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Abstract
Goal Recognition is the task of discerning the intended goal that an agent aims to achieve, given a set of goal hypotheses, a
domain model, and a sequence of observations (i.e., a sample of the plan executed in the environment). Existing approaches
assume that goal hypotheses comprise a single conjunctive formula over a single final state and that the environment dynamics
are deterministic, preventing the recognition of temporally extended goals in more complex settings. In this paper, we expand
goal recognition to temporally extended goals in Fully Observable Non-Deterministic (fond) planning domain models,
focusing on goals on finite traces expressed in Linear Temporal Logic (ltl f ) and Pure-Past Linear Temporal Logic (ppltl).
We develop the first approach capable of recognizing goals in such settings and evaluate it using different ltl f and ppltl

goals over six fond planning domain models. Empirical results show that our approach is accurate in recognizing temporally
extended goals in different recognition settings.

Keywords Automated planning · Goal recognition · Non-deterministic planning · Linear temporal logic.

1 Introduction

Goal Recognition is the task of recognizing the intentions of
autonomous agents or humans by observing their interactions
in an environment. Existing work on goal and plan recogni-
tion addresses this task over several different types of domain
settings, such as plan-libraries [4], plan tree grammars [19],
classical planning domain models [31, 34, 35, 37], stochas-
tic environments [36], continuous domain models [22],
incomplete discrete domain models [29], and approximate
control models [30]. Despite the ample literature and recent
advances, most existing approaches to Goal Recognition as
Planning cannot recognize temporally extended goals, i.e.,
goals formalized in terms of time, e.g., the exact order that
a set of facts of a goal must be achieved in a plan. Recently,
[1] propose a general formulation of a temporal inference
problem in deterministic planning settings. However, most of
these approaches also assume that the observed actions’ out-
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comes are deterministic and do not deal with unpredictable,
possibly adversarial, environmental conditions.

Research on planning for temporally extended goals in
deterministic and non-deterministic domains has increased
over the years, starting with the pioneering work on planning
for temporally extended goals [5] and on planning via model
checking [12]. This continued with the work on integrating
ltl goals into planning tools [27, 28], and, most recently,
[7], introducing a novel optimal encoding of Pure-Past Lin-
ear Temporal Logic goals into for Classical Planning. Other
existing works relate program synthesis [33] with planning
in non-deterministic domains for temporal specifications,
recently focusing on the finite trace variants of ltl [2, 9,
10, 14–16].

In this paper, we introduce the task of goal recognition in
discrete domains that are fully observable, and the outcomes
of actions and observations are non-deterministic, possi-
bly adversarial, i.e., Fully Observable Non-Deterministic
(fond), allowing the formalization of temporally extended
goals using two types of temporal logic on finite traces:
Linear-time Temporal Logic (ltl f ) and Pure-Past Linear-
time Temporal Logic (ppltl) [17].

The main contribution of this paper is three-fold. First,
based on the definition of Plan Recognition as Planning
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introduced in [34], we formalize the problem of recogniz-
ing temporally extended goals (expressed in ltl f or ppltl)
in fond planning domains, handling both stochastic (i.e.,
strong-cyclic plans) and adversarial (i.e., strong plans) envi-
ronments [2]. Second, we extend the probabilistic framework
for goal recognition proposed in [35], and develop a novel
probabilistic approach that reasons over executions of poli-
cies and returns a posterior probability distribution for the
goal hypotheses. Third, we develop a compilation approach
that generates an augmented fond planning problemby com-
piling temporally extended goals together with the original
planning problem. This compilation allows us to use any off-
the-shelf fond planner to perform the recognition task in
fond planning models with temporally extended goals.

This work focuses on fond domains with stochastic non-
determinism, and conduct an extensive set of experiments
with different complex problems. We empirically evaluate
our approach using different ltl f and ppltl goals over
six fond planning domain models, including a real-world
non-deterministic domain model [26], and our experiments
show that our approach is accurate to recognize tempo-
rally extended goals in different two recognition settings:
offline recognition, inwhich the recognition task is performed
in “one-shot”, and the observations are given at once and
may contain missing information; and online recognition, in
which the observations are received incrementally, and the
recognition task is performed gradually.

2 Preliminaries

This section briefly recalls the syntax and semantics of
Linear-time Temporal Logics on finite traces (ltl f and
ppltl) and revises the concept and terminology of fond

planning.

2.1 LTLf and PPLTL

Linear Temporal Logic on finite traces (ltl f ) is a variant of
ltl introduced in [32] interpreted over finite traces. Given a
set of atomic propositions AP , the syntax of ltl f formulas
ϕ is defined as follows:

ϕ:: = a | ¬ϕ | ϕ ∧ ϕ | ◦ϕ | ϕUϕ

where a denotes an atomic proposition in AP, ◦ is the
next operator, and U is the until operator. Apart from the
Boolean connectives, we use the following abbreviations:
eventually as ♦ϕ

.= trueUϕ; always as �ϕ
.= ¬♦¬ϕ; weak

next •ϕ
.= ¬◦¬ϕ. A trace τ = τ0τ1 · · · is a sequence of

propositional interpretations, where τm ∈ 2AP (m ≥ 0) is
the m-th interpretation of τ , and |τ | is the length of τ . We
denotea finite trace formally as τ ∈ (2AP )∗. Given a finite

trace τ and an ltl f formula ϕ, we inductively define when
ϕ holds in τ at position i (0 ≤ i < |τ |), written τ, i |� ϕ as
follows:

– τ, i |� a iff a ∈ τi ;
– τ, i |� ¬ϕ iff τ, i � ϕ;
– τ, i |� ϕ1 ∧ ϕ2 iff τ, i |� ϕ1 and τ, i |� ϕ2;
– τ, i |� ◦ ϕ iff i + 1 < |τ |andτ, i + 1 |� ϕ;
– τ, i |� ϕ1Uϕ2 iff there exists j such that i ≤ j < |τ | and

τ, j |� ϕ2, and for all k, i ≤ k < j , we have τ, k |� ϕ1.

An ltl f formula ϕ is true in τ , denoted by τ |� ϕ, iff
τ, 0 |� ϕ. As advocated by [17], this paper also uses the
pure-past version of ltl f , here denoted as ppltl, due to
its compelling computational advantage compared to ltl f

when goal specifications are naturally expressed in a past
fashion. ppltl refers only to the past and has a natural inter-
pretation on finite traces: formulas are satisfied if they hold
in the current (i.e., last) position of the trace.

Given a set AP of propositional symbols, ppltl formulas
are defined by:

ϕ:: = a | ¬ϕ | ϕ ∧ ϕ | �ϕ | ϕSϕ

where a ∈ AP , � is the before operator, and S is the since
operator. Similarly to ltl f , common abbreviations are the
once operator 	−ϕ

.= true Sϕ and the historically operator
�ϕ

.= ¬	−¬ϕ. Given a finite trace τ and a ppltl formula
ϕ, we inductively define when ϕ holds in τ at position i
(0 ≤ i < |τ |), written τ, i |� ϕ as follows. For atomic
propositions and Boolean operators it is as for ltl f . For
past operators:

– τ, i |� �ϕ iff i − 1 ≥ 0 and τ, i − 1 |� ϕ;
– τ, i |� ϕ1Sϕ2 iff there exists k such that 0 ≤ k ≤ i and

τ, k |� ϕ2, and for all j , k < j ≤ i , we have τ, j |� ϕ1.

A ppltl formula ϕ is true in τ , denoted by τ |� ϕ, if and
only if τ, |τ | − 1 |� ϕ. A key property of temporal logics
exploited in this work is that, for every ltl f /ppltl formula
ϕ, there exists a Deterministic Finite-state Automaton (DFA)
Aϕ accepting the traces τ satisfying ϕ [15, 17].

2.2 FOND planning

A Fully Observable Non-deterministic Domain planning
model (fond) is a tuple D = 〈2F , A, α, tr〉 [18], where 2F
is the set of possible states and F is a set of fluents (atomic
propositions); A is the set of actions; α(s) ⊆ A is the set
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Fig. 1 Triangle- Tireworld

domain and policy

of applicable actions in a state s; and tr(s, a) is the non-
empty set of successor states that follow action a in state s.
A domain D is assumed to be compactly represented (e.g.,
in PDDL [24]), hence its size is |F |. Given the set of lit-
erals of F as Literals(F) = F ∪ {¬ f | f ∈ F}, every
action a ∈ A is usually characterized by 〈Prea, Effa〉, where
Prea ⊆ Literals(F) is the action preconditions, and Effa is
the action effects. An action a can be applied in a state s if the
set of fluents in Prea holds true in s. The result of applying a
in s is a successor state s′ non-deterministically drawn from
one of the Effia in Effa = {Eff1a, ..., Effna}. In fond planning,
some actions have uncertain outcomes, such that they have
non-deterministic effects (i.e., |tr(s, a)| ≥ 1 in all states s
in which a is applicable), and effects cannot be predicted
in advance. PDDL expresses uncertain outcomes using the
oneof [8] keyword, as widely used by several fond plan-
ners [23, 25]. A fond planning problem is formally defined
as follows.

