝑄𝑡

1

2)𝑅𝑉𝑡  +  𝛽𝑤𝑅𝑉𝑡
𝑤  +  𝛽𝑚𝑅𝑉𝑡

𝑚  +  𝛽𝐼𝐹𝐺𝐼𝐹𝐺𝑡  +  𝜀𝑡 + 1 (3) 

where 𝐼𝐹𝐺𝑡 is a proxy of IFG measured by the Chicago Board Options Exchange volatility 

index of the S&P 500 index (Sarwar, 2012). Other variables in the HARQ-IFG model are the 

same as before. 

Following Patton and Sheppard (2015), we consider signed realized semivariances (RS) to 

capture their distinctive effects. The resultant HARQ-RS model decomposes daily 𝑅𝑉 in the 

standard HAR model into two signed semivariances, 𝑅𝑆  +  and 𝑅𝑆−: 

𝑅𝑉𝑡 + 1  =  𝛽0  + (𝛽𝑑
 +  +  𝛽𝑄

 + 𝑅𝑄𝑡

1
2)𝑅𝑆𝑡

 +  + (𝛽𝑑
−  +  𝛽𝑄

−𝑅𝑄𝑡

1
2)𝑅𝑆𝑡

−  +  𝛽𝑤𝑅𝑉𝑡
𝑤  +  𝛽𝑚𝑅𝑉𝑡

𝑚 

 +𝜀𝑡 + 1                                                                                                                                   (4) 

where 𝑅𝑆𝑡
 +  =  ∑ 𝑟𝑖,𝑡

2 𝐼[𝑟𝑖,𝑡  >  0]
𝑀
𝑖 = 1  and 𝑅𝑆𝑡

−  =  ∑ 𝑟𝑖,𝑡
2 𝐼[𝑟𝑖,𝑡  <  0]

𝑀
𝑖 = 1  are, respectively, 

positive and negative RS. 𝐼[. ] is the indicative function taking the value one if the argument 

is true. 

Third, implied volatility (𝐼𝑉) is a biased forecast of foreign exchange variance and is not 

informationally efficient (Jorion, 1995; Neely, 2009). Nonetheless, Plíhal and Lyócsa (2021) 

show that the inclusion of 𝐼𝑉 as a predictor could enhance the forecast accuracy of HAR-type 

models in modeling foreign exchange volatility. As a result, following Plíhal and Lyócsa 

(2021), we add implied volatility of foreign exchanges to Equation (1) to create the so-called 

IV-HARQ as follows,11 

 
10 Gong and Lin (2018) include a measure of investor fear gauge in the HARQ model for crude oil futures’ realized 

volatility. They find that the HARQ-IFG model outperforms the HARQ model. 
11 This is equivalent to the IV-HAR model in Plíhal and Lyócsa (2021) presented by Equation (5). 
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𝑅𝑉𝑡 + 1  =  𝛽0  +  (𝛽𝑑  +  𝛽𝑄𝑅𝑄𝑡

1

2)𝑅𝑉𝑡  +  𝛽𝑤𝑅𝑉𝑡
𝑤  +  𝛽𝑚𝑅𝑉𝑡

𝑚  +  𝛽𝐼𝑉
𝑑 𝐼𝑉𝑡

𝑑  +  𝛽𝐼𝑉
𝑤 𝐼𝑉𝑡

𝑤 +

𝛽𝐼𝑉
𝑚𝐼𝑉𝑡

𝑚 + 𝜀𝑡 + 1                                                                                                                      (5) 

where 𝐼𝑉𝑡
𝑑, 𝐼𝑉𝑡

𝑤, and 𝐼𝑉𝑡
𝑚 are, respectively, daily, weekly, and monthly implied volatilities of 

foreign exchanges at day 𝑡. Daily implied volatility is calculated from one-month foreign 

exchange options. Weekly and monthly implied volatilities are computed as the average daily 

implied volatility over 5 and 22 trading days, respectively. Other variables in Equation (5) are 

defined the same as in Equation (2). 

We add pandemic-related variables (𝐶𝑜𝑣𝑖𝑑𝑖,𝑡) and vaccination variables (𝑉𝑎𝑥𝑖,𝑡) to the 

HARQ-type extension models to robustly check the effect of COVID-19 vaccinations, as 

described in Equations (6), (7), and (8). These additions lead to the following equations: 

𝑅𝑉𝑖,𝑡 + 1  =  𝛽0  + (𝛽𝑑  +  𝛽𝑄𝑅𝑄𝑖,𝑡

1

2 )𝑅𝑉𝑖,𝑡  +  𝛽𝑤𝑅𝑉𝑖,𝑡
𝑤  +  𝛽𝑚𝑅𝑉𝑖,𝑡

𝑚  +  𝛽𝐼𝐹𝐺𝐼𝐹𝐺𝑡  +

 𝛽𝑐𝐶𝑜𝑣𝑖𝑑𝑖,𝑡  +  𝛽𝑣𝑉𝑎𝑥𝑖,𝑡  + 𝜀𝑖,𝑡 + 1                                                                                  (6) 

𝑅𝑉𝑖,𝑡 + 1  =  𝛽0  + (𝛽𝑑
 +  +  𝛽𝑄

 + 𝑅𝑄
𝑖,𝑡

1

2 )𝑅𝑆𝑖,𝑡
 +  +  (𝛽𝑑

−  +  𝛽𝑄
−𝑅𝑄

𝑖,𝑡

1

2 )𝑅𝑆𝑖,𝑡
−  +  𝛽𝑤𝑅𝑉𝑖,𝑡

𝑤  +

 𝛽𝑚𝑅𝑉𝑖,𝑡
𝑚 + 𝛽𝑐𝐶𝑜𝑣𝑖𝑑𝑖,𝑡  +  𝛽𝑣𝑉𝑎𝑥𝑖,𝑡  +  𝜀𝑖,𝑡 + 1                                                               (7) 

𝑅𝑉𝑖,𝑡 + 1  =  𝛽0  + (𝛽𝑑  +  𝛽𝑄𝑅𝑄𝑖,𝑡

1

2 )𝑅𝑉𝑖,𝑡  +  𝛽𝑤𝑅𝑉𝑖,𝑡
𝑤  +  𝛽𝑚𝑅𝑉𝑖,𝑡

𝑚  +  𝛽𝐼𝑉
𝑑 𝐼𝑉𝑖,𝑡

𝑑  + 𝛽𝐼𝑉
𝑤 𝐼𝑉𝑖,𝑡

𝑤  +

 𝛽𝐼𝑉
𝑚𝐼𝑉𝑖,𝑡

𝑚 + 𝛽𝑐𝐶𝑜𝑣𝑖𝑑𝑖,𝑡  + 𝛽𝑣𝑉𝑎𝑥𝑖,𝑡  + 𝜀𝑖,𝑡 + 1.                                                               (8) 

 

4. Data 

4.1. Data sources 

Our study uses the high-frequency bid/ask quotes of exchange rates and the data on the 

pandemic dynamics and COVID-19 vaccine rollout. Consistent with most prior literature on 
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FX volatility using the high-frequency measure of volatility,12 we restrict our sample to only 

significant free-floating exchange rates. The sample includes 30 free-floating FX markets 

whose exchange rates against the US dollar (USD) account for a larger proportion of 65% of 

the global FX turnover.13 Therefore, the results of our empirical analysis can demonstrate 

vaccination effects from a global perspective. The high-frequency bid and ask quotes of these 

exchange rates are extracted from the Thomson Reuters Tick History database from January 

1, 2020, to September 29, 2021, which we use to compute the mid-quotes. The starting date 

of our research period coincides with the early COVID-19 outbreak in Wuhan, China. 

Following Andersen et al. (2001), we choose the sampling frequency of five minutes to 

balance the costs of measurement errors and market microstructure noise in calculating RV. 

Furthermore, following Andersen et al. (2003), we exclude weekends and major holidays to 

avoid the weekend/holiday effects on volatility. 

The data on the dynamics of the pandemic and COVID-19 vaccine rollout come from Our 

World in Data.14 Our World in Data is a global public dataset that tracks the scale and rate of 

the COVID-19 pandemic across countries worldwide. The dataset is widely used in recent 

papers regarding the impacts of COVID-19 vaccinations (Benati & Coccia, 2022; Mathieu et 

al., 2021; Wang et al., 2023). The data on COVID-19 vaccinations started on December 18, 

2020, based on the first day of vaccination data recorded for Norway in the dataset. 

Data on other macroeconomic variables used in the empirical analysis, such as FX bid-ask 

spread and FX implied volatility, are sourced from Global Financial Databases and Thomson 

Reuters DataStream. 

4.2. Summary statistics and preliminary analyses 

 
12 See Busch et al. (2011), Bubák et al. (2011). Wang and Yang (2009), and Bazán-Palomino and Winkelried 

(2021), among others. 
13 See the Triennial Central Bank Survey, Bank for International Settlements (BIS), April 2019. 
14 https://ourworldindata.org/covid-vaccinations 
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Panel A of Table 1 reports the descriptive statistics of the variables in the baseline regression 

model. We winsorize all variables at the 1st and the 99th percentiles to mitigate the impact of 

outliers. The pandemic and vaccination-related variables are not presented in natural 

logarithms to facilitate interpretation. We find that the average RV for the whole sample is 

the highest at the daily frequency (𝑅𝑉 = 0.60) and decreases for weekly (𝑅𝑉𝑤  = 0.55) and 

monthly frequencies (𝑅𝑉𝑚 = 0.54). These figures imply a decreasing trend of realized 

variance over decreasing data frequency. Furthermore, the RV and the quarticity exhibit 

skewness, and their kurtosis indicate that they do not follow a normal distribution. 

Regarding the pandemic dynamics, the average reproduction rate (𝑅) is 0.99, indicating that 

during the research period, about one person became infected in the selected countries. The 

vaccination data are also noteworthy; the average daily new vaccine doses per one million 

people (𝑁𝑒𝑤_𝑣𝑎𝑥) is relatively low at 1,719.53. The average proportion of days with an 

increase in vaccination rate is measured by the average of 𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒, which equals 0.23. 

The dummy variable for the vaccination period (𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑) has an average value of 0.37, 

which is relatively low because the vaccination period for each country represents a part of 

our sample 

Table 1, Panel B shows the mean values of all variables for each country (or region) in the 

sample. The variables for the European Union (EU), except 𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑, are calculated as 

the average of all countries in the EU that use the Euro as their currency.15 𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑 for 

Europe is a dummy variable that equals 1 for the period starting the union’s first day of 

COVID-19 vaccination data onward and zero otherwise.16 We find that Russia’s currency has 

the highest RV (1.60), followed by Brazil (1.47) and Mexico (1.37). Conversely, India has 

 
15 These countries are Austria, Belgium, Cyprus, Estonia, Finland, France, Germany, Greece, Ireland, Italy, Latvia, 

Lithuania, Luxembourg, Malta, the Netherlands, Portugal, Slovakia, Slovenia, and Spain. 
16 The vaccination data for EU countries started on December 28, 2020, which was also the first day for France, 

Germany, and Italy. 
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the most stable currency during the pandemic, illustrated by its lowest average RV (0.11), 

followed by Thailand (0.17) and Indonesia (0.18).17 Concerning the contagion of the 

pandemic, New Zealand has the lowest transmission rate, represented by a low average 

reproduction rate (𝑅 = 0.90), while the highest reproduction rates belong to Peru (1.09), 

Europe (1.08), and Brazil (1.08). Among the 30 selected countries/regions, the average daily 

vaccine doses administered per one million people is highest in Uruguay (3,176.83), followed 

by Israel (2,917.46), Chile (2,840.47), and Denmark (2,595.49). From the bottom, Egypt and 

South Africa have the lowest average daily new vaccinations per one million people, at 

269.26 and 493.67, respectively. 

According to the Morgan Stanley Capital International Annual Market Classification Review 

in 202, we divide the sample into emerging and developed countries.18 Panel C of Table 1 

displays the descriptive statistics of the two subsamples. Regarding the average RV, 

emerging markets’ currencies fluctuate more than developed countries’ exchange rates, as 

shown by their mean realized variances of 0.69 and 0.44, respectively. The average number 

of new cases and new deaths per one million people and the reproduction rate indicate that 

the COVID-19 pandemic is more severe in emerging than in developed countries; however, 

the figures for three vaccination-related measures indicate that the COVID-19 vaccine rollout 

in emerging countries is far behind developed ones. For instance, the average daily new 

vaccinations per one million people in developed markets are significantly higher than those 

in emerging countries, as evidenced by the mean of 𝑁𝑒𝑤_𝑣𝑎𝑥(2,178.48 vs. 1,477.54). 

