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Abstract

Shadowing trajectories are model trajectories consistent with a sequence of observations of a system, given a
distribution of observational noise. The existence of such trajectories is a desirable property of any forecast
model. Gradient descent of indeterminism is a well-established technique for finding shadowing trajectories in
low-dimensional analytical systems. Here we apply it to the thermally-driven rotating annulus, a laboratory ex-
periment intermediate in model complexity and physical idealisation between analytical systems and global, com-
prehensive atmospheric models. We work in the perfect model scenario using the MORALS model to generate a
sequence of noisy observations in a chaotic flow regime. We demonstrate that the gradient descent technique re-
covers a pseudo-orbit of model states significantly closer to a model trajectory than the initial sequence. Gradient-
free descent is used, where the adjoint model is set to λI in the absence of a full adjoint model. The indeterminism
of the pseudo-orbit falls by two orders of magnitude during the descent, but we find that the distance between the
pseudo-orbit and the initial, true, model trajectory reaches a minimum and then diverges from truth. We attribute
this to the use of the λ-adjoint, which is well suited to noise reduction but not to finely-tuned convergence towards
a model trajectory. We find that λ = 0.25 gives optimal results, and that candidate model trajectories begun from
this pseudo-orbit shadow the observations for up to 80 s, about the length of the longest timescale of the system,
and similar to expected shadowing times based on the distance between the pseudo-orbit and the truth. There is
great potential for using this method with real laboratory data.

This paper was originally prepared for submission in 2011; but, after Part I was not accepted, it was not
submitted. It has not been peer-reviewed. We no longer have the time or resources to work on this topic,
but would like this record of our work to be available for others to read, cite, and follow up.

Keywords: Shadowing; Rotating annulus; Gradient descent; Numerical Weather Prediction; Data assimilation;
Perfect Model Scenario

1. Introduction

Shadowing trajectories are model trajectories consistent with a sequence of observations of a system, given the
distribution of observational noise. The existence of such trajectories is a desirable property of any forecast model.
If a model does not admit such trajectories then there is no initial condition that remains close to the observations.

The time over which weather and climate models can shadow observations of past weather and climate is
unknown. This is concerning given the weight in decision-making that is placed upon output from these models.
Techniques for finding shadowing trajectories are, to some extent, understood in low-dimensional systems such as
the Lorenz (1963) equations and the Ikeda (1979) map (Judd and Smith, 2001; Judd, 2003; Du, 2009; Smith et al.,
2010). There is significant interest in their application to high-dimensional situations such as General Circulation
Models (GCMs).

Gradient descent of indeterminism (Judd, 2003; Judd et al., 2008; Stemler and Judd, 2009) is one such tech-
nique well-established for finding shadowing trajectories in low-dimensional analytical systems. It starts from a
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Figure 1: Schematic of a rotating annulus experiment used in the AOPP fluid dynamics laboratory. The inner
and outer cylinders at radii R = a, b are at temperatures Ta and Tb respectively. The apparatus rotates at constant
angular velocity Ω, and has fluid between the two cylinders.

sequence of observations and alters this sequence by “descending” towards a model trajectory. Alterations to each
state in the sequence are calculated based on mismatches (forecast errors) between that state and model forecasts
forwards and backwards in time from adjacent states mapped on to the state of interest.

Each state in a sequence constructed by gradient descent is known as a shadow analysis (Judd et al., 2008),
and in practice this sequence will be a pseudo-orbit of the model (Bowen, 1975) rather than a trajectory. These
shadow analyses serve as initial conditions for candidate model trajectories. There is no a priori guarantee that
these candidate trajectories will shadow the original observations, but work with analytical systems has shown
gradient descent to be a good method for finding such shadowing trajectories in very low dimensional systems
(Smith et al., 2010, for example). The underlying reason for this is not yet well understood. The maximum
time that, among all possible candidates, the model shadows the observations for is called the shadowing time
for that model-observation pair. In practice there are several definitions of shadowing time relevant in different
contexts. The ι-shadowing time (Gilmour, 1998, p.47) is the maximum time the distance from model trajectory
to observations remains within a bound given by observational error, whereas a φ-shadowing time requires the
match between model and observations only to be “useful” (Smith, 2000, p.52). In its original sense shadowing
refers to the time a true solution of a differential equation remains within a fixed distance of a numerical solution
(Bowen, 1975). While superficially similar, the distinction is fundamental and we do not consider this so-called
ε-shadowing in this work.

Gradient descent itself is a method of noise reduction that has been used in nonlinear and chaotic systems
for many years (Kostelich and Yorke, 1988; Grebogi et al., 1990; Hammel, 1990; Farmer and Sidorowich, 1991).
It has only recently been applied to higher-dimensional systems, by Judd et al. (2004) using an idealised quasi-
geostrophic model and by Judd et al. (2008) using the US Navy NOGAPS weather model. In neither case were
the results used to measure shadowing times against observational data. Its ability to find candidate trajectories
that shadow observations for a long time in high-dimensional models of real systems is not yet well explored.
Gradient descent has several theoretical advantages over methods in current operational use such as 4D-Var and
various flavours of the Kalman filter (Stemler and Judd, 2009; Judd and Stemler, 2010). In low-dimensional test
cases it has performed favourably against the extended Kalman filter (Judd, 2003), 4D-Var (Stemler and Judd,
2009), and particle filters (Judd and Stemler, 2009). Its main disadvantage is computational; it is an iterative
procedure and O(100) passes through the sequence by the model are required during gradient descent.

Laboratory experiments are intermediate in model complexity and physical idealisation between analytical
and global systems. The laboratory setting allows investigation of the properties of gradient descent using a real
physical system and a non-idealised model in a situation where the complexity of the flow can be controlled,
the experiments can be repeated, and there is potential for long-range observations under laboratory conditions.
Whereas an analytical system may have O(10) variables and a general circulation model of the Earth’s atmo-
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sphere may have O(107), models of laboratory experiments have a more manageable O(104 − 105) variables. The
thermally-driven rotating annulus (Fig. 1) is a classic laboratory experiment representing the mid-latitudes of an
idealised generic planetary atmosphere. The “standard” setup uses two cylinders mounted on a turntable, with
coincident axes of rotation. Fluid fills the space between the cylinders, which are enclosed by two water baths.
Hot water (relative to the working fluid) is circulated around the outside of the outer cylinder as a heat source,
and cold water is circulated around the inside of the inner cylinder as a heat sink. The turntable is rotated, usually
anticlockwise. This setup mimics the three major influences acting on a planet’s atmosphere: the effects of rota-
tion, gravity, and the temperature difference between low and high latitudes. The annulus exhibits a wide range
of dynamical flow regimes describing quasi-periodic, chaotic and turbulent flow, and has become well-established
over 50 years as a good laboratory analogue for certain kinds of atmospheric phenomena (Hide, 1953; Hide and
Mason, 1975; Read et al., 1992).