Definition 1 A FOND planning problem is a tuple P =
〈D, s0, G〉, whereD is a fond domain model, s0 is an initial
assignment to fluents in F (i.e., initial state), and G ⊆ F is
the goal.

Solutions to a fond planning problem P are policies. A
policy is usually denoted as π , and formally defined as a
partial function π : 2F → A mapping non-goal states into
applicable actions that eventually reach a goal state comply-
ing with G from the initial state s0. We say a state s complies
with G if G ⊆ s. A policy π for P induces a set of possible
executions �E = {�e1, �e2, . . . }, that are state trajectories, possi-
bly finite (i.e., histories) (s0, . . . , sn), where si+1 ∈ tr(si , ai )

and ai ∈ α(si ) for i = 0, . . . , n − 1, or possibly infinite
s0, s1, . . . , obtained by choosing some possible outcome of
actions instructed by the policy. A policy π is a solution to
P if every execution is finite and satisfies the goal G in its
last state, i.e., sn |� G. In this case, π is winning. [13] define
three solutions to fond planning problems: weak, strong and
strong-cyclic solutions, formally defined in Definitions 2, 4,
and 3.

Definition 2 Aweak solution is a policy that achieves a goal
state complying with G from the initial state s0 under at least
one selection of action outcomes; namely, such solution will
have some chance of achieving a goal state complying with
G.

Definition 3 A strong-cyclic solution is a policy that guar-
antees to achieve a goal state complying with G from the
initial state s0 only under the assumption of fairness1. How-
ever, this type of solution may revisit states, so the solution
cannot guarantee to achieve G in a fixed number of steps.

Definition 4 A strong solution is a policy that is guaranteed
to achieve a goal state complying with G from the initial
state s0 regardless of the environment’s non-determinism.
This type of solution guarantees the achievement of G in
a finite number of steps while never visiting the same state
twice.

This work focuses on strong-cyclic solutions, where the
environment acts in an unknown but stochastic way. Never-
theless, our recognition approach applies to strong solutions
as well, where the environment is purely adversarial (i.e., the
environment may always choose effects against the agent).

Ourrunningexamplecomesfromthewell-knownTriangle-
Tireworld fond domain, where roads connect locations,
and the agent can drive through them. The objective is to
drive from one location to another. However, while driving
between locations, a tire may go flat, and if there is a spare
tire in the car’s location, then the car can use it to fix the flat
tire. Figure 1a illustrates a fond planning problem for the
Triangle- Tireworld domain, where circles are locations,
arrows represent roads, spare tires are depicted as tires, and
the agent is depicted as a car. Figure 1b shows a policy π

to achieve location 22. Note that, to move from location 11
to location 21, there are two arrows labeled with the action
(move 11 21): (1) when moving does not cause the tire

1 The fairness assumption defines that all action outcomes in a given
state have a non-zero probability.
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to go flat; (2) when moving causes the tire to go flat. The pol-
icy depicted in Fig. 1b guarantees the success of achieving
location 22 despite the environment’s non-determinism.

From Classical Planning, the cost for all non-deter-
ministic instantiated actions a ∈ A is 1. In this example,
policy π , depicted in Fig. 1b, has two possible finite execu-
tions in the set of executions �E , namely �E = {�e0, �e1}, such
as:

– �e0: [(move 11 21), (move 21 22)]; and
– �e1: [(move 11 21), (changetire 21), (move
21 22)].

3 FOND planning for LTLf and PPLTL goals

We base our approach to goal recognition in fond domains
for temporally extended goals on fond planning with ltl f

and ppltl goals [9, 10, 14]. Definition 5 formalizes a fond
planning problem with ltl f /ppltl goals as follows.

Definition 5 A fond planning problem with ltl f /ppltl
goals is a tuple � = 〈D, s0, ϕ〉, where D is a standard fond

domain model, s0 is the initial state, and ϕ is a goal formula,
formally represented either as an ltl f or a ppltl formula.

In fond planningwith temporally extended goals, a policy
π is a partial function π : (2F )+ → A mapping histories,
i.e., states into applicable actions. A policy π for � achieves
a temporal formula ϕ if and only if the sequence of states
generated by π , despite the non-determinism of the environ-
ment, is accepted by Aϕ .

Key to our recognition approach is encoding the temporal
goal formula into an extended planning domain, expressed in
PDDL, which can be later consumed by off-the-shelf fond
planners. Compiling planning for temporally extended goals
into planning for standard reachability goals (i.e., final-state
goals) has a long history in the AI Planning literature. In
particular, [6] develops deterministic planning with special
first-order quantified ltl goals on finite-state sequences.
Their technique encodes a Non-Deterministic Finite-state
Automaton (NFA), resulting from ltl formulas, into deter-
ministic planning domains for which Classical Planning
technology can be leveraged.Our parameterization of objects
of interest is somehow similar to their approach. Starting
from [6], always in the context of deterministic planning,
[38] proposed a polynomial-time compilation of ltl goals
on finite-state sequences into alternating automata, leaving
non-deterministic choices to be decided at planning time.
Finally, [9, 10] built upon [6] and [38], proposing a compi-
lation in the context of fond domain models that explicitly

computes the automaton representing the ltl f temporal goal
and encodes it intoPDDL. However, this encoding introduces
a lot of bookkeeping machinery due to the removal of any
form of angelic non-determinism mismatching with the dev-
ilish non-determinism of PDDL for fond.

Although inspired by such work, our approach differs in
several technical details. We encode the DFA directly into a
non-deterministic PDDL planning domain by taking advan-
tage of the parametric nature of PDDL domains that are
then instantiated into propositional problems when solving a
specific task. Given a fond planning problem � represented
in PDDL, the transformation � works as follows. First, the
highly-optimizedMONA tool [20] transforms the temporally
extended goal formulaϕ (formalized either in ltl f or ppltl)
into its corresponding DFA Aϕ . Second, from Aϕ , we build
a parametric DFA (PDFA), representing the lifted version of
the DFA. Finally, the encoding of such a PDFA into PDDL

yields an augmented fond domain model �′. Thus, this pro-
cess reduces fond planning for ltl f /ppltl to a standard
fond planning problem solvable by any off-the-shelf fond
planner.

3.1 Translation to parametric DFA

The use of parametric DFAs is based on the following
observations. In temporal logic formulas and, hence, in the
correspondingDFAs, propositions are represented by domain
fluents grounded on specific objects of interest. We can
replace these propositions with predicates using object vari-
ables and then have a mapping function mobj that maps such
variables into the problem instance objects. This yields a
lifted and parametric representation of the DFA, i.e., PDFA,
which is merged with the domain. Here, the objective is to
capture the entire dynamics of the DFA within the planning
domainmodel itself. To do so, starting from theDFAwe build
a PDFA whose states and symbols are the lifted versions of
the ones in the DFA. Formally, to construct a PDFA we use
a mapping function mobj , which maps the set of objects of
interest present in the DFA to a set of free variables. Given
the mapping function mobj , Definition 6 formalizes a PDFA
as follows.

Definition 6 Given a set of object symbols O, and a set of
free variables V , we define amapping function m that maps
each object in O with a free variable in V .

Given a DFA and the objects of interest for �, we can
construct a PDFA as follows:

Definition 7 APDFA is a tupleAp
ϕ = 〈� p, Q p, q p

0 , δ p, F p〉,
where: � p = {σ p

0 , ..., σ
p

n } = 2F is the alphabet of fluents;
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Q p is a nonempty set of parametric states; q p
0 is the para-

metric initial state; δ p : Q p × � p → Q p is the parametric
transition function; F p ⊆ Q p is the set of parametric final
states. � p, Q p, q p

0 , δ p and F p can be obtained by applying
mobj to all the components of the corresponding DFA.

Example 1 Given the ltl f formula “♦(vAt 51)”, the object
of interest “51” is replaced by the object variable x (i.e.,
mobj (51) = x), and the corresponding DFA and PDFA for
this ltl f formula are depicted in Fig. 2a and b.

When the resulting new domain is instantiated, we implic-
itly get back the original DFA in the Cartesian product
with the original instantiated domain. Note that this way
of proceeding is similar to what is done in [6], where they
handle ltl f goals expressed in a special fol syntax, with
the resulting automata (non-deterministic Büchi automata)
parameterized by the variables in the ltl f formulas.

3.2 PDFA encoding in PDDL

Once the PDFA has been computed, we encode its compo-
nents within the planning problem �, specified in PDDL,
thus, producing an augmented fond planning problem �′ =
〈D′, s′

0, G ′〉, whereD′ = 〈2F ′
, A′, α′, tr ′〉 and G ′ is a propo-

sitional goal as in Classical Planning. Intuitively, additional
parts of �′ are used to synchronize the dynamics between
the domain and the automaton sequentially. Specifically, �′
is composed of the following components.

