
Distinct neuroinflammatory signatures exist 
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Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive loss of upper and lower 
motor neurons. ALS is on a pathogenetic disease spectrum with frontotemporal dementia, referred to as ALS-frontotem-
poral spectrum disorder (ALS-FTSD). For mutations associated with ALS-FTSD, such as the C9orf72 hexanucleotide repeat 
expansion, the molecular factors associated with heterogeneity along this spectrum require further characterization.
Here, using a targeted NanoString molecular barcoding approach, we interrogate neuroinflammatory dysregulation and 
heterogeneity at the level of gene expression in post-mortem motor cortex tissue from a cohort of clinically heteroge-
neous C9-ALS-FTSD cases.
We identified 20 dysregulated genes in C9-ALS-FTSD, with enrichment of microglial and inflammatory response gene 
sets. Two genes with significant correlations to available clinical metrics were selected for validation: FKBP5, a correlate 
of cognitive function, and brain-derived neurotrophic factor (BDNF), a correlate of disease duration. FKBP5 and its signal-
ling partner, NF-κB, appeared to have a cell type-specific staining distribution, with activated (i.e. nuclear) NF-κB immu-
noreactivity in C9-ALS-FTSD. Expression of BDNF, a correlate of disease duration, was confirmed to be higher in 
individuals with long compared to short disease duration using BaseScope™ in situ hybridization. Our analyses also re-
vealed two distinct neuroinflammatory panel signatures (NPS), NPS1 and NPS2, delineated by the direction of expression 
of proinflammatory, axonal transport and synaptic signalling pathways. We compared NPS between C9-ALS-FTSD cases 
and those from sporadic ALS and SOD1-ALS cohorts and identified NPS1 and NPS2 across all cohorts. Moreover, a subset of 
NPS was also able to separate publicly available RNA sequencing data from independent C9-ALS and sporadic ALS cohorts 
into two inflammatory subgroups.
Importantly, NPS subgroups did not clearly segregate with available demographic, genetic, clinical or pathological fea-
tures, highlighting the value of molecular stratification in clinical trials for inflammatory subgroup identification. Our 
findings thus underscore the importance of tailoring therapeutic approaches based on distinct molecular signatures 
that exist between and within ALS-FTSD cohorts.
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Introduction
Hexanucleotide repeat expansions (HREs) in the C9orf72 gene are 
one of the most common mutations associated with amyotrophic 
lateral sclerosis-frontotemporal spectrum disorder (ALS-FTSD).1-4

Clinical manifestations of disease associated with C9orf72 HRE are 
variable; presentations can involve motor or cognitive symptoms 
related to ALS-FTSD, or other symptoms such as parkinsonism 
and psychosis.5-8 This heterogeneity occurs despite a seemingly 
unifying neuropathological phenotype characterized by p62, 
TDP-43 and dipeptide repeat protein (DPR) deposits.9-14 Clinical het-
erogeneity has the potential to be a large confounding factor in clin-
ical trials including people with ALS-FTSD, which often employ 
outcome measures based on clinical phenotypes. Thus, a better un-
derstanding of heterogeneity in C9-ALS-FTSD and in people with 
ALS-FTSD generally, and whether molecular heterogeneity maps 
onto clinical heterogeneity, is critical for informing the design of 
therapeutics intended to reduce specific symptom burden, as well 
as for improved trial stratification, so that endpoints can be more 
meaningfully measured.

One potential factor contributing to heterogeneity in people 
with ALS-FTSD is immune function and its related inflammatory 
processes. Inflammatory mediators such as regulatory T cells and 
interleukins have previously been shown to be associated with 
the rate of disease progression.15-17 Furthermore, differences in 
neuroinflammatory markers like CHIT1 and GFAP have been ob-
served in the CSF between ALS and frontotemporal dementia 
(FTD) patients,18,19 suggesting that differential processes, particu-
larly those regulated by neuroglia, may be occurring between con-
ditions.18 As C9orf72 is highly expressed in microglia,20 the resident 
immune cells of the CNS, it has been suggested that microglia may 
be particularly susceptible to any negative consequences of a 
change in normal C9orf72 protein function, thus triggering immune 
dysfunction,21 as evidenced by knockout C9orf72 models.22,23 We 
have previously shown with immunohistochemical staining of 
post-mortem tissue that microglial activation is elevated in 
the language-related region Brodmann area (BA) 39 in 
language-impaired C9-ALS-FTSD cases.24 Additionally, we have de-
monstrated with random forest modelling that microglial staining 
is an accurate classifier of C9-ALS-FTSD, with better sensitivity and 
specificity to disease than other markers such as astrocyte activa-
tion marker, GFAP, and phosphorylated TDP-43 aggregate marker, 
pTDP43.24 Thus, further characterization of inflammatory hetero-
geneity in C9-ALS-FTSD, especially at a molecular level, is war-
ranted to understand how these pathways can be more 

specifically targeted to harness their therapeutic potential. To fur-
ther investigate this, we examined a cohort of cases with C9orf72 
HRE that encompasses C9-ALS cases with varying degrees of cogni-
tive dysfunction, including cases with normal cognition, single- 
domain cognitive dysfunction and FTD (Table 1). This cohort will 
herein be referred to as the C9-ALS-FTSD cohort.

