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a multimodal dataset of real world 
mobility activities in Parkinson’s 
disease
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Gregory J. L. tourte  3,7, Alan Whone  1,2 & Ian Craddock  3

Parkinson’s disease (PD) is a neurodegenerative disorder characterised by motor symptoms such 
as gait dysfunction and postural instability. Technological tools to continuously monitor outcomes 
could capture the hour-by-hour symptom fluctuations of PD. Development of such tools is hampered 
by the lack of labelled datasets from home settings. To this end, we propose REMAP (REal-world 
Mobility Activities in Parkinson’s disease), a human rater-labelled dataset collected in a home-like 
setting. It includes people with and without PD doing sit-to-stand transitions and turns in gait. These 
discrete activities are captured from periods of free-living (unobserved, unstructured) and during 
clinical assessments. The PD participants withheld their dopaminergic medications for a time (causing 
increased symptoms), so their activities are labelled as being “on” or “off” medications. Accelerometry 
from wrist-worn wearables and skeleton pose video data is included. We present an open dataset, where 
the data is coarsened to reduce re-identifiability, and a controlled dataset available on application 
which contains more refined data. A use-case for the data to estimate sit-to-stand speed and duration is 
illustrated.

Background & Summary
Parkinson’s disease (PD) is a slowly-progressive neurodegenerative disorder, characterised by symptoms such as 
slowness of movement and gait dysfunction1 which fluctuate across each day2. Currently, PD management relies 
on therapies which improve symptoms. Despite there being multiple putative disease-modifying treatments 
(DMTs) showing promise in laboratory studies3, there is no licensed treatment which has been demonstrated 
to change the course of the underlying disease. One reason for this is the dearth of sensitive, frequent, objective 
biomarkers to enhance the current gold-standard clinical rating scale4 used to measure disease progression of 
PD. This scale, the Movement Disorders Society-sponsored revision of the Unified Parkinson’s Disease Rating 
Scale (MDS-UPDRS), has limitations including its “snapshot” nature, which cannot fully capture the symptom 
fluctuations experienced by patients, its non-linear and discontinuous scoring system, inter-rater variability5 
and the impact of the Hawthorne effect6 (how being observed changes a person’s behaviour)7,8 on symptoms.

This dataset was created as a basis on which to build approaches which may overcome flaws relating to symp-
tom quantification in PD clinical trials. The aim was to use cameras and wearables to measure PD symptoms 
and activities from unrestricted “free” living in a home setting, so that potential digital biomarker(s) of disease 
progression could be identified that could be continuously, passively and unobtrusively quantified by a scalable 
sensor platform. Free living behaviour (living as naturally as possible with very few external interventions) 
was captured because it has been shown that mobility symptoms in PD change during assessments in a clinical 
setting8. From this data, a paper was produced evaluating turning of gait, which showed that mobility outcomes 
also changed when the participants are observed during clinical assessments in a home setting9.
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Related work. Other PD symptoms that have been evaluated in home settings using technology, especially 
with body-worn wearable devices and smartphone sensors10, include motor symptom fluctuations11, tremor, 
bradykinesia and dyskinesia12,13, activity levels14 and sleep15.

The importance of turning in gait, which combines straight-ahead gait ability and postural stability, as a 
proxy metric to track disease progression in PD, is increasingly recognised16. Gait and turning can be remotely 
quantified using a single wearable device which can passively capture the activity12,17,18. However, a gap remains 
in the demonstration of the accuracy of devices to measure these outcomes from real-world data; the work of the 
Mobilise-D consortium, currently underway, aims to address this evidence gap19. Gait is perhaps more amena-
ble to quantification by home-based sensing systems than more subtle symptoms such as fine finger motor 
function, which may be lost to detection in the “noise” of real-world daily life. Much existing work evaluating 
gait in home settings has used wearable sensors containing inertial motor units12,18, with sensors often applied 
to the back or lower limbs. The wrist is considered more acceptable by participants than other body sites for 
long-term wearable sensor placement in PD20, but potential changes in arm swing21 and upper limb tremor22 
need to be accounted for in gait analysis. Single or multiple cameras can also be used in real-world settings23 
to measure symptoms and activities. Cameras capture a broader spectrum of information about activities than 
wearables. The use of cameras in addition to wearable sesnsors increases the breadth of activities that can be 
covered. However, each camera has limited coverage, and therefore a larger number of cameras increases the 
number of distinct activities captured in daily living24. Many of the works looking at camera data have focussed 
on participant performance in evaluation of structured clinical rating scales during telemedicine consultations 
as opposed to naturalistic behaviour25. Cameras can detect Parkinsonian gait and measure some gait features 
including step length and average walking speed26,27. Time of flight devices (which measure distances between 
the subject and the camera) have been used to assess medication adherence through gait analysis28. Also, mul-
timodal data fusion of in-home camera and wearable data shows promise for privacy-preserving tracking of 
Parkinsonian symptoms29,30.

In the literature, there are many datasets available for human activity and action recognition, some of which 
are detailed in Table 1. These explore a wide variety of activities such as walking, poses, gestures, and everyday 
tasks such as eating or cleaning; some examples are given in Table 2. A subset of these datasets also explores 
“transitions”, which is to say, moving from one pose or activity to another, such as moving from a seated to 
standing position. As can be seen from Table 1, the majority of these datasets present data from relatively young 
and healthy participants. For PD action recognition, the MPower dataset31, published in 2016, collected scripted 
activities including walking and turning when prompted by the app from more than 3000 people, both with PD 
and without. There was no ground truth labelling of this IMU data and the activities collected were scripted. 
There is a paucity of other sizeable and good-quality motion datasets at present that involves participants 
with PD. Machine learning approaches such as deep convolutional neural network models trained on healthy 