Fluents

F ′ has the same fluents in F plus fluents representing each
state of the PDFA, and a fluent called turnDomain, which
controls the alternation between domain’s actions and the
PDFA’s synchronization action. Formally, F ′ = F ∪ {q |
q ∈ Q p} ∪ {turnDomain}.

Fig. 2 DFA and PDFA for ♦(vAt(51))

Domain actions

Actions in A are modified by adding turnDomain in pre-
conditions and the negated turnDomain in effects: Pre′

a =
Prea∪{turnDomain} andEff′a = Effa∪{¬turnDomain}
for all a ∈ A.

Transition operator

The transition function δ p of a PDFA is encoded as a new
domain operator with conditional effects, called trans.
Namely, Pretrans = {¬turnDomain} and Efftrans =
{turnDomain} ∪ {when (q p, σ p),then δ p(q p, σ p) ∪
{¬q | q �= q p, q ∈ Q p}}, for all (q p, σ p) ∈ δ p. To exem-
plify how the transition PDDL operator is obtained, Listing 1
reports the transition operator for the PDFA in Fig. 2.

( :action trans
:parameters (?x − location )
:precondition (not (turnDomain) )
:effect (and
(when (and (q0 ?x) (not (vAt ?x) ) )

(and (q0 ?x) (not (q1 ?x) ) (turnDomain)
)

(when (or (and (q0 ?x) (vAt ?x) ) (q1 ?x) )
(and (q1 ?x) (not (q0 ?x) )

(turnDomain) ) ) )

Listing 1 Transition PDDL operator for ♦(vAt(x))

Initial and goal states

The new initial condition is specified as s′
0 = s0 ∪ {q p

0 } ∪
{turnDomain}. This comprises the initial condition of the
previous domain D (s0) plus the initial state of the PDFA
and the predicate turnDomain. Considering the example
in Fig. 1a and the PDFA in Fig. 2b, the new initial condition
is as follows in PDDL:

( : in i t (and (road 11 21) (road 11 21) . . .
(spare−in 21) (spare−in 12) . . .
(q0 51) (turnDomain) ) )

Listing 2 PDDL initial condition for ϕ = ♦(vAt(51))

The new goal condition is specified as G ′ = {∨ qi | qi ∈
F p} ∪ {turnDomain}, i.e., we want the PDFA to be in one
of its accepting states and turnDomain, as follows:

( :goal (and (q1 51) (turnDomain) ) )

Listing 3 PDDL goal condition for ϕ = ♦(vAt(51))

Note that, both in the initial and goal conditions of the
new planning problem, PDFA states are grounded back on
the objects of interest thanks to the inverse of the mapping
mobj .

Executions of a policy for our new fond planning prob-
lem �′ are �e′ : [a′

1, t1, a′
2, t2, . . . , a′

n, tn], where a′
i ∈ A′ are

the real domain actions, and t1, . . . , tn are sequences of syn-
chronization trans actions, which, at the end, can be easily
removed to extract the desired execution �e : [a′

1, a′
2, . . . , a′

n].
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In the remainder of the paper, we refer to the compilation just
exposed as fondforLTLPLTL.

Theoretical property of the PDDL encoding

We now study the theoretical properties of the encoding pre-
sented in this section. Theorem 1 states that solving fond

planning for ltl f /ppltl goals amounts to solving standard
fond planning problems for reachability goals. A policy for
the former can be easily derived from a policy for the latter.

Theorem 1 Let � be a fond planning problem with an
ltl f / ppltl goal ϕ, and �′ be the compiled fond plan-
ning problem with a reachability goal. Then, � has a policy
π : (2F )+ → A iff �′ has a policy π ′ : (2F ′

)+ → A′.

Proof (−→).We start with a policyπ of the original problem
that is winning by assumption. Given π , we can always build
a new policy, which we call π ′, following the encoding pre-
sented in Section 3 of the paper. The newly constructed policy
will modify histories of π by adding fluents and an auxiliary
deterministic action trans, both related to the DFA asso-
ciated with the ltl f /ppltl formula ϕ. Now, we show that
π ′ is an executable policy and that is winning for �′. To see
the executability, observe that, by construction of the new
planning problem �′, all action effects Effa′ of the original
problem � are modified in a way that all action effects of
the original problem � are not modified and that the auxil-
iary action trans only changes the truth value of additional
fluents given by the DFA Ap

ϕ (i.e., automaton states). There-
fore, the newly constructed policy π ′ can be executed. To see
that π ′ is winning and satisfies the ltl f /ppltl goal formula
ϕ, we reason about all possible executions. For all execu-
tions, every time the policy π ′ stops we can always extract
an induced state trajectory of length n such that its last state
s′

n will contain one of the final states F p of the automaton
Ap

ϕ . This means that the induced state trajectory is accepted
by the automaton Ap

ϕ . Then, by Theorem [15, 17] τ |� ϕ.

(←−). From a winning policy π ′ for the compiled prob-
lem, we can always project out all automata auxiliarytrans
actions obtaining a corresponding policy π . We need to show
that the resulting policy π is winning, namely, it can be suc-
cessfully executed on the original problem� and satisfies the
ltl f /ppltl goal formula ϕ. The executability follows from
the fact that the deletion of trans actions and related aux-
iliary fluents from state trajectories induced by π does not
modify any precondition/effect of original domain actions
(i.e., a ∈ A). Hence, under the right preconditions, any
domain action can be executed. Finally, the satisfaction of the
ltl f /ppltl formula ϕ follows directly from Theorem [15,
17]. Indeed, every execution of the winning policy π ′ stops
when reaching one of the final states F p of the automatonAp

ϕ

in the last state sn , thus every execution of π would satisfy
ϕ. Thus, the thesis holds. ��

4 Goal recognition in FOND planning
domains with LTLf and PPLTL goals

This section introduces the recognition approach that is able
to recognizing temporally extended (ltl f and ppltl) goals
in fond planning domains. Our approach extends the proba-
bilistic framework of [35] to compute posterior probabilities
over temporally extended goal hypotheses, by reasoning over
the set of possible executions of policies π and the observa-
tions. This works in two stages: the compilation stage and
the recognition stage. The following sections describe in
detail how these two stages work. Figure 3 illustrates how
our approach works.

4.1 Goal recognition problem

We define the task of goal recognition in fond planning
domains with ltl f and ppltl goals by extending the stan-

Fig. 3 Overview of our solution
approach

Stage 1: Compilation Stage Stage 2: Recognition Stage
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dard definition of Plan Recognition as Planning [34], as
follows.

Definition 8 A temporally extended goal recognition problem
in a fond planning setting with temporally extended goals
(ltl f and/or ppltl) is a tuple Tϕ = 〈D, s0,Gϕ, Obs〉,
where: D = 〈2F , A, α, tr〉 is a fond planning domain;
s0 is the initial state; Gϕ = {ϕ0, ϕ1, ..., ϕn} is the set of
goal hypotheses formalized in ltl f or ppltl, including the
intended goal ϕ∗ ∈ Gϕ ; Obs = 〈o0, o1, ..., on〉 is a sequence
of successfully executed (non-deterministic) actions of a pol-
icy πϕ∗ that achieves the intended goal ϕ∗, s.t. oi ∈ A.

Since we deal with non-deterministic domain models,
an observation sequence Obs corresponds to a successful
execution �e in the set of all possible executions �E of a strong-
cyclic policy π that achieves the actual intended hidden goal
ϕ∗. In this work, we assume two recognition settings: Offline
Keyhole Recognition, andOnline Recognition. InOffline Key-
hole Recognition the observed agent is completely unaware
of the recognition process [3], the observation sequence Obs
is given at once, and it can be either full or partial—in a
full observation sequence, the recognizer has access to all
actions of an agent’s plan, whereas, in a partial observation
sequence, only a sub-sequence thereof. By contrast, inOnline
Recognition [39], the observed agent is also unaware of the
recognition process, but the observation sequence is revealed
incrementally instead of being given in advance and at once,
as in Offline Recognition, thus making the recognition pro-
cess an already much harder task.

An “ideal” solution for a goal recognition problem com-
prises a selection of the goal hypotheses containing only the
single actual intended hidden goal ϕ∗ ∈ G that the obser-
vation sequence Obs of a plan execution achieves [34, 35].
Fundamentally, there is no exact solution for a goal recog-
nition problem, but it is possible to produce a probability
distribution over the goal hypotheses and the observations,
so that the goals that “best” explain the observation sequence
are the most probable ones. A solution to a goal recognition
problem in fond planning with temporally extended goals is
defined in Definition 9.

Definition 9 Solving a goal recognition problem Tϕ requires
selecting a temporally extended goal hypothesis ϕ̂ ∈ Gϕ such
that ϕ̂ = ϕ∗, and it represents howwell ϕ̂ predicts or explains
what observation sequence Obs aims to achieve.

Existing recognition approaches often return either a prob-
ability distribution over the set of goals [35, 37], or scores
associated with each possible goal hypothesis [31]. Our
framework returns a probability distribution P over the set of
temporally extended goals Gϕ that “best” explains the obser-
vations sequence Obs.