Since its early development in the 1950s the annulus has been used to conduct research into the fundamental
physical processes underlying weather and climate. In recent years effort has also been directed towards using
it to inform the development of methods used for weather and climate forecasting. Under laboratory conditions,
properties of a particular method can be studied in isolation but using a real fluid as opposed to idealised analytical
models more commonly used when testing new methods. There are also several advantages of the laboratory
setting compared with atmospheric studies: the controlled nature of the experiment, the degree of reproducibility
of the results, and the avoidance of many of the problems associated with atmospheric observations such as a
geographically variable observational data density. Effort so far has been directed towards the application of data
assimilation techniques such as analysis correction (Young and Read, 2013), the ensemble Kalman filter (Ravela
et al., 2010), and the breeding method for ensemble prediction (Young and Read, 2016). With a tangent linear and
adjoint model of an annulus model one would also be able to test more recent methods for data assimilation such
as 4D-Var (Rawlins et al., 2007).

Whether a technique such as gradient descent is feasible for use with high-dimensional GCMs can be informed
by its study under the controlled laboratory conditions provied by the annulus experiment. Gradient descent is
not yet well-established as a practical method for state estimation in atmospheric systems, but by examining its
performance in a real but idealised system a better understanding of whether it could be used operationally will be
obtained. A timely comparison to make would be with the results obtained by Young and Read (2013) using the
well established analysis correction method.

In this paper we demonstrate the gradient descent technique using a model of the rotating annulus under
the controlled conditions afforded by the perfect model scenario. We explore how the results depend on the
major tuneable parameter in the algorithm, and calculate shadowing times from candidate trajectories produced
by gradient descent using the definition presented in Young et al. (2019, hereafter Part I). In the future we intend
to extend the work to laboratory data, and compare how long our model shadows reality using gradient descent
compared with other assimilation methods. Gilmour (1998) attempted to shadow temperature measurements of
the annulus using a radial basis function model (but not using gradient descent), but this would be the first attempt
to do so using a “full” model of this experiment.

The paper is arranged as follows. In Sect. 2 we describe our simulation of the rotating annulus. In Sect. 3
the gradient descent method is described and its application to the rotating annulus situation is detailed. Section 4
shows the results from our perfect model experiments, and shadowing times are calculated in Sect. 5. The results
are discussed and conclusions are drawn in Sect. 6.

2. The rotating annulus model

The mathematical model used to simulate the rotating annulus experiment shown in Fig. 1 is the Met Office
/ Oxford Rotating Annulus Laboratory Simulation (MORALS) (Farnell and Plumb, 1976; Hignett et al., 1985;
Read et al., 2000). The model is well established as a quanitatively accurate model of annulus flow in regular
and weakly chaotic flow regimes; its details are given in the Appendix. The annulus setup is the “small annulus”
configuration used by Hignett et al. (1985). The model configuration is essentially the same as Part I, and the
flow simulated is also taken from that paper: rotation rate Ω = 1 rad s−1 and temperature difference between the
cylinders of ∆T = 4 degC. The dimension of the model is N = 24192. With this setup and model resolution
the general flow behaviour is shown in Fig. 2, and the simulation displays chaotic dynamics. Table A.1 lists the
annulus and MORALS parameters.

3. Gradient descent of indeterminism

Consider a sequence of states of a dynamical system xi valid at times ti, i = 0, . . . ,w, where w is the window
width, and a model f that maps the state xi forward in time from t = ti to ti+1. Let each state have dimension N,
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Figure 2: General flow appearance for the setup described in Sect. 2. Top: Horizontal snapshot through the
temperature field at z = 5.61 cm after 2260 s of simulation (contours every 0.2 ◦C). Bottom: Time series of the
dominant wavenumber-3 mode amplitude for a 3960 s simulation. The dominant mode amplitude is calculated by
taking a Fourier transform over an azimuthal ring at mid-radius / mid-height each second during the run. The form
of this time series is characteristic of chaotic annulus flow.

hence the complete sequence defines a single point in RN(w+1). If

xi+1 = f (xi) i = 0, . . . ,w − 1 (1)

then the sequence is a trajectory of the model f , otherwise it is a δ-pseudo-orbit such that |xi+1 − f (xi)| < δ∀ i
(Bowen, 1975). The mismatch between consecutive states is

δxi = xi+1 − f (xi) (2)

The distance between the sequence and a model trajectory can be quantified using a scalar, the mean squared
indeterminism (or just the indeterminism), which is the mean of the squared mismatches over the whole sequence:

I =
1
w

w−1∑
i=0

‖δxi‖
2 ≡

1
w

w−1∑
i=0

‖xi+1 − f (xi)‖2 (3)

where ‖ · ‖2 is the squared Euclidean norm. Gradient descent of indeterminism solves the differential equation

dx
dτ

= −
∂I
∂x

(4)

where x = (x0, x1, . . . , xw), and x(τ = 0) = s is the initial sequence (raw observations or an analysis, perhaps). This
equation defines how to change the sequence x in such a way that the indeterminism falls most quickly, relaxing
the sequence of states onto the attractor of the model f . I is a mathematical construct used to guide the gradient
descent algorithm and to measure its progress; in general it does not have a physical interpretation. τ is called the
descent time, after Ridout and Judd (2002), and an intuitive graphical representation of the mechanism is shown
in Judd et al. (2004, Fig. 1).