Figures 1 and 2 depict the over-time evolution of the cross-sectional mean of four variables: 

realized variance (𝑅𝑉), reproduction rate (𝑅), new COVID-19 cases (𝑁𝑒𝑤_𝑐𝑎𝑠𝑒𝑠), and new 

 
17 In addition to average daily realized volatility, we report annualized realized volatility by country in Appendix 

A1. 
18 Developed countries in the sample include Canada, Denmark, Israel, Norway, the United Kingdom, Australia, 

Japan, and New Zealand. Europe, with major constituent countries in the developed category, is ranked as a 

developed area (see https://www.msci.com/our-solutions/indexes/market-classification). 
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vaccinations (𝑁𝑒𝑤_𝑣𝑎𝑥). Figure 1 shows that the average RV and reproduction rate were the 

highest in March 2020, during the early stage of the pandemic. After this period, the RV 

decreased significantly before spiking again in October 2020 due to the uncertainty of the US 

presidential election, the increase in COVID-19 cases in many countries, and the reimposition 

of national lockdown measures, which raised concerns among investors.19 While the 

reproduction rate dropped considerably from March 2020, its average value remained over 

one after that, implying that the pandemic was still developing. Figure 2 depicts newly 

confirmed COVID cases versus newly administered vaccine doses, indicating that as daily 

new vaccinations increased rapidly in early 2021 (which reflects the increasing global 

accessibility to the COVID-19 vaccine), newly confirmed COVID cases tended to decline. 

We further examine the pairwise correlation coefficients between all the variables used in the 

baseline model, primarily to determine the presence of the multicollinearity problem. Table 2 

presents the results of the correlation matrix, showing two main findings. First, the daily RV 

of global exchange rates significantly and negatively correlates with each of the three 

COVID-19 vaccination proxies, providing preliminary evidence that the vaccine rollout may 

reduce FX volatility. Second, strong positive relationships exist between the three 

vaccination-related variables. The highest correlation coefficient (0.86) is between the new 

vaccinations per one million people (𝑁𝑒𝑤_𝑣𝑎𝑥) and the dummy variable for the vaccination 

period (𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑). High correlation coefficients indicate the presence of multicollinearity 

if two or more vaccination-related variables are included in the baseline regression model. To 

circumvent the multicollinearity problem, we regress the FX-RV on each vaccination-related 

variable separately. 

We further employ two unit-root tests for panel data to check the stationarity of the variables. 

These are the Im–Pesaran–Shin (IPS) test proposed by Im et al. (2003) and the panel unit-root 

 
19 https://www.schroders.com/en/insights/economics/monthly-markets-review---october-2020/ 
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test suggested by Maddala and Wu (1999), i.e., the MW test. The null hypothesis of both tests 

is the presence of a unit root in the time series. We present the test statistics20 and their p-

values in Table 3. The test results strongly reject the null hypothesis, indicating that the 

selected variables are stationary. 

 

5. Empirical results 

5.1. Relationship between COVID-19 vaccinations and foreign exchange volatility 

5.1.1. Main vaccination-related variables 

This subsection presents the results of testing hypothesis H1 using Equation (2), developed in 

subsection 3.2.21 Following Hasan et al. (2023), we account for the country-fixed effect and 

estimate Equation (2) using ordinary least squares, with robust standard errors clustered at the 

country level. Columns 1, 2, and 3 of Table 4 present the estimation results of three 

regressions in each of which the key explanatory variable for vaccination is, in turn, 

𝑁𝑒𝑤_𝑣𝑎𝑥, 𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒, and 𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑. 

The results in Column (1) reveal that daily new vaccine doses administered per one million 

people (𝑁𝑒𝑤_𝑣𝑎𝑥) have a negative relationship with FX volatility. This effect is highly 

statistically significant at the 1% level. Regarding economic significance, the estimated 

parameter of 𝑁𝑒𝑤_𝑣𝑎𝑥 (–0.002) indicates that a 10% increase in 𝑁𝑒𝑤_𝑣𝑎𝑥 (in log) would 

decrease FX volatility by 0.02 units (Panel C). 

In line with Column 1, Column (2) shows that an increase in daily vaccination rate 

(𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒) exerts a negative and significant effect on the RV of exchange rates. 

Specifically, following the day with an increase in the average vaccination rate, the FX 

volatility decreases by 0.0029 units; thus, the more vaccines administered, the greater the 

 
20 Both tests are conducted with an intercept in the time series model. 
21 None of the explanatory variables in Equation (2) exhibits evidence of multicollinearity, as shown by the 

unreported variance inflation factors, which are all below 3. The variance factors are available upon request. 
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decline in FX volatility. Furthermore, regression results in Column (3) suggest that FX 

volatility would decline markedly by 0.0815 units during the vaccination period compared to 

the preceding period. This result corroborates our conclusion in Columns 1 and 2 that 

vaccinations reduce FX volatility. 

Furthermore, the coefficient estimates of other control variables in Equation (2) are worth 

discussing. First, the past short-term (daily), medium-term (weekly), and long-term (monthly) 

components of RV are highly significant in explaining its current variations, as illustrated by 

the estimates of 𝛽𝑑, 𝛽𝑤, and 𝛽𝑚, respectively. Second, all the coefficient estimates of 𝛽𝑄 for 

the effect of measurement errors are consistently negative and statistically significant. This 

result conforms to the above-discussed intuition of the HARQ model that the greater the 

measurement error variance, the less contribution the past 𝑅𝑉 would make to explaining the 

present 𝑅𝑉. Third, we find intriguing findings regarding the impact of the three pandemic 

proxies. Specifically, while the coefficient estimates of 𝑁𝑒𝑤_𝑐𝑎𝑠𝑒𝑠 and 𝑁𝑒𝑤_𝑑𝑒𝑎𝑡ℎ𝑠 are 

insignificant, the estimated parameter of the reproduction rate (𝑅) is positive and statistically 

significant across three model specifications. R is a forward-looking metric that helps 

evaluate the potential spread of the pandemic in the future (Díaz et al., 2022); thus, our 

results suggest that investors in FX markets consider the future state of the pandemic (i.e., 𝑅) 

more than information about the current situation (i.e., 𝑁𝑒𝑤_𝑐𝑎𝑠𝑒𝑠 and 𝑁𝑒𝑤_𝑑𝑒𝑎𝑡ℎ𝑠) in 

their decision-making process. 

In addition to using the country-fixed-effect model, we employ pooled OLS and random 

effect methods to estimate Equation (2). Appendix A2 presents the regression results of these 

approaches, which are mostly consistent with Table 4. Specifically, the coefficient estimates 

of all vaccination proxies are negative and statistically significant, supporting our previous 

finding about the attenuating effect of vaccinations on FX volatility. 
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Furthermore, the effect of vaccinations on FX volatility may follow a U-shaped pattern. To 

explicitly test this possibility, we include the squared of variable 𝑁𝑒𝑤_𝑣𝑎𝑥 in Equation (2), 

i.e., Equation (A3). The regression results of Equation (A3) in Appendix A3 contradict this 

possibility and support a linear relationship between vaccinations and FX volatility. 

In summary, the Equation (2) results support hypothesis H1: COVID-19 vaccine rollouts help 

stabilize FX markets by reducing FX volatility. As the first FX market evidence, this finding 

contributes to the literature on the stabilizing effect of vaccinations on financial markets. 

5.1.2. New first doses versus new second (third) doses 

In the primary analysis, our vaccination-related variable, 𝑁𝑒𝑤_𝑣𝑎𝑥, encompasses the 

information on administering the first and second (or third) vaccine doses. We conjecture that 

the reducing effects of innovations in the new first and second doses on FX volatility may 

vary in magnitude and significance. Specifically, since people who take the first vaccine dose 

are likely to receive the second, the data on new first doses could be more informative for 

investors to assess a country’s vaccination coverage. As such, we explore whether the 

stabilizing effects of new first and new second doses on FX volatility are different by 

employing two variables of new vaccination. The first variable is 𝐹𝑖𝑟𝑠𝑡_𝐷𝑜𝑠𝑒, measured by 

the change in the daily total number of people who received the first vaccine dose per 100 

people in the total population. The second is 𝑆𝑒𝑐𝑜𝑛𝑑_𝐷𝑜𝑠𝑒, calculated as the change in the 

daily total number of people who received all other doses prescribed by the vaccination 

protocol per 100 people in the total population.22 

We re-estimate Equation (2) with the two new vaccination variables, and Table 5 presents the 

regression results using country-fixed effects estimations. Our empirical results show that the 

estimated coefficient of 𝐹𝑖𝑟𝑠𝑡_𝐷𝑜𝑠𝑒 is negative and statistically significant in Column (1), 

while the estimated parameter of 𝑆𝑒𝑐𝑜𝑛𝑑_𝐷𝑜𝑠𝑒 is negative but insignificant, as evidenced in 

 
22 The data used to calculate 𝐹𝑖𝑟𝑠𝑡_𝐷𝑜𝑠𝑒 and 𝑆𝑒𝑐𝑜𝑛𝑑_𝐷𝑜𝑠𝑒 are collected from Our World in Data. 
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Column (2).23 This result indicates that new first-dose deployment innovations have 

significant implications for FX market participants. Conversely, the dynamics of the number 

of people fully vaccinated are less informative. 

5.2. Robustness checks 

5.2.1. Different HARQ-type models 

This subsection presents the results of robustness checks using different HARQ-type models 

as described by Equations (6), (7), and (8). Table 6, Panel A, presents the results of Equation 

(6) when employing the HARQ-IFG model, showing that the estimated 𝛽𝐼𝐹𝐺 coefficient is 

positive and statistically significant across model specifications. This result indicates that FX 

volatility positively relates to the IFG, which is consistent with Gong and Lin (2018). 

Moreover, the results show that using the HARQ-IFG to model FX volatility does not alter 

our principal results. The negative coefficient estimates of 𝑁𝑒𝑤_𝑣𝑎𝑥, 𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒, and 

𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑 show that the attenuation effect of COVID-19 vaccination programs on the 

realized volatility (𝑅𝑉) holds across the three model specifications. 

Table 6 Panel B reports the results of Equation (7) when applying the HARQ-RS model to 

model FX volatility, showing that the estimated parameters of the three vaccination proxies 

are all negative and statistically significant. These results confirm the stabilizing impact of 

the COVID-19 vaccine rollout on FX volatility after controlling for signed semirealized 

variance. 

Finally, Table 6 Panel C reports the results of Equation (8) when we include the implied 

volatility of exchange rates in the HARQ model (IV-HARQ). The estimated coefficients of 

daily, weekly, and monthly implied volatility are statistically significant, indicating that the 

expected volatility in FX options markets explains FX-RV. More importantly, the estimated 

 
23 We regress FX volatility on the variable of 𝐹𝑖𝑟𝑠𝑡_𝐷𝑜𝑠𝑒 and 𝑆𝑒𝑐𝑜𝑛𝑑_𝐷𝑜𝑠𝑒 separately to avoid the 

multicollinearity problem in the model. 
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parameters of 𝑁𝑒𝑤_𝑣𝑎𝑥, 𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒, and 𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑 stay significantly negative, 

corroborating the decreasing effect of the COVID-19 vaccine rollout on FX volatility. 

In summation, Table 6 indicates that the negative relationship between COVID-19 

vaccinations and FX volatility documented in our study is not sensitive to the choice of 

different HAR-type models to estimate RV. Again, our overarching hypothesis H1 holds. 

5.2.2. Alternative measures of integrated quarticity 

This paper employs realized quarticity (𝑅𝑄) to estimate integrated quarticity (𝐼𝑄) in the 

baseline model represented in Equation (2). 𝑅𝑄 is a consistent estimator of 𝐼𝑄 in the case of 

no jumps. We followed Bollerslev et al. (2016) to examine the sensitivity of our key 

empirical results to different quarticity estimators, replacing 𝑅𝑄 in Equation (2) with several 

alternative estimators of integrated quarticity. The first alternative estimator is the tri-power 

quarticity (𝑇𝑃𝑄), developed by Barndorff-Nielsen and Shaphard (2006). The calculation of 

𝑇𝑃𝑄 is as follows: 

𝑇𝑃𝑄𝑡  =  𝑀𝜇4/3
−3 ∑ |𝑟𝑡,𝑖|

4/3|𝑟𝑡,𝑖 + 1|
4/3|𝑟𝑡,𝑖 + 2|

4/3𝑀−2
𝑖 = 1                                                               (9) 

where 𝜇4/3 ≡ 2
2

3Γ(
7

6
)/Γ(

1

2
)  =  𝔼(|𝑍|

4

3). Barndorff-Nielsen and Shaphard (2006) stated that 

𝑇𝑃𝑄 is a consistent estimator of integrated quarticity in the presence of jumps in the return 

series. 

The second alternative measure of 𝐼𝑄 is the jump-robust 𝑀𝑒𝑑𝑅𝑄 estimator suggested by 

Andersen et al. (2012). 𝑀𝑒𝑑𝑅𝑄 is computed using as follows: 

𝑀𝑒𝑑𝑅𝑄𝑡 ≡
3𝜋

9𝜋 + 72−52√3

𝑀2

𝑀−2
∑ 𝑚𝑒𝑑𝑖𝑎𝑛(|𝑟𝑡,𝑖|, |𝑟𝑡,𝑖 + 1|, |𝑟𝑡,𝑖 + 2|)

4𝑀−2
𝑖 = 1 .                                 (10) 

Lastly, we employ the truncated RQ estimator (𝑇𝑟𝑅𝑄) developed by Mancini (2009). 