4.2 Probabilistic goal recognition

The probabilistic framework for Plan Recognition as Plan-
ning of [35] sets the probability distribution for every goal G
in the set of goal hypotheses G, and the observation sequence
Obs to be a Bayesian posterior conditional probability, as
follows:

P(G | Obs) = η ∗ P(Obs | G) ∗ P(G) (1)

where P(G) is the a priori probability assigned to goal G, η
is a normalization factor inversely proportional to the prob-
ability of Obs, and P(Obs | G) is

P(Obs | G) =
∑

π

P(Obs | π) ∗ P(π | G) (2)

P(Obs | π) is the probability of obtaining Obs by executing
a policy π and P(π | G) is the probability of an agent pur-
suing G to select π . What follows extends the probabilistic
framework above to recognize temporally extended goals in
fond planning domain models.

4.3 Compilation stage

We perform a compilation stage that allows us to use any
off-the-shelf fond planner to extract policies for temporally
extended goals. To this end, we compile and generate new
fond planning domain models �′ for the set of possible tem-
porally extended goals Gϕ using the compilation approach
described in Section 3. Specifically, for every goal ϕ ∈ Gϕ ,
our compilation takes as input a fond planning problem �,
where � contains the fond planning domain D along with
an initial state s0 and a temporally extended goal ϕ. Finally,
as a result, we obtain a new fond planning problem �′ asso-
ciated with the new domain D′. Note that such a new fond

planning domain �′ encodes new predicates and transitions
that allow us to plan for temporally extended goals by using
off-the-shelf fond planners.

Corollary 1 LetTϕ be a goal recognition problem over a set of
ltl f / ppltl goals Gϕ and let T ′ be the compiled goal recog-
nition problem over a set of propositional goals G. Then, if
T ′ has a set of winning policies that solve the set of proposi-
tional goals in G, then Tϕ has a set of winning policies that
solve its ltl f / ppltl goals.

Proof It follows from Theorem 1 that a bijective mapping
exists between policies of fond planning for ltl f /ppltl
goals and policies of standard fond planning. Therefore, the
thesis holds. ��
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4.4 Recognition stage

The stage that performs the goal recognition task comprises
extracting policies for every goal ϕ ∈ Gϕ . From such policies
along with observations Obs, we compute posterior proba-
bilities for the goals Gϕ by matching the observations with
all possible executions in the set of executions �E of the poli-
cies. To ensure compatibilitywith the policies, the recognizer
assumesknowledgeof the preference relationover actions for
the observed agent when unrolling the policy during search.

Computing policies and the set of executions �E forG'

The recognizer extracts policies for every goal ϕ ∈ Gϕ using
the new fond planning domain models �′, and for each of
these policies, it enumerates the set of possible executions �E .
The aim of enumerating the possible executions �E for a pol-
icyπ is to attempt to infer what execution �e ∈ �E the observed
agent is performing in the environment. Environmental non-
determinism prevents the recognizer from determining the
specific execution �e the observed agent goes through to
achieve its goals. The recognizer considers possible execu-
tions that are all paths to the goal with no repeated states.
The fact that the probability of entering loops multiple times
is low partially justifies this assumption, and relaxing it is an
important research direction for future work.

After enumerating the set of possible executions �E for a
policyπ , we compute the average distance of all actions in the
set of executions �E to a goal ϕ from initial state s0. Note that
strong-cyclic solutionsmayhave infinite possible executions.
However, herewe consider executions that do not enter loops,
and for those entering possible loops, we consider only the
ones entering loops at most once. Indeed, the occurrence of
possibly repeated actions does not affect the computation of
the average distance. In other words, if the observed agent
executes the same action repeatedly often, it does not change
its distance to the goal. The average distance aims to estimate
“how far” every observation o ∈ Obs is to goal ϕ. This
average distance is computed because some executions �e ∈
�E may share the same action in execution sequences but
at different time steps. We refer to this average distance as
d. For example, consider the policy π depicted in Fig. 1b.
This policy π has two possible executions for achieving a
goal from the initial state, and these two executions share
some actions, such as (move 11 21). In particular, this
action appears twice in Fig. 1b due to its uncertain outcome.
Therefore, this action has two different distances (if we count
the number of remaining actions towards a goal) to the goal:
distance = 1, if the outcome of this action generates the
state s2; and distance = 2, if the outcome of this action
generates the state s3. Hence, since this policy π has two
possible executions, and the sum of the distances is 3, the
average distance for this action to a goal is d = 1.5. The

average distances for the other actions in this policy are:
d = 1 for (changetire 21), because it appears only in
one execution; and d = 0 for (move 21 22), because the
execution of this action achieves a goal.

We use d to compute an estimated score that expresses
“how far” every observed action in the observation sequence
Obs is to a temporally extended goal ϕ in comparison to the
other goals in the set of goal hypotheses Gϕ . This means that
the goal(s) with the lowest score(s) along the execution of the
observed actions o ∈ Obs is (are) the one(s) that, most likely,
the observation sequence Obs aims to achieve. Note that, the
average distance d for those observations o ∈ Obs that are
not in the set of executions �E of a policy π , is set to a large
constant number, i.e., tod = e5.As part of the computation of
this estimated score, we compute a penalty value that directly
affects the estimated score. This penalty value represents a
penalization that aims to increase the estimated score for
those goals in which each pair of subsequent observations
〈oi−1, oi 〉 in Obs does not have any relation of order in the
set of executions �E of these goals.Weuse theEuler constant e
to compute this penalty value, formally defined as ep(oi−1,oi ),
in which R(�e) is the set of order relation of an execution �e,
where

p(oi−1, oi ) =
{
1, if {∀�e ∈ E |〈oi−1 ≺ oi 〉 /∈ R(�e)}
0, otherwise

(3)

Equation (4) formally defines the computation of the esti-
mated score for every goal ϕ ∈ Gϕ given a pair of subsequent
observations 〈oi−1, oi 〉, and the set of goal hypotheses Gϕ .

ep(oi−1,oi )∗d(oi , ϕ)
∑

ϕ′∈Gϕ
d(oi , ϕ′)

(4)

Example 2 To exemplify the computation of the estimated
score for every goal ϕ ∈ Gϕ , consider the recogni-
tion problem in Fig. 4: s0 is vAt(11); the goal hypothe-
ses Gϕ are expressed as ltl f goals, such that ϕ0 =
♦vAt(51), ϕ1 = ♦vAt(33), and ϕ2 = ♦vAt(15); Obs =
{o0 : (move 11 21), o1 : (changetire 22)}. The
intended goal ϕ∗ is ϕ1. Before computing the estimated score
for the goals, we first perform the compilation process pre-
sented before. Afterward, we extract policies for every goal
ϕ ∈ Gϕ , enumerate the possible executions �E for the goalsGϕ

from the extracted policies, and then compute the average dis-
tance d of all actions in the set of executions �E for the goals
Gϕ from s0. The number of possible executions �E for the
goals are: ϕ0 : | �E | = 8, ϕ1 : | �E | = 8, and ϕ2 = | �E | = 16.
The average distances d of all actions in �E for the goals are
as follows:

– ϕ0: (move 11 21) = 4.5, (changetire 21) =
4, (move 21 31) = 3, (changetire 31) = 2.5,
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Fig. 4 Recognition problem example

(move 31 41) = 1.5, (changetire 41) = 1,
(move 41 51) = 0;

– ϕ1: (move 11 21) = 4.5, (changetire 21) =
4, (move 21 22) = 3, (changetire 22) = 2.5,
(move 22 23) = 1.5, (changetire 23) = 1,
(move 23 33): 0;

– ϕ2: (move 11 21) = 6, changetire 21) = 5.5,
(move 21 22) = 4.5, (changetire 22) = 4,
(move 22 23) = 3, (changetire 23) = 2.5,
(changetire 24) = 1, (move 23 24) = 1.5,
(move 24 15) = 0.

Once having the average distances d of the actions in �E
for all goals, we can then compute the estimated score for
Gϕ for every observation o ∈ Obs: o0(move 11 21) :
ϕ0 = 4.5

4.5+6 = 0.43, ϕ1 = 4.5
4.5+6 = 0.43, ϕ2 = 6

4.5+6 =
0.57; and o1(changetire 22) : ϕ0 = e1∗e5

6.5 = 61.87,
ϕ1 = 2.5

e5+2.5
= 0.016, ϕ2 = 4

e5+4
= 0.026. Note that for

the observation o1, the average distance d for ϕ0 is e5 =
148.4 because this observation is not an action for one of the
executions in the set of executions for this goal (Obs aims to
achieve the intended goalϕ∗ = ϕ1). Furthermore, the penalty
value is applied to ϕ0, i.e., e1 = 2.71. It is possible to see
that the estimated score of the intended goal ϕ1 is always the
lowest for all observations Obs, especially when observing
the second observation o1. Note that our approach correctly
infers the intended goal ϕ∗, even when observing with just
few actions.