Dataset Participants

Sensor Data

Depth RGB MoCap Inertial Synth Silhouette Depth 2D Skel 3D skel RGB Inertial

CMU MoBo87,88 (2001) 25 Outline ×

Casia89 (2005)  > 1000 × × ×

HDM-0590,91 (2005) 5 actors × 24-joint ×

HumanEva-I92 (2006) 4 × × 15-joint ×

HumanEva-II92 (2006) × × 15-joint ×

MSRAction3D93 (2010) 10 × ×

RGBD-HuDaAct94 (2011) 30 students × × × ×

MSRDailyActivity3D95 (2012) 10 × × × 20-joint ×

HMDB-5196 (2011) YT (YouTube), 
movies × ×

UCF10197 (2012) YT × ×

HUMAN 3.6 M98,99 (2014) 11 actors × × × 32-joint ×

MPI-INF-3DHP100 (2017) 8 actors × 17/21-joint

OU-isr gait DB101 (2017) 63,846 
(2–90 years) × × ×

JTA102 (2018) Simulated × 22-joint ×

DU-MD103,104 (2018) 50 (16-22 years) × ×

KIMORE105 (2019) 78, 34 w/motor 
dysfunction × × × 25-joint ×

Up-Fall106 (2019) 17 (18–24 years) × ×

FallAllD107 (2020) 15 × ×

VISTA108 (2022) 20 (19–44 years) × × × × 25-joint × ×

Sphere Challenge (2023) 10 (18–39 years) × × × ×

Table 1. A selection of benchmark datasets currently available for comparison with PD SENSORS dataset. Joint 
count is indicative, as dataset reporting of this information varies. RGB: red-green-blue video; MoCap: motion 
capture; Synth: synthetic; 2D: 2-dimensional; Skel: skeleton pose; 3D: 3-dimensional.
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populations show reduced accuracies when tested on populations of people with PD32, so PD-specific datasets 
for model training are ideally needed. This is especially important since dopaminergic medication33, the severity 
of motor symptoms such as bradykinesia34 and clinical phenotype (tremor-dominant or postural instability and 
gait difficulty)35 all influence gait dysfunction in PD.

The difficulty in validating the sensor data without any “ground truth” (a definite knowledge of what the per-
son is actually doing) is a well-acknowledged challenge in the academic field of identifying and evaluating PD 
outcome measures17,36. For instance, data collected from unwitnessed real-world living provides challenges in 
interpretation related to sources of variability. In PD, gait is influenced by multiple such confounding variables, 
such as cognitive impairment37, depression38 and the use of mobility aids39. Conducting another activity (like 
holding a phone) while simultaneously mobilising, or “dual tasking”, influences both sit-to-stand40 and turning 
in gait9,41. Therefore, it is valuable for such significant sources of variability to be either minimised or carefully 
characterised in datasets intended to evaluate human gait.

Furthermore, validation of algorithms to measure real-world gait in PD ideally requires a ground truth data-
set from a real-world setting since a body of literature has demonstrated that such algorithms developed in the 
laboratory translate poorly to naturalistic environments42–48.

our dataset and potential uses. Here, we present REMAP (REal-world Mobility Activities in Parkinson’s 
disease), a unique, labelled real-world dataset of mobility-related activities in people with PD and healthy control 
volunteers. The activities are manually labelled by human raters, contain both “on” and “off ” medication states 
in the PD participants (as defined in the Methods section: ‘‘On’’ and ‘‘off ’’ medication), and capture both free 
unscripted living and observed clinical assessments in a home setting.

Beyond identifying mobility activities, a variety of extra annotations are provided that add rich informa-
tion about the actions, shown in Table 3. We include pseudonymised and coarsened skeleton pose data in an 
open source dataset49, and additional data including accelerometry and uncoarsened skeleton pose data is pub-
lished in a controlled dataset50, which is available on an application basis to researchers. Sources of variability 
(e.g. walking aids, cognitive impairment, depression) are minimised by the study’s exclusion criteria. It is our 
hope that this dataset may be instrumental in fostering the improvement of computational models to evaluate 
mobility outcomes in PD. The difference between observed and unobserved, free-living and clinical assess-
ment, and medication-related mobility outcomes may be explored. Vitally, this dataset could bridge the proven 
gap between laboratory and home-like setting algorithm validation. To the authors’ knowledge, it is the first 
human-labelled real-world dataset using ground truth from static cameras in PD.

Methods
Participants. 24 participants were recruited to this study, 12 with PD (mean age 61.25; 7 males, 5 females) 
and 12 healthy control volunteers (mean age 59.25, 3 males, 9 females). Participants’ cohort-level demographic 
data is presented in Table 4. Participants with PD were recruited through movement disorders specialist clinics or 
general neurology outpatient clinics in North Bristol NHS Trust, through posters in the outpatient department of 

Dataset

Transitions Activities

Sit-to-
stand Turn

Lie down/
get up Fall

Ascend/
descend stairs Walk Jog

Loaded-
walk Gesture

Punch/
hit

Throw/
catch

Eat/
drink

Clean/
cook

Hygiene/
dressing

CMU MoBo87,88 (2001) × ×

Casia89 (2005) × ×

HDM-0590 (2005) ×

HumanEva-I92 (2006) × × × × ×

HumanEva-II92 (2006) × × × × ×

MSRAction3D93 (2010) × × × ×

RGBD-HuDaAct94 (2011) × × × × ×

MSRDailyActivity3D95 (2012) × × × × ×

HMDB-5196 (2011) × × × × × × × × ×

UCF10197 (2012) × × ×

HUMAN 3.6 M98,99 (2014) × × ×

MPI-INF-3DHP100 (2017) × × × ×

OU-isr gait DB101 (2017) ×

JTA102 (2018) × × ×

DU-MD104 (2018) × × × ×

KIMORE105 (2019) ×

Up-Fall106 (2019) × ×

FallAllD107 (2020) × × × × × ×

VISTA108 (2022) × × × ×

Sphere Challenge (2023) × × × × ×

Table 2. Selected activities and transitions labelled in benchmark human activity recognition datasets.
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North Bristol NHS Trust, via Cure Parkinson’s (UK-based charity), a local Patient and Public Involvement Group 
and by word-of-mouth. The medical care for the participants with PD continued unchanged. The control partic-
ipants recruited were a friend or family member of the PD participants. They volunteered their contact details to 
the research team through their study partner. They were offered a separate consultation with the research team 
to ensure independent and informed consent. Most of the participant pairs were spouse-spouse pairings, but 
there were also parent-child and friend-friend pairs. Inclusion criteria for the study for PD participants included:

•	 Diagnosis of idiopathic PD according to UK Brain Bank Criteria51.
•	 Age over 18.
•	 Modified Hoehn and Yahr Scale score52 of 3 or less in “off ” state (i.e. when the patient’s symptoms are greater 

as they are withholding their symptom-improving dopaminergic medications).