To date, few studies have taken a targeted approach to measur-
ing the expression of neuroinflammatory genes in a C9-ALS-FTSD 
cohort, particularly in post-mortem tissue. One recent study ob-
served a general enriched immune response in post-mortem front-
al cortex tissue from C9orf72 HRE carriers,25 though this response 
was not explored further as the focus of the study. To interrogate 
inflammatory dysregulation in this context at a molecular level, 
we performed NanoString molecular barcoding on deeply clinically 
phenotyped post-mortem motor cortex from our C9-ALS-FTSD co-
hort (Table 1) to explore differential expression of 770 genes in an 
nCounter neuroinflammation panel. We identified 20 significantly 
differentially expressed genes in C9-ALS-FTSD, with clustering of 
therapeutically relevant gene expression patterns. We compared 
gene expression patterns with immunohistochemical data from 
our previous study to examine relationships between gene dysre-
gulation and neuropathological staining.24 We also performed re-
gional validation of two genes correlating with clinical scores 
using both immunohistochemical and BaseScope™ in situ hybrid-
ization techniques. Finally, we identified two distinct molecular 
signatures across C9-ALS-FTSD (n = 10), sporadic ALS (sALS) (n =  
18) and SOD1-ALS (n = 5) cohorts, as well as in publicly available 
frontal cortex RNA sequencing data from independent C9-ALS 
and sALS cohorts.26

Materials and methods
Case identification and cognitive profiling

Post-mortem tissue from cases with ALS-FTSD (n = 33) was ob-
tained from the Medical Research Council (MRC) Edinburgh Brain 
Bank (Tables 1 and 2). For genetic classification of all ALS cases, 
repeat-primed polymerase chain reaction (PCR) was carried out 
for C9orf72 HRE identification and whole genome sequencing was 
carried out to identify other ALS-associated mutations. SOD1-ALS 
cases were confirmed to have an I114T missense mutation.27

Sporadic cases had no family history of ALS and no 
ALS-associated mutations identified through gene panel analysis.27

Post-mortem tissue from controls that were age- and sex-matched 
to C9-ALS-FTSD cases (n = 10) and had no history of neurological 
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conditions or neurodegenerative pathology were obtained from the 
Edinburgh Sudden Death Brain Bank. Post-mortem tissue was col-
lected with ethics approval from East of Scotland Research Ethics 
Service (16/ES/0084) in line with the Human Tissue (Scotland) Act 
(2006); the use of post-mortem tissue for studies was approved by 
the Edinburgh Brain Bank ethics committee and the Academic 
and Clinical Central Office for Research and Development 
(ACCORD) medical research ethics committee (AMREC). Clinical 
data were collected for the Scottish Motor Neurone Disease 
Register (SMNDR) and Care Audit Research and Evaluation for 
Motor Neurone Disease (CARE-MND) platform,28 with ethics ap-
proval from Scotland A Research Ethics Committee (10/MRE00/78 
and 15/SS/0216). Donor patients underwent neuropsychological 
testing with the Edinburgh Cognitive and Behavioural ALS Screen 
(ECAS).29 Clinical correlates of motor dysfunction/disease progres-
sion include disease duration (months) and sequential ALS func-
tional rating scale (ALSFRS) data-points. Clinical correlates of 
cognition include ECAS scores for ALS-specific and ALS non- 
specific subdomain scores. All patients consented to use of their 
data during life.

NanoString sequencing and analysis

RNA from human tissue was extracted using the RNAstorm FFPE 
RNA extraction kit (Cell Data Sciences) on two 10 µm curls per sam-
ple cut from BA4. RNA was eluted in 50 μl nuclease-free water, after 
which sample concentrations were measured using a NanoDrop 
1000 (ThermoFisher Scientific). Samples that did not meet the min-
imum 60 ng/μl were concentrated using an Eppendorf Concentrator 
Plus (Eppendorf) for 10 min at 45°C, measured again, and concen-
trated for an additional 5 min at 45°C if necessary. Samples were di-
luted in nuclease-free water to a final concentration of 600 ng RNA 
in 10 μl water for NanoString sequencing. Sequencing was 

performed by Host and Tumour Profiling Unit (HTPU) Microarray 
Services with the nCounter neuroinflammation panel (for more in-
formation see https://nanostring.com/products/ncounter-assays- 
panels/neuroscience/neuroinflammation/), which includes 770 
genes, expressed by various cell types, and related to immunity 
and inflammation, neurobiology and neuropathology, and metab-
olism and stress30 (Supplementary material). All samples passed 
routine quality control checks. Differential gene expression ana-
lyses between control and ALS cohorts were performed in RStudio 
(R version 4.1.1)31 using ‘DESeq2’32 (version 1.32.0) with 
‘RUVSeq’33 (version 1.26.0) to estimate and regress out unwanted 
variation (k = 3 factors of unwanted variance34). P-values were ad-
justed using a Benjamini-Hochberg false discovery rate (FDR) 
threshold (P < 0.05). Plots were made using the ‘ggplot2’ package35

(version 3.3.5) in R. Gene ontology (GO) enrichment analysis36 was 
performed with the ‘topGO’ package (version 2.44.0)37 in R, and 
gene set analysis correlation adjusted mean rank (CAMERA)38

from the ‘limma’ package39 (version 3.48.3) in R was performed 
using the Molecular Signatures Database (MSigDb)40,41 GO category 
terms, with the nCounter neuroinflammation gene panel as the 
background gene set and gene annotations taken from Ensembl 
(version 96).42 GO and CAMERA results were considered significant 
if −log10(P-value) > 1.3; significant CAMERA results were filtered for 
gene sets with n = 10+ genes. Clustering analyses were performed 
on housekeeping-normalized and scaled (z-transformed) counts 
using the ‘pheatmap’ package43 (version 1.0.12) in R. Correlations 
of immunohistochemistry (IHC) and ECAS data with housekeeping- 
normalized counts were calculated with the ‘corrplot’ package44

(version 0.91) in R, using Spearman’s test. Gene set testing 
was also performed with cell type-specific gene sets derived 
from published Brain RNA-Seq data20 to determine cell type- 
specific dysregulation of transcripts. For this analysis, ratios 
were calculated for the expression of each gene in each cell type 

Table 2 Sporadic ALS and SOD1-ALS cohort demographics

Case 
number

Sex Age at 
death (y)

Clinical 
diagnoses

Disease duration 
(months)