The algorithm itself is an iterative process. Denote state i in the sequence after h iterations by xi,h. Each
iteration is a two-step process. First, use the model to compute the forecast image f (xi,h) and hence the mismatches
δxi for each i = 0, . . . ,w − 1. Second, update the sequence using a discretization of Eq. (4) (Stemler and Judd,
2009, Eq. 3):

xi,h+1 = xi,h −
2 ∆τ

w
×


− A(x0,h)δx0,h i = 0

δxi−1,h − A(xi,h)δxi,h 1 ≤ i ≤ w − 1

δxw−1,h i = w

(5)
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whereA(xi) is the adjoint operator d f (xi)T of f , and ∆τ is a step length in RN(w+1). One can see from this definition
that the change in each state is influenced by information propagated from earlier times via δxi−1,h and from later
times via δxi,h mapped backwards in time by the adjoint operator. At the ends of the sequence information is
propagated in one direction only, so the quality of the final sequence is expected to be poorer at the ends (Ridout
and Judd, 2002, Fig. 3). h is then incremented by one and the procedure is repeated. The indeterminism can
only reach zero in the asymptotic limit as h → ∞, and then only in the perfect model scenario (see below), so in
practice the algorithm is stopped when the indeterminism falls below a pre-defined minimum ε, or manually after
a certain number of iterations.

3.1. Application to the MORALS perfect model scenario

The perfect model scenario (PMS) provides a useful framework for exploring gradient descent and shadow-
ing in complex systems. It allow many aspects of the experiments to be controlled, and provides a “best case”
comparison for future results using laboratory data. The PMS simply means that the model f and the system it
is modelling, f̃ , are equivalent. In this work we set up the PMS by taking both model and system as MORALS
simulations with the same parameters as Part I.

This scenario offers a number of advantages, the most useful of which is that the true state is known exactly
and thus explicit comparisons of forecasts with truth can be made. We can define one model run as the true
trajectory of the system, and generate artificial observations from that using a known noise model. The PMS
offers the greatest amount of control over the experimental configuration, which allows us to study the properties
of the system and algorithm in isolation.

In the PMS, gradient descent will converge to a model trajectory under certain conditions (Ridout and Judd,
2002, Proposition 2). Judd et al. (2004) proved the surprising result that gradient descent still works for incomplete
or even wholly unrealistic adjoint operators. In particular, they showed that settingA = λI, where λ is a scalar and
I is the identity matrix, is sufficient. They call this gradient-free descent, as the method can then be used without
knowledge of the gradient of the operator f . The conceptual change compared with using the true adjoint is that
the algorithm now moves the state in a direction of decreasing indeterminism, but not in the direction of steepest
descent. We use gradient-free descent here, referring to λI as the λ-adjoint, because there is currently no adjoint
model available for MORALS.

Using this construction we can also test the method with respect to the shadowing properties of candidate
trajectories produced from its output. We know a priori that the true shadowing time is the whole observation
sequence because we already know a model trajectory exists that shadows the observations: the true trajectory the
observations were generated from. We expect the candidate shadowing times to be sensitive to how close they
begin from that true trajectory, although this does not always hold in practice.

The specifics of how the method was applied to MORALS are detailed in the Appendix, as it differs from the
general outline above primarily in matters of notation. In what follows we denote, in general, a state of the annulus
model defined on the MORALS grid by the vector x with dim(x) = N. We use X to denote, in general, a sequence
of such model states:

X ≡ (x0, x1, . . . , xi, . . . , xw) (6)

for a sequence of length w + 1, and hence dim(X) = N(w + 1), where the states are valid at times ti. We denote
by xi,h a single state in the sequence (or shadow analysis) after h completed iterations of the gradient descent
algorithm. Xh is the whole sequence of w + 1 states (the sequence of shadow analyses) after h gradient descent
iterations, and hence X0 denotes the sequence of observations. We denote the true sequence by X̂, a single state
in that true sequence by x̂i, and a generic true state by x̂.

4. A demonstration of gradient descent using the annulus

We now present a demonstration of gradient descent using the annulus, followed by an analysis of the λ pa-
rameter (the parameter that multiplies the identity matrix in gradient-free descent). In the next section we calculate
shadowing times for candidate trajectories using the shadow analyses to generate initial conditions. The gradient
descent was started from an observational sequence of 65 states separated by 5 s, and ran with λ = 0.5 for 500
iterations. Other parameters are listed in the Appendix. The sequence is long enough to cover about four periods
of the longest timescale associated with the flow. Observations were generated by adding normally-distributed
random numbers to a sequence of true states calculated using the model. The random numbers represent observa-
tional error of standard deviation σ = 1/3 of the natural variability of the model at each grid point, denoted by r.
The method used to calculate r is detailed in the Appendix.
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Figure 3: Progression of the gradient descent at a single point. Each panel shows the temperature at a single
grid point in the model (R = 4.81 cm, θ = 6.18 rad, z = 5.61 cm) as a function of time over the gradient descent
window. The sequence is shown at the following iterations: h = 0, 1, 2, 4, 8, 20, 100, and 500. Dots show the
shadow analyses, crosses show the observations, solid lines join each shadow analysis at time ti with its forecast
image at time ti+1, grey shaded areas show the range spanned by the observation ±1σ error (darker shade) and
±2σ error (lighter shade), and the dotted line is the truth (unknown to the gradient descent algorithm, but included
for comparison with the final shadow analysis sequence and the original observations).
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Figure 4: Progression of the gradient descent shown as a horizontal slice through the temperature field at z =

5.61 cm and t = t0 + 160 s (i = 32, the mid-point in the sequence). The gradient descent is shown at the following
iterations: h = 0, 2, 4, 8, and 500 (top to bottom). Three quantities are shown: (left) the shadow analysis xi,h after
h gradient descent steps, (middle) the forecast mismatch δxi,h corresponding to that shadow analysis, and (right)
the difference between the shadow analysis and the truth xi,h − x̂i. The left panel of Fig. 2 shows the truth for this
particular run.
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Figure 5: Mean squared indeterminism for the gradient descent in Figs 3–4. The left panel shows the total
indeterminism I(Xh) (Eq. A.6) as a function of descent time τ. Each iteration is represented by a dot, and the
horizontal dotted line shows the value at h = 0. The right panel shows, as a function of position in Xh, the mean
squared indeterminism for each state I(xi,h) (Eq. A.9) at the start of the gradient descent (h = 0, upper line) and at
the end of the gradient descent (h = 500, lower line).

4.1. Visual demonstration of the gradient descent

In Figs 3 and 4 we show how Xh changes during the gradient descent. Figure 3 shows the progression of the
time series at a single grid point, while Fig. 4 shows a horizontal section through the annulus temperature field
near mid-height. These quantities are shown at several steps during the gradient descent. The PMS allows us to
see directly how well gradient descent recovers the initial true trajectory X̂, while using information only from the
model and observations.