Parkinson’s disease participants Control participants

Mean (standard deviation) Mean (standard deviation)

Age (years) 61.25 (8.5) 59.25 (13.4)

Number of men (%) 7 (58) 3 (25)

MDS-UPDRS total score “On” = 44.8 (16.1); “off = 61.7 (29.9) 6.8 (4.8)

MDS-UPDRS III sub score “On” = 19.1 (10.4); “off ” = 36.8 (23.0) 2.8 (1.9)

PIGD sub score “On” = 2.8 (1.9); “off ” = 4.3 (4.8) 0.1 (0.3)

TUG-test time “On” = 8.3 (2.1); “off ” = 10.8 (5.1) 7.0 (1.5)

PDQ-39 23.3 (14.2)

RBD-SQ 6.8 (3.3)

PDSS 118.9 (14.2)

NMSS 31.8 (17.4)

Hoehn and Yahr “off ” medications 2.3 (0.8)

Years since diagnosis 8.2 (6.5)

LEDD 517.5 (395.7)

Table 4. Cohort-level demographic and clinical rating tool scores of all participants. MDS-UPDRS: Movement 
Disorder Society sponsored revision of the Unified Parkinson’s Disease Rating Scale; PIGD: Postural Instability 
and Gait Difficulties sub-score of MDS-UPDRS; TUG-test: Timed-Up-and-Go test; PDQ-39: Parkinson’s Disease 
Questionnaire-39; RBD-SQ: REM sleep Behaviour Disorder Screening Questionnaire; PDSS: Parkinson’s Disease 
Sleep Scale; NMSS: Non-Motor Symptoms Scale for Parkinson’s disease; LEDD: levodopa equivalent daily dose.

Activity labelled Parameters included for each label

Turning of gait

Turning duration (seconds:milliseconds)

Angle of turn to nearest 45 degree (degrees)

Number of turning steps (integers)

Type of turn (pivot or step)

PD or control status

“On” or “off ” medication status (for PD participants)

“On” or “off ” deep brain stimulation status (for PD participants)

Clinical assessment (“Yes” or “No”, with “No” therefore denoting free-living behaviour)

Sit-to-stand

Whole episode duration (seconds:milliseconds)

Final attempt duration (seconds:milliseconds)

Extra detail about STS transition: uses flat surface(s) to push off from arms of chair, >1 attempt, moves 
forward in chair, carrying something in hand(s)

MDS-UPDRS question 3.9 rating (on 0–4 scale)

PD or control status

"On" or "off " medication status (for PD participants)

“On” or “off ” deep brain stimulation status (for PD participants)

Clinical assessment (“Yes” or “No”, with “No” therefore denoting free-living behaviour)

Non-turning, non-sit-to-stand

Action labelled (Descending stairs, sitting etc)

Episode duration (seconds:milliseconds)

PD or control status

“On” or “off ” medication status (for PD participants)

“On” or “off ” deep brain stimulation status (for PD participants)

Clinical assessment (“Yes” or “No”, with “No” therefore denoting free-living behaviour)

Table 3. Outline of human rater label dataset contents.
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Exclusion criteria for the study included:

•	 Current significant depression or cognitive impairment.
•	 Use of walking aids whilst inside the house to aid mobility either “on” or “off ” medications.

Exclusion criteria specifically for control participants:

•	 History of PD, REM (rapid eye movement) sleep behaviour disorder, dementia, or other neurodegenerative/
significant musculoskeletal condition.

The recruitment and drop-out data are shown in Fig. 1.

Fig. 1 CONSORT diagram illustrating study recruitment and drop-out.
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consent and ethics. Written informed consent was gained from all study participants, including permission 
to publish anonymised data openly and to share pseudonymised data with other researchers or academic third 
parties, in scientific meetings and through paper and electronic publications. Full approval from NHS Wales 
Research Ethics Committee 6 was granted on 17th December 2019, and Health Research Authority and Health 
and Care Research Wales approval confirmed on 14th January 2020; the research was conducted in accord with 
the Helsinki Declaration of 1975. The data was pseudonymised with a unique identification number (ID) assigned 
to each participant for the study; new randomly-generated unique ID numbers were then assigned for the pur-
poses of this dataset publication.

study protocol. Setting. The participants stayed for 5 days, 4 nights continuously at a fully-furnished 
2-bedroom terraced house which was the study setting. There were wall-mounted cameras in communal rooms 
downstairs, as shown in Fig. 2.

Free-living. Apart from the clinical assessment testing sessions described in Clinical assessments, the partici-
pants were encouraged to live as freely as possible, without external intrusion. They could take part in activities 
outside the test-bed house; however they were asked to stay overnight when possible. They could continue work-
ing if they needed and bring anything to the house that helped them continue their normal hobbies e.g. exer-
cise DVDs. While the aim was to facilitate naturalistic behaviour, this was not the participants’ home and they 

Fig. 2 Layout of test-bed house used for data collection.
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were informed when video data was captured. These two factors may have influenced their behaviour subtly, as 
explored in Morgan et al. in their related qualitative work53. However, the strong feedback provided by partici-
pants was that the participants felt their behaviour overall was naturalistic. Our group have also shown that the 
turning outcomes captured in this dataset do alter between the researcher-observed clinical assessments and 
unobserved free-living9 - this demonstrates the potential of the dataset to reveal the impact of the Hawthorne 
effect on mobility outcomes.

“On” and “off ” medication. The person with PD in each study pair was asked to withhold their dopaminergic 
medications (12 hours for short-acting levodopa-containing agents and 24 hours for long-acting therapies) and/
or switch off their deep brain stimulators (DBS) so that they were in the practically-defined “off ” medications/
DBS state for a limited period of hours. Therefore, when sit-to-stand (STS) or turning episodes are labelled as “on” 
medications/DBS, they took place during the rest of the study, before or after the practically-defined “off ” state.

Clinical assessments. Each participant underwent multiple clinical evaluations (on 2 occasions for the control 
participants, 3 for the participants with PD). The first occasion was on the first day of the 5-day stay in the test-
bed house. The other occasion(s) were on the day when the participant with PD withheld their medications.  
For logistic purposes, for 10 pairs of participants this testing was on day 4 of the study, but in one case it was  
day 3 and for one case it was day 5. The clinical assessments lasted between 30 minutes and an hour, and con-
sisted of performing the full motor sub score of the MDS-UPDRS (III)4 and the timed-up-and-go (TUG) test54 
twice. Participants were also asked to do 20-metre walks as part of their clinical assessment, during which the cli-
nician evaluated their gait. Each continuous 20-metre walk included 3 × 180 turns. At each testing session they 
completed the 20-metre walk 3 times, each at a different pace: “normal”, “fast” and “slow”. The participants with 
PD were also asked to complete some patient-reported outcome measures which evaluate other aspects of living 
with PD: the Parkinson’s Disease Questionnaire-3955, the Parkinson’s Disease Sleep Scale-256, the Non-Motor 
Symptoms Scale57 and the Rapid Eye Movement-sleep Behavior Disorder Screening Questionnaire58.