This estimator is estimated as follows: 

𝑇𝑟𝑅𝑄𝑡  =  𝑀∑ |𝑟𝑡,𝑖
4 |𝕀{𝑟𝑡,𝑖 ≤ 𝛼𝑖𝑀𝜛}

𝑀
𝑖 = 1                                                                                      (11) 

where 𝛼𝑖 and 𝜛 are turning parameters, estimated as in Bollerslev et al. (2013). 
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Based on alternative estimators of 𝐼𝑄, we re-estimate Equation (2) by replacing 𝑅𝑄 with each 

new estimator. The regression results of Equation (2) using alternative measures of 𝐼𝑄 are 

reported in Table 7. Panels A, B, and C of Table 7 present the regression results of Equation 

(2) using 𝑇𝑃𝑄,𝑀𝑒𝑑𝑅𝑄, and 𝑇𝑟𝑅𝑄, respectively. The sign and statistical significance of three 

vaccination-related variables in Table 7 are highly consistent with our baseline results in 

Table 4. In all panels, the parameter estimate of any of the three vaccination-related variables 

is negatively and statistically significant. These results reaffirm our key finding about the 

stabilizing effect of the COVID-19 vaccine rollout on the FX volatility. Furthermore, they 

indicate that this finding is independent of the choice of integrated quarticity estimator in the 

baseline model. 

5.2.3. More control variables 

One potential concern is that omitted variables related to RV may bias the estimation of the 

COVID-19 vaccination effects. To address this concern, we augment Equation (2) with 

additional control variables used in the literature to explain FX volatility. The factors 

influencing the supply and demand for foreign exchanges can indirectly affect exchange rate 

volatility. These variables include, but are not limited to, GDP growth, inflation, money 

supply growth, interest rates, capital flows, trade flows, industrial production growth, EPU, 

and liquidity (Chen et al., 2020; Eichler & Littke, 2018; Mueller et al., 2017; Gelman et al., 

2015; Giannellis & Papadopoulos, 2011; Krol, 2014; Morana, 2009; Bollerslev & Melvin, 

1994; and among others); however, most of these variables have no daily data available. 

Therefore, our regression first includes the following additional control variables: the 

volatility of the US interest rates (𝑈𝑆_𝑦𝑖𝑒𝑙𝑑_𝑣𝑜𝑙), the volatility of the home country’s interest 

rates (𝐻𝑜𝑚𝑒_𝑦𝑖𝑒𝑙𝑑_𝑣𝑜𝑙), and the volatility of the FX bid-ask spread (𝑆𝑝𝑟𝑒𝑎𝑑_𝑣𝑜𝑙). The 

volatility of interest rates (𝑈𝑆_𝑦𝑖𝑒𝑙𝑑_𝑣𝑜𝑙 or 𝐻𝑜𝑚𝑒_𝑦𝑖𝑒𝑙𝑑_𝑣𝑜𝑙) is measured by the five-day 

standard deviation of yields on one-year treasury notes of a country. The volatility of 
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exchange rate spreads is computed as the five-day standard deviation of the closing bid-ask 

spreads of an exchange rate. Daily data on the rates of country-specific one-year treasury 

notes are collected from Global Financial Databases, and daily data on the closing bid-ask 

spreads of an exchange rate is from Thomson DataStream. 

In addition to these macroeconomic variables, Equation (2) includes that variable 

𝑈𝑆_𝑛𝑒𝑤_𝑣𝑎𝑥, measured as the natural logarithm of the number of daily new COVID-19 

vaccine doses per one million people in the US. As the exchange rates in the paper are quoted 

against the USD, the intensity of vaccinations in the US might be another factor driving the 

FX volatility. Finally, several studies documented that governments’ policies can affect the 

stability of financial markets during the pandemic (Bakry et al., 2022; Zaremba et al., 2020). 

Consequently, Equation (2) includes the variable 𝑆𝑡𝑟𝑖𝑛𝑔𝑒𝑛𝑐𝑦, measured by the change in 

overall government stringency index for country 𝑖 between time 𝑡 and time 𝑡 − 1. The 

stringency index is a composite measure of nine response24 metrics, indicating the overall 

stringency of the government’s response to the pandemic. The index ranges between 0 and 

100, and a higher score implies a stricter response. Given the discussion above, we specify 

the augmented model as follows: 

𝑅𝑉𝑖,𝑡 + 1  =  𝛽0  + (𝛽𝑑  +  𝛽𝑄𝑅𝑄𝑖,𝑡

1

2 )𝑅𝑉𝑖,𝑡  +  𝛽𝑤𝑅𝑉𝑖,𝑡
𝑤  +  𝛽𝑚𝑅𝑉𝑖,𝑡

𝑚  +  𝛽𝑐𝐶𝑜𝑣𝑖𝑑𝑖,𝑡  +

 𝛽𝑣𝑉𝑎𝑥𝑖,𝑡  +  𝛽𝑥𝑋𝑖,𝑡  + 𝜀𝑖,𝑡 + 1                                                                                              (12) 

where 𝑋𝑖,𝑡 denotes the 5 ×  1 vector of the five additional exogenous variables mentioned 

above, and 𝛽𝑥 is the 1 ×  5 vector of coefficients. 

 
24 The nine metrics used to calculate the stringency index are school closures, workplace closures, cancellation of 

public events, restrictions on public gatherings, public transport closures, stay-at-home requirements, public 

information campaigns, restrictions on internal movements, and international travel controls. The data on the 

stringency index are sourced from OurWorld in Data’s website. 
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Table 8 reports the regression results of Equation (12). Among the additional control 

variables, the volatility of the US interest rates is positively and significantly correlated with 

exchange rate volatility across different model specifications, as evidenced by the coefficients 

of 𝑈𝑆_𝑦𝑖𝑒𝑙𝑑_𝑣𝑜𝑙. Furthermore, a positive and significant relationship exists between the 

spread volatility and the realized volatility of exchange rates, in line with Bollerslev and 

Melvin (1994); however, 𝐻𝑜𝑚𝑒_𝑦𝑖𝑒𝑙𝑑_𝑣𝑜𝑙 is insignificant in explaining the RV of exchange 

rates when added to the HARQ model. Interestingly, weak evidence indicates that the 

intensity of the COVID-19 vaccine rollout in the US reduces FX volatility, as shown by the 

coefficient estimate of 𝑈𝑆_𝑛𝑒𝑤_𝑣𝑎𝑥 in Column (1). Furthermore, the coefficient estimates of 

𝑆𝑡𝑟𝑖𝑛𝑔𝑒𝑛𝑐𝑦 are positive and statistically significant across different model specifications, 

indicating that the index positively affects FX volatility. These results align with Rouatbi et 

al. (2021) and Bakry et al. (2022), who found that the strict containment measures by the 

government contribute to amplifying stock market volatility. Most importantly, the 

coefficients of all three vaccination-related variables remain highly significant and negative 

when estimated by the augmented HARQ model in Equation (12). This result lends further 

support to hypothesis H1. 

5.2.4. Different sampling periods 

As another robustness check of our results, we re-estimate the baseline model using three 

sampling periods with different starting dates of the global COVID-19 outbreak. Following 

Rouatbi et al. (2021), we choose three starting dates; March 11, 2020, when the WHO 

declared COVID-19 a pandemic (Panel A); June 6, 2020, considered to be the end of the 

initial postcrisis rebound period (Bae & Ghoul, 2021) (Panel B); and August 11, 2020, when 

Russia officially approved the world’s first COVID-19 vaccine (Panel C). Table 9 shows that 

the coefficients of different proxies of COVID-19 vaccinations remain negative and 
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statistically significant across the three sample periods; thus, our affirmative test result of H1 

holds, irrespective of the sample period. 

5.2.5. Does the effect of vaccinations differ across various quantiles of FX volatility? 

This subsection exceeds the mean regression presented in the primary analysis to explore the 

possibility that the effect of vaccinations on FX volatility is heterogeneous under different 

conditional distributions (i.e., quantiles). This additional analysis is motivated by the prior 

finding that the relationship between the FX market and other financial markets or 

macroeconomic indicators varies depending on FX market conditions (Chen et al., 2020; 

Huang et al., 2011; Nusair & Olson, 2019; Tsai, 2012; Viola et al., 2019). 

We employ a fixed-effect panel quantile regression model25 proposed by Koenker (2004) to 

estimate the effects of COVID-19 vaccinations on FX volatility under different quantiles of 

FX volatility. This model has the advantage of accounting for the country-specific 

unobserved heterogeneity. The quantile function of 𝑅𝑉𝑖,𝑡 + 1 in Equation (2) can be written as 

follows: 

𝑄𝜏(𝑅𝑉𝑖,𝑡 + 1|𝜏)  =  𝛼0,𝜏  +  𝛼1,𝜏𝑅𝑉𝑖,𝑡  +  𝛼2,𝜏𝑅𝑄𝑖,𝑡
1/2
𝑅𝑉𝑖,𝑡  +  𝛼3,𝜏𝑅𝑉𝑖,𝑡

𝑤  +  𝛼4,𝜏𝑅𝑉𝑖,𝑡
𝑚  +

 𝛼5,𝜏𝐶𝑜𝑣𝑖𝑑𝑖,𝑡  + 𝛼6,𝜏𝑉𝑎𝑥𝑖,𝑡  +  𝜀𝑖,𝑡                                                                                         (13) 

where , 1( | )i tQ RV +  is the 𝜏-th quantile regression function, 𝛼𝑗,𝜏 (j = 0,..,6) is the estimated 

parameters of the intercept and regressors at 𝜏-th quantile, and 𝜀𝑖,𝑡 is the standard error. 

Equation (10) is estimated using a penalized quantile regression estimator (Koenker, 2004). 

We employ nineteen quantiles from the 5th to the 95th percentile with an increment of 5 

percentiles for the analysis. 

For brevity, Table 10 only presents the estimated parameters of the vaccination variables at 

different quantile levels. Two remarkable findings stand out. First, the estimated parameters 

 
25 See Koenker (2004) for a full reference of the estimation method. 
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of 𝑁𝑒𝑤_𝑣𝑎𝑥 and 𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑 are consistently negative and statistically significant across all 

selected quantiles. The estimated coefficient for 𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 is negative and statistically 

significant for 14 out of 19 percentiles. The three vaccination-related variables in the panel 

quantile regression have broad adverse and significant effects, implying that the sign of the 

COVID-19 vaccination effect on FX volatility holds regardless of the quantile levels. Second, 

the vaccine rollout on FX volatility exhibits a strong asymmetric effect, depending on the 

quantile level of volatility distribution. Figure 3 presents the plots of the estimated parameter 

of three vaccination-related variables through different quantile levels, consistently showing 

that the stabilizing effect is most pronounced when FX volatility is high (i.e., at the 95th 

quantile). 

5.2.6. Addressing time difference bias 

This study employs daily data, an approach consistent with most research on the impacts of 

the COVID-19 pandemic and vaccinations on global financial markets (Apergis et al., 2022; 

Rouatbi et al., 2021; Topcu & Gulal, 2020; Zaremba et al., 2021). However, using daily data 

may be subject to the time difference bias as the information about the severity of the 

pandemic and the deployment of vaccinations at day 𝑡 might not be publicly available 

promptly at day 𝑡 +  1. To address this concern, we follow Augustin et al. (2022) and Hasan 

et al. (2023), using weekly data on the COVID-19 pandemic and vaccine rollout to conduct a 

further robustness check for our key empirical results. We assume that k represents weekly 

data, 𝑘 =  1,2,3, …, and estimate the following equation: 

𝑅𝑉𝑖,𝑘 + 1
𝑤  =  𝛽0  +  𝛽𝑤𝑅𝑉𝑖,𝑘

𝑤  +  𝛽𝑚𝑅𝑉𝑖,𝑘
𝑚  + 𝛽𝑐𝐶𝑜𝑣𝑖𝑑𝑖,𝑘  +  𝛽𝑣𝑉𝑎𝑥𝑖,𝑘  +  𝜀𝑖,𝑘 + 1                    (14) 

where 𝑅𝑉𝑖,𝑘
𝑤  and 𝑅𝑉𝑖,𝑘

𝑚  =  
1

4
∑ 𝑅𝑉𝑖,𝑘−𝑗
3
𝑗 = 0  denote the weekly and monthly realized FX 

volatility of country 𝑖 in week 𝑘. 𝐶𝑜𝑣𝑖𝑑𝑖,𝑘 and 𝑉𝑎𝑥𝑖,𝑘 are defined the same as in Equation (8), 

except they are weekly. 
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Table 11 presents the regression results of Equation (14), showing that the coefficient 

estimates of vaccination variables are negative and statistically significant across different 

model specifications. These results indicate that our key empirical finding about the 

stabilizing effect of vaccinations holds after controlling for the time difference bias. 

5.3. Additional analyses 

This section conducts additional analyses by testing hypotheses H2, H3, and H4 developed in 

subsection 2.2. The test results are presented below. 