It is easiest to visualise the progress of the gradient descent using the time series in Fig. 3. At the start of the
gradient descent (h = 0) the states and their forecast images (black dots and solid lines) do not join up at all; X0 is
far from a model trajectory. During the first several steps of the gradient descent Xh falls quickly towards a model
trajectory. The top panel of Fig. 5 shows I(Xh) as the gradient descent progresses, as a function of the descent
time

τ(h) =

h−1∑
j=0

∆τ j (7)

Indeterminism falls off approximately as a power law during the first few gradient descent steps. By h = 8 the
time series in Fig. 3 is close enough to the trajectory to require closer inspection to confirm the time series is not
a trajectory, but a pseudo-orbit.

Figure 4 complements the time series in Fig. 3 by showing how the gradient descent progresses over a whole
horizontal section. Three different quantities are shown in Fig. 4 as horizontal sections: the shadow analysis xi,h,
mismatch xi+1,h − f (xi,h), and distance from truth xi,h − x̂i, all for i = 32, the mid-point in Xh. First, from the
middle of these panels we see that the most striking change over the gradient descent is the mismatch. Like the
indeterminism in Fig. 5, this falls off very quickly during the gradient descent such that by h = 8 the mismatch is
some two orders of magnitude smaller than at h = 0. This decrease is reflected in the colour scale in that figure.
Second, the shadow analysis xi,h on the left starts off quite noisy and by the bottom of the figure much of the noise
has been smoothed out. Finally, on the right the distance between the shadow analysis and the truth also falls
rapidly, although not as fast as the indeterminism. Unlike the fall in indeterminism, however, the distance from
the truth does not fall off monotonically but begins to increase again by h = 20; we shall examine this in more
detail below.

Figures 3 and 4 demonstrate the ability of gradient descent to recover a sequence of states much closer to a
model trajectory than the original X0 in less than ten iterations. While X̂ is included in Fig. 3, the gradient descent
algorithm has no information about the truth at all, only the observations and the model.

To check the reproducibility of these results, we ran nine additional gradient descents using exactly the same
setup except with different random numbers used to generate the observations. All ten cases produced very
similar results, with no outliers. We also ran two additional gradient descents started from different points in the
model’s state space, but with an otherwise identical setup. Again, the results were very similar. This reinforces
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Figure 6: RMS Euclidean distance per grid point scaled by r between the sequence of shadow analyses and truth
(Eq. 8) as a function of the descent time τ. The distance is plotted for each iteration up to h = 20 and thereafter
for iteration numbers divisible by 20. The horizontal dotted line shows the value at h = 0 for ease of comparison
with later values.

the conclusion that the initial part of the gradient descent primarily removes noise from the observations, and the
latter part converges towards a trajectory; in each case the noise statistics are the same, but the results only diverge
once indeterminism has fallen by two orders of magnitude.

Figure 5 shows that, overall, X500 is two orders of magnitude closer to a trajectory than the original X0, both
from the full indeterminism in the top panel of that figure, and by comparing the state-wise indeterminism between
X0 and X500 in the lower panels. At the start of the gradient descent the state indeterminism I(xi,h) (Fig. 5, bottom)
is approximately constant with position in the sequence. By construction, the initial expected squared distance
from truth at each grid point is approximately (1/3)2 ' 0.11, the variance of the observational error accounting
for scaling by r.

After 500 gradient descent steps, however, there is a clear structure to the variation of indeterminism with
position in the sequence (Fig. 5, bottom, lower line). At the beginning of the sequence there is an approximately
exponential growth in indeterminism. This can be explained by the choice of λ. As λ < 1 more weight is assigned,
in the update step in Eq. (5), to δxi−1,h compared with δxi,h. Hence more information is passed forwards compared
with backwards in time, and so during the gradient descent any given state will tend to reduce the mismatch
compared with the state before it faster than the mismatch compared with the state after it. Hence the mismatch at
the start of the sequence will decrease the fastest. We shall see later how the value of λ affects this.

4.2. Correspondence between shadow analysis and truth
We have demonstrated that gradient descent recovers a sequence of states close to a model trajectory, but

our main reason for its use is that it often produces candidate states with longer shadowing times than other
methods used to generate candidates. Above we noted that one trajectory guaranteed to shadow the observations
is the original true trajectory, so the correspondence between our pseudo-orbit of shadow analyses and the true
trajectory is important. Whether Xh is close to truth can be measured directly, as we are in the PMS. Figure 6
shows, as a function of descent time τ, the RMS Euclidean distance per grid point between Xh and the truth X̂ (the
distance between two points in RN(w+1)) scaled by r:

D(h) =

 1
N(w + 1)

w∑
i=0

‖(xi,h − x̂i) ◦ r−1‖2

1/2

(8)

This distance is expressed per grid point so the values are easily comparable with the observational noise standard
deviation σ. By construction, the initial distance from truth is approximately σ = 1/3, as this distance just
corresponds to the observational error. The distance from truth then falls off quickly during the first few iterations.
After 10–15 iterations, however, the distance from the truth stops falling and begins to rise again, which it does so
for the remainder of the 500 iterations. So while I(Xh) is monotonic during the gradient descent, Xh approaches X̂
but then moves away again. In this particular example the closest approach to X̂ is about one third of the original
distance from it.

This can also be seen in the right panels of Fig. 4. The final three steps show the distance from truth increasing
after h = 8 (which corresponds to τ = 144, for orientation in Fig. 6), and in the time series in Fig. 3 we can see Xh
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move away from the truth by steps h = 20, 100, and 500 (τ = 312, 864, and 1579.1875). When the mismatch at a
single point inXh is large compared with adjacent points, such as between t = 70 and 100 s at h = 20 in Fig. 3, this
mismatch propagates along the sequence, introducing a phase error in the position of the baroclinic wave along
Xh when compared to the values in X̂.

Insight from Stemler and Judd (2009) goes some way to explaining this result. The primary reason appears
to be the λ-adjoint approximation we are using. They performed a systematic comparison of different adjoint
approximations using the Lorenz (1963) system, measuring, among other things, indeterminism and distance from
truth as a function of computational cost, which corresponds loosely to the number of iterations here. They found
that, after about 60 gradient descent iterations using the λ-adjoint (equivalent cost to about 30 steps in our case,
as we have 65 states in the sequence while they have 30), the distance from truth began to increase again and
eventually diverged (their Fig. 9). They do note that the indeterminism also increases, which is possible in their
experiments because they do not change ∆τ during the gradient descent, while we do, but they note that the
distance from truth begins to increase some time before the indeterminism increases.