The MDS-UPDRS is a clinical rating scale widely used in clinical trials to evaluate symptoms and their pro-
gression. It consists of four sub-scales, of which part III is the direct clinical evaluation of PD motor symptoms 
by a clinician. There are 33 questions in part III, each scored on a 0–4 scale (e.g. where 0 is no symptoms and 
4 is very severe symptoms). The MDS-UPDRS part III comprises diverse symptoms including tremor, facial 
expression, slowness of various movements, rigidity and gait. For this study, the evaluation of turning in gait 
during clinical assessments takes place when the participants do the TUG test and the 20-metre walk. STS is 
evaluated during the MDS-UPDRS III (the participant crosses their hands in front of their chest and, using an 
upright chair, stands from sitting). The maximum possible total score for the MDS-UPDRS III sub scale is 132. 
A sub-score within the MDS-UPDRS is the Postural Instability and Gait Difficulties score (PIGD), which is 
comprised of parts 2.12, 2.13, 3.10, 3.11 and 3.1259. It looks to identify self-report and objective performance in 
axial stability and gait from within the wider tool.

The TUG test is a simple assessment of functional mobility which involves the person arising from a seated 
position to walk forward 3 metres, turn 180° and walk back to sit down in the chair as fast as they feel able54. It 
shows good to excellent intra-rater, inter-rater and test-retest reliability for total duration and turning duration 
in PD60,61.

The Parkinson’s Disease Questionnaire-3955 is a 39-question tool to evaluate self-report of health-related 
quality of life. The Parkinson’s Disease Sleep Scale-2 is a 15-point visual analogue scale that has been validated 
in PD56 and allows patients with PD to self-rate the profile of nocturnal disturbances and sleep disruption they 
experience. The Non-Motor Symptoms Scale is a 30-question tool which assesses the severity and frequency with 
which a patient with PD experiences a variety of non-movement related symptoms, such as urinary dysfunc-
tion and mood/cognitive symptoms57. The Rapid Eye Movement (REM) sleep Behaviour Disorder Screening 
Questionnaire is a useful screening tool due to its relatively high sensitivity for REM sleep behaviour disorder58, 
which affects a significant proportion of patients with PD.

Video data capture. Red-green-blue (RGB) video was captured from the cameras shown in Fig. 2 for between 
1 and 3 hours on the first 4 days of the study for each pair. The timings were chosen a) to capture the clinical 
evaluation episodes and b) to capture the participants free-living (without external influence or scripts) when 
they were alone in the house. The free-living timings were prearranged with the participants to ensure that they 
were likely to be at home while the data was collected. Typical RGB capture times and their relation to the other 
study activities are illustrated in Fig. 3. A total of 85 hours of study time was recorded by the RGB cameras (aver-
aging 1.8 hours per day per participant pair), usually by all cameras collecting data simultaneously. All turning 
and STS episodes, along with other activities such as sitting and standing still, were labelled using this RGB data.

sensor specifications. Cameras. Off-the-shelf Microsoft Kinect cameras were wall-mounted above eye 
level, placed to achieve maximum coverage of the room they were in and to minimise occlusions. They were 
situated in communal rooms downstairs, shown in Fig. 2, including the hallway, dining room, living room and 
kitchen. While these cameras are capable of generating both RGB and depth images, for the purposes of this 
study, RGB video was collected.

RGB data. RGB data frames from the Kinect were stored alongside corresponding timestamps, then aggre-
gated into an MPEG-4 (Moving Pictures Expert Group 4)-encoded video file according to the timestamp. The 
resulting video from these platforms was 640 × 480 pixels in resolution and had an average frame rate of 30 
frames per second.

https://doi.org/10.1038/s41597-023-02663-5
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2D skeleton data. Skeleton data was provided frame-by-frame, with each 2D (2-dimensional) data frame con-
taining x and y coordinates for each of the skeleton joints. This dataset included 2D skeleton data for each STS 
and turning of gait clip. Illustration of the joints included in each case is in Fig. 4.

STS RGB videos were analysed using OpenPose software62 to detect human bodies and extract their skeleton 
joints. Most clips were 17 seconds long, with 2 seconds/2000 milliseconds included before the transition and 
a variable amount of data included afterwards to make up the total duration. For the avoidance of doubt, the 
STS transitions always start at 2.000 seconds; this information can be used to match the skeleton data with the 
accelerometer data. The extra added data may enable algorithms to be developed which identify STS transitions. 
However, because of various factors (e.g. subject disappearing from the frame), some of the clips can be shorter. 
Therefore, each frame was allocated a timestamp. The skeleton included 25 joints that can be divided into dif-
ferent parts of the body as shown in Fig. 4: head (0 nose, 15/16 eyes and 17/18 ears), trunk (1 neck and 8 mid 
hip), arms (2/5 shoulders, 3/6 elbows and 4/7 wrists), legs (9/12 hips, 10/13 knees, 11/14 ankles), and feet (19/22 
big toes, 20/23 small toes and 21/24 heels). Each frame of STS skeleton data contained 2 (x, y) coordinates × 25 
joints = 50 datapoints.

For turning of gait episodes, firstly RGB video clips were trimmed to contain the turning action with 6 
frames of data/200 milliseconds included both before and after the action itself. These clips were then fed to 
a state-of-the-art 2D skeleton extraction model named High-resolution Net (HRNet)63. A pre-trained model 
already provided by the authors of the HRNet paper63 was used; the extracted 2D skeletons comprised 17 body 
joints shown in Fig. 4. The data was normalised as part of the methodology. Each frame of turning 2D skeleton 
data contained 2 (x, y) coordinates x 17 joints = 34 datapoints.

The open dataset49 skeleton data was coarsened (see Skeleton data re-idenfiability) to reduce identifiability, 
but all the joints described above (25 for STS, 17 for turning) were included in all skeleton data clips in both the 
open49 and controlled50 datasets.