ECAS Neuronal pTDP43 
burden

Glial pTDP43 
burden

sALS 1 F 78 ALS 11 No 1 1
sALS 2 F 76 ALS 12 No 2 2
sALS 3 M 90 ALS 14 No 0 1
sALS 4 M 70 ALS 16 Yes (unimpaired) 1 2
sALS 5 M 57 ALS, FTD 20 Yes (FTD, 3 domains) 1 1
sALS 6 F 68 ALS 24 Yes (behavioural dysfunction) 1 1
sALS 7 M 73 ALS 24 Yes (executive dysfunction) 0 0
sALS 8 F 61 ALS 24 No 2 0
sALS 9 M 75 ALS 50 No 1 2
sALS 10 M 71 ALS 52 No 1 1
sALS 11 F 50 ALS 54 Yes (unimpaired) 1 1
sALS 12 F 72 ALS 55 Yes (unimpaired) 3 3
sALS 13 F 72 ALS 60 No 2 1
sALS 14 M 61 ALS 94 No 2 2
sALS 15 F 81 ALS 98 No 2 1
sALS 16 F 66 ALS 99 Yes (fluency dysfunction) 0 2
sALS 17 F 76 ALS, FTD 130 Yes (FTD, 3 domains) 1 1
sALS 18 M 66 ALS 134 Yes (unimpaired) 1 1
SOD1-ALS 1 M 46 ALS 14 Yes (unimpaired) 0 0
SOD1-ALS 2 M 71 ALS 38 No 0 0
SOD1-ALS 3 M 64 ALS 67 Yes (unimpaired) 0 0
SOD1-ALS 4 F 59 ALS 98 Yes (unimpaired) 0 0
SOD1-ALS 5 F 75 ALS 127 No 0 0

ALS = amyotrophic lateral sclerosis; ECAS = Edinburgh Cognitive and Behavioural ALS Screen; F = female; FTD = frontotemporal dementia; M = male; sALS = sporadic ALS; y = years.
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compared to its maximum expression in any other cell type. 
‘Human_(cell type)_5_times’ indicates all genes for which the calcu-
lated ratio is >5, ‘human_(cell type)_10_times’ indicates all genes for 
which the calculated ratio is >10, and ‘human_(cell type)_top100’ indi-
cates the 100 genes with the highest ratio for that cell type, that is, the 
most specific genes for each cell type. Differential expression analysis 
between neuroinflammatory panel signature (NPS1 and NPS2) cases in 
the C9-ALS-FTSD cohort was conducted as described earlier, and 
all genes with an unadjusted P-value < 0.05 and adjusted P-value ≠ 
NA (i.e. not available due to low mean normalized counts) were taken 
through clustering analyses with the ‘pheatmap’ package using 
housekeeping-normalized and scaled (z-transformed) counts43

(version 1.0.12) in R.

Public RNA sequencing data analysis

A raw count matrix of publicly available frontal cortex and cerebel-
lum RNA sequencing data26 were accessed via the NCBI Gene 
Expression Omnibus (accession number GSE67196). Data were di-
vided by brain region and counts for C9-ALS and sALS cases were 
extracted. Data were variance stabilized and scaled (i.e. 
z-transformed) across samples using ‘DESeq2’32 (version 1.32.0) in 
RStudio (R version 4.1.1).31 Clustering analyses were performed 
for each region using the ‘pheatmap’ package43 (version 1.0.12) in 
R. Heat maps included equivalent demographic, clinical or patho-
logical information available with the public data analysed: sex, re-
gion of onset and disease duration.

Immunohistochemistry

Post-mortem brain tissue was obtained from BA4, BA39, BA44, BA46 
and fixed in 10% formalin for a minimum of 72 h. These regions were 
selected for their associations with clinical phenotypic correlates as 
we have shown previously29: BA4, motor; BA39, language; 
BA44, fluency and language; and BA46, executive function. For the 
FKBP5/NF-κB validation dataset, an additional case was included 
due to differences in tissue availability at the time of request. 
Tissue was dehydrated in a 70–100% ascending alcohol series and 
subsequently washed three times for 4 h in xylene. Three 5 h paraf-
fin wax embedding stages were performed, after which formalin- 
fixed, paraffin-embedded (FFPE) tissue was cooled and sectioned 
on a microtome (ThermoFisher Scientific) into 4 μm serial sections. 
Sections were placed on Superfrost (ThermoFisher Scientific) 
microscope slides and left to dry overnight at 40°C. Sections were 
dewaxed with successive xylene washes, hydrated with alcohol, 
and treated with picric acid to remove formalin pigment and 
quench lipofuscin. For NF-κB staining, antigen retrieval was carried 
out in Tris-EDTA buffer (pH 9) in a pressure cooker for 30 min, after 
which a Novolink Polymer detection system45 was used with an 
Abcam anti- NF-κB antibody (Abcam) at a 1 in 1500 dilution. For 
FKBP5 staining, antigen retrieval was carried out in citric acid buffer 
(pH 6) in a Pressure King Pro pressure cooker for a 20 min cycle; sam-
ples were heated to 140°C and incubated for 5 min, after which pres-
sure was manually released. The Novolink Polymer detection 
system (Leica Biosystems) was then used with an anti-FKBP5 anti-
body (OriGene) at a 1 in 80 dilution. Staining was performed with 
3,3′-diaminobenzidine (DAB) chromogen and counterstained with 
haematoxylin, as per standard operating procedures, after which 
slides were dehydrated, washed in xylene, and coverslips mounted 
using DPX mountant (Sigma Aldrich). For sequential staining, slides 
initially stained with NF-κB or FKBP5 were soaked in xylene over-
night, after which the coverslips were carefully removed, and the 

slides were soaked for several more hours until the DPX mountant 
had dissolved off the sections. Slides were restained according to 
standard operating procedures mentioned above, from hydration, 
to citric acid antigen retrieval with a pressure cooker, to staining 
with an anti-Iba1 antibody (Abcam) at a 1 in 3000 dilution. 
Protocols for CD68, Iba1, pTDP43 and GFAP staining were described 
previously.24 Manual grading of neuronal and glial TDP-43 burden 
was performed by a pathologist (J.M.G.) using a scale from 0 to 3, 
as outlined in a previous study.46