Computing posterior probabilities forG'

To compute the posterior probabilities over the set of pos-
sible temporally extended goals Gϕ , we start by computing
the average estimated score for every goal ϕ ∈ Gϕ for every

observation o ∈ Obs, and we formally define this computa-
tion as E(ϕ, Obs,Gϕ), as follows:

E(ϕ, Obs,Gϕ) =

⎛

⎜
⎜
⎜
⎝

|Obs|∑

i=0

ep(oi−1,oi )∗d(oi ,ϕ)∑
ϕ′∈Gϕ

d(oi ,ϕ
′)

|Obs|

⎞

⎟
⎟
⎟
⎠

(5)

The average estimated score E aims to estimate “how far”
a goal ϕ is to be achieved compared to other goals (Gϕ \ {ϕ})
averaging among all the observations in Obs. The lower the
average estimated score E to a goal ϕ, the more likely such a
goal is to be the one that the observed agent aims to achieve.
Consequently, E has two important properties defined in (5),
as follows.

Proposition 1 Given that the sequence of observations Obs
corresponds to an execution �e ∈ �E that aims to achieve the
actual intended hidden goal ϕ∗ ∈ Gϕ , the average estimated
score outputted by E will tend to be the lowest for ϕ∗ in
comparison to the scores of the other goals (Gϕ \ {ϕ∗}), as
observations increase in length.

Proposition 2 If we restrict the recognition setting and define
that the goal hypotheses Gϕ are not sub-goals of each other,
and observe all observations in Obs (i.e., full observability),
we will have the intended goalϕ∗ with the lowest score among
all goals, i.e., ∀ϕ ∈ Gϕ is the case that E(ϕ∗, Obs,Gϕ) ≤
E(ϕ, Obs,Gϕ).

After defining the computation of the average estimated
score E for the goals using (5), we can define how our
approach tries to maximize the probability of observing a
sequence of observations Obs for a given goal ϕ, as follows:

P(Obs | ϕ) = [1 + E(ϕ, Obs,Gϕ)]−1 (6)

Thus, by using the estimated score in (6), we can infer that
the goals ϕ ∈ Gϕ with the lowest estimated score will be the
most likely to be achieved according to the probability inter-
pretation from (5). For instance, consider the goal recognition
problem presented in Example 2, and the estimated scores
we computed for the temporally extended goals ϕ0, ϕ1, and
ϕ2 based on the observation sequence Obs. From this, we
have the following probabilities P(Obs | ϕ) for the goals:

– P(Obs | ϕ0) = [1 + (31.15)]−1 = 0.03
– P(Obs | ϕ1) = [1 + (0.216)]−1 = 0.82
– P(Obs | ϕ2) = [1 + (0.343)]−1 = 0.74

After normalizing the probabilities using the normaliza-
tion factor η2, and assuming that the prior probability P(ϕ)

2 η = [∑ϕ∈Gϕ
P(Obs | ϕ) ∗ P(ϕ)]−1
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is equal to every goal in the set of goals Gϕ , (6) computes the
posterior probabilities (1) for the temporally extended goals
Gϕ . A solution to a recognition problem Tϕ (Definition 8) is a
set of temporally extended goals G∗

ϕ with the maximum prob-
ability: G∗

ϕ = argmaxϕ∈Gϕ
P(ϕ | Obs). Hence, considering

the normalizing factor η and the probabilities P(Obs | ϕ)

computed before, we then have the following posterior prob-
abilities for the goals in Example 2: P(ϕ0 | Obs) = 0.001;
P(ϕ1 | Obs) = 0.524; andP(ϕ2 | Obs) = 0.475.Recall that
in Example 2, ϕ∗ is ϕ1, and according to the computed poste-
rior probabilities, we then have G∗

ϕ = {ϕ1}, so our approach
yields only the intended goal by observing just two observa-
tions.

Using the average distance d and the penalty value p
allows our approach to disambiguate similar goals during
the recognition stage. For instance, consider the follow-
ing possible temporally extended goals: ϕ0 = φ1Uφ2 and
ϕ1 = φ2Uφ1. Here, both goals have the same formulas to be
achieved, i.e., φ1 and φ2, but in a different order. Thus, even
having the same formulas to be achieved, the sequences of
their policies’ executions are different. Therefore, the aver-
age distances are also different, possibly a smaller value for
the temporally extended goal that the agent aims to achieve,
and the penalty value may also be applied to the other goal if
two subsequent observations do not have any order relation
in the set of executions for this goal.

Computational analysis

The most expensive computational part of our recognition
approach is computing the policies π for the goal hypotheses
Gϕ . Thus, our approach requires |Gϕ | calls to an off-the-
shelf fond planner. Hence, the computational complexity
of our recognition approach is linear in the number of goal
hypotheses |Gϕ |. In contrast, to recognize goals and plans
in Classical Planning settings, the approach of [35] requires
2∗|G| calls to an off-the-shelf Classical planner. Concretely,
to compute P(Obs | G), Ramirez and Geffner’s approach
computes two plans for every goal and based on these two
plans, they compute a cost-difference between these plans
and plug it into a Boltzmann equation. For computing these
two plans, this approach requires a non-trivial transforma-
tion process that modifies both the domain and problem,
i.e., an augmented domain and problem that compute a plan
that complies with the observations, and another augmented
domain and problem to compute a plan that does not comply
with the observations. Essentially, the intuition of Ramirez
and Geffner’s approach is that the lower the cost-difference
for a goal, the higher the probability for this goal, much sim-
ilar to the intuition of our estimated score E .

5 Experiments and evaluation

This section details experiments and evaluations carried out
to validate the effectiveness of our recognition approach. The
empirical evaluation covers thousands of goal recognition
problems using well-known fond planning domain models
with different types of temporally extended goals expressed
in ltl f and ppltl.

The source code of our PDDL encoding for ltl f and
ppltl goals3 and our temporally extended goal recognition
approach4, as well as the recognition datasets and results are
available on GitHub.

5.1 Domains, recognition datasets, and setup

The experiments and evaluation analysis employ six differ-
ent well-known fond planning domain models: Blocks-
World, Logistics, Tidy- up, Tireworld, Triangle-

Tireworld, and Zeno- Travel. Most of them are com-
monly used in the AI Planning community to evaluate
fond planners [23, 25]. The domain models involve prac-
tical real-world applications, such as navigating, stacking,
picking up and putting down objects, loading and unload-
ing objects, loading and unloading objects, and etc. Some
domains combine more than one of the characteristics above,
namely, Logistics, Tidy- up [26], and Zeno- Travel,
which involve navigating and manipulating objects in the
environment. In practice, our recognition approach is capa-
ble of recognizing not only the set of facts of a goal that an
observed agent aims to achieve from a sequence of obser-
vations, but also the temporal order (e.g., exact order) in
which the agent aims to achieve this set of facts that repre-
sents a temporally extended goal. For instance, for Tidy- up,
is a real-world application domain, in which the purpose is
defining planning tasks for a household robot that could assist
elder people in smart-home application, our approach would
be able to monitor and assist the household robot to achieve
its goals in a specific order.

Based on these fond planning domain models, we build
different recognition datasets: a baseline dataset using con-
junctive goals (φ1 ∧ φ2) and datasets with ltl f and ppltl

goals.
The ltl f datasets use three types of goals:

– ♦φ, where φ is a propositional formula expressing that
eventually φ will be achieved. This temporal formula is
analogous to a reachability goal;

3 https://github.com/whitemech/FOND4LTLf
4 https://github.com/ramonpereira/goal-recognition-ltlf_pltlf-fond
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– ♦(φ1 ∧ ◦(♦φ2)), expressing that φ1 must hold before
φ2 holds. For instance, we can define a temporal goal
that expresses the order in which a set of packages in
Logistics domain should be delivered;

– φ1Uφ2: φ1 must hold until φ2 is achieved. For the Tidy-
up domain, we can define a temporal goal that no one can
be in the kitchen until the robot cleans the kitchen.

The ppltl datasets use two types of goals:

– φ1 ∧ 	−φ2, expressing that φ1 holds and φ2 held once.
For instance, in the Blocks- World domain, we can
define a past temporal goal that only allows stacking a
set of blocks (a, b, c) once another set of blocks has
been stacked (d, e);

– φ1 ∧ (¬φ2Sφ3), expressing that the formula φ1 holds
and since φ3 held φ2 was not true anymore. For instance,
in Zeno- Travel, we can define a past temporal goal
expressing that person1 is at city1 and since the person2 is
at city1, the aircraft must not pass through city2 anymore.