To explain this result, they note that “the first iterations of the shadowing filter tend to remove effects of
observational noise, and subsequent iterations achieve convergence to a trajectory”. In the first iterations a full
adjoint doesn’t provide much extra information for the gradient descent, but in the later stages it is vital. Judd
(2008) examined this more closely using both the PMS and IMS. He argued that (1) when Xh is altered in a
way that moves perpendicular to the indeterminism contours the surfaces of constant indeterminism “are well-
behaved with smooth slow variations”, while (2) when moving at an angle there is a complex local variation in
indeterminism close to I = 0. He demonstrates this point using a full adjoint model in the context of the PMS
(case 1) and IMS (case 2), but the same principle can be applied in the PMS to a comparison of the full adjoint
(case 1) and λ-adjoint (case 2), in which indeterminism is decreased but not in the direction perpendicular to the
indeterminism contours. Thus when the indeterminism becomes small compared with its initial value, the full
adjoint must be used.

Finally, note that in the PMS local minima can only have I = 0 (Judd and Smith, 2001, Theorem 2), but
only one of these minima will correspond to truth. Intuitively, if the direction taken towards a trajectory is the
fastest one possible (i.e. by using the true adjoint) then there is a greater probability that the point on I = 0 it
approaches will be closer to the truth than a point reached by moving the state around more in I-space. This brings
in observational noise as a factor; the smaller the noise the more likely the adjoint is to move the state towards the
truth in I-space, however the adjoint is approximated.

It is encouraging to note that the two orders of magnitude decrease in indeterminism that Stemler and Judd
(2009, Fig. 9) find for the Lorenz system with an analytical adjoint is comparable with the decrease we find in a
system of much greater complexity, even though we use the λ-adjoint. Before our results move away from the
truth around h = 10, this comparison is also true for the distance between shadow analysis and truth. In our case
the distance decreases by a factor of three, as does theirs using an analytical adjoint. When they used the λ-adjoint
they were only able to decrease the distance to truth by a factor of two. Using the λ-adjoint with a quasigeostrophic
model of 1500 variables, Judd et al. (2004) were able to produce a descended pseudo-orbit that reduced the initial
distance from truth by at most a factor of four (their Fig. 3).

Stemler and Judd (2009) conclude that the optimal strategy is to use the λ-adjoint up to a point while noise is
removed, before changing to a more accurate approximation to push the sequence towards a trajectory. With an
adjoint model for MORALS this could be done, perhaps changing to the full adjoint once the distance from truth
reaches a minimum. This strategy would only be possible in the PMS or IMS, of course; it is not obvious how to
determine when the switch should occur when the truth is unknown.

4.3. How the results vary with λ

For a given model setup and observational noise, λ is the primary tunable parameter in the gradient descent.
The other parameter, ∆τ, is optimized by the gradient descent itself. λ quantifies the ratio between mismatch
information passed backwards and forwards in time. We ran several gradient descents with exactly the same
setup, including the same observations, and ten values of λ: 0, 0.01, 0.04, 0.1, 0.25, 0.35, 0.5, 0.6, 0.8, and 1.

Figure 7 shows how the indeterminism and distance from truth, the two main diagnostics for the progress of
the gradient descent, vary with λ during the gradient descent. An intermediate value of λ is optimal; both the rate
at which indeterminism falls most quickly and the smallest distance to truth occur at intermediate values. There
is a smooth variation in both quantities around the minimum at λ = 0.25. Increasing λ further degrades both
diagnostics: at λ = 1 indeterminism only falls to half its original value by the end, and the distance from truth is
substantially larger than for intermediate λ. In this case the original λ = 0.5 used by other authors is found to be
suboptimal, certainly in terms of indeterminism. The distance from truth reaches a minimum before rising again
for all λ. The value of τ corresponding to the minimum distance during the gradient descent varies only weakly as
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(a) Indeterminism as a function of λ at the five descent times listed in
the caption.

(b) Distance between the sequence of shadow analyses and truth.

Figure 7: Progress of the gradient descent (a) indeterminism and (b) distance from truth as a function of λ. Results
are shown at four points during the gradient descent: τ = 100 (black), 200 (blue), 400 (green), and 800 (red). The
dotted line shows the initial value at τ = 0. Large dots show the values obtained; the lines simply join the dots for
clarity. The higher values of λ are not plotted at some of the later descent times because in these cases the step
length ∆τ, which is optimized by the algorithm, had been halved so many times the descent time did not reach the
point plotted even after 500 iterations (in some cases ∆τ reached double precision rounding error).

λ is varied. In all cases it occurs around h ≈ 10, between τ = 100 and 200. Furthermore, if λ < 0.5 then the depth
and position of the minimum are only weakly dependent on λ.

In Fig. 8 we show how the distance between the shadow analyses and truth varies along the sequence. Except
for λ > 0.6, the distance from truth over most of the sequence depends very weakly on λ. Each line has a similar
structure: at the start of the sequence the distance from truth is largest; it falls exponentially to a constant value;
remains approximately constant for most of the sequence, and in some cases falls at the very end. The rate of
exponential decay at the start of the sequence is fastest for low λ, and the rate of decrease at the end is fastest
for large λ. From a close inspection it was found that, as above, λ = 0.25 is closest to truth over the part of the
sequence where the distance is approximately constant.

The shape of the curves in this plot are very similar to Judd et al. (2004, Fig. 3). They saw this effect using
a quasigeostrophic model and the λ-adjoint, so this result tells us something more general about the behaviour
of the gradient descent using the λ-adjoint. Ridout and Judd (2002) argue that at the start of the sequence the
distance from truth will decrease exponentially at a rate given by the closest non-positive Lyapunov exponent to
zero, and at the end the distance will increase exponentially at a rate given by the smallest non-negative Lyapunov
exponent. At the sequence ends information is only passed in one direction, so there is less information there to
guide Xh towards truth. Neither we nor Judd et al. (2004) saw the increase at the end of the sequence, however,
which they left unexplained. It is not immediately clear why this happens, but perhaps it is because the model
itself is not being used to pass information backwards in time. In the λ-adjoint case the propagation of mismatch
backwards in time uses no information about the model’s Lyapunov exponents, but this information would be
included implicitly in the full adjoint.