Image analysis

For analysis of NF-κB and FKBP5 immunohistochemical staining, 
whole tissue sections were scanned with Brightfield at ×40 magnifi-
cation using a Hamamtsu NanoZoomer XR [Hamamatsu Photonics 
(UK) Ltd]. Using NDP.view2 viewing software (Hamamatsu), regions 
of interest (ROIs) were taken from key regions for quantification. 
Three ROIs were taken from grey matter regions including layer V 
neurons, and three ROIs were taken from white matter regions. 
ROIs were analysed with QuPath software47 cell segmentation; cells 
were segmented using a watershed method based on haematoxylin 
counterstaining, with different parameters for grey and white mat-
ter and for neurons and glia to best distinguish between cell types. 
Full scripts used for the automated cell segmentation and quantifi-
cation of NF-κB and FKBP5 are included in the Supplementary 
material. Cells were classified as nuclear- and/or cytoplasmic- 
positive for each stain based on the DAB mean intensity of each 
compartment. Measurements were exported at the image (number 
of nuclear- and/or cytoplasmic-positive cells) and cell level (inten-
sity and morphological features). Nuclear and cytoplasmic inten-
sities were averaged across all cells and ROIs for each case to 
avoid pseudoreplication, and a nuclear/cytoplasmic ratio was cal-
culated for each case. Data were visualized in RStudio with the 
‘ggplot2’ package35 (version 3.3.5). Results were presented as un-
grouped or grouped by brain region, grey or white matter, and vas-
cular or non-vascular adjacent. Analysis methods for CD68, Iba1, 
pTDP43 and GFAP staining can be found in our previous study.24

BaseScope™ in situ hybridization

In situ hybridization was performed on tissue sections using 
BaseScope™ reagents (Advanced Cell Diagnostics) as per the man-
ufacturer’s instructions48 and as described previously.49 Probe hy-
bridization was performed using BaseScope™ probes for BDNF 
mRNA transcripts. Slides were counterstained using haematoxylin 
and lithium carbonate, washed in xylene, and coverslips were 
mounted using DPX Mountant. For BDNF BaseScope™ in situ hy-
bridization, due to the sparsity of mRNA transcripts, expression 
was quantified manually by a pathologist (J.M.G.), who was blinded 
to clinical data, and a second rater (O.M.R.), who performed a 20% 
validation check; no discrepancies were identified between raters. 
Expression was quantified using a product score composed of 
two factors to account for multiple aspects of abundance: total 
transcript count per high-power field (×40) × total number of 
transcript-positive cells per high-power field. Ten high-power fields 
were evaluated and averaged across each case.

Statistical analyses

For DESeq2 differential expression analysis, a Benjamini-Hochberg 
FDR threshold (P < 0.05) was used to determine significance. For 
comparisons and correlations, normality of data distribution was 
evaluated with Shapiro-Wilk’s test. Datasets that were found to 
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have a majority normal distribution were subjected to parametric 
tests (i.e. unpaired t-test for nuclear/cytoplasmic intensity ratio 
analysis) and datasets that were found to be majority non-normal 
were subjected to non-parametric tests (i.e. Spearman’s test for cor-
relations between immunohistochemical and NanoString data, 
and BDNF abundance and disease duration).

Results
Two distinct neuroinflammatory signatures exist in 
C9-ALS-FTSD

To explore C9orf72 mutation-related changes at the gene expression 
level, motor cortex (BA4) tissue was sequenced using NanoString mo-
lecular barcoding, which provides accurate mRNA counts without the 
need for amplification steps that favour highly abundant transcripts.30

This method circumvents RNA degradation issues related to post- 
mortem autolysis, as probes bind to the central, most preserved por-
tion of mRNA transcripts. A ‘neuroinflammation panel’ of 770 genes 
expressed by different cell types and related to immunity and inflam-
mation, neurobiology and neuropathology, and metabolism and 
stress was used.30 To first characterize disease-related dysregulation 
in the cohort, differential expression analysis between C9-ALS-FTSD 
(n = 10) and controls (n = 10) (Table 1) was conducted; raw and pro-
cessed gene expression data are available in the Supplementary 
material. The analysis revealed a list of 20 genes that were significantly 
differentially expressed between C9-ALS-FTSD cases and controls 
(Fig. 1A). The microgliosis we observed previously in C9-ALS-FTSD24

is supported here by the upregulation of CD163, a marker of macro-
phage activity, and the downregulation of P2RY12, a marker of micro-
glial homeostasis.50,51 The 20 significantly differentially expressed 
genes clustered into two similarly sized groups, those that were upre-
gulated in C9-ALS-FTSD (SERPINA3, S100A10, FKBP5, EMP1, CD163, 
SPP1, CP, CTSE, BAG3) and those that were downregulated (ARC, 
RALB, EGR1, JUN, COX5B, P2RY12, BDNF, SLC17A6, BAD, MFGE8, FOS) 
relative to control cases. GO enrichment analysis revealed associa-
tions of these significantly dysregulated genes with pathways impli-
cated in processes such as AP-1 complex signalling, pri-miRNA 
transcription, Smad-signalling, neuron projection and death, post- 
translational protein modification, and acute-phase response 
(Fig. 1B). Importantly, as the number of significantly dysregulated 
genes in this analysis is relatively low, the GO findings must be inter-
preted with caution. Thus, we also employed a competitive gene set 
analysis, CAMERA, which considers whole shifts in expression of 
groups of genes based on fold changes. Neuron development, projec-
tion and differentiation gene sets were downregulated in C9-ALS- 
FTSD cases relative to controls, as well as gene sets for synaptic struc-
ture, plasticity and transmission, cell projection organization and 
cytochrome c release; blood microparticle, platelet degranulation, 
endopeptidase inhibitor activity and inflammatory response gene 
sets were upregulated (Fig. 1C). Finally, microglia-specific genes were 
found to be significantly upregulated in our dataset, in line with 
our previous findings,24 further supporting an increase in micro-
glial activation24 (Table 3).