Thus, in total, there are six different recognition datasets
over the six fond planning domains and temporal formulas
presented above. Each of these datasets contains hundreds
of recognition problems (≈ 390 recognition problems per
dataset), such that each recognition problem Tϕ in these
datasets is comprised of a fond planning domain model D,
an initial state s0, a set of possible goals Gϕ (expressed in
either ltl f or ppltl), the actual intended hidden goal in the
set of possible goals ϕ∗ ∈ Gϕ , and the observation sequence
Obs. Note that the set of possible goals Gϕ contains very
similar goals (i.e., ϕ0 = φ1Uφ2 and ϕ1 = φ2Uφ1), and all
possible goals can be achieved from the initial state by a
strong-cyclic policy. For instance, for the Tidy- up domain,
we define the following ltl f goals as possible goals Gϕ :

– ϕ0 = ♦((wiped desk1) ∧◦(♦(on book1 desk1)));
– ϕ1 = ♦((on book1 desk1) ∧◦(♦(wiped desk1)));
– ϕ2 = ♦((on cup1 desk2) ∧◦(♦(wiped desk2)));
– ϕ3 = ♦((wiped desk2) ∧◦(♦(on cup1 desk2)));

Note that some of the goals described above share the
same formulas and fluents, but some of these formulas must
be achieved in a different order, e.g., ϕ0 and ϕ1, and ϕ2 and
ϕ3. Note that our recognition approach is very accurate in
discerning (Table 1) the order that the intended goal aims
to be achieved based on few observations (executions of the
agent in the environment).

Asmentioned earlier in the paper, an observation sequence
contains a sequence of actions that represent an execution �e

in the set of possible executions �E of policy π that achieves
the actual intended hidden goal ϕ∗, and as before, this obser-
vation sequence Obs can be full or partial. To generate the
observations Obs for ϕ∗ and build the recognition problems,
our approach extracts strong-cyclic policies using different
fond planners, such as PRP and MyND. A full observation
sequence represents an execution (a sequence of executed
actions) of a strong-cyclic policy that achieves the actual
intended hidden goal ϕ∗, i.e., 100% of the actions of �e being
observed. A partial observation sequence is represented by
a sub-sequence of actions of a full execution that aims to
achieve the actual intended hidden goal ϕ∗ (e.g., an execu-
tion with “missing” actions, due to a sensor malfunction).
In our recognition datasets, we define four levels of observ-
ability for a partial observation sequence: 10%, 30%, 50%,
or 70% of its actions being observed. For instance, for a full
observation sequence Obs with 10 actions (100% of observ-
ability), a corresponding partial observations sequence with
10% of observability would have only one observed action,
and for 30% of observability three observed actions, and so
on for the other levels of observability.

We ran all experiments using PRP [25] planner with a sin-
gle core of a 12 core Intel(R) Xeon(R) CPU E5-2620 v3 @
2.40GHzwith 16GBof RAM, set amaximummemory usage
limit of 8GB, and set a 10-minute timeout for each recogni-
tion problem. We are unable to provide a direct comparison
of our approach against existing recognition approaches in
the literature because most of these approaches perform a
non-trivial process that transforms a recognition problem into
planning problems to be solved by a planner [35, 37]. Even
adapting such a transformation to work in fond settings with
temporally extended goals, one cannot guarantee that it will
work properly in the problem setting introduced in this paper.

5.2 Evaluationmetrics

Our evaluation uses widely known metrics in the Goal and
Plan Recognition literature [31, 34, 39]. To evaluate our
approach in the Offline Keyhole Recognition setting, we use
four metrics, as follows:

– True Positive Rate (TPR) measures the fraction of times
that the intended hidden goal ϕ∗ was correctly recog-
nized, e.g., the percentage of recognition problems that
our approach correctly recognized the intended goal. A
higher TPR indicates better accuracy, measuring how
often the intended hidden goal had the highest probabil-
ity P(ϕ | Obs) among the possible goals. TPR (7) is the
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Table 1 Offline Recognition results for Conjunctive, ltl f , and ppltl goals

|Gφ | |Obs| Time TPR FPR FNR F1-Score Time TPR FPR FNR F1-Score

Conjunctive Goals ltl f Eventuality Goals

φ1 ∧ φ2 ♦φ

10 5.2 3.85 189.1 0.75 0.15 0.25 0.63 243.8 0.74 0.11 0.26 0.60

30 10.7 187.2 0.85 0.08 0.15 0.78 235.1 0.86 0.10 0.14 0.78

50 17.4 188.4 0.83 0.09 0.17 0.82 242.1 0.89 0.07 0.11 0.92

70 24.3 187.8 0.86 0.08 0.14 0.84 232.1 0.92 0.08 0.08 0.87

100 34.7 190.4 0.85 0.09 0.15 0.86 272.8 0.95 0.09 0.05 0.90

ltl f Ordering Goals ltl f Goals Until

♦(φ1∧◦(♦φ2)) φ1Uφ2

10 4.0 2.1 136.1 0.68 0.15 0.32 0.62 217.9 0.79 0.11 0.21 0.72

30 5.4 130.9 0.84 0.13 0.16 0.76 215.8 0.91 0.12 0.09 0.82

50 8.8 132.1 0.88 0.10 0.12 0.80 210.1 0.93 0.10 0.07 0.83

70 12.5 129.2 0.95 0.06 0.05 0.89 211.5 0.97 0.09 0.03 0.86

100 17.1 126.6 0.94 0.05 0.06 0.90 207.7 0.97 0.07 0.03 0.87

ppltl Goals Once ppltl Goals Since

φ1 ∧ 	−φ2 φ1 ∧ (¬φ2Sφ3)

10 4.0 1.7 144.8 0.73 0.11 0.27 0.67 173.5 0.76 0.18 0.24 0.64

30 4.6 141.3 0.84 0.07 0.16 0.79 173.3 0.87 0.12 0.13 0.78

50 7.3 141.9 0.89 0.08 0.11 0.82 172.9 0.85 0.09 0.15 0.79

70 10.3 142.9 0.95 0.07 0.05 0.87 171.1 0.97 0.07 0.03 0.91

100 14.2 155.8 0.97 0.07 0.03 0.88 169.3 0.94 0.02 0.06 0.93

ratio between true positive results5, and the sum of true
positive and false negative results6;

T P R = T P

T P + F N
= 1 − F N R (7)

– False Positive Rate (FPR) is a metric that measures how
often goals other than the intended goal are recognized
(wrongly) as the intended ones. A lower FPR indicates
better accuracy. FPR is the ratio between false positive
results7, and the sum of false positive and true negative
results8;

F P R = F P

F P + T N
(8)

– False Negative Rate (FNR) aims to measure the fraction
of times in which the intended correct goal was recog-

5 True positive results represent the number of goals that has been
recognized correctly.
6 False negative results represent the number of correct goals that has
not been recognized.
7 False positive results are the number of incorrect goals that has been
recognized as the correct ones.
8 True negative results represent the number of incorrect goals has been
recognized correctly as the incorrect ones.

nized incorrectly. A lowerFNR indicates better accuracy.
FNR (9) is the ratio between false negative results and the
sum of false negative and true positive results;

F N R = F N

F N + T P
= 1 − T P R (9)

– F1-Score (10) is the harmonic mean of precision and
sensitivity (i.e., TPR), representing the trade-off between
true positive and false positive results. The highest pos-
sible value of an F1-Score is 1.0, indicating perfect
precision and sensitivity, and the lowest possible value is
0. Thus, higher F1-Score values indicate better accuracy.

F1 − Score = 2 ∗ T P

2T P + F P + F N
(10)

In contrast, to evaluate our approach in the Online Recog-
nition setting, we use the following metric:

– Ranked First is a metric that measures the number of
times the intended goal hypothesis ϕ∗ has been correctly
ranked first as the most likely intended goal, and higher
values for this metric indicate better accuracy for per-
forming online recognition.
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In addition to the metrics mentioned above, we also eval-
uate our recognition approach in terms of recognition time
(Time), which is the average time in seconds to perform the
recognition process (including the calls to a fond planner);

5.3 Offline keyhole recognition results

We now assess how accurate our recognition approach is in
the Keyhole Recognition setting. Table 1 shows three inner
tables that summarize and aggregate the average results of
all the six datasets for four different metrics, such as Time,
TPR, FPR, and FNR. |Gϕ | represents the average number
of goals in the datasets, and |Obs| the average number of
observations. Each row in these inner tables represents the
observation level, varying from10% to 100%.Figure 5 shows
the performance of our approach by comparing the results
using F1-Score for the six types of temporal formulas we
used for evaluation. Table 2 shows in much more detail the
results for each of the six datasets that have been used for
evaluating of our recognition approach.

Offline results for conjunctive and eventuality goals

The first inner table shows the average results comparing
the performance of our approach between conjunctive goals
and temporally extended goals using the eventually temporal
operator ♦. We refer to this comparison as the baseline since
these two types of goals have the same semantics.We can see
that the results for these two types of goals are very similar
for all metrics. Moreover, it is also possible to see that our
recognition approach is very accurate and performs well at
all levels of observability, yielding high TPR values and low
FPR and FNR values for more than 10% of observability.
Note that for 10% of observability, and ltl f goals for ♦ϕ,
the TPR average value is 0.74, and it means for 74% of the
recognition problems our approach recognized correctly the
intended temporally extended goal when observing, on aver-
age, only 3.85 actions. Figure 5a shows that our approach
yields higher F1-Score values (i.e., greater than 0.79) for

these types of formulas when dealing with more than 50%
of observability.