Later in the gradient descent than Fig. 8 the approximately constant distance from truth over most of the se-
quence gives way to oscillatory functions of position. In fact the distance between shadow analysis and truth after
500 iterations is quite sensitive to the choice of λ. This change during the later part of the gradient descent im-
plies that during the first iterations the λ-adjoint removes noise rather than searching for the underlying trajectory.
Only later does the gradient descent try to converge towards a trajectory, and the underlying variation along the
sequence is revealed.

It is not surprising that λ = 0 does not give the smallest distance from truth. In the trivial case of λ = 0 no
information is passed backwards in time so Xh will eventually converge to a model trajectory starting from the
observed state at the start of the sequence. As the system is chaotic this trajectory will diverge exponentially from
truth until it is the same order of magnitude as the model attractor width, so we do not expect λ = 0 to approach
truth no matter how long the gradient descent is run for. Small but nonzero values of λ will also exhibit this effect,
but the magnitude of the effect will decrease as λ increases. Hence we expect to find the minimum in the distance
from truth at nonzero λ. With indeterminism the effect is similar; at very small λ information is predominantly
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Figure 8: Euclidean distance from each state in the sequence to truth ‖(xi,h − x̂i) ◦ r−1‖, given as the mean distance
per grid point, after h = 8 iterations. One line is plotted for each value of λ; the value for each line is shown in the
key. States are separated by 5 s. The dotted line shows the distance from truth at h = 0, which is the same for each
value of λ as it is a function of observations and truth only.

passed along the sequence in one direction, so only the mismatch between states xi−1 and xi pushes the sequence
closer to a trajectory. At larger values the sequence is pushed towards a trajectory from both directions, causing
the indeterminism to fall more quickly. Like the distance from truth, this effect will increase as λ is increased.

At the other end of the scale, λ ≈ 1, information is passed in both directions equally. Why, then, do the minima
not occur at λ = 1? Here we must consider the effect of approximating the adjoint with a diagonal matrix. If the
full adjoint is used the mismatches in both directions contain information about the model at time ti. When the
λ-adjoint is used, however, the information passed backwards in time contains no information about the model
at ti, only at ti+1 where the mismatch is calculated. Hence the quality of the update at ti is suboptimal when the
λ-adjoint is used. Hence we might expect the quality of the update to increase as λ is reduced and more weight
in the update step is assigned to the model at ti. Our results show empirically where the balance is between these
two effects, at least in the annulus context, and we expect such a trade-off to exist for other chaotic systems, for
the same reasons.

The conclusions from this section are clear. First, there is a range of intermediate λ values which give rea-
sonable results both in terms of indeterminism and distance from truth, while at both extremes of the range the
quality of the gradient descent is compromised. Second, the distance from truth as a function of position in the
sequence confirms something more general about using the λ-adjoint, given the comparison of our results with
Judd et al. (2004). There is a trade-off between two mechanisms that degrade the quality of the gradient descent
for extreme values of λ. For λ > 0.5 the quality of the update step is degraded by the relatively large weight
assigned to information passed backwards in time sub-optimally. ∆τ also falls very quickly with high λ, so only
a small amount of descent time is covered, limiting the potential of the gradient descent to proceed much further.
For λ < 0.1 the sequence converges to a trajectory starting from very close to the first observation, so chaos causes
the rest of the shadow analyses to diverge from truth. For intermediate values of λ, where the combined effect
is minimized, sequences are recovered closest to a trajectory and to truth. We recommend a value around 0.25
for future applications using the λ-adjoint, although within this intermediate range the results are only weakly
dependent on λ.

5. Shadowing times from the sequence of shadow analyses

Gradient descent produces, from a sequence of observations, a pseudo-orbit of the model closer to a trajectory
than the original observation sequence. Each state on the pseudo-orbit is the start of a candidate trajectory of
the model. The shadowing time is the maximum time any of these candidates shadow the observations. We can
also generate additional candidates using linear combinations of states on the pseudo-orbit and forecast images of
earlier states.

In this section we measure how long the model can shadow observations using candidates from a pseudo-
orbit produced by gradient descent in the previous section, each candidate beginning a model trajectory. The
shadowing time τS t is the maximum among all candidate shadowing times τS starting from candidates x, i.e.
τS t = maxx τS (x, t). From the previous section we choose candidates from the gradient descent with λ = 0.25 at
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Figure 9: Distributions of residual errors e[t] (Eq. 9) at three lead times from the candidate trajectory started from
state i = 8 at h = 9 for the gradient descent with λ = 0.25. Top: t = 0, middle: t = 80 s (the first time the trajectory
fails to shadow observations at significance level p = 10−5), and bottom: t = 1780 s (the end of the candidate
trajectory). The black and grey curves are the noise and residual distributions, and the vertical black and grey lines
are the 50th and 90th percentiles of the noise and residual distributions. Notice how strict this definition is — even
in the middle panel the residual distribution is only marginally different from the noise distribution, yet the model
does not shadow at this time.

13



iteration h = 9, because at that iteration that gradient descent came closest to truth among all the cases that were
run. Part I describes the method used to compute the shadowing time; we summarise it below.

Our shadowing time quantifies how well the gradient descent performs against a benchmark set in Part I. In that
work they used the same model parameters as in this paper, except here we have used σ = 1/3 instead of σ = 0.1.
They generated a cloud of candidate initial conditions a fixed distance from the true state and for each candidate
measured how long it shadowed a subsequent set of observations. These times provide a benchmark against which
we can compare the shadowing times from our gradient descent experiments — the shadowing times we might
expect depend on the distance of the candidates from the original true trajectory. The largest initial distance from
truth that Part I used was about 17.5% of the observational error, and in that case they measured shadowing times
of 50–150 s. In the previous section we found the distance from truth of our best-case result is around 25% of the
observational error (Fig. 7), so we might expect a maximum shadowing time around 100 s.

From the selected pseudo-orbit we took as candidates at each ti (1) the state on the pseudo-orbit xi,h, (2) the
state halfway between this state and the forecast image of the previous state, 1

2 [xi,h + f (xi−1,h)], and (3) the images
of all the previous states on the pseudo-orbit mapped to ti, for both xi,h and the halfway state. The shadowing
times for the candidates (3) are available at no extra computational cost. Each candidate was used to start a single
MORALS trajectory.