Clustering of gene expression in C9-ALS-FTSD cases across the 
whole panel revealed the existence of two distinct gene expression 
signatures, herein referred to as neuroinflammatory panel signa-
ture 1 and 2 (NPS1 and NPS2). These signatures defined two disease 
subgroups and were delineated by the direction of expression of two 
gene clusters (Fig. 1D). The clearest phenotypic distinctions between 
NPS1 and NPS2 observed were that of manually graded glial TDP-43 
burden and language impairment as determined by the ECAS, with 

highest TDP-43 burden and language impairment only occurring in 
NPS1. No clear segregation was observed for demographic (i.e. sex) 
or other phenotypic data (i.e. region of onset, disease duration). 
GO analysis of C9-ALS-FTSD gene clusters revealed an enrichment 
of immune and inflammatory response pathways in Gene Cluster 
1, such as positive regulation of interleukin-8, NF-κB and inter-
feron-γ responses (Fig. 1E). By contrast, Gene Cluster 2 exhibited 
an enrichment of axonal transport and synaptic signalling path-
ways (Fig. 1E). To determine which genes within the panel were con-
tributing to the delineation of these clusters, differential expression 
analysis was conducted to identify differentially expressed genes 
between cases exhibiting NPS1 and NPS2 signatures. Forty-seven 
genes were included in a new clustered heat map (herein referred 
to as the NPS-defining gene list), exemplifying a clearer contrast 
between the direction of expression of genes between the two signa-
tures (Fig. 1F). These genes were mostly from original Gene Cluster 2, 
related to axonal transport and synaptic signalling (Fig. 1G).

Differentially expressed genes correlate with 
immunohistochemical staining features in 
C9-ALS-FTSD

To explore the relationship of differentially expressed genes in 
C9-ALS-FTSD with glial activation and TDP-43 burden (Fig. 2A), we 
correlated microglia, astrocyte, and TDP-43-related immunohisto-
chemical data from our previous digital pathology study24 with tran-
script counts of the 20 differentially expressed genes identified in 
Fig. 1. These data consisted of digitally extracted features (i.e. stain- 
positive superpixel counts, a measurement of stain abundance) 
from stained motor cortex (BA4) of the same C9-ALS-FTSD cohort in-
cluded in the current study, and included Iba1 (i.e. homeostatic 
microglia), CD68 (i.e. activated macrophage), GFAP (i.e. activated 
astrocyte) and pTDP43 (i.e. phosphorylated TDP-43 aggregate) stain-
ing. Expression levels of several genes were found to correlate sig-
nificantly with the number of CD68+ or pTDP43+ superpixels, with 
positive correlations between CD68+ and proinflammatory genes 
(e.g. FKBP5, CD163, SPP1), as well as with molecular chaperone regu-
lator BAG3, and negative correlations between pTDP43 and the ex-
pression of JUN and FOS, subunits that form the transcription 
factor complex activator protein 1 (AP-1) (Fig. 2B). When subdivided 
by disease status, the significant proinflammatory gene expression 
correlations with CD68+ were lost in controls and a significant nega-
tive correlation of homeostatic microglia marker P2RY12 expression 
with pTDP43+ appeared (Fig. 2B). Finally, a positive correlation with 
expression of the growth factor BDNF with pTDP43+ superpixels was 
seen in C9-ALS-FTSD but not controls (Fig. 2B). Interestingly, when 
cases were divided by NPS, NPS1 cases exhibited more positive cor-
relations with stain abundance, while NPS2 correlation coefficients 
were more often negative (though non-significant). These data sug-
gest distinct NPS-related directionality in correlations between gene 
expression and pathological features such as TDP-43 aggregation 
and glial activation (Fig. 2C), in line with our observation that 
C9-ALS-FTSD cases with a predominance of NPS1 gene expression 
tended to have higher glial TDP-43 aggregation burden (Fig. 1D).

FKBP5 expression correlates significantly with 
clinical metric of executive dysfunction for 
C9-ALS-FTSD