3D skeleton data. The turning RGB clips were also transformed to 3-dimensional (3D) human pose data. At 
first, having extracted 2D skeletal data from raw RGB clips63, these 2D skeletons were given as input to a strided 
transformer capable of producing a 3D pose estimation from a 2D source64. The method produced the corre-
sponding 17 3D (x, y, z) coordinates of body joints. As with the 2D skeleton turning data described in the 2D 

Fig. 4 Layout of 2-dimensional skeleton joints used in sit-to-stand and turning.

Fig. 3 Example of a typical study schedule across five days for participants. RGB: red-green-blue video data; 
MDS-UPDRS: Movement Disorder Society sponsored revisin of the Unified Parkinson’s Disease Rating Scale; 
TUG-test: Timed-Up-and-Go test; PD medications: Parkinson’s disease medications.
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skeleton data section, all 3D 17 (x, y, z) joints were also included in both open49 and controlled50 datasets and the 
data was normalised. Again, for the open dataset49, 3D data was coarsened to reduce the risk of re-identification.

Tri-axial accelerometry data. Tri-axial accelerometers were integrated into wrist worn wearables. A wearable 
was worn on each wrist by all participants throughout the study. The wearable devices were in-house designed 
and did not utilise gyroscope or magnetometer, a decision taken to maximise battery life. The accelerometer 
readings had a variable sampling rate of approximately 30 Hertz; the accelerometry records gave exact times-
tamps for each sample to enable accurate use. Accelerometry traces in three spatial directions (x, y, z) for each 
wearable were recorded at each time point. Accelerometry data was included in the controlled dataset50 for each 
discrete episode of STS or turning. Accelerometer data clips were trimmed to only include the action itself. 
Furthermore, for comparison purposes, the dataset also included start-to-end accelerometry readings for the 
other non-turning, non-STS activities (see list below) below that were labelled in the dataset. These had no extra 
annotations, unlike STS and turning.

Non-STS, non-turning activities:

•	 Descending stairs
•	 Going up stairs
•	 Leaning over from standing
•	 Semi-recumbent
•	 Sitting
•	 Standing still
•	 Standing with activity
•	 Stand-to-sit

The wearable locations (right or left wrist) and handedness were included in the controlled dataset50, along-
side information about which side, if any, the PD participants experienced more severe symptoms.

Human rater labels. The RGB videos were watched post-hoc by medical doctors who had undertaken train-
ing in the MDS-UPDRS rating score, including gait parameter evaluation. Various aspects of the participants’ 
movement were identified visually and quantified by the rater, producing “labels” (a set of parameter outcomes 
for each action)65. A widely-available software called ELAN66, commonly used for video analysis and labelling67, 
was used to synchronise and review up to 4 simultaneously-captured video files at a time. A pre-prepared label 
template was used by both clinician raters, selecting terms from controlled vocabularies presented in drop-down 
menus in order to reduce variability in label use. The actions of turning in gait and STS were chosen due to the 
frequency with which they occur (for turning, around 20 times an hour on average in free-living; for STS, 3–4 
times an hour). The choice of what to label was also influenced by the position of the cameras available to the 
study researchers (as these were placed in downstairs communal rooms, some views were unavailable, such as, 
for example, a view of the whole staircase) and the knowledge that both turning and STS actions are often altered 
in mild-moderate PD68,69. Importantly, these actions are influenced by the core motor symptoms of bradykinesia 
and postural instability and therefore longitudinal repeated measurement of these actions shows potential as a 
measure of symptom, and therefore disease, progression in PD70,71.

Other actions were included to enable comparison with STS and turning (see details above). These are 
labelled from start-to-finish to the nearest millisecond. They are mostly self-explanatory (e.g. “Sitting”). 
“Leaning over from standing” indicates an action such as someone bending over to open a low cupboard. 
“Semi-recumbent” indicates a period where someone is seated with their legs raised on the sofa/footstool. 
“Standing with activity” includes any standing periods where the person was undertaking actions with their 
upper limbs but keeping their lower limbs relatively still (e.g. food preparation activities at the kitchen worktop).

The turning parameters labelled were: turning angle estimation (90° to 360° in 45° increments), number 
of turning steps (integers from 1 to 18), duration of turn (seconds:milliseconds), type of turn (pivot turn, step 
turn). 11 out of the 12 pairs (total 22 participants) had turning episodes evaluated.

A turning episode was defined as:

•	 Starting from the initiation of rotation of the pelvis, ending in completion of movement.
•	 Not a turn taken in a walking arc (e.g. walking around a table).
•	 Clearly visible from the video.

Turning angles were estimated visually by the human raters. Turns with angles of 45° were not included because 
the raters found it too challenging to reliably identify them and accurately quantify their duration. Turn angles 
were rounded to the nearest 45°, therefore for example all turns between 67.5° and 112.5° were included in the 90° 
angle dataset. There were turns where the person bent over from standing towards the end, or where the person 
started leaning down and turned as they stood up. Where the participants’ feet were visible in the video frame, the 
number of turning steps was counted. In terms of type of turn: a pivot turn was classified as a turn in which one 
or both feet swivel in place to achieve the turning movement; a step turn was classified as a turn achieved by three 
steps or more without pivoting. The episodes taken during “Clinical assessments” describe when the participants 
are undergoing the tests outlined in Clinical assessments. Otherwise, the data were defined as “free-living”.

Similarly, participants’ STS episodes were identified and labelled by non-clinician and clinician raters. Raters 
first provided the “whole episode duration” label which started when the participant made their first motion 
towards standing from a static sitting position and ended when the person was fully upright. A clinician rater 
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then provided a second duration for all the STS episodes, the “final attempt duration” label in milliseconds, 
comprising their impression of the duration between the lowest point of the head (start) and when the person 
was fully upright/the maximum vertical position of the vertex of the head (end). The STS episode label was ter-
minated before any walking steps were taken away from the upright position. The rater also noted: whether the 
person was dual-tasking - in this case whether they were carrying something in their hand(s) as they stood up; 
whether the attempt to STS was perceived as slow in their opinion; whether more than one attempt was taken for 
the transition; whether the arms of a chair (or other flat surface e.g. nearby table) were used to get up; or whether 
the person moved forward in the chair prior to their STS episode. Finally, a MDS-UPDRS score was allocated for 
each STS transition, using the scoring system set out in question 3.9 of this clinical rating scale tool:

•	 0 = No problems. Able to arise quickly without hesitation.
•	 1 = Arising is slower than normal; or may need more than one attempt, or may need to move forward in the 

chair to arise. No need to use the arms of the chair.
•	 2 = Pushes self up from arms of chair without difficulty.
•	 3 = Needs to push off, but tends to fall back; or may have to try more than one time using arms of chair, but 

can get up without help.
•	 4 = Unable to arise without help.