5.1. Measuring the shadowing time

Following Smith et al. (2010), our candidate shadowing time τS for a particular candidate trajectory is the
trajectory length over which the residual error distribution remains consistent with the observational error distri-
bution. The vector of residual errors is

e[t] =
{
f t(x[0]) − s[t]

}
◦ r−1 (9)

where x[0] is the initial candidate state, s[t] are the observations at time t from the beginning of the candidate
trajectory, and f t denotes integration of the model for time t. We scale the raw residual error by r so we can
combine different physical quantities into one distribution. We test the null hypothesis that the vector e[t] is a
sample drawn from the observational error (noise) distribution N(0, σ2) (the comparable distribution once raw
values are scaled by r). Part I showed that, using order statistics, the distribution of a specific percentile of the
noise distribution can be found analytically. We find (empirically) the 50th and 90th percentiles of the residual
distribution e[t], and test whether, at a particular significance level p, these are drawn from the equivalent noise
distribution (found analytically). For the candidate trajectory to shadow the observations at time t we require both
percentiles to fall within the respective confidence intervals of the noise distribution.

If the model shadows the observations at time t by this definition, we proceed to the next observations (5 s later
in this case) and repeat the procedure. The shadowing time τS for a particular candidate is the last time at which
the residual error distribution is consistent with the noise distribution. Figure 9 shows this definition in use.

We require a suitable significance level p to find τS . Because our shadowing time algorithm requires multiple
significance tests, the probability of a Type I error (rejecting the null hypothesis when it is true, and hence setting
an erroneously low τS ) increases as more tests are done. Part I calculated the maximum p leading to fewer than
one expected Type I error over all candidates. The calculation is outlined in Appendix A.5; we found p = 10−5 to
be sufficient.

5.2. Measured shadowing times

We measured shadowing times τS for each of the candidates. Figure 10 shows an example time series from
one of the candidate trajectories, and Fig. 11 shows all the candidate shadowing times τS . From this plot we can
read off τS t = 80 s as the shadowing time for this pseudo-orbit of descended states. This is about one quarter of the
total length of the original observational sequence, or about one period of the longest timescale of the system, the
oscillation of the main baroclinic wave. This time is near the low end of the range of shadowing times obtained
in Part I for their largest perturbation from truth, but the descended pseudo-orbit’s distance from truth in this case
was slightly larger, around 25% of the observational error compared with 17.5%.

There are no particular trends relating individual candidates’ shadowing times to their positions in the se-
quence, except the candidates starting from very close to the start of the sequence do not shadow at all. This is not
surprising since the quality of the states near the start of the sequence are poorer than in the middle because infor-
mation is only passed in one direction at the start of the sequence. A few observational states appear to be difficult
for the candidate trajectories to shadow (e.g. around 140–145 s), causing all candidate trajectories approaching it
to fail to shadow at that point. Within 45 s of the end of the sequence we found candidates that shadow to the end
of the sequence.
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Figure 10: Temperature time series at the single grid point used earlier in the paper (Fig. 3) for the candidate
trajectory started from state i = 32 in the sequence at h = 9 with λ = 0.25. The solid black line shows the forecast,
black dots show the observations, and the shaded area represents observations ±1σ (darker shading) and ±2σ
(lighter shading).

Our gradient descent setup and algorithm is really just a method for selecting candidate trajectories we think
will shadow for a long time. It is always possible that we have missed candidates that shadow for longer, so our
measured shadowing time τS t can only be a lower bound. Indeed, we know (by construction) that at least one
candidate exists that shadows the whole observational sequence: the true sequence that generated the observations
in the first place. Clearly our τS t does not approach this, being only about a quarter of the original sequence length.
However, our shadowing time is consistent with those for candidate trajectories starting from a similar distance
from the truth in Part I. In this respect our results are encouraging, because they show that the distance from the
candidate state to truth is the primary predictor of the subsequent candidate shadowing time. It shows that better
shadowing times will come from improvements to the gradient descent method that bring the pseudo-orbit closer
to truth. We identified some possible improvements in the previous section, foremost among these being to use a
full adjoint model instead of the naïve λ-adjoint. With a full adjoint we expect to shadow for considerably longer.

6. Discussion and conclusions

We have implemented gradient descent of indeterminism for the thermally-driven rotating annulus in the per-
fect model scenario. Our results show that a sequence of states much closer to a true system trajectory can be
recovered using gradient descent. Diagnostics based on indeterminism and distance from the truth showed our
demonstration gradient descent recovered a sequence of states in which the indeterminism had fallen by two or-
ders of magnitude. The sequence converged towards truth as the gradient descent progressed but then moved away
from truth once the distance had fallen by a factor of three. This was attributed to the λ-adjoint approximation. An
analysis of varying λ showed that the gradient descent is optimized around λ = 0.25. In that case indeterminism
falls by three orders of magnitude after 500 gradient descent steps and the distance from truth falls by a factor of
four except near the start of the sequence.

Candidate trajectories started from one particular Xh were used to obtain shadowing times using the method
developed in Part I. We found the model shadows the observations for τS t = 80 at the p = 10−5 significance
level. This was at the lower end of the range of times obtained in Part I for candidate trajectories started a similar
distance from truth. Our shadowing time is encouraging because the initial distance between Xh and truth could
be decreased further by using a more accurate adjoint model for the gradient descent.

We discussed above how the λ-adjoint causes the sequence of shadow analyses to move away from truth after
the first several steps of the gradient descent. Despite this result, we are most encouraged that, even with the λ-
adjoint, the distance from truth can be reduced by a factor of four over most of the sequence. The most important
next step in this work is to include a full adjoint model for MORALS. At the time the algorithm was implemented
no adjoint model was available, but one now exists (Hussain, 2010), which should be a major step forward in using
this model for various purposes. This improvement may be of greatest benefit in the PMS, as in experiments with
observational data Judd et al. (2008) demonstrated that the λ-adjoint may be sufficient because the advantages of
a full adjoint in the later part of the gradient descent are offset by the model being an imperfect representation
of the system. The attractors of the model and system will be disjoint, and so there may be little to gain from a
full adjoint when its main advantage is to navigate through the complex structure of the indeterminism contours
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Figure 11: Shadowing times τS for each of the candidates described in the text, for the pseudo-orbit after h = 9
in the gradient descent with λ = 0.25. At each position in the sequence, crosses (black) are candidates xi,h and
1
2 [xi,h + f (xi−1,h)], diamonds (blue) are candidates from one-step forecast images of the previous step, i.e. f (xi−1,h)
and f

(
1
2 [xi−1,h + f (xi−2,h)]

)
, and dots (red) are candidates from forecast images of all previous states. The solid line

traces the maximum τS over all candidates at each point in the sequence, and the dotted line separates candidates
that shadow to the end of the original sequence of observations (above the line) from those that don’t (below it).

near the model attractor. Nevertheless, an accurate adjoint with an imperfect model beats an inaccurate adjoint
with an imperfect model. Any increased accuracy gained with the full adjoint using real observations should
be measured and compared with the λ-adjoint. Quantification of this increased accuracy would be useful for
informing operational implementation of any algorithm based on gradient descent methods. If both the λ-adjoint
and full adjoint are used, it is not clear when the switch over should occur when the true state is not available. One
option is to switch over when the distance between Xh and X0 (the implied noise) first reaches a maximum.