To investigate possible relationships between differential tran-
scription patterns and cognition, we examined correlations 
between differential gene expression and ECAS scores for the 
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Figure 1 Two distinct neuroinflammatory signatures exist in C9-ALS-FTSD. (A) Volcano plot showing differentially expressed genes between 
C9-ALS-FTSD cases and controls by log2 fold change and −log10 P-value. Non-significant genes are represented in red and significant genes [i.e. above 
the Benjamini-Hochberg false discovery rate (FDR) threshold of P-adjusted < 0.05] are represented in blue. (B) Gene ontology (GO) enrichment analysis 
of genes enriched in C9-ALS-FTSD cases by type with −log10(P-value) score showing the top 12 most differentially expressed gene sets. Italicized terms 
indicate downregulation; key genes for each term are shown to the left. (C) CAMERA gene set analysis of gene sets dysregulated in amyotrophic lateral 
sclerosis (ALS) cases, with the number of genes for each set shown to the left, showing the top 12 most differentially expressed gene sets. (D) Clustered 
neuroinflammation panel heat map including expression of entire NanoString panel (770 genes), showing two distinct neuroinflammatory panel sig-
natures (NPS1 and NPS2) in C9-ALS-FTSD. Gene Clusters 1 and 2 are boxed, with opposite directions of expression between NPS. Clinical (region of on-
set, disease duration, ECAS) and pathological (neuronal and glial pTDP-43 burden) keys are shown. (E) GO enrichment analysis for Gene Clusters 1 and 2 
(that define NPS1 and NPS2) showing top 12 most differentially expressed gene sets. Italicized terms indicate downregulation. (F) Clustered neuroin-
flammation panel heat map including only differentially expressed genes between C9-ALS-FTSD cases with NPS1 and NPS2, showing two distinct NPS, 
with genes listed on the right. (G) Venn diagram showing overlap between genes from the filtered NPS gene list in E with Gene Cluster 1 and 2 from D 
and E. BP = biological process; CC = cellular component; ECAS = Edinburgh Cognitive and Behavioural ALS Screen; F = female; FTD = frontotemporal 
dementia; M = male; MF = molecular factor; N/A = not applicable; SD = standard deviation.
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20 genes we identified as most differentially expressed between 
C9-ALS-FTSD cases and controls (Fig. 3A). FKBP5 and COX5B were 
found to negatively correlate with executive score. These relation-
ships must be interpreted with caution as gene expression was 
measured in the motor cortex and not regional correlates of ECAS 
scores. However, it may be that changes in the motor cortex are re-
flective of changes in the relevant regions or a global cortical bur-
den of disease. The immunophilin FK506-binding protein 51 
(FKBP5) modulates inflammation through NF-κB signalling,52,53

and forms a chaperone complex with a heat shock protein 
(HSP90) in response to stress.54 We interrogated whether this was 
also the case in C9-ALS-FTSD brain tissue by using immunohisto-
chemistry, rather than in situ hybidization, as the functional form 
of NF-κB is a protein whose cellular localization and expression le-
vel determines its function. Serial tissue sections were stained with 
FKBP5 and NF-κB and compared between control and C9-ALS-FTSD 
tissue. No evidence of a significant increase in nuclear/cytoplasmic 
FKBP5 intensity ratios was observed, though there was a general 
trend towards an increase in C9-ALS-FTSD (Supplementary Fig. 1). 
However, significant increases in nuclear/cytoplasmic NF-κB inten-
sity ratios were found in BA4 grey matter in C9-ALS-FTSD, suggest-
ing upregulation of this pathway in disease (Fig. 3B). Upon 
sequential staining of the same FKBP5- or NF-κB-stained tissue 
with Iba1, cell type-specific staining was observed for both FKBP5 
and NF-κB (Fig. 3C). Notably, microglia were found to be FKBP5+, ac-
companied by both FKBP5+ and FKBP5− neuroglia of other sub-
types. Contrastingly, microglia were the only glial subtype found 
to be NF-κB+ (Fig. 3D). Finally, when cases were stratified by inflam-
matory signature, NPS1 cases exhibited significantly higher nu-
clear/cytoplasmic NF-κB ratios in grey matter glia in BA4, and 
significantly lower ratios in neurons in extramotor BA44 (Fig. 3E).

BDNF expression correlates significantly with 
disease duration in C9-ALS-FTSD

To explore relationships between expression of the 20 differen-
tially expressed genes in C9-ALS-FTSD and disease progression, 
gene expression was correlated with disease duration and 
ALSFRS slope of decline, identifying a positive correlation 

between BDNF expression and disease duration (Spearman’s 
R = 0.64, P = 0.047) (Fig. 4A). BaseScope™ in situ hybridization, a 
highly sensitive method for quantification of transcript abun-
dance,55 was used to validate our finding that BDNF expression 
correlates with disease duration in C9-ALS-FTSD. BDNF expres-
sion in BA4 was manually graded using a product score to ac-
count for both cell and regional transcript abundance. BDNF 
was predominantly expressed in neurons, with heterogeneous 
abundance, at both the cell and regional level (Fig. 4B). We con-
firmed a positive correlation between BDNF expression and dis-
ease duration (Fig. 4C). Individuals with a short disease duration 
(i.e. less than 48 months post-onset)56 consistently showed low-
er levels of BDNF expression, while individuals with long disease 
duration (i.e. more than 48 months post-onset) exhibited higher 
expression.

Distinct inflammatory signatures exist across 
C9-ALS-FTSD, sporadic ALS and SOD1-ALS cohorts

To interrogate whether the observed NPS were specific to 
C9-ALS-FTSD or common across multiple ALS cohorts, we next 
applied the nCounter neuroinflammation panel to sALS (n = 18) 
and SOD1-ALS (n = 5) cohorts (Table 2). Differentially expressed 
genes between each cohort and controls were largely different, 
with no overlap of genes passing the FDR threshold present in 
all three cohorts (Fig. 5A and B). GO analysis of these genes re-
vealed both distinct and shared significant terms across cohorts 
related to immune function and proteostasis, as well as other 
pathways (Supplementary material). Distinct terms included re-
sponse to interleukin, microRNA gene transcription, neuronal 
death, post-translational protein modification, aggrephagy and 
chaperone-mediated protein transport in C9-ALS-FTSD; cell devel-
opment and morphogenesis in sALS; and translation initiation, 
protein kinase B signalling, chaperone-mediated protein folding 
in SOD1-ALS. Overlap included postsynaptic neurotransmission 
in C9-ALS-FTSD and sALS, glial migration in C9-ALS-FTSD and 
SOD1-ALS, and chemokine-mediated signalling, and T cell, B cell 
and natural killer cell processes in sALS and SOD1-ALS 
(Supplementary material). Despite these differences, heat map 

Table 3 Cell type-specific dysregulation in C9-ALS-FTSD based on Brain RNA-Seq data