If the person was positioned in the video frame in such as way as to occlude necessary additional visual 
information, where possible the STS episode was still labelled with “whole episode duration” and “final attempt 
duration”, but the MDS-UPDRS 3.9 score and additional information were not assigned. If it was not possible 
to discern the final attempt duration accurately (e.g. because of occlusion from another person), a result of 0 
milliseconds was given.

combining the data. As mentioned in 2D skeleton data, the skeleton pose data has extra frames added 
before and after the discrete action. Knowing the timings of the action within the data will enable comparison of 
the different modalities for the same action:

•	 STS skeleton data: 2000 milliseconds are added before the STS transition and a variable duration of data is 
added after STS transition to make up to 17 seconds in total.

•	 Turning skeleton data: 6 frames/200 milliseconds are added before and after the turning action.
•	 Accelerometer data: discrete start-to-end clips are included.

Data use case example: a computational approach to sit-to-stand speed and duration evalu-
ation. Overview of approach. Our group developed an approach to estimate STS speed and duration using 
the 2D skeleton data from this dataset. From the total of 25 joints, eight were chosen as the minimum number 
necessary to evaluate these parameters. The evolution in time of the head, or “head trajectory”, was estimated by 
averaging the vertical components of the five joints that compose the head (i.e. joints 0, 15, 16, 17 and 18) plus 
the three shoulder joints (i.e. joints 1, 2 and 5). The head trajectory was then used to estimate the STS parameters 
after being smoothed with a Savitzky-Golay filter72. This is a digital filter that can be applied to a set of digital dat-
apoints for the purpose of smoothing the data (see part b. of Fig. 5). Then the speed of ascent (SOA) was evaluated 
similarly to our previous work73 - by finding at the maximum derivative of the head trajectory within each video 
clip. Figure 5 from the work by our group74 illustrates the process of STS speed quantification: visualisation a. 
shows the skeleton image sequence from a single STS transition; graph b. illustrates the head trajectory in pixels 
during the transition; graph c demonstrates the derivative of head trajectory which is then used to calculate the 
speed (in pixels/second) and duration of ascent (in seconds). Secondly, the STS duration was estimated - in this 
case this meant the time elapsed between when the head was at its lowest and highest points in the frame. This 
process uses a moment in time identified by the STS speed quantification approach, namely tSOA (time identified 
through the SOA approach). Once tSOA is found, the closest local minimum (when the person’s head is at its 
lowest point in the frame) before tSOA and the closest local maximum (highest point someone reaches in frame 
after standing up) after tSOA are identified. Finally, the time elapsed between these two points is calculated to 
estimate STS duration. This is illustrated in part c of Fig. 5 by looking at the points where the derivative of the 
head trajectory crosses the zero line.

An important step in measuring STS parameters is their conversion to physical measurements. While the 
STS duration can be easily converted from frames to seconds (s) knowing the frame-rate of the camera, the 
conversion to STS speed requires additional processing. In fact, skeleton coordinates are measured in pixels, 
therefore the STS speed is expressed in pixels/second (pixels/s). These values must be converted into physical 
quantities (metres per second) before different measurements can be compared, otherwise the STS speed will 
depend on the distance of the subject from the camera. To override this issue without having to perform lengthy 
calibration procedures, we normalise the STS speed by the height of the skeleton, in pixels75,76, at the moment 
they complete the transition (i.e. zero-crossing point after max peak). This value, multiplied by the height of the 
subject in metres, allows us to estimate the speed of each subject in metres per second.

It is important to note that the STS duration detected by this use-case automatic approach only considers the 
time elapsed from when the person starts moving upwards until the movement is terminated; therefore, in case 
the participants require several attempts at standing up, only the last attempt will be timed. While this behaviour 
can create some discrepancies with the STS duration times measured by clinicians in a lab setting (which instead 
start timing from when the subject first moves towards standing up), this helps improve robustness and consist-
ency of the algorithm in a free-living environment.
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Although the analysis performed in this work used the human rater label timestamps to identify STS epi-
sodes, the entire process (including STS detection) can be fully automated, as we showed in our previous work, 
to detect STS transitions in the real-world73.

Filter size impact. The impact of the filter size for the Savitzky-Golay filter was also studied for our use case 
(NB the data in the REMAP dataset itself is raw data). This is defined by the window size and the polynomial 
order used to fit the head trajectory data and estimate the derivatives. In our experiment, we noticed that a 
smaller window size is beneficial for estimating STS speed but produces higher errors in the STS duration, 
while a larger window size has the opposite effect. This phenomenon is to be expected since larger window sizes 
increase smoothing and promote a reduction of false positives in the peaks used to estimate the STS duration. 
However, higher smoothing also means reduced gradients, which has a negative impact on the estimation of 
the STS speed. A compromise between the two measurements must therefore be made to obtain optimal STS 
parameters: we chose a window size of 11 and polynomial order of 1.

skeleton data re-identifiability. High resolution RGB colour video, especially (but not only) when it 
shows the person’s face, is clearly re-identifiable personal data. Producing skeleton joint markers from RGB 
data reduces, but does not remove fully, information about the face, clothes and accessories, and body habitus. 
However, skeleton pose data also retains important information about someone’s posture, gait and habitual poses 
(e.g. if someone had a habit of standing in a certain way that was particularly identifiable). It has been shown that 
skeleton data can reveal gender77, age to a 10-year range78 and, if full gait cycles are shown, be re-identifiable to the 
person in the video to a high degree of accuracy (>80%)79,80. Therefore, before this kind of data is released openly, 
careful consideration must be given to minimising re-idenfiability whilst retaining the useful content of the data. 
The most discriminating joints for re-identification through gait data are hands (e.g. giving information about 
arm swing) and feet (e.g. with stride length and duration)79. These joints in our data are potentially interesting to 
researchers as they contain information about how someone transitions from seated to standing (e.g. if they are 
using the arms of the chair) and about turning in gait (e.g. how many steps they take in a turn), so we preferred to 
include all the skeleton joints to enhance dataset utility.