Offline results for LTLf goals

Regarding the results for the two types of ltl f goals (second
inner table), it is possible to see that our approach shows to
be accurate for all metrics at all levels of observability, apart
from the results for 10% of observability for ltl f goals in
which the formulas must be recognized in a certain order.
Note that our approach is accurate evenwhen observing just a
few actions (2.1 for 10% and 5.4 for 30%), but not as accurate
as for more than 30% of observability. Figure 5b shows that
our approach yields higherF1-Score values (i.e., greater than
0.75) when dealing with more than 30% of observability.

Offline results for PPLTL goals

Finally, as for the results for the two types of ppltl goals,
it is possible to observe in the last inner table that the
overall average number of observations |Obs| is less than
the average for the other datasets, making the task of goal
recognition more difficult for the ppltl datasets. Yet, our
recognition approach remains accurate when dealing with
fewer observations. Moreover, the values of FNR increase
for low observability, but the FPR values are, on average,
inferior to ≈ 0.15. Figure 5c shows that our approach grad-
ually increases the F1-Score values when also increases the
percentage of observability.

5.4 Online recognition results

With the experiments and evaluation in the Keyhole Offline
recognition setting in place, we now proceed to present the
experiments and evaluation in the Online recognition set-
ting. As before, performing the recognition task in theOnline
recognition setting is usually harder than in the offline setting,
as the recognition task has to be performed incrementally and
gradually, and the recognizer sees the observations step-by-

Fig. 5 F1-Score comparison
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step, rather than performing the recognition task by analyzing
all observations at once, as in the offline recognition setting.

Figure 6 exemplifies the evaluation in the Online recog-
nition setting. This uses the Ranked First metric, which
measures howmany times over the observation sequence the
correct intended goal ϕ∗ has been ranked first as the top-1
goal over the goal hypotheses Gϕ . The recognition problem
example depicted in Fig. 6 has five goal hypotheses (y-axis),
and ten actions in the observation sequence (x-axis).As stated

before, the recognition task in the Online setting is done
gradually, step-by-step, so at every step our approach essen-
tially ranks the goals according to the probability distribution
over the goal hypotheses Gϕ . The example in Fig. 6 shows
the correct goal ϕ∗ Ranked First six times (at the obser-
vation indexes: 4, 6, 7, 8, 9, and 10) over the observation
sequence with ten observation, so it means that the goal cor-
rect intended goal Gϕ is Ranked First (i.e., as the top-1, with
the highest probability among the goal hypotheses Gϕ) 60%

Table 2 Offline Recognition experimental results for all six fond domains separately

Conjunctive Goals ltl f Eventuality Goals ltl f Ordering
φ1 ∧ φ2 ♦φ ♦(φ1∧◦(♦φ2))

|Gϕ | |Obs| Time TPR FPR FNR |Gϕ | |Obs| Time TPR FPR FNR |Gϕ | |Obs| Time TPR FPR FNR

Blocks- World

10 6.0 3.92 33.53 0.81 0.10 0.19 6.0 3.92 81.16 0.81 0.06 0.19 4.0 1.33 38.05 0.67 0.10 0.33

30 10.33 33.91 0.86 0.09 0.14 10.58 69.65 0.81 0.10 0.19 3.17 39.49 0.83 0.07 0.17

50 16.67 33.90 0.75 0.14 0.25 17.08 67.16 0.72 0.09 0.28 4.67 39.63 0.89 0.07 0.11

70 23.58 33.98 0.75 0.13 0.25 23.92 67.71 0.78 0.09 0.22 6.67 38.92 0.89 0.07 0.11

100 33.00 34.01 0.75 0.17 0.25 33.58 68.82 0.75 0.14 0.25 9.00 38.28 0.83 0.08 0.17

Logistics

10 4.0 3.00 260.92 0.85 0.11 0.15 4.0 3.00 412.34 0.70 0.11 0.30 4.0 2.33 498.70 0.72 0.22 0.28

30 8.11 258.60 0.89 0.08 0.11 8.11 360.49 0.96 0.10 0.04 5.83 468.36 0.89 0.17 0.11

50 13.11 258.58 0.89 0.09 0.11 13.00 383.45 1.00 0.09 0.00 9.17 480.20 0.89 0.19 0.11

70 18.33 251.51 0.96 0.09 0.04 18.11 380.51 1.00 0.09 0.00 13.00 466.86 1.00 0.11 0.00

100 25.44 251.27 1.00 0.08 0.00 25.22 444.65 1.00 0.08 0.00 17.83 450.51 1.00 0.08 0.00

Tidyup

10 4.0 6.56 180.17 0.37 0.27 0.63 4.0 7.00 230.36 0.52 0.20 0.48 4.0 3.50 106.87 0.67 0.28 0.33

30 18.78 178.05 0.48 0.19 0.52 20.00 228.34 0.63 0.32 0.37 9.50 105.93 0.67 0.36 0.33

50 31.00 179.45 0.44 0.22 0.56 32.89 191.61 0.81 0.22 0.19 15.50 105.84 0.78 0.28 0.22

70 43.56 178.79 0.41 0.22 0.59 46.11 193.81 0.81 0.31 0.19 21.83 104.01 0.89 0.19 0.11

100 61.56 179.52 0.33 0.25 0.67 65.33 247.09 1.00 0.28 0.00 30.50 100.16 0.83 0.12 0.17

Tireworld

10 5.5 1.50 16.88 1.00 0.29 0.00 5.5 1.50 29.17 1.00 0.19 0.00 3.5 1.50 12.59 0.67 0.16 0.33

30 3.50 17.19 1.00 0.04 0.00 3.50 26.39 1.00 0.07 0.00 3.50 11.90 0.72 0.16 0.28

50 6.00 17.35 1.00 0.01 0.00 6.00 21.97 1.00 0.04 0.00 5.67 10.18 0.89 0.05 0.11

70 8.50 17.31 1.00 0.01 0.00 8.50 20.30 1.00 0.00 0.00 7.83 10.20 0.94 0.02 0.06

100 11.50 17.28 1.00 0.00 0.00 11.50 20.97 1.00 0.00 0.00 10.50 10.15 1.00 0.00 0.00

Triangle- Tireworld

10 3.75 1.67 16.56 0.64 0.16 0.36 3.75 2.08 34.57 0.69 0.13 0.31 4.0 1.67 14.42 0.44 0.14 0.56

30 4.67 16.90 0.86 0.03 0.14 5.58 31.76 0.86 0.03 0.14 3.83 14.57 0.94 0.01 0.06

50 7.33 17.08 0.89 0.03 0.11 8.83 30.83 0.92 0.02 0.08 6.17 14.76 0.83 0.04 0.17

70 10.00 17.12 1.00 0.00 0.00 12.08 32.81 1.00 0.00 0.00 8.50 17.43 1.00 0.00 0.00

100 13.67 17.16 1.00 0.00 0.00 16.67 30.93 1.00 0.00 0.00 11.33 24.17 1.00 0.00 0.00

Zeno- Travel

10 7.5 5.67 556.36 0.89 0.08 0.11 7.5 5.33 607.20 0.81 0.05 0.19 4.0 2.67 145.81 0.94 0.01 0.06

30 16.25 549.34 1.00 0.04 0.00 15.17 619.13 0.94 0.02 0.06 7.50 145.33 1.00 0.00 0.00

50 26.50 554.09 1.00 0.02 0.00 24.75 670.07 0.97 0.02 0.03 11.67 141.81 1.00 0.00 0.00

70 37.50 556.76 1.00 0.03 0.00 34.92 619.24 1.00 0.02 0.00 16.67 138.04 1.00 0.00 0.00

100 53.00 569.43 1.00 0.02 0.00 49.42 735.20 1.00 0.02 0.00 23.17 136.37 1.00 0.00 0.00

483



123

Ramon Fraga Pereira et al.