5.3.1. Heterogeneous impacts in developed versus emerging markets 

We first examine subhypothesis H2 concerning the role of economic development in shaping 

the effect of vaccinations on FX volatility. To differentiate the effects of the COVID-19 

vaccine rollout on FX volatility between emerging and developed markets, we estimate the 

model as follows: 

𝑅𝑉𝑖,𝑡 + 1  =  𝛽0  + (𝛽𝑑  +  𝛽𝑄𝑅𝑄𝑖,𝑡

1

2 )𝑅𝑉𝑖,𝑡  +  𝛽𝑤𝑅𝑉𝑖,𝑡
𝑤  +  𝛽𝑚𝑅𝑉𝑖,𝑡

𝑚  +  𝛽𝑐𝐶𝑜𝑣𝑖𝑑𝑖,𝑡  +

 𝛽𝑣𝑉𝑎𝑥𝑖,𝑡  +  𝛽𝑣𝑒𝑚𝑒𝑉𝑎𝑥𝐸𝑚𝑒,𝑖,𝑡 + 𝜀𝑖,𝑡 + 1                                                                                          (15) 

where 𝑉𝑎𝑥𝐸𝑚𝑒,𝑖,𝑡 = 𝑉𝑎𝑥𝑖,𝑡  ×  𝐸𝑀𝐸𝑖; the dummy variable, 𝐸𝑀𝐸𝑖, is 1 if market 𝑖 is emerging 

and 0 otherwise. 

Table 12 reports the regression results of Equation (15), showing that the estimates of 𝛽𝑣𝑒𝑚𝑒  

on 𝑁𝑒𝑤_𝑣𝑎𝑥 ×  𝐸𝑀𝐸, 𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 ×  𝐸𝑀𝐸, or 𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑 ×  𝐸𝑀𝐸 are all statistically 

significant and negative. 𝛽𝑣 + 𝛽𝑣𝑒𝑚𝑒 is more negative than 𝛽𝑣, suggesting that the stabilizing 

impact of the COVID-19 vaccine rollout on exchange rates is more pronounced in emerging 

markets than in developed markets. Therefore, H2 is supported. 

5.3.2. The role of COVID-19 vaccinations in affecting EPU’s volatility effects 

This subsection examines subhypothesis H3. To test the hypothesis, we collect the data on the 

EPU index for the selected countries in our sample. The data is downloadable from the 
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website https://www.policyuncertainty.com/index.html and is published monthly. Among the 

30 countries/regions in our sample, 10 countries have available EPU index data. We calculate 

the average EPU index for each country during the COVID-19 pandemic from January 2020 

to May 2021. We then divide the selected countries into two subsamples: high and low EPU. 

A country is in the high EPU group if its average EPU index is higher than 219 during the 

pandemic (the median value); otherwise, it is in the low EPU group. Figure 4 displays the 

average EPU index of each country, showing Russia had the highest EPU during the 

pandemic while India exhibited the lowest EPU. 

To examine hypothesis H3, we estimate the following equation: 

𝑅𝑉𝑖,𝑡 + 1  =  𝛽0  + (𝛽𝑑  +  𝛽𝑄𝑅𝑄𝑖,𝑡

1

2 )𝑅𝑉𝑖,𝑡  +  𝛽𝑤𝑅𝑉𝑖,𝑡
𝑤  +  𝛽𝑚𝑅𝑉𝑖,𝑡

𝑚  +  𝛽𝑐𝐶𝑜𝑣𝑖𝑑𝑖,𝑡  +

 𝛽𝑣𝑉𝑎𝑥𝑖,𝑡  +  𝛽𝑒𝑝𝑢𝑉𝑎𝑥𝐸𝑝𝑢,𝑖,𝑡  +  𝜀𝑖,𝑡 + 1                                                                                             (16) 

where 𝑉𝑎𝑥𝐸𝑝𝑢,𝑖,𝑡  =  𝑉𝑎𝑥𝑖,𝑡  ×  𝐸𝑝𝑢𝑖. The 𝐸𝑝𝑢𝑖 dummy variable equals 1 if country 𝑖 is in the 

subsample of high EPU and 0 otherwise. We expect the estimate of 𝛽𝑒𝑝𝑢 to be negative, 

implying that the stabilizing effect of 𝑉𝑎𝑥𝑖,𝑡 will be stronger when the country has a high 

EPU. 

Table 13 reports the regression results of Equation (16), showing that the estimates of 𝛽𝑒𝑝𝑢 

associated with 𝑁𝑒𝑤_𝑣𝑎𝑥_𝐸𝑃𝑈, 𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒_𝐸𝑃𝑈, or 𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑_𝐸𝑃𝑈 are all negative 

with a higher statistical significance. This result indicates that FX markets perceived 

increases in the COVID-19 vaccine rollout as conducive to improving economic conditions. 

Furthermore, 𝛽𝑣  +  𝛽𝑒𝑝𝑢 is more negative than 𝛽𝑣. Therefore, we can also conclude that the 

stabilizing effect of the COVID-19 vaccine rollout on FX volatility is more significant in 

countries with high EPU during the pandemic. This finding is consistent with our 

expectations stated in H3. 

5.3.3. The role of vaccine confidence 

https://www.policyuncertainty.com/index.html
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We next examine subhypothesis H4. We use data from the Wellcome Foundation Global 

Monitor26 2018 survey about global attitudes to science and health from over 140,000 people 

in more than 140 countries to proxy for vaccine confidence. Following Sturgis et al. (2021) 

and Feleszko et al. (2021), we focus on confidence in vaccines using the response to Question 

26: “Do you strongly or somewhat agree, strongly and somewhat disagree, or neither agree 

nor disagree with the following statement? Vaccines are effective.” We rely on the proportion 

of respondents who answered “Strongly agree” as a score for confidence in vaccination in a 

country. 

Figure 5 plots the vaccine-confidence score of selected countries in the sample. Among 29 

countries,27 people in Japan, South Korea, and Russia are among the least confident in the 

effectiveness of vaccination. In contrast, people in Egypt, India, and Mexico strongly believe 

in the efficacy of vaccination. Based on the vaccine-confidence score, we define a country as 

high-confidence if its score is larger than the median; otherwise, it is considered a low-

confidence country. We re-estimate the following equation to investigate the role of vaccine 

confidence in affecting the effect of COVID-19 vaccinations on FX volatility: 

𝑅𝑉𝑖,𝑡 + 1  =  𝛽0  + (𝛽𝑑  +  𝛽𝑄𝑅𝑄𝑖,𝑡

1

2 )𝑅𝑉𝑖,𝑡  +  𝛽𝑤𝑅𝑉𝑖,𝑡
𝑤  +  𝛽𝑚𝑅𝑉𝑖,𝑡

𝑚  +  𝛽𝑐𝐶𝑜𝑣𝑖𝑑𝑖,𝑡  +

 𝛽𝑣𝑉𝑎𝑥𝑖,𝑡  +  𝛽𝑡𝑟𝑢𝑠𝑡𝑉𝑎𝑥𝑇𝑟𝑢𝑠𝑡,𝑖,𝑡  + 𝜀𝑖,𝑡 + 1                                                                                        (17) 

where 𝑉𝑎𝑥𝑇𝑟𝑢𝑠𝑡,𝑖,𝑡  𝑉𝑎𝑥𝑖,𝑡𝑇𝑟𝑢𝑠𝑡𝑖. The 𝑇𝑟𝑢𝑠𝑡𝑖 dummy variable equals 1 if country 𝑖 is in the 

subsample of high vaccine confidence and 0 otherwise. 

Table 14 reports the regression results of Equation (17), showing a negative and statistically 

significant estimate of 𝛽𝑡𝑟𝑢𝑠𝑡 across all model specifications. Thus, 𝛽𝑣  +  𝛽𝑡𝑟𝑢𝑠𝑡  <  𝛽𝑣 < 0, 

 
26 https://wellcome.org/reports/wellcome-global-monitor/2018#downloads-4d1c 
27 We exclude Europe as the survey data because some countries in the group are missing. 
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which supports H4 and indicates that the reducing effect of the vaccine rollout on FX 

volatility is more pronounced in countries with high vaccine confidence. 

5.3.4. Robustness checks of additional analyses 

As a robustness check of the test results for H2, H3, and H4, we regress FX-RV on all the 

interaction-type control variables, including 𝑉𝑎𝑥𝐸𝑚𝑒,𝑖,𝑡,
 𝑉𝑎𝑥𝐸𝑝𝑢,𝑖,𝑡, and 𝑉𝑎𝑥𝑇𝑟𝑢𝑠𝑡,𝑖,𝑡. The 

limitation of data on the EPU index restricts our regression to a sample of 10 countries. 

Appendix A4 shows that the estimates of coefficients on 𝑉𝑎𝑥𝐸𝑚𝑒,𝑖,𝑡,
 𝑉𝑎𝑥𝐸𝑝𝑢,𝑖,𝑡, and 

𝑉𝑎𝑥𝑇𝑟𝑢𝑠𝑡,𝑖,𝑡  are all statistically significant and negative, regardless of which vaccination 

measure was applied. These results corroborate our above conclusion that the stabilizing 

effect of vaccinations on FX volatility is more pronounced in emerging markets, countries 

with high EPU, and nations with greater vaccine confidence. We also re-estimate the model 

for the sample of 29 countries with two control variables, including 𝑉𝑎𝑥𝐸𝑚𝑒,𝑖,𝑡 and 

𝑉𝑎𝑥𝑇𝑟𝑢𝑠𝑡,𝑖,𝑡; the EPU interaction term was excluded. Appendix A5 shows that the negative 

coefficient estimates further affirm the increased stabilizing effect of the vaccinations on FX 

volatility in emerging markets and countries with higher vaccine confidence. Thus, our test 

results in support of H2, H3, and H4 are robust. 

 

6. Concluding remarks 

This study investigates comprehensively how the vaccine rollout affects FX volatility, 

contributing to a relatively new strand of literature related to the impact of COVID-19 

vaccinations on global financial markets. We developed four testable hypotheses based on 

economic theories, influential studies of exchange rate movements, and extensive relevant 

empirical evidence. The test results show that the vaccine rollouts worldwide contribute to 

stabilizing global FX markets by attenuating FX volatility. This stabilizing effect is 

significant after controlling for the pandemic’s dynamics, and it remained robust to 
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alternative proxies of vaccinations and different approaches for panel regression. The effect 

also survives additional robustness checks with an alternative estimator of integrated 

quarticity applied, more control variables, different sampling periods, various HARQ-type 

regression models, numerous quantile level regressions, and time difference bias. 

Our findings have significant practical implications for practitioners and policymakers. The 

pronounced stabilizing effect of COVID-19 vaccinations on FX volatility indicates that FX 

market participants should monitor vaccine deployment and development information—

especially the innovations in first-dose-vaccination-related news—if their business decisions 

depend on volatility. Furthermore, the FX market stability is crucial to import–export 

activities, investment, consumption, and ultimately, economic stabilization; therefore, 

policymakers worldwide should encourage the deployment and support the development of 

vaccination programs. This approach is essential for emerging economies, high vaccine-

confidence nations, and high EPU countries, where the role of vaccine rollout in stabilizing 

the FX market is more pronounced than in other countries. 
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Figure 1. FX Volatility and COVID-19 Reproduction Rate 

 

This figure displays the evolution of the average FX volatility (measured by daily realized 

variance (RV), left y-axis) and the average reproduction rate (R, right y-axis) over the 

research period from Jan 2020 to Sep 2021. 
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Figure 2. New COVID-19 Cases and New Vaccinations 

 

This figure displays the evolution over the research period of the average new confirmed 

COVID-19 cases per one million people (𝑁𝑒𝑤_𝑐𝑎𝑠𝑒𝑠, right y-axis) and new vaccinations per 

one million people (𝑁𝑒𝑤_𝑣𝑎𝑥, left y-axis) from Jan 2020 to Sep 2021.
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Figure 3. Estimated Parameter of Vaccination-Related Variables by Quantile Level 

 
 

 

This figure plots the estimated parameter of three vaccination-related variables from the fixed-effect panel quantile regression presented in 

Equation (10). The blue shade reflects the 95% confidence interval. 