However, unpublished work studying different aspects of detailed gait data has explored different ways of 
changing the data to reduce gait and identity recognition81. Using one of their approaches (which they tested 
on data with higher resolution), we coarsened the skeleton data in the open dataset49 by mildly perturbing the 
joint coordinates to reduce the risk of person re-identification. We have also applied other methods to reduce 
re-identifiability from the dataset as a whole, described below in Reducing re-identifiability: methods applied 
to the data.

Trial registration. As this was an observational study it was not registered with a trials database but instead 
was registered with the University of Bristol (the study sponsor), reference number 2018–4247 and on the 
research database of North Bristol NHS Trust, study reference number 4475.

Fig. 5 Illustration of the use-case automatic sit-to-stand speed and duration estimation approach.
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Data Records
Due to the fact that much of this data is personal, to protect privacy and adhere to the written consent gained 
from each participant, we have taken the decision to divide our dataset into open and controlled components. 
Both components are found in the University of Bristol’s Research Data Repository (data.bris).

The controlled dataset50 contains pseudonymous data including the full skeleton data for all STS and turning 
episodes. It also contains the bilateral wrist-worn accelerometry data for these episodes from all participants, 
along with accelerometry data for non-turning, non-STS action episodes. The reason the accelerometry data is 
in the controlled dataset is because the proven re-identifiability risk of accelerometry82 contravenes the study 
consent conditions relating to data sharing. We include individual-level demographic and clinical rating scale 
score outcomes given in ranges. The controlled dataset50 is available on an application basis.

The open dataset49 contains data which is anonymous, either because it is given at cohort-level (e.g. demo-
graphic data), because the labels contain non-personally identifiable content (PD vs C status) or because the 
data has been processed in such a way (see Reducing re-identifiability: methods applied to the data) to render it 
extremely unlikely to be re-identifiable.

sensor dataset. Nomenclature for all individual files/folders containing the final sensor data for an individ-
ual mobility action episode: Pt[unique ID number]_[PD/C]_n_[turn/STS/NonTurnNonSTS episode number].

•	 Pt = participant.
•	 ID = identification.
•	 n = turn/STS/NonTurnNonST episode number, as defined in the human rater label spreadsheets.

Human rater label dataset. The human rater label dataset for STS and turning is included in both the open 
dataset49 and the controlled dataset50. Human rater labels are also included for the non-turning, non-STS accelerom-
eter data in the controlled dataset50. The information included in the human rater label dataset is outlined in Table 3.

Turning of gait. The turning of gait human rater labels are contained in the spreadsheet named turning_
human_labels.xls. Each row in this spreadsheet comprises one turning of gait episode from one participant. 
Column A allocates a unique number to each STS episode. This unique number is then linked to data from three 
sensor data modalities: the 2D skeleton data, the 3D skeleton data and the accelerometer data from each wrist of 
the participant (only in the controlled dataset50).

Sit-to-stand. The STS human rater labels are contained in the spreadsheet named SitToStand_human_labels.
xls. Each row comprises one STS episode from one participant. Column A allocates a unique number to each 
STS episode. This number then corresponds to the sensor data files from two modalities: 2D skeleton and accel-
erometry (only in the controlled dataset50).

Non-turning, non-STS. All non-turning, non-STS actions are included in the folder called “NonTurnNonSTS”. 
This contains a master spreadsheet with human rater label information about all actions named 
NonTurnNonSTS_human_labels.xlsx. Also within this folder are sub-folders with the data and human rater 
label spreadsheets from each individual action (DescendingStairs, Sitting etc). These spreadsheets have the same 
layout and column title structure as those for turning and STS.

open dataset. In addition to the human rater label dataset described in Table 3, the open dataset49 contains 
2D/3D skeleton pose data, which is effectively anonymised83, whilst maintaining its potential for use to evaluate the 
mobility-related activities of interest. The sensor data in the open dataset49 is outlined in Table 5. Other information 
in the open dataset includes the code developed by our team for the use case of STS speed evaluation using our skel-
eton data. The open dataset49 may be accessed via this https://doi.org/10.5523/bris.21h9f9e30v9cl2fapjggz4q1x7.

controlled dataset. The controlled dataset, available through an application process described in50, com-
prises the sensor data listed in Table 6.

Additional data in this dataset includes:

•	 Demographic data: age (in 5-year range), gender, years since diagnosis (in 3-year range), levodopa equivalent 
daily dose (to nearest 100 mg), whether or not they have deep brain stimulators.

•	 Clinical rating scale and questionnaire scores (with ranges):
Motor MDS-UPDRS total and part III scores, postural instability gait difficulties sub-score of MDS-UPDRS 
and TUG-test times, specifying the “on” and “off ” medication status;
Non-motor NDS-UPDRS non-motor part I, Parkinson’s Disease Sleep Scale score, Non-motor Scale Score, 
Rapid Eye Movement Sleep Disorder Screening Questionnaire score, Parkinson’s Disease Quality of Life 
Questionnaire-39 total score and Mobility/Activities of daily living subscores.

•	 Information on wearable position (participant, left/right wrist), left or right-handedness for all participants 
and PD symptom side dominance (if asymmetrical) for PD participants.

N.B. The levodopa equivalent daily dose is a conversion of a person’s dopaminergic parkinsonian medica-
tions to generate a total L-dopa equivalent daily dose, calculated as a sum of each medication.

The controlled dataset50 may be accessed via this https://doi.org/10.5523/bris.2o94rzjooyzf42w850dqg0spfh.
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Reducing re-identifiability: methods applied to the data. Methods applied to data from both open 
and controlled sections. The steps that have been taken to reduce identifiability of all data include:

•	 Removing the timestamps from the data so that the date and time of study participation is hidden.
•	 The use of fresh unique identifiers for the participants so that their data cannot be traced to previously pub-

lished works.
•	 The computer vision (skeleton pose) data has a temporal jitter introduced due to the subtly variable frame 

rate of data collection.
•	 All turning of gait data clips are trimmed to include the relevant action only, with no full “walking straight-

ahead” gait cycles. Data clips are therefore short (restricted to a few short seconds only), therefore reducing 
the likelihood of biometric data leakage from this data. All STS data clips are only 17 seconds in duration, and 
therefore these are unlikely to contain any easily visible, side-on-to-camera, natural straight-ahead gait cycles.