Gene set No. genes Direction P-value FDR

human_microglia_5_times 113 Up 8.58 × 10−4 0.03089637
human_microglia_10_times 78 Up 0.00983159 0.08848435
human_endothelial_top100 12 Up 0.02976191 0.13392859
human_microglia_top100 38 Up 0.03978398 0.15913592
human_endothelial_5_times 18 Up 0.04770685 0.17174467
human_endothelial_10_times 13 Up 0.05512601 0.18041241
human_fetal_astrocytes_5_times 46 Down 0.13938532 0.34892127
human_neuron_5_times 19 Down 0.21064688 0.42102263
human_fetal_astrocytes_10_times 22 Down 0.22756045 0.42102263
human_neuron_top100 5 Down 0.24559653 0.42102263
human_neuron_10_times 8 Down 0.27457446 0.44930366
human_fetal_astrocytes_top100 7 Down 0.67226571 0.84000835
human_mature_astrocytes_5_times 9 Up 0.67667339 0.84000835
human_oligodendrocyte_5_times 24 Down 0.73334664 0.86196644
human_mature_astrocytes_10_times 5 Up 0.76421218 0.86196644
human_mature_astrocytes_top100 7 Down 0.76619239 0.86196644
human_oligodendrocyte_top100 21 Up 0.80590044 0.8624924
human_oligodendrocyte_10_times 14 Up 0.81457615 0.8624924

FDR = false discovery rate.
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cluster analysis of C9-ALS-FTSD, sALS and SOD1-ALS cases using 
the filtered NPS gene list revealed two distinct NPS subgroups, 
present across the included cohorts, again delineated by the ex-
pression of two gene clusters related to immune response or 
axonal transport and synaptic processes (Fig. 5C and 
Supplementary Fig. 2A and B for full panel and GO). The two sub-
groups also did not appear to segregate clearly based on our avail-
able clinical metrics for cognitive function or glial pTDP-43 
burden, unlike what was observed within the C9-ALS-FTSD cohort 
alone. However, it is worth noting that pTDP-43 is a marker of 
cytoplasmic aggregation, which may not necessarily reflect loss 
of TDP-43 function or early aggregation events; future studies 
looking at the emergence of cryptic exons or other functional 
measures of TDP-43 pathology in bulk RNA sequencing datasets 
are warranted to examine this further. Interestingly, differential 
expression analysis revealed significant dysregulation of immune 
response genes (i.e. complement and microglial genes) in cogni-
tively impaired cases (C9-ALS-FTSD, sALS) (Supplementary Fig. 
2C and D) while only one significantly dysregulated gene, CNN2, 
was detected between unimpaired cases (C9-ALS-FTSD, sALS) 
and controls. As such, it is possible that cognitively impaired 
cases have convergent disease mechanisms despite being from 

different cohorts, while unimpaired cases may be too diverse to 
detect significant dysregulation in this context.

To test the generalizability of the filtered NPS gene list from 
C9-ALS-FTSD cases across ALS cohorts, the list was next 
applied to the clustering analysis including cases from all co-
horts (Fig. 5C). Genes clustered in the same way as in the 
C9-ALS-FTSD analysis (Fig. 1E) and groups were delineated 
such that C9-ALS-FTSD cases remained divided as previously. 
Opposite directions of expression were most apparent in the 
40 genes encompassed within the clades comprising the lower 
quadrants of the heat map (Fig. 5C). The gene list was next 
tested further on an independent cohort of post-mortem frontal 
cortex and cerebellum of eight C9-ALS and 10 sALS cases from 
publicly available RNA sequencing data26 (Fig. 5D). Strikingly, in 
the frontal cortex, clustering analysis revealed a very distinct 
delineation between NPS1 and NPS2, present across both co-
horts and particularly defined by the direction of expression 
of 20 of 47 of the genes in the filtered list (Fig. 5D). Notably, 
this effect did not persist in the cerebellum, for which the clus-
tering analysis using the filtered gene list did not reveal distinct 
subgroups (Supplementary Fig. 2E), highlighting the possibility 
of region-specific signatures.
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Discussion
This study investigated neuroinflammatory differences in deeply 
clinically phenotyped ALS post-mortem tissue, allowing us to com-
pare molecular data directly with motor and cognitive as well as 

immunohistochemical features. We found an upregulation of 

microglia-specific genes in C9-ALS-FTSD, substantiating previous 

findings of microglial dysregulation in cases with this genetic back-

ground.17,24 Microglia have been shown to require C9orf72 for 
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normal function in C9orf72−/− microglia and peripheral myeloid cell 
models, demonstrating a pro-inflammatory response as a result of 
C9orf72 knockout.22,23 Thus, haploinsufficiency resulting from 
C9orf72 HRE may lead to the microglial dysregulation observed 
both in this study and elsewhere.

Two genes whose expression was found to correlate with clinic-
al scores (BDNF, FKBP5) were further validated with spatial reso-
lution using immunohistochemistry or BaseScope™ in situ 
hybridization. C9-ALS-FTSD-related increased nuclear localization, 
and thus activation of FKBP5 signalling partner, NF-κB, was ob-
served in neurons and glia in both motor and extramotor regions, 
along with exhibition of microglia-specific NF-κB staining in white 
matter. Activation of NF-κB is associated with the release of 
pro-inflammatory cytokines, such as TNF-α and IL-1β,57 which 
have been shown cause neurotoxicity in various contexts.58,59 It is 
indicative of an upregulation of an inflammatory response 
mediated by IKKα/β kinases,60 which are negatively regulated by 
autophagy.61,62 It is possible that the more pro-inflammatory signa-
ture, the increased BA4 grey matter glial NF-κB activation, and the 
tendency toward higher TDP-43 burden seen in C9-ALS-FTSD cases 
with NPS1 is related to lower levels of negative regulation via autop-
hagy. Indeed, the NLRP3 inflammasome, as well as several 
autophagy-related genes (i.e. ATGs), are part of Gene Cluster 1; ac-
tivation of NLRP3 is also increased with autophagy deficiency.61,63,64