 



56 

Figure 4. Economic Policy Uncertainty Index of Selected Countries during the 

Pandemic 

 

This figure displays the monthly Economic Policy Uncertainty Index of ten selected countries 

from January 2020 to September 2021. 
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Figure 5. Vaccine-Confidence Score of Selected Countries 

 

This figure displays the vaccine-confidence score of selected countries. The score is defined 

as the proportion of respondents of a country answering with “Strongly agree” to Question 26 

in the 2018 Wellcome Foundation Global Monitor survey: “Do you strongly or somewhat 

agree, strongly and somewhat disagree, or neither agree nor disagree with the following 

statement? Vaccines are effective.” 
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Table 1. Summary Statistics and Correlation Matrix 

Panel A. Descriptive statistics: Whole sample 

 Obs. Mean Std. Dev 10th percentile 90th percentile Kurtosis Skewness 

𝑅𝑉 12,429 0.60 2.35 0.07 1.24 2455.71 43.76 

𝑅𝑉𝑤  12,429 0.55 1.53 0.08 1.11 694.32 22.17 

𝑅𝑉𝑚 12,429 0.54 0.99 0.09 1.16 113.98 8.85 

𝑅𝑄 12,429 280.77 19,868.09 0.01 4.03 6145.76 78.18 

𝑅 12,429 0.99 0.42 0.57 1.39 5.68 0.19 

𝑁𝑒𝑤_𝑐𝑎𝑠𝑒𝑠 12,429 106.18 176.09 0.43 291.05 18.67 3.53 

𝑁𝑒𝑤_𝑑𝑒𝑎𝑡ℎ𝑠 12,429 2.64 4.36 0.00 7.63 15.40 3.06 

𝑁𝑒𝑤_𝑣𝑎𝑥 12,429 1,719.53 30,06.97 0.00 6,384.00 4.12 2.07 

𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 12,429 0.23 0.42 0.00 1.00 −0.35 1.28 
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𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑 12,429 0.37 0.48 0.00 1.00 −1.69 0.56 

 

Panel B. Descriptive statistics: By country 

 Obs. 𝑅V 𝑅𝑉𝑤 𝑅𝑉𝑚 𝑅𝑄 𝑅 𝑁𝑒𝑤_𝑐𝑎𝑠𝑒𝑠 𝑁𝑒𝑤_𝑑𝑒𝑎𝑡ℎ𝑠 𝑁𝑒𝑤_𝑣𝑎𝑥 𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑 

Argentina 400 0.19 0.18 0.19 11.23 1.03 218.59 5.07 1,915.32 0.26 0.42 

Australia 438 0.62 0.57 0.57 8.51 1.01 6.71 0.09 1,705.83 0.25 0.40 

Brazil 402 1.47 1.45 1.44 43.48 1.08 183.90 5.45 1,906.41 0.27 0.35 

Canada 437 0.30 0.25 0.25 0.42 1.01 74.91 1.36 2,398.88 0.28 0.47 

Chile 416 0.81 0.71 0.73 27.34 1.03 137.76 3.39 2,840.47 0.21 0.45 

Colombia 405 0.89 0.81 0.82 127.00 1.04 167.05 4.38 1,353.01 0.22 0.26 

Czech 412 0.62 0.50 0.52 2.96 1.03 291.15 5.39 1,905.88 0.24 0.48 

Denmark 415 0.22 0.19 0.19 0.33 1.03 109.69 0.83 2,595.49 0.26 0.44 
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Egypt 319 1.35 1.26 1.27 2.65 1.01 4.91 0.29 269.26 0.17 0.19 

Europe 439 0.22 0.18 0.19 0.33 1.08 136.70 2.91 1,728.82 0.24 0.47 

Hungary 411 0.52 0.43 0.45 1.81 1.04 141.24 5.64 2,174.14 0.14 0.22 

India 433 0.11 0.10 0.10 0.18 1.03 39.72 0.58 1,020.07 0.25 0.39 

Indonesia 382 0.18 0.18 0.18 0.46 1.05 27.01 0.94 872.43 0.27 0.35 

Israel 419 0.32 0.27 0.27 1.61 1.06 266.30 1.52 2,917.46 0.22 0.48 

Japan 439 0.19 0.17 0.17 0.48 1.02 21.69 0.25 2,069.15 0.23 0.30 

South 

Korea 

440 0.25 0.20 0.20 0.54 1.02 10.18 0.09 1,920.38 0.21 0.35 

Mexico 414 1.37 1.13 1.17 45.16 1.06 50.35 4.10 1,321.22 0.26 0.43 

New 

Zealand 

414 0.60 0.53 0.54 4.27 0.90 1.47 0.01 1,795.87 0.25 0.38 

Norway 416 1.29 1.13 1.14 81.09 1.05 66.31 0.37 2,440.07 0.29 0.49 
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Paraguay 398 0.18 0.18 0.18 0.15 0.99 116.58 3.98 1,111.79 0.21 0.33 

Peru 405 0.55 0.55 0.55 426.63 1.09 110.45 10.38 1,378.55 0.22 0.41 

Philippines 433 0.26 0.24 0.24 2.49 1.02 36.31 0.55 655.82 0.21 0.14 

Poland 411 0.50 0.41 0.42 1.57 1.04 132.57 3.77 1,710.54 0.23 0.35 

Romania 415 0.26 0.23 0.24 0.44 1.05 112.27 3.65 907.10 0.23 0.46 

Russia 433 1.60 1.31 1.34 7226.76 1.01 82.41 2.50 1,009.85 0.23 0.27 

South 

Africa 

410 1.29 1.12 1.16 35.35 1.05 83.44 2.94 493.67 0.23 0.23 

Thailand 440 0.17 0.14 0.14 0.09 0.99 36.53 0.41 1,142.41 0.22 0.27 

Turkey 404 1.09 1.27 1.24 53.98 1.07 134.57 1.34 2,262.52 0.21 0.45 

UK 434 0.38 0.32 0.33 1.47 1.05 191.10 3.81 2,262.69 0.28 0.49 

Uruguay 395 0.55 0.46 0.54 3.69 1.03 200.57 3.24 3,176.83 0.18 0.38 
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Panel C. Descriptive statistics: Emerging vs. Developed countries 

 Obs. 𝑅V 𝑅𝑉𝑤 𝑅𝑉𝑚 𝑅𝑄 𝑅 𝑁𝑒𝑤_𝑐𝑎𝑠𝑒𝑠 𝑁𝑒𝑤_𝑑𝑒𝑎𝑡ℎ𝑠 𝑁𝑒𝑤_𝑣𝑎𝑥 𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑 

Emerging 8,578 0.69 0.65 0.63 423.73 1.04 115.72 3.43 1,477.54 0.22 0.34 

Developed 3,851 0.44 0.38 0.38 9.66 0.91 88.07 1.13 2,178.48 0.25 0.42 
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Table 1 presents the descriptive statistics of the variables in the baseline regression model. RV, RVw, and RVm are the daily, weekly, and monthly 

realized volatility of exchange rates, respectively. RQ is the quarticity of RV. R is the reproduction rate. New_cases is the new confirmed cases 

of COVID-19 per one million people. New_deaths is the new deaths due to COVID-19 per one million people. New_vax is defined as the natural 

logarithm of the number of daily new COVID-19 vaccine doses per one million people. Vax_Increase is a dummy variable that equals 1 if the 

daily change in New_vax is strictly positive and zero otherwise. Vax_Period is a dummy variable that equals 1 for the period starting the 

country’s first COVID-19 vaccine administration onward and zero otherwise. To facilitate the interpretation of variables, the COVID-19- and 

vaccination-related variables in Table 1 are not shown in the natural logarithm forms.
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Table 2. Cross-correlation Matrix between Variables in the Baseline Model 

 𝑅V 𝑅𝑉𝑤 𝑅𝑉𝑚 𝑅𝑄 𝑅 𝑁𝑒𝑤_𝑐𝑎𝑠𝑒𝑠 𝑁𝑒𝑤_𝑑𝑒𝑎𝑡ℎ𝑠 𝑁𝑒𝑤_𝑣𝑎𝑥 𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑 

𝑅𝑉 1.00          

𝑅𝑉𝑤 0.34*** 1.00         

𝑅𝑉𝑚 0.26*** 0.60*** 1.00        

𝑅𝑄 0.81*** 0.15** 0.06** 1.00       

𝑅 0.01* 0.08** 0.18** −0.03* 1.00      

𝑁𝑒𝑤_𝑐𝑎𝑠𝑒𝑠 0.03 0.03 0.04 −0.01 0.03* 1.00     

𝑁𝑒𝑤_𝑑𝑒𝑎𝑡ℎ𝑠 0.02 0.02 0.03 0.00 0.09* 0.26*** 1.00    

𝑁𝑒𝑤_𝑣𝑎𝑥 −0.06*** −0.07** −0.11** −0.01 −0.06* −0.01* −0.01* 1.00   

𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 −0.03*** −0.07**

* 

−0.09**

* 

−0.00

1 

−0.02** 0.12*** 0.09*** 0.63*** 1.00  
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𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑 −0.06*** −0.10**

* 

−0.14**

* 

−0.01 −0.07**

* 

0.17*** 0.12*** 0.86*** 0.57*** 1.00 

Table 2 shows correlation coefficients between variables used in the baseline regression model Equation (7). The correlation coefficients are 

averaged across countries in the sample. Variables are defined as in Table 1. ***, **, and * indicate significance at the 1%, 5%, and 10% levels, 

respectively. 
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Table 3. Panel Unit-Root Tests 

 IPS MW 

𝑅𝑉 −43.31*** 

[<0.0001] 

2,037*** 

[<0.0001] 

𝑅𝑉𝑤 −24.29*** 

[<0.0001] 

830.52*** 

[<0.0001] 

𝑅𝑉𝑚 −19.69*** 

[<0.0001] 

740.51*** 

[<0.0001] 

𝑅𝑄 −125.93*** 

[<0.0001] 

678.61*** 

[<0.0001] 

𝑅 −45.12*** 

[<0.0001] 

3,630.60*** 

[<0.0001] 

𝑁𝑒𝑤_𝑐𝑎𝑠𝑒𝑠 −23.67*** 

[<0.0001] 

923.39*** 

[<0.0001] 

𝑁𝑒𝑤_𝑑𝑒𝑎𝑡ℎ𝑠 −32.49*** 

[<0.0001] 

1,358.20*** 

[<0.0001] 

𝑁𝑒𝑤_𝑣𝑎𝑥 −9.67*** 

[<0.0001] 

267.54*** 

[<0.0001] 

𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 −26.68*** 

[<0.0001] 

883.39*** 

[<0.0001] 
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𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑 −4.47*** 

[<0.0001] 

215.19*** 

[<0.0001] 

Table 3 shows the test statistics of two panel unit-root tests: IPS (Im et al., 2003) and MW 

(Maddala and Wu, 2003). The null hypothesis of the tests is that there is a unit root in the 

time series. The numbers in the bracket are the p-values of the test statistics. ***, **, and * 

indicate significance at the 1%, 5%, and 10% levels, respectively.
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Table 4. Main Regression Results 

 (1) (2) (3) 

𝛽𝑑 0.310*** 

(5.07) 

0.311*** 

(5.08) 

0.298*** 

(4.72) 

𝛽𝑤 0.199** 

(2.35) 

0.200** 

(2.34) 

0.172* 

(1.85) 

𝛽𝑚 0.133** 

(2.32) 

0.137** 

(2.35) 

0.221*** 

(4.01) 

𝛽𝑄 −0.00085*** 

(−6.39) 

−0.00085*** 

(−6.35) 

−0.00081*** 

(−5.97) 

𝑅 0.0088** 

(2.51) 

0.0097*** 

(2.70) 

0.062* 

(1.85) 

𝑁𝑒𝑤_𝑐𝑎𝑠𝑒𝑠 0.0010 

(0.57) 

0.001 

(0.24) 

0.0019 

(0.89) 

𝑁𝑒𝑤_𝑑𝑒𝑎𝑡ℎ𝑠 0.001 

(0.64) 

0.001 

(0.54) 

0.0004 

(0.21) 

𝑁𝑒𝑤_𝑣𝑎𝑥 −0.002*** 

(−3.26) 

  

𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒  −0.0029*** 

(−3.01) 

 

𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑   −0.0815** 

(−2.61) 

N. Obs. 12,429 12,429 12,429 

Adj. R-squared 0.2015 0.2007 0.1910 
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This table presents the regression results of the relationship between COVID-19 vaccine 

rollout and FX volatility using Equation (2) specified in subsection 3.2. We account for the 

country-fixed effect and estimate Equation (2) using ordinary least squares, with robust 

standard errors clustered at the country level. T-statistics are in the parentheses beneath the 

coefficient estimates. ***, **, and * indicate that the estimated parameters are statistically 

significant at 1%, 5%, and 10% significance levels, respectively.
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Table 5. First-Dose and Second Dose Effects 

 (1) (2) 

𝐹𝑖𝑟𝑠𝑡_𝑑𝑜𝑠𝑒 

−0.066** 

(−1.97) 

 

𝑆𝑒𝑐𝑜𝑛𝑑_𝑑𝑜𝑠𝑒  

−0.0006 

(−0.98) 

Control variables Yes Yes 

N. Obs. 12,429 12,429 

Adj. R-squared 0.2541 0.1902 

This table presents the regression results of the relationship between COVID-19 vaccine 

rollout and FX volatility using Equation (2) specified in subsection 3.2. We account for the 

country-fixed effect and estimate Equation (2) using ordinary least squares, with robust 

standard errors clustered at the country level. Two proxies for vaccinations used are 

𝐹𝑖𝑟𝑠𝑡_𝑑𝑜𝑠𝑒 and 𝑆𝑒𝑐𝑜𝑛𝑑_𝑑𝑜𝑠𝑒. 𝐹𝑖𝑟𝑠𝑡_𝑑𝑜𝑠𝑒 is measured by the change in the daily total 

number of people who received their first vaccine dose per 100 people in the total population. 