•	 All turning data is normalised (the pre-processing of data to appear similar across all records) through the 
process of generating the 2D and 3D skeletons.

•	 The STS data is not normalised, but it is in the pixel space, not in the 3D world coordinate space. This means 
that there is no way of knowing the participants’ heights, reducing the re-identifiability risk from the STS 
skeleton data.

Methods used for open dataset only. The additional methods used to reduce re-identifiability in the open data-
set49 include:

•	 Coarsening both the STS and turning data as described in Skeleton data re-identifiability81.
•	 Only including cohort level demographic and clinical rating scale score information. The only specific clinical 

information given at an individual level is the diagnosis (or not) of PD and presence (or not) of a deep brain 
stimulator.

Using the methods described above, guided by the current literature on re-identifiability of skeleton data, 
we are confident that the open data is effectively anonymous. This open dataset49 is designed to be shared as 
widely as possible, in line with our group’s motivations for the data to be used for the greatest benefit possible, 
but respecting the need to keep the participants’ identities anonymous.

technical Validation
Participant pseudonymisation. Participants were each allocated a unique study ID, which was used 
throughout the study. The real identifiers of the participants were hidden from the research team except on a 
need-to-know basis, such as technical support, or direct meetings between the research team and participant for 
purposes such as consenting or data collection. Then, for this dataset publication, new unique identifiers were 
assigned to each participant.

Human label inter-rater agreement. Turning of gait labels. Two clinicians annotated 50% of the turns 
each. Around 50% of the total number of annotations were cross-checked (randomly selecting 6 pairs from 11) by 
both clinician annotators, blinding the cross-checking clinician to the turning annotations produced by the other. 
Cohen’s Kappa84 statistic was calculated to evaluate inter-rater reliability.

The two clinician raters had an almost perfect85 inter-rater agreement for turning angle (Cohen’s 
kappa = 0.96) and number of turning steps (Cohen’s kappa = 0.97) annotations. The agreement rate was 97% for 

Data type Sensor What is included Sit-to-stand Turning

2D skeleton data Camera All skeleton joints for each frame of the clip: 2 joint coordinates (x and y) 
per joint per frame. × ×

3D skeleton data Camera All skeleton joints for each frame of the clip: 3 joint coordinates (x, y and z) 
per joint per frame. ×

Table 5. Sensor data from cameras or wearables: contents of open dataset.

Data type Sensor What is included Sit-to-stand Turning
Non-turning, 
non-sit-to-stand

2D skeleton data Camera
All skeleton joints for each frame of the 
clip. 2 joint coordinates (x and y) per joint 
per frame.

× ×

3D skeleton data Camera
All skeleton joints for each frame of the 
clip: 3 joint coordinates (x, y and z) per 
joint per frame.

×

Tri-axial accelerometry Wrist-worn werable
Accelerometry traces from each of the 
two wearables worn by each participant 
for all clips.

× × ×

Table 6. Sensor data from cameras or wearables: contents of controlled dataset.
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turn duration. Any discrepancies were recorded, discussed, and resolved by the clinician raters, and with a final 
review by a movement disorders specialist.

Sit-to-stand labels. A number of different non-clinician and clinician raters identified and labelled 
(start-to-end, producing the “whole episode duration” labels) the STS episodes from the RGB data. All of the 
STS episodes were then re-watched by a single clinician rater (a neurology specialty registrar who had completed 
training in MDS-UPDRS scoring, including evaluation of STS and its subcomponents). This rater checked and, 
where they felt necessary (which occurred for 5% of the labels), adjusted the whole episode duration labels. They 
added a further “final attempt duration” label as discussed in Human rater labels. 10% of the STS episodes were 
chosen to evaluate intra-rater reliability, with this sub-set scored several months after the first rating by them-
selves. The intra-rater agreement on labels was 98% for “final attempt duration” and 98% for the MDS-UPDRS 
part 3.9 score. Cohen’s kappa84 was run to determine the reliability of the single rater rating the same labels twice, 
while correcting for how often the rater may agree with themselves by chance. The Cohen’s kappa was 0.97 for 
MDS-UPDRS part 3.9 scores, showing an almost perfect level of agreement85.

Usage Notes
Restrictions for controlled dataset. Due to the novel nature and collection method for these data, gov-
ernance structures have been put in place in order to respect the balance between the desire of participants to 
share their data and the respect for privacy of those participants. Researchers who are interested in accessing 
these data need to complete the following steps: submit an Intended Data Use statement and agree to the Data 
Use Agreement associated with each data source (see Digital Object Identifiers (DOIs) for each data source). The 
overarching conditions in the Data Use Agreement are as follows:

•	 You agree to sign and abide by the conditions within the Research Data Access Agreement For Controlled 
Data provided by the University of Bristol upon application for this controlled dataset.

•	 You agree to abide by the guiding principles for responsible research use and data handling as described 
in UKRI research integrity policy documents https://www.ukri.org/about-us/policies-standards-and-data/
good-research-resource-hub/research-integrity/.

•	 You confirm that you will not attempt to re-identify research participants for any reason, including for 
re-identification theory research.

•	 You commit to keeping these data confidential and secure.
•	 You understand that these data may not be used to re-contact research participants.
•	 You agree to report any misuse or data release, intentional or inadvertent to the data controllers within 5 

business days by emailing data-protection@bristol.ac.uk.
•	 Data users are strongly encouraged to cite this Data Descriptor, the associated study protocol86 and one or 

both of the open49 and controlled50 datasets, via formal citations in your article reference lists, including the 
DOIs, to allow for formal accreditation of the data creators. Please see the dataset references49,50 in this article 
for the format to use.

Ideas of experiments you could do on this dataset. Ideas for future experiments using the REMAP 
dataset include designing an approach to automatically classify PD or control status based on how the person 
does a STS transition, or turns in gait. One could explore how to classify whether someone is freely living or 
undertaking a clinical assessment when they are performing the actions in this dataset, or detect when someone 
is dual tasking when they stand up from sitting down. Different approaches could be explored towards calculat-
ing the turn angle, duration or number of turning steps taken in each clip, or calculating the duration of the STS 
transition.

Code availability
The code for 2D and 3D skeleton pose data generation and the use-case code evaluating STS speed is available 
here: https://github.com/ale152/SitToStandPD.
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