Thus, therapeutic studies involving the use of immunomodulatory 
or autophagy-targeting drugs may seek to consider stratification of 
cases based on molecular signatures of inflammation to ensure the 
meaningful measurement of outcomes. Additionally, such trials 
may also benefit from monitoring NF-κB activation to assess target 
engagement and therapeutic efficacy; activation status could be ob-
tained by profiling levels of pro-inflammatory cytokines associated 
with NF-κB signalling in participant blood samples. Further, as 
NF-κB activation in tissue-resident mononuclear cells (i.e. micro-
glia) has been observed in the present study and in other recent 
works, circulating peripheral blood mononuclear cell (PBMC) tran-
scriptomes could provide a proxy measure of such activation.61,65

The utility of transcriptome data for identifying molecular sig-
natures that correlate with survival has been recently demon-
strated, identifying a subgroup of ALS patients with poorer 
survival and differential expression of genes related to glial 
signalling.66,67 Here we identify BDNF expression as a clinical correl-
ate of survival, highlighting the additional mechanistic insights 

afforded through our targeted approach. Expression of BDNF in 
the motor cortex was found to be downregulated in disease, and 
positively correlated with disease duration, suggesting a protective 
effect. BDNF signalling has been previously demonstrated to have 
either neuroprotective68 or indirectly excitotoxic effects.69 BDNF ex-
pression has also been shown to correlate with decreased cogni-
tion70. Importantly, many preclinical studies investigating the 
effects of BDNF in ALS are biased towards SOD1 mouse models,71,72

in which increased BDNF-TrkB is observed.73 Further, a phase III 
clinical trial conducted using recombinant methionyl human 
BDNF did not demonstrate therapeutic benefit, though this study 
and further trials conducted thereafter did not stratify genetically; 
importantly, C9orf72 mutations in ALS had not been discovered at 
the time.74,75 In contrast to SOD1 models, this study shows that 
BDNF expression is downregulated in C9-ALS-FTSD post-mortem 
tissue, and C9-ALS-FTSD cases appear to have a more inflammatory 
background; thus, BDNF-related treatments may function differ-
ently in a C9-ALS-FTSD context. Expression of BDNF by immune 
cells was found to promote neuronal survival in human tissue cul-
ture.76 Moreover, subcutaneous perfusions of BDNF have been 
shown to reverse microglial activation in aged mice,77 perhaps 
through indirect downregulation of microglial MHC-II expression.78

As such, cell type-specific manipulation of BDNF expression may 
provide a more nuanced approach to controlling microglial activa-
tion and neuronal loss. In addition to a possible treatment, BDNF 
could also have utility as a biomarker for disease prognosis. 
Recently, BDNF and pro-BDNF levels in CSF were shown to be asso-
ciated with survival in ALS patients; in line with our discussion, 
C9-ALS patients showed significantly lower serum BDNF levels 
than non-carriers.79 Finally, monitoring of BDNF levels to assess 
both therapeutic efficacy and participant safety, particularly given 
its hormetic nature and the potential for excitotoxicity, will be im-
portant in trials investigating modulators of BDNF signalling, such 
as TrkB receptor agonists.80

While other recent approaches have used RNA sequencing to in-
vestigate and identify important gene expression signatures across 
the transcriptome,66,67,81,82 our targeted approach to investigating 
neuroinflammatory signatures without amplification bias ensured 
a focused evaluation of neuroinflammation specifically. We identi-
fied two distinct molecular profiles, NPS1 and NPS2, with immune 
response terms enriched in Gene Cluster 1 and axon transport 
and synaptic signalling terms enriched in Gene Cluster 2. 
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These signatures do not segregate clearly with known demograph-
ic, clinical or pathological data across cohorts suggesting that these 
signatures are not readily identifiable through visible features. 
These signatures are present in multiple ALS cohorts within our 
study and in an independent publicly available dataset, underscor-
ing their generalizability and, crucially, highlighting the import-
ance of molecular stratification in clinical trials. Clinical trials 
may benefit from employing stratification methods based on mo-
lecular markers rather than, or in addition to, genetic and clinical 
criteria, as without stratification a positive effect of treatments on 
a particular subgroup may be obscured. For example, the recent 
macrophage-targeted sodium chlorite trial (NP001) showed no 
overall effect on the primary outcome measure.83 However, subse-
quent subgroup analysis showed that those that did have a benefi-
cial therapeutic response to the drug had higher than average levels 
of circulating IL-18 and LPS (akin to our NPS1), implying that mo-
lecular stratification by key circulating inflammatory markers 
could enable us to treat a subset of ALS patients for whom inflam-
mation plays a more substantial role.83 Our data would suggest that 
a combinatorial blood-based biomarker approach,84 using circulat-
ing markers derived from a gene panel such as ours and validated 
across distinct ALS patient populations (as in Fig. 5D), would be a 
more appropriate way to identify subgroups that would benefit 
from targeted therapies. Promising candidates are based on the 
20 genes from our NPS-defining gene list that strongly delineate 
clusters in an independent, publicly available dataset (i.e. GRIN2B, 
RALB, BCL2L2, PINK1, MAP2K1, TBR1, PAK1, ATP6V1A, NEFL, GRIA1, 
CAMK4, GRIA4, MEF2C, CD47, MAPK10, RAB6B, PRKACB, RB1CC1, 
HOF1A, GCLC) and two additional NPS-defining genes (CD44 and 
TYROBP) that also appear in a recently identified gene list defining 
a molecular subgroup relating to glial activation.67 Molecular strati-
fication, in the form of tissue-derived and circulating biomarkers, is 
the mainstay of patient stratification for clinical trials in oncol-
ogy85; given the convergence of these studies with our data, mo-
lecular subtyping should be considered for future trials 
implementing targeted therapies in people with ALS.
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