𝑆𝑒𝑐𝑜𝑛𝑑_𝑑𝑜𝑠𝑒 is calculated as the change in the daily total number of people who received all 

other doses prescribed by the vaccination protocol per 100 people in the total population. T-

statistics are in the parentheses beneath the coefficient estimates. ***, **, and * indicate that 

the estimated parameters are statistically significant at 1%, 5%, and 10% significance levels, 

respectively.
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Table 6. Regression Results Using Different HARQ-type models 

Panel A. HARQ-IFG 

 (1) (2) (3) 

𝛽𝑑 0.303*** 

(4.97) 

0.303*** 

(4.98) 

0.292*** 

(4.76) 

𝛽𝑤 0.191*** 

(3.82) 

0.189*** 

(3.79) 

0.161*** 

(3.11) 

𝛽𝑚
 0.119*** 

(3.11) 

0.121*** 

(3.12) 

0.206*** 

(3.95) 

𝛽𝑄 −0.00081*** 

(−5.10) 

−0.00081*** 

(−5.10) 

−0.00076*** 

(−4.87) 

𝐼𝐹𝐺 0.0035*** 

(3.42) 

0.0036*** 

(3.72) 

0.0029*** 

(2.87) 

𝑅 0.076** 

(2.52) 

0.081*** 

(2.74) 

0.052** 

(1.96) 

𝑁𝑒𝑤_𝑐𝑎𝑠𝑒𝑠 0.0021* 

(1.73) 

0.0019* 

(1.66) 

0.0028** 

(1.98) 

𝑁𝑒𝑤_𝑑𝑒𝑎𝑡ℎ𝑠 0.0011 

(1.31) 

0.001 

(1.17) 

0.0007 

(0.51) 

𝑁𝑒𝑤_𝑣𝑎𝑥 −0.0019** 

(−1.98) 

  

𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒  −0.0018* 

(−1.76) 

 

𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑   −0.053** 
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(−2.01) 

N. Obs. 12,429 12,429 12,429 

Adj. R-squared 0.2038 0.2035 0.1919 

Panel B. HARQ-RS 

 (1) (2) (3) 

𝛽𝑑
 +  0.581*** 

(4.10) 

0.581*** 

(4.08) 

0.119*** 

(11.31) 

𝛽𝑄
 +  −0.002** 

(−2.43) 

−0.002** 

(−2.49) 

−0.001** 

(−2.19) 

𝛽𝑑
− 0.334*** 

(3.17) 

0.341*** 

(3.24) 

0.591*** 

(4.45) 

𝛽𝑄
− 0.0007 

(0.01) 

0.0007 

(0.01) 

0.0026 

(0.55) 

𝛽𝑤
 0.141** 

(1.98) 

0.141* 

(1.94) 

0.138* 

(1.68) 

𝛽𝑚
 0.109*** 

(2.82) 

0.112*** 

(2.79) 

0.209*** 

(4.10) 

𝑅 0.083*** 

(2.71) 

0.092*** 

(3.01) 

0.063** 

(2.20) 

𝑁𝑒𝑤_𝑐𝑎𝑠𝑒𝑠 0.0011 

(0.39) 

0.0004 

(0.01) 

0.0015 

(0.56) 

𝑁𝑒𝑤_𝑑𝑒𝑎𝑡ℎ𝑠 0.0011 

(1.33) 

0.0008 

(1.11) 

0.0002 

(0.30) 

𝑁𝑒𝑤_𝑣𝑎𝑥 −0.0021*** 

(−2.71) 
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𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒  −0.0022** 

(−1.98) 

 

𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑   −0.074** 

(−2.42) 

N. Obs. 12,429 12,429 12,429 

Adj. R-squared 0.2101 0.2095 0.2014 

Panel C. IV-HARQ 

 (1) (2) (3) 

𝛽𝑑 0.212*** 

(4.28) 

0.212*** 

(4.27) 

0.213*** 

(4.28) 

𝛽𝑤 0.107** 

(2.10) 

0.107** 

(2.08) 

0.107** 

(2.10) 

𝛽𝑚 0.178*** 

(3.35) 

0.178*** 

(3.33) 

0.178*** 

(3.35) 

𝛽𝑄 −0.0006*** 

(−4.72) 

−0.0006*** 

(−4.71) 

−0.0006*** 

(−4.72) 

𝐼𝑉𝑑 0.263** 

(2.10) 

0.263*** 

(2.09) 

0.263*** 

(2.10) 

𝐼𝑉𝑤 −0.142* 

(−1.83) 

−0.142* 

(−1.82) 

−0.142* 

(−1.83) 

𝐼𝑉𝑚 −0.079** 

(−2.65) 

 

−0.078** 

(−2.64) 

−0.079** 

(−2.66) 

𝑅 0.016* 

(1.93) 

0.022** 

(2.01) 

0.017** 

(1.97) 
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𝑁𝑒𝑤_𝑐𝑎𝑠𝑒𝑠 0.002* 

(1.71) 

0.002 

(1.47) 

0.002* 

(1.65) 

𝑁𝑒𝑤_𝑑𝑒𝑎𝑡ℎ𝑠 −0.001 

(−0.65) 

−0.001 

(−0.82) 

−0.001 

(−0.75) 

𝑁𝑒𝑤_𝑣𝑎𝑥 −0.002** 

(−1.97) 

  

𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒  −0.026* 

(−1.78) 

 

𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑   −0.051** 

(−2.37) 

N. Obs. 11,986 11,986 11,986 

Adj. R-squared 0.2125 0.2122 0.2124 

This table presents the regression results of the relationship between COVID-19 vaccine 

rollout and FX volatility using different HARQ-type models as specified in Equations (6), 

(7), and (8) in subsection 3.3. We account for the country-fixed effect and estimate the 

equations using ordinary least squares, with robust standard errors clustered at the country 

level. T-statistics are in the parentheses beneath the coefficient estimates. ***, **, and * 

indicate that the estimated parameters are statistically significant at 1%, 5%, and 10% 

significance levels, respectively.
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Table 7. Regression Results Using Alternative Estimators of IQ 

Panel A. Using TPQ 

Panel B. Using MedRQ 

Panel C. Using TrRQ 

 (1) (2) (3) 

𝑁𝑒𝑤_𝑣𝑎𝑥 −0.0018*** 

(−3.06) 

  

𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒  −0.0027*** 

(−2.89) 

 

𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑   −0.0804** 

(−2.56) 

Control variables Yes Yes Yes 

N. Obs. 12,429 12,429 12,429 

Adj. R-squared 0.2003 0.1997 0.1902 

 (1) (2) (3) 

𝑁𝑒𝑤_𝑣𝑎𝑥 −0.0017*** 

(−3.02) 

  

𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒  −0.0025*** 

(−2.86) 

 

𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑   −0.0791** 

(−2.49) 

Control variables Yes Yes Yes 

N. Obs. 12,429 12,429 12,429 

Adj. R-squared 0.2001 0.1995 0.1900 
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This table presents the regression results of Equation (2) by replacing 𝑅𝑄 with alternative 

measures of integrated quarticity, including 𝑇𝑃𝑄, 𝑀𝑒𝑑𝑅𝑄, and 𝑇𝑟𝑅𝑄. The formulas for these 

new estimators are presented in subsection 5.2.2. We account for the country-fixed effect and 

estimate the equations using ordinary least squares, with robust standard errors clustered at 

the country level. T-statistics are in the parentheses beneath the coefficient estimates. ***, **, 

and * indicate that the estimated parameters are statistically significant at 1%, 5%, and 10% 

significance levels, respectively. 

 (1) (2) (3) 

𝑁𝑒𝑤_𝑣𝑎𝑥 −0.0022*** 

(−3.34) 

  

𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒  −0.0031*** 

(−3.05) 

 

𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑   −0.0821*** 

(−2.71) 

Control variables Yes Yes Yes 

N. Obs. 12,429 12,429 12,429 

Adj. R-squared 0.2035 0.2029 0.1914 
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Table 8. Additional Control Variables 

 (1) (2) (3) 

𝛽𝑑 0.286*** 

(3.94) 

0.288*** 

(4.02) 

0.281*** 

(3.79) 

𝛽𝑤 0.178*** 

(3.15) 

0.179*** 

(3.08) 

0.157** 

(2.48) 

𝛽𝑚 0.103*** 

(3.71) 

0.104*** 

(3.65) 

0.186*** 

(4.07) 

𝛽𝑄 −0.00075*** 

(−4.11) 

−0.00074*** 

(−4.22) 

−0.00074*** 

(−4.55) 

𝑅 0.065** 

(2.59) 

0.069*** 

(2.68) 

0.049** 

(2.02) 

𝑁𝑒𝑤_𝑐𝑎𝑠𝑒𝑠 0.0027** 

(2.15) 

0.0026** 

(2.23) 

0.0029** 

(2.28) 

𝑁𝑒𝑤_𝑑𝑒𝑎𝑡ℎ𝑠 0.0019 

(1.03) 

0.0011 

(1.01) 

0.0006 

(0.38) 

𝑈𝑆_𝑦𝑖𝑒𝑙𝑑_𝑣𝑜𝑙 4.031*** 

(3.03) 

4.104*** 

(3.41) 

3.493*** 

(2.74) 

𝐻𝑜𝑚𝑒_𝑦𝑖𝑒𝑙𝑑_𝑣𝑜𝑙 −0.031 

(−0.65) 

−0.030 

(−0.68) 

−0.027 

(−0.62) 

𝑆𝑝𝑟𝑒𝑎𝑑_𝑣𝑜𝑙 0.0031* 

(1.71) 

0.003* 

(1.69) 

0.003* 

(1.67) 

𝑈𝑆_𝑛𝑒𝑤_𝑣𝑎𝑥 −0.0007* 

(−1.66) 

−0.0006 

(−1.63) 

−0.0006 

(−1.60) 
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𝑆𝑡𝑟𝑖𝑛𝑔𝑒𝑛𝑐𝑦 0.0021* 

(1.89) 

0.0019* 

(1.72) 

0.0019* 

(1.70) 

𝑁𝑒𝑤_𝑣𝑎𝑥 −0.0019** 

(−2.56) 

  

𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒  −0.0018** 

(−1.98) 

 

𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑   −0.041** 

(−1.93) 

N. Obs. 11,801 11,801 11,801 

Adj. R-squared 0.2061 0.2071 0.1937 

This table presents the regression results of the relationship between COVID-19 vaccine 

rollout and FX volatility using Equation (12) with additional control variables as specified in 

subsection 5.2.3. We account for the country-fixed effect and estimate Equation (12) using 

ordinary least squares, with robust standard errors clustered at the country level. T-statistics 

are in the parentheses beneath the coefficient estimates. ***, **, and * indicate that the 

estimated parameters are statistically significant at 1%, 5%, and 10% significance levels, 

respectively.
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Table 9. Different Sampling Periods 

Panel A. From March 11, 2020 

 (1) (2) (3) 

𝛽𝑑 0.309*** 

(3.28) 

0.309*** 

(3.27) 

0.295*** 

(3.15) 

𝛽𝑤 0.197*** 

(4.23) 

0.197*** 

(4.20) 

0.171*** 

(3.55) 

𝛽𝑚 0.131*** 

(4.86) 

0.135*** 

(4.80) 

0.218*** 

(5.52) 

𝛽𝑄 −0.00081*** 

(−3.65) 

−0.00081*** 

(−3.61) 

−0.00076*** 

(−3.42) 

𝑅 0.091*** 

(3.01) 

0.099*** 

(3.34) 

0.057** 

(2.27) 

𝑁𝑒𝑤_𝑐𝑎𝑠𝑒𝑠 0.0011 

(0.49) 

0.0003 

(0.07) 

0.0017 

(0.92) 

𝑁𝑒𝑤_𝑑𝑒𝑎𝑡ℎ𝑠 0.001 

(0.96) 

0.0009 

(0.72) 

0.0003 

(0.05) 

𝑁𝑒𝑤_𝑣𝑎𝑥 −0.0023*** 

(−3.35) 

  

𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒  −0.0027*** 

(−2.87) 

 

𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑   −0.0798*** 

(−3.08) 

N. Obs. 11,824 11,824 11,824 

Adj. R-squared 0.2001 0.1996 0.1889 
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Panel B. From June 6, 2020 

 (1) (2) (3) 

𝛽𝑑 0.245*** 

(6.25) 

0.244*** 

(6.18) 

0.244*** 

(6.01) 

𝛽𝑤 0.067* 

(1.73) 

0.067* 

(1.69) 

0.064* 

(1.69) 

𝛽𝑚 0.278*** 

(5.65) 

0.275*** 

(5.67) 

0.273*** 

(6.54) 

𝛽𝑄 −0.0011*** 

(−5.46) 

−0.0008*** 

(−4.42) 

−0.0008*** 

(−5.36) 

𝑅 0.011 

(0.75) 

0.011 

(0.75) 

0.002 

(0.01) 

𝑁𝑒𝑤_𝑐𝑎𝑠𝑒𝑠 0.0013 

(0.78) 

0.0012 

(0.65) 

0.0017 

(0.86) 

𝑁𝑒𝑤_𝑑𝑒𝑎𝑡ℎ𝑠 0.0017** 

(2.27) 