Table 2 continued

ltl f Goals Until ppltl Goals Once ppltl Goals Since
φ1Uφ2 φ1 ∧ 	−φ2 φ1 ∧ (¬φ2Sφ3)

|Gϕ | |Obs| Time TPR FPR FNR |Gϕ | |Obs| Time TPR FPR FNR |Gϕ | |Obs| Time TPR FPR FNR

Blocks- World

10 4.0 1.00 342.01 0.72 0.08 0.28 4.0 1.17 38.97 0.89 0.08 0.11 4.0 1.00 50.98 0.89 0.14 0.11

30 2.83 357.48 0.94 0.01 0.06 3.17 39.15 1.00 0.03 0.00 2.83 53.42 1.00 0.00 0.00

50 3.83 349.43 1.00 0.00 0.00 4.67 38.32 1.00 0.06 0.00 3.83 50.67 1.00 0.00 0.00

70 5.83 355.37 1.00 0.00 0.00 6.67 38.16 1.00 0.07 0.00 5.83 48.33 1.00 0.00 0.00

100 7.67 393.83 1.00 0.00 0.00 9.17 37.92 1.00 0.08 0.00 7.67 47.21 1.00 0.00 0.00

Logistics

10 4.0 1.83 310.16 1.00 0.12 0.00 4.0 1.67 554.45 0.78 0.14 0.22 4.0 1.00 643.01 0.83 0.14 0.17

30 4.67 292.87 0.94 0.32 0.06 4.17 541.31 0.94 0.12 0.06 2.33 645.55 0.83 0.18 0.17

50 7.67 282.77 1.00 0.31 0.00 6.33 542.76 0.94 0.12 0.06 3.17 652.51 0.89 0.15 0.11

70 11.00 285.97 1.00 0.28 0.00 9.00 552.88 1.00 0.08 0.00 4.50 648.61 1.00 0.05 0.00

100 14.83 232.00 1.00 0.17 0.00 12.50 630.17 1.00 0.08 0.00 6.00 644.07 1.00 0.00 0.00

Tidyup

10 4.0 3.17 45.20 0.72 0.22 0.28 4.0 3.33 108.24 0.67 0.11 0.33 4.0 3.50 47.25 0.50 0.31 0.50

30 8.33 45.53 0.78 0.26 0.22 9.00 104.46 0.61 0.14 0.39 10.33 46.47 0.56 0.21 0.44

50 13.50 43.40 0.89 0.25 0.11 14.50 105.02 0.72 0.17 0.28 17.00 45.71 0.33 0.24 0.67

70 19.33 43.17 0.94 0.24 0.06 20.33 106.25 0.89 0.19 0.11 23.67 48.27 0.83 0.08 0.17

100 26.83 43.97 1.00 0.17 0.00 28.50 107.56 1.00 0.21 0.00 33.50 48.22 0.67 0.08 0.33

Tireworld

10 3.5 1.17 5.11 0.72 0.08 0.28 4.0 1.33 6.85 0.56 0.19 0.44 4.0 1.17 18.00 0.67 0.12 0.33

30 3.17 5.17 0.94 0.03 0.06 3.50 6.95 0.83 0.10 0.17 3.17 18.69 0.89 0.07 0.11

50 4.83 5.10 0.94 0.01 0.06 5.50 6.87 0.83 0.10 0.17 4.83 19.09 0.94 0.04 0.06

70 6.50 5.16 1.00 0.06 0.00 7.67 6.82 0.83 0.07 0.17 6.50 19.23 1.00 0.04 0.00

100 9.00 5.55 1.00 0.08 0.00 9.00 5.55 1.00 0.08 0.00 9.00 19.17 1.00 0.04 0.00

Triangle- Tireworld

10 4.0 1.17 11.04 0.72 0.11 0.28 4.0 1.67 15.91 0.67 0.11 0.33 4.0 1.00 106.56 0.78 0.26 0.22

30 2.83 10.55 1.00 0.03 0.00 3.83 15.87 0.72 0.07 0.28 2.33 104.83 0.94 0.17 0.06

50 4.50 10.55 0.94 0.01 0.06 6.17 16.13 0.89 0.03 0.11 3.50 102.41 1.00 0.12 0.00

70 6.17 10.58 1.00 0.00 0.00 8.50 14.87 1.00 0.00 0.00 4.67 102.36 1.00 0.25 0.00

100 8.00 11.89 1.00 0.00 0.00 11.33 15.16 1.00 0.00 0.00 6.00 102.91 1.00 0.00 0.00

Zeno- Travel

10 4.0 2.50 174.38 0.89 0.03 0.11 4.0 2.17 144.87 0.83 0.04 0.17 4.0 2.00 175.58 0.89 0.14 0.11

30 6.50 167.33 0.89 0.03 0.11 6.17 140.15 0.94 0.01 0.06 5.33 171.27 1.00 0.10 0.00

50 10.17 164.68 0.83 0.04 0.17 9.83 142.72 0.94 0.01 0.06 8.67 167.39 0.94 0.04 0.06

70 14.33 161.67 0.89 0.03 0.11 13.83 138.64 1.00 0.00 0.00 12.67 159.45 1.00 0.00 0.00

100 20.00 161.05 0.83 0.04 0.17 19.50 137.53 1.00 0.00 0.00 17.33 154.69 1.00 0.00 0.00

of the time in the observation sequence for this recognition
example.

Figure 7 aggregates the average recognition results of all
the six datasets for the Ranked First metric as a histogram,
by considering full observation sequences that represent
executions (sequences of executed actions) of strong-cyclic

policies that achieves the actual intended goal ϕ∗. The results
represent the overall percentage (including the standard devi-
ation – black bars) of how many times the of time that the
correct intended goal ϕ∗ has been ranked first over the obser-
vations. The average results indicated our approach to be in
general accurate to recognize correctly the temporal order
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of the facts in the goals in the Online recognition setting,
yielding Ranked First percentage values greater than 58%.

Figures 8, 9, 10, 11, 10, 12, and 13 shows theOnline recog-
nition results separately for all six domains models and the
different types of temporally extended goals. By analyzing
the Online recognition results more closely, one can see that
our approach converges to rank the correct goal as the top-1
mostly after a few observations. This means that it is com-
monly hard to disambiguate among the goals at the beginning
of the execution, which, in turn, directly affects the overall
Ranked First percentage values (as shown in Fig. 7). Here,
our approach struggles to disambiguate and recognize cor-
rectly the intended goal for some recognition problems and
some types of temporal formulas. Namely, our approach has
struggled to disambiguate when dealing with ltl f Eventual-
ity goals inBlocks- World (see Fig. 8a), for most temporal
extended goals in Tidy- Up (see Fig. 10), and for ltl f Even-
tuality goals in Zeno- Travel (see Fig. 13a).
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Fig. 7 Online Recognition Histogram

6 Related work and discussion

To the best of our knowledge, existing approaches to Goal
and Plan Recognition as Planning cannot explicitly recog-
nize temporally extended goals in non-deterministic envi-
ronments. Seminal and recent work on Goal Recognition
as Planning relies on deterministic planning techniques [31,
34, 37] for recognizing conjunctive goals. By contrast, we
propose a novel problem formalization for goal recognition,
addressing temporally extended goals (ltl f or ppltl goals)
in fond planning domain models. While our probabilistic
approach relies on the probabilistic framework of [35], we
address the challenge of computing P(Obs | G) in a com-
pletely different way.

There exist different techniques to Goal and Plan Recog-
nition in the literature, including approaches that rely on
plan libraries [4], context-free grammars [19], and Hierar-
chical Task Network (HTN) [21]. Such approaches rely on
hierarchical structures that represent the knowledge of how
to achieve the possible goals, and this knowledge can be
seen as potential strategies for achieving the set of possi-
ble goals. Note that the temporal constraints of temporally
extended goals can be adapted and translated to such hierar-
chical knowledge. For instance, context-free grammars are
expressive enough to encode temporally extended goals [11].
ltl f has the expressive power of the star-free fragment
of regular expressions and hence captured by context-free
grammars. However, unlike regular expressions, ltl f uses
negation and conjunction liberally, and the translation to reg-
ular expression is computationally costly.Note, being equally
expressive is not a meaningful indication of the complex-
ity of transforming one formalism into another. [17] show
that, while ltl f and ppltl have the same expressive power,
the best translation techniques known are worst-case 3EXP-
TIME.

As far as we know, there are no encodings of ltl f -
like specification languages into HTN, and its difficulty
is unclear. Nevertheless, combining HTN and ltl f could
be interesting for further study. HTN techniques focus on
the knowledge about the decomposition property of traces,
whereas ltl f -like solutions focus on the knowledge about
dynamic properties of traces, similar to what is done in veri-
fication settings.Most recently, [7] develop a novel Pure-Past
Linear Temporal Logic PDDL encoding for planning in the
Classical Planning setting.

7 Conclusions

This article introduced a novel problem formalization for rec-
ognizing temporally extended goals, specified in either ltl f
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Fig. 8 Online recognition ranking over the observations for Blocks- World

Fig. 9 Online recognition ranking over the observations for Logistics

Fig. 10 Online recognition ranking over the observations for Tidy- Up

Fig. 11 Online recognition ranking over the observations for Tireworld

Fig. 12 Online recognition ranking over the observations for Triangle- Tireworld

Fig. 13 Online Recognition ranking over the observations for Zeno- Travel
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or ppltl, in fond planning domain models. It also devel-
oped a novel probabilistic framework for goal recognition in
such settings, and implemented a compilation of temporally
extended goals that allows us to reduce the problem of fond
planning for ltl f /ppltl goals to standard fond planning.
Our experiments have shown that our recognition approach
yields high accuracy for recognizing temporally extended
goals (ltl f /ppltl) in different settings (Keyhole Offline and
Online recognition) at several levels of observability.

As future work, we intend to extend and adapt our recog-
nition approach for being able to deal with spurious (noisy)
observations, and recognize not only the temporal extended
goals but also anticipate the policy that the agent is executing
to achieve its goals.
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