0.0014** 

(2.35) 

0.0015** 

(1.98) 

𝑁𝑒𝑤_𝑣𝑎𝑥 −0.0018** 

(−2.21) 

  

𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒  −0.0025** 

(−1.96) 

 

𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑   −0.075*** 

(−2.75) 

N. Obs. 10,125 10,125 10,125 

Adj. R-squared 0.1138 0.1132 0.1131 

Panel C. From August 11, 2020 
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 (1) (2) (3) 

𝛽𝑑 0.237*** 

(6.34) 

0.237*** 

(6.30) 

0.236*** 

(6.26) 

𝛽𝑤 0.061* 

(1.68) 

0.061* 

(1.66) 

0.061* 

(1.67) 

𝛽𝑚 0.229*** 

(5.35) 

0.248*** 

(5.34) 

0.248*** 

(5.34) 

𝛽𝑄 −0.00069*** 

(−5.75) 

−0.00068*** 

(−5.71) 

−0.00069*** 

(−5.67) 

𝑅 0.022* 

(1.65) 

0.032** 

(2.63) 

0.033*** 

(2.72) 

𝑁𝑒𝑤_𝑐𝑎𝑠𝑒𝑠 0.0019 

(1.15) 

0.0016 

(0.92) 

0.0016 

(0.89) 

𝑁𝑒𝑤_𝑑𝑒𝑎𝑡ℎ𝑠 0.0017** 

(2.21) 

0.0016** 

(2.18) 

0.0016** 

(2.18) 

𝑁𝑒𝑤_𝑣𝑎𝑥 −0.0017** 

(−2.35) 

  

𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒  −0.0017* 

(−1.81) 

 

𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑   −0.0019** 

(−1.96) 

N. Obs. 8,743 8,743 8,743 

Adj. R-squared 0.0971 0.0965 0.0963 

This table presents the regression results of the relationship between COVID-19 vaccine 

rollout and FX volatility using Equation (2) specified in Section 3.2 for different periods. 
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Panels A, B, and C display the regression results for alternative periods that start on March 

11, June 6, and August 11, 2020, sequentially. We account for the country-fixed effect and 

estimate Equation (2) using ordinary least squares, with robust standard errors clustered at the 

country level. T-statistics are in the parentheses beneath the coefficient estimates. ***, **, 

and * indicate that the estimated parameters are statistically significant at 1%, 5%, and 10% 

significance levels, respectively. 
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Table 10. Panel Quantile Regression Results 

 𝑁𝑒𝑤_𝑣𝑎𝑥 (1) 𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 (2) 𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑 (3) 

5th quantile −0.0004*** 

(−7.18) 

−0.0091*** 

(−3.51) 

−0.0154*** 

(−7.20) 

10th quantile −0.0003*** 

(−4.40) 

−0.0083*** 

(−2.65) 

−0.0147*** 

(−5.53) 

15th quantile −0.0002*** 

(−3.46) 

−0.0040 

(−1.30) 

−0.0114*** 

(−4.30) 

20th quantile −0.0002** 

(−2.48) 

−0.0040 

(−1.28) 

−0.0128*** 

(−4.73) 

25th quantile −0.0002** 

(−2.33) 

−0.0032 

(−1.01) 

−0.0118*** 

(−4.21) 

30th quantile −0.0002** 

(−2.56) 

−0.0050 

(−1.48) 

−0.0128*** 

(−4.32) 

35th quantile −0.0002** 

(−2.36) 

−0.0044 

(−1.28) 

−0.0136*** 

(−4.40) 

40th quantile −0.0002*** 

(−2.86) 

−0.0072* 

(−1.90) 

−0.0166*** 

(−4.89) 

45th quantile −0.0003*** 

(−3.69) 

−0.0094** 

(−2.23) 

−0.0197*** 

(−5.43) 
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50th quantile −0.0004*** 

(−3.77) 

−0.0119** 

(−2.55) 

−0.0238*** 

(−5.80) 

55th quantile −0.0003*** 

(−2.77) 

−0.0137*** 

(−2.64) 

−0.0277*** 

(−6.05) 

60th quantile −0.0005*** 

(−3.82) 

−0.0131** 

(−2.25) 

−0.0279*** 

(−5.20) 

65th quantile −0.0007*** 

(−4.77) 

−0.204*** 

(−3.15) 

−0.0368*** 

(−6.57) 

70th quantile −0.0009*** 

(−5.32) 

−0.0261*** 

(−3.30) 

−0.0482*** 

(−7.17) 

75th quantile −0.0012*** 

(−5.74) 

−0.0342*** 

(−3.30) 

−0.0644*** 

(−7.51) 

80th quantile −0.0015*** 

(−5.63) 

−0.0433*** 

(−3.34) 

−0.0802*** 

(−7.48) 

85th quantile −0.0023*** 

(−5.32) 

−0.0617*** 

(−3.33) 

−0.1047*** 

(−6.29) 

90th quantile −0.0036*** 

(−6.22) 

−0.1014*** 

(−3.89) 

−0.1491*** 

(−6.58) 

95th quantile −0.0071*** 

(−6.35) 

−0.2094*** 

(−4.37) 

−0.2584*** 

(−6.16) 
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This table presents the estimated parameters of three vaccination-related variables in the 

country’s fixed-effect quantile regression model, Equation (13). Standard errors are in the 

parentheses beneath the coefficient estimates. ***, ** ,and * indicate significance the 1%, 

5%, and 10% levels, respectively.
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Table 11. Impact of Vaccinations Based on Weekly Data 

 (1) (2) (3) 

𝛽𝑤 0.234*** 

(3.78) 

0.235*** 

(3.80) 

0.231*** 

(3.71) 

𝛽𝑚 0.145** 

(2.55) 

0.149** 

(2.58) 

0.201* 

(3.85) 

𝑅 0.0091** 

(2.41) 

0.0095** 

(2.54) 

0.052** 

(1.98) 

𝑁𝑒𝑤_𝑐𝑎𝑠𝑒𝑠 0.001 

(0.34) 

0.001 

(0.34) 

0.002 

(0.57) 

𝑁𝑒𝑤_𝑑𝑒𝑎𝑡ℎ𝑠 0.001 

(0.54) 

0.001 

(0.48) 

0.0003 

(0.16) 

𝑁𝑒𝑤_𝑣𝑎𝑥 −0.0015*** 

(−2.86) 

  

𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒  −0.0018** 

(−2.12) 

 

𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑   −0.0713** 

(−2.31) 

N. Obs. 2,248 2,248 2,248 

Adj. R-squared 0.2015 0.2007 0.1910 

This table presents the regression results of the relationship between COVID-19 vaccine 

rollout and FX volatility using weekly data as specified by Equation (14) in subsection 5.2.6. 

We account for the country-fixed effect and estimate the equations using ordinary least 

squares, with robust standard errors clustered at the country level. T-statistics are in the 
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parentheses beneath the coefficient estimates. ***, **, and * indicate that the estimated 

parameters are statistically significant at 1%, 5%, and 10% significance levels, respectively.
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Table 12. Vaccination Effects for Emerging and Developed Markets 

 (1) (2) (3) 

𝛽𝑑 0.296*** 

(4.34) 

0.296*** 

(4.33) 

0.296*** 

(4.34) 

𝛽𝑤 0.169*** 

(2.23) 

0.169*** 

(2.20) 

0.169*** 

(2.23) 

𝛽𝑚
 0.217*** 

(4.24) 

0.221*** 

(4.26) 

0.217*** 

(4.23) 

𝛽𝑄 −0.00083*** 

(−4.88) 

−0.00083*** 

(−4.86) 

−0.00083*** 

(−4.88) 

𝑅 0.0578** 

(2.01) 

0.0669*** 

(2.65) 

0.0574** 

(2.23) 

𝑁𝑒𝑤_𝑐𝑎𝑠𝑒𝑠 0.0017 

(0.85) 

0.0011 

(0.56) 

0.0018 

(0.91) 

𝑁𝑒𝑤_𝑑𝑒𝑎𝑡ℎ𝑠 0.0003 

(0.11) 

0.0001 

(0.04) 

0.0002 

(0.08) 

𝑁𝑒𝑤_𝑣𝑎𝑥 −0.0023** 

(−2.18) 

  

𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒  −0.073** 

(−2.19) 

 

𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑   −0.097*** 

(−2.83) 

𝑁𝑒𝑤_𝑣𝑎𝑥 ×  𝐸𝑀𝐸 −0.0015** 

(−2.01) 
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𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 ×  𝐸𝑀𝐸  −0.042** 

(−2.35) 

 

𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑 ×  𝐸𝑀𝐸   −0.025* 

(−1.78) 

N. Obs. 12,429 12,429 12,429 

Adj. R-squared 0.1894 0.1888 0.1895 

This table presents the regression results for the impact of economic development on the 

relationship between COVID-19 vaccine rollout and FX volatility controlling for the 

emerging and developed status of countries as specified by Equation (15) in subsection 5.3.1. 

We account for the country-fixed effect and estimate the equations using ordinary least 

squares, with robust standard errors clustered at the country level. T-statistics are in the 

parentheses beneath the coefficient estimates. ***, **, and * indicate that the estimated 

parameters are statistically significant at 1%, 5%, and 10% significance levels, respectively.
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Table 13. Vaccination Effects: The EPU impact on FX volatility  

 (1) (2) (3) 

𝛽𝑑 0.297*** 

(6.02) 

0.299*** 

(6.04) 

0.296*** 

(5.98) 

𝛽𝑤 0.373*** 

(3.21) 

0.379*** 

(3.23) 

0.338*** 

(3.01) 

𝛽𝑚
 0.128* 

(1.69) 

0.127* 

(1.68) 

0.125* 

(1.65) 

𝛽𝑄 −0.0041** 

(−4.18) 

−0.0041*** 

(−4.20) 

−0.0042*** 

(−4.21) 

𝑅 0.051* 

(1.78) 

0.043* 

(1.66) 

0.041* 

(1.65) 

𝑁𝑒𝑤_𝑐𝑎𝑠𝑒𝑠 0.0128** 

(1.98) 

0.0121* 

(1.91) 

0.124** 

(1.95) 

𝑁𝑒𝑤_𝑑𝑒𝑎𝑡ℎ𝑠 0.0003 

(0.15) 

0.0002 

(0.08) 

0.0003 

(0.16) 

𝑁𝑒𝑤_𝑣𝑎𝑥 −0.0014** 

(−1.96) 

  

𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒  −0.0621** 

(−2.56) 

 

𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑   −0.0869*** 

(−2.68) 

𝑁𝑒𝑤_𝑣𝑎𝑥 ×  𝐸𝑃𝑈 −0.0009** 

(−1.97) 
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𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 ×  𝐸𝑃𝑈  −0.0937** 

(−2.35) 

 

𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑 ×  𝐸𝑃𝑈   −0.1056*** 

(−3.71) 

N. Obs. 4,049 4,049 4,049 

Adj. R-squared 0.4418 0.4421 0.4435 

This table presents pooled OLS estimates for the impact of economic policy uncertainty on 

the relationship between COVID-19 vaccine rollout and FX volatility using Equation (16) 

discussed in Section 5.3.2. We account for the country-fixed effect and estimate the equations 

using ordinary least squares, with robust standard errors clustered at the country level. T-

statistics are in the parentheses beneath the coefficient estimates. ***, **, and * indicate that 

the estimated parameters are statistically significant at 1%, 5%, and 10% significance levels, 

respectively.
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Table 14. Vaccination Effects: The Role of Vaccine Confidence  

 (1) (2) (3) 

𝛽𝑑 0.301*** 

(5.25) 

0.303*** 

(5.28) 

0.303*** 

(5.23) 

𝛽𝑤 0.161*** 

(1.97) 

0.161** 

(1.91) 

0.161** 

(1.93) 

𝛽𝑚
 0.221*** 

(3.56) 

0.232*** 

(3.69) 

0.227*** 

(3.65) 

𝛽𝑄 −0.00083*** 

(−4.98) 

−0.00084*** 

(−4.94) 

−0.00084*** 

(−4.95) 

𝑅 0.061* 

(1.65) 

0.071** 

(1.78) 

0.062* 

(1.68) 

𝑁𝑒𝑤_𝑐𝑎𝑠𝑒𝑠 0.0013 

(0.52) 

0.0009 

(0.37) 

0.0021 

(0.65) 

𝑁𝑒𝑤_𝑑𝑒𝑎𝑡ℎ𝑠 0.0003 

(0.29) 

0.0002 

(0.11) 

0.0003 

(0.54) 

𝑁𝑒𝑤_𝑣𝑎𝑥 −0.0013* 

(−1.87) 

  

𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒  −0.073** 

(−2.86) 

 

𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑   −0.099*** 

(−2.99) 

𝑁𝑒𝑤_𝑣𝑎𝑥 ×  𝑇𝑟𝑢𝑠𝑡 −0.0043*** 

(−3.11) 
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𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 ×  𝑇𝑟𝑢𝑠𝑡  −0.049** 

(−1.97) 

 

𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑 ×  𝑇𝑟𝑢𝑠𝑡   −0.031* 

(−1.71) 

N. Obs. 10,335 10,335 10,335 

Adj. R-squared 0.1901 0.1885 0.1890 

This table presents pooled OLS estimates for the effect of vaccine confidence on the 

relationship between COVID-19 vaccine rollout and FX volatility using Equation (17) 

specified in Section 5.3.3. We account for the country-fixed effect and estimate the equations 

using ordinary least squares, with robust standard errors clustered at the country level. T-

statistics are in the parentheses beneath the coefficient estimates. ***, **, and * indicate that 

the estimated parameters are statistically significant at 1%, 5%, and 10% significance levels, 

respectively.
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Appendix A1. Annualized RV by Country 

 Obs. 𝑅𝑉(%) Annualized 𝑅𝑉(%) 

Argentina 400 0.19 3.01 

Australia 438 0.62 9.82 

Brazil 402 1.47 23.29 

Canada 437 0.30 4.75 

Chile 416 0.81 12.83 

Colombia 405 0.89 14.10 

Czech 412 0.62 9.82 

Denmark 415 0.22 3.49 

Egypt 319 1.35 21.39 

Europe 439 0.22 3.49 

Hungary 411 0.52 8.24 

India 433 0.11 1.74 

Indonesia 382 0.18 2.85 

Israel 419 0.32 5.07 

Japan 439 0.19 3.01 

South Korea 440 0.25 3.96 

Mexico 414 1.37 21.70 
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New Zealand 414 0.60 9.51 

Norway 416 1.29 20.44 

Paraguay 398 0.18 2.85 

Peru 405 0.55 8.71 

Philippines 433 0.26 4.12 

Poland 411 0.50 7.92 

Romania 415 0.26 4.12 

Russia 433 1.60 25.35 

South Africa 410 1.29 20.44 

Thailand 440 0.17 2.69 

Turkey 404 1.09 17.27 

UK 434 0.38 6.02 

Uruguay 395 0.55 8.71 

This appendix shows the average daily realized volatility (RV) and the corresponding 

annualized realized volatility by country. Following Areal and Taylor (2002), we compute 

annualized realized variance by multiplying the daily realized variance by √251.
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Appendix A2. Pooled Regression and Random Effects Results 

Panel A. Using pooled OLS  

 (1) (2) (3) 

𝛽𝑑 0.310*** 

(4.21) 

0.311*** 

(4.20) 

0.298*** 

(3.96) 

𝛽𝑤 0.199*** 

(3.34) 

0.200*** 

(3.31) 

0.172*** 

(2.67) 

𝛽𝑚 0.133*** 

(4.24) 

0.137*** 

(4.30) 

0.221*** 

(4.99) 

𝛽𝑄 −0.001*** 

(−4.52) 

−0.001*** 

(−4.50) 

−0.00081*** 

(−4.29) 

𝑅 0.088*** 

(3.23) 

0.085*** 

(3.53) 

0.062** 

(2.55) 

𝑁𝑒𝑤_𝑐𝑎𝑠𝑒𝑠 0.0013 

(1.02) 

0.00057 

(0.47) 

0.0019 

(1.54) 

𝑁𝑒𝑤_𝑑𝑒𝑎𝑡ℎ𝑠 0.0011 

(1.42) 

0.00085 

(1.18) 

0.00037 

(0.47) 

𝑁𝑒𝑤_𝑣𝑎𝑥 −0.0024*** 

(−3.95) 

  

𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒  −0.0029*** 

(−3.28) 

 

𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑   −0.081*** 

(−3.57) 

N. Obs. 12,429 12,429 12,429 

Adj. R-squared 0.2009 0.2002 0.1904 
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Panel B. Using random effects regressions 

 (1) (2) (3) 

𝛽𝑑 0.310*** 

(29.58) 

0.311*** 

(29.68) 

0.298*** 

(26.54) 

𝛽𝑤 0.199*** 

(16.07) 

0.199*** 

(16.07) 

0.172*** 

(12.16) 

𝛽𝑚 0.133*** 

(9.64) 

0.137*** 

(9.91) 

0.221*** 

(11.61) 

𝛽𝑄 −0.00085*** 

(−18.77) 

−0.00085*** 

(−18.85) 

−0.00081*** 

(−16.81) 

𝑅 0.087*** 

(3.02) 

0.097*** 

(3.40) 

0.062** 

(1.99) 

𝑁𝑒𝑤_𝑐𝑎𝑠𝑒𝑠 0.0015 

(0.66) 

0.00052 

(0.26) 

0.0019 

(0.87) 

𝑁𝑒𝑤_𝑑𝑒𝑎𝑡ℎ𝑠 0.0009 

(0.91) 

0.00085 

(0.79) 

0.00037 

(0.32) 

𝑁𝑒𝑤_𝑣𝑎𝑥 −0.003*** 

(−4.52) 

  

𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒  −0.0028** 

(−2.38) 

 

𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑   −0.0821*** 

(−3.40) 

N. Obs. 12,429 12,429 12,429 

Adj. R-squared 0.2017 0.2007 0.1903 
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This table reports the regression results of Equation (2) presented in subsection 3.3 using 

pooled OLS and random effects. The t-statistics are computed using Newey–West (1987) 

heteroscedasticity and autocorrelation consistent standard errors and are in the parentheses 

beneath the coefficient estimates. ***, **, and * indicate significance at the 1%, 5% and 10% 

levels, respectively.
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Appendix A3. Regression Results of Model Testing U-shaped Pattern 

 

 (1) 

𝛽𝑑 0.298*** 

(3.96) 

𝛽𝑤 0.172** 

(2.67) 

𝛽𝑚 0.222** 

(4.99) 

𝛽𝑄 −0.00081*** 

(−4.29) 

𝑅 0.061** 

(2.50) 

𝑁𝑒𝑤_𝑐𝑎𝑠𝑒𝑠 0.002 

(1.60) 

𝑁𝑒𝑤_𝑑𝑒𝑎𝑡ℎ𝑠 0.0003 

(0.42) 

𝑁𝑒𝑤_𝑣𝑎𝑥 −0.0014*** 

(−3.00) 

𝑁𝑒𝑤_𝑣𝑎𝑥2 −0.0004 

(−1.02) 

N. Obs. 12,429 

Adj. R-squared 0.1903 

The table reports the regression results of the following equation to test the U-shaped pattern 

of the impact of vaccinations on FX volatility: 



100 

𝑅𝑉𝑖,𝑡 + 1  =  𝛽0  + (𝛽𝑑  +  𝛽𝑄𝑅𝑄𝑖,𝑡

1

2 )𝑅𝑉𝑖,𝑡  +  𝛽𝑤𝑅𝑉𝑖,𝑡
𝑤  +  𝛽𝑚𝑅𝑉𝑖,𝑡

𝑚  +  𝛽𝑐𝐶𝑜𝑣𝑖𝑑𝑖,𝑡  +

𝛽𝑣𝑁𝑒𝑤_𝑣𝑎𝑥𝑖,𝑡  + 𝛽𝑢𝑁𝑒𝑤_𝑣𝑎𝑥𝑖,𝑡
2  +  𝜀𝑖,𝑡 + 1 .                                                      (A3) 

T-statistics are in the parentheses beneath the coefficient estimates. ***, **, and * indicate 

that the estimated parameters are statistically significant at 1%, 5%, and 10% significance 

levels, respectively. 
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Appendix A4. Vaccination Effects: All Interaction-type Control Variables Included 

 (1) (2) (3) 

𝛽𝑑 0.463*** 

(5.61) 

0.445*** 

(5.44) 

0.461*** 

(5.72) 

𝛽𝑤 0.263** 

(1.96) 

0.269** 

(2.01) 

0.268** 

(2.00) 

𝛽𝑚
 0.109 

(1.32) 

0.129* 

(1.68) 

0.153* 

(1.89) 

𝛽𝑄 −0.0094*** 

(−5.23) 

−0.0087*** 

(−4.89) 

−0.0093*** 

(−5.09) 

𝑅 0.0066 

(0.17) 

0.0009 

(0.01) 

−0.023 

(−0.45) 

𝑁𝑒𝑤_𝑐𝑎𝑠𝑒𝑠 0.0053 

(0.95) 

0.0015 

(0.28) 

0.0077 

(1.31) 

𝑁𝑒𝑤_𝑑𝑒𝑎𝑡ℎ𝑠 0.0001 

(0.07) 

−0.0006 

(−0.45) 

−0.0009 

(−0.66) 

𝑁𝑒𝑤_𝑣𝑎𝑥 −0.0016** 

(−2.39) 
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𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒  −0.039*** 

(−3.28) 

 

𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑   −0.076** 

(−2.11) 

𝑁𝑒𝑤_𝑣𝑎𝑥 ×  𝐸𝑀𝐸 −0.0071* 

(−1.79) 

  

𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 ×  𝐸𝑀𝐸  −0.281*** 

(−3.52) 

 

𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑 ×  𝐸𝑀𝐸   −0.199** 

(−1.96) 

𝑁𝑒𝑤_𝑣𝑎𝑥 ×  𝐸𝑃𝑈 −0.0019* 

(−1.75) 

  

𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 ×  𝐸𝑃𝑈  −0.019* 

(−1.67) 

 

𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑 ×  𝐸𝑃𝑈   −0.276** 

(−1.97) 

𝑁𝑒𝑤_𝑣𝑎𝑥 ×  𝑇𝑟𝑢𝑠𝑡 −0.0112*** 

(−2.25) 

  

𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 ×  𝑇𝑟𝑢𝑠𝑡  −0.470***  
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(−3.75) 

𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑 ×  𝑇𝑟𝑢𝑠𝑡   −0.339*** 

(−2.78) 

N. Obs. 4,049 4,049 4,049 

Adj. R-squared 0.5031 0.5051 0.5053 

This table presents coefficient estimates for the effect of economic development, EPU, and 

vaccine confidence on the relationship between COVID-19 vaccine rollout and FX volatility 

with all three interaction-term control variables in one regression. We account for the 

country-fixed effect and estimate the equations using ordinary least squares, with robust 

standard errors clustered at the country level. T-statistics are in the parentheses beneath the 

coefficient estimates. ***, **, and * indicate that the estimated parameters are statistically 

significant at 1%, 5%, and 10% significance levels, respectively.  
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Appendix A5. Vaccination Effects: Economic-Development and Vaccine-Confidence 

Interaction Terms Included 

 (1) (2) (3) 

𝛽𝑑 0.285*** 

(4.65) 

0.296*** 

(4.52) 

0.248*** 

(4.31) 

𝛽𝑤 0.158** 

(2.16) 

0.150** 

(1.97) 

0.131* 

(1.93) 

𝛽𝑚
 0.191*** 

(3.11) 

0.184*** 

(2.91) 

0.206*** 

(3.87) 

𝛽𝑄 −0.00079*** 

(−4.63) 

−0.00043*** 

(−3.11) 

−0.00071*** 

(−4.35) 

𝑅 0.0504 

(0.82) 

0.0317 

(0.49) 

0.0406 

(0.75) 

𝑁𝑒𝑤_𝑐𝑎𝑠𝑒𝑠 0.0025 

(0.84) 

0.0021 

(0.58) 

0.0022 

(0.78) 

𝑁𝑒𝑤_𝑑𝑒𝑎𝑡ℎ𝑠 0.0024* 

(1.76) 

0.0028* 

(1.92) 

0.0009* 

(1.71) 

𝑁𝑒𝑤_𝑣𝑎𝑥 −0.011* 

(−1.78) 

  



 

105 

𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒  −0.007** 

(−2.63) 

 

𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑   −0.774* 

(−1.66) 

𝑁𝑒𝑤_𝑣𝑎𝑥 ×  𝐸𝑀𝐸 −0.016* 

(−1.87) 

  

𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 ×  𝐸𝑀𝐸  −0.027*** 

(−2.97) 

 

𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑 ×  𝐸𝑀𝐸   −0.849** 

(−1.96) 

𝑁𝑒𝑤_𝑣𝑎𝑥 ×  𝑇𝑟𝑢𝑠𝑡 −0.017** 

(−2.39) 

  

𝑉𝑎𝑥_𝐼𝑛𝑐𝑟𝑒𝑎𝑠𝑒 ×  𝑇𝑟𝑢𝑠𝑡  −0.273* 

(−1.86) 

 

𝑉𝑎𝑥_𝑃𝑒𝑟𝑖𝑜𝑑 ×  𝑇𝑟𝑢𝑠𝑡   −0.756* 

(−1.87) 

N. Obs. 10,335 10,335 10,335 

Adj. R-squared 0.2183 0.2201 0.2132 
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This table presents coefficient estimates for the effect of economic development and vaccine 

confidence on the relationship between COVID-19 vaccine rollout and FX volatility. We 

account for the country-fixed effect and estimate the equations using ordinary least squares, 

with robust standard errors clustered at the country level. T-statistics are in the parentheses 

beneath the coefficient estimates. ***, **, and * indicate that the estimated parameters are 

statistically significant at 1%, 5%, and 10% significance levels, respectively. 