We are excited by the possibility of applying this method to real annulus laboratory data. Gradient descent
allows model error to be examined in a systematic way, by examining the geometric relationship between ob-
servations and the model attractor (Judd et al., 2008). Application of this method to laboratory data will allow
model error to be explored in more detail, leading to a more fundamental understanding of the limitations of
our annulus model. When using observational data the visual progression of the gradient descent (i.e. Fig. 4) is
even more revealing, as then one sees how the model adjusts itself where the original sequence of observations or
analyses is far from the model manifold. This reveals locations and features in the flow that are poorly simulated
by the model, and also how the model attempts to adjust itself to fit to those observations. One particular annu-
lus dataset that might be of particular interest is a wavenumber-3 structural vacillation flow where the observed
wave is phase-locked to the tank because of the deposition of tracer particles onto the bottom. This flow is gener-
ally poorly modelled by MORALS (Young and Read, 2013), and using this dataset with gradient descent should
provide some insight into how the model fails in this case.

The broader aim is to determine whether gradient descent would be feasible in an operational context. For this
to be the case, it would (at least) need to out-perform the current state-of-the-art data assimilation technique used in
forecasting centres worldwide, 4D-Var (Rawlins et al., 2007), and out-perform the sequential Bayesian methods in
development such as the ensemble Kalman filter (EnKF) (Evensen, 1994) and particle filters (van Leeuwen, 2010).
While a numerical comparison is beyond the scope of this paper, there are a number of conceptual advantages of
gradient descent over these other methods. These differences are discussed in more detail by Stemler and Judd
(2009) and Judd and Stemler (2010).

Sequential Bayesian methods like the Kalman filter and its variants suffer from the major problem that the
observational noise must be small compared with the system’s nonlinearities. Sequential methods also cannot
correct poor state estimates in the past whose error then propagates forward (Judd and Stemler, 2010). For non-
linear systems in particular the forward propagation of errors can introduce large errors very quickly. Gradient
descent avoids these problems with sequential filtering as it makes no assumptions about the linearity of the sys-
tem. Indeed, nonlinearity is actively exploited. In addition, it uses information from the past simultaneously
with information from the present in each state estimate. Judd (2003) showed that gradient descent compares
favourably with the extended Kalman filter (EKF), except when the dynamical noise exceeds observational noise.
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An additional problem with these and any methods based on maximum likelihood estimates is that even in the
PMS these methods fail to assign that maximum likelihood to the true state of the system (Judd, 2007). Com-
paring gradient descent with particle filtering using the Ikeda (1979) system, Judd and Stemler (2009) found that
gradient descent recovers state estimates closer to truth than the particle filter in almost all cases, even when using
an optimized particle filter and “out-of-the-box” gradient descent.

Of the variational methods 4D-Var is, in a sense, also a method that searches for shadowing trajectories. The
fundamental difference is that 4D-Var uses a kind of “shooting” method; it alters the initial state in a sequence
and compares the model trajectory generated from that initial state over a window of observations. Instead of
indeterminism the cost function is (Stemler and Judd, 2009, Eq. 8)

C(x) =
1
n

n∑
i=1

‖si − f i(x)‖2 (10)

The problem with this method is that sensitivity to initial conditions means that the window length over which
4D-Var can be realistically applied is severely restricted. Gradient descent suffers from no such problem as states
all the way along the window are used simultaneously, and hence each forecast needs to be optimized only over
the time between it and the next state in the sequence. Stemler and Judd (2009, Fig. 8) demonstrate this problem
with 4D-Var using the Lorenz (1963) system. A related variational method, weakly constrained 4D variational
assimilation (WC4DVA), also has some similarities to gradient descent. Stemler and Judd (2009, p. 1268), Judd
(2008, p. 221), and Judd and Stemler (2010, pp. 268–9) argue strongly, however, that these similarities are super-
ficial. In particular, they show that there is an inconsistency between what WC4DVA claims to solve and what the
method actually solves.

Gradient descent offers a number of additional practical advantages over these other methods. First, the algo-
rithm is, in our opinion, conceptually simpler than variational or EnKF methods. Second, when using real data the
number of tunable parameters is generally less than other assimilation methods. Analysis correction (Lorenc et al.,
1991) has about ten, for example. With a full adjoint the only tunable parameter in gradient descent is ∆τ, and
even then its value can be optimized by the gradient descent as described in Appendix A.4. Third, the background
error covariance matrix is not required, the calculation of which is generally a major challenge for other methods.
Model errors are “discovered, not prescribed” (Judd et al., 2008; Judd and Stemler, 2010), providing information
about where and how the model fails to simulate reality.

The main problem we found using gradient descent in this system was the burden on computational resources.
Each gradient descent step requires the resources for one complete pass through Xh with both the forward model
and the adjoint model. In the PMS this is a major problem as many hundreds of iterations are required. This
would not be such a problem with laboratory data, however, because models of real systems are imperfect. The
gradient descent is therefore not expected to converge to a trajectory of the model. Instead it will converge to
a pseudo-orbit and in practice the gradient descent is terminated when the standard deviation of the forecast
mismatches approaches observational error. This only takes some tens of steps, which is a great improvement
over the hundreds of steps required in the PMS. Even so, tens of iterations of a GCM over a lengthy sequence of
observations is somewhat more computation than is currently used in operational assimilation. For example, the
Met Office 4D-Var scheme uses one pass of the nonlinear model and 5–6 passes of the linearized model through
the sequence (Rawlins et al., 2007). For gradient descent to be a feasible operational method, therefore, it would
need to be shown that its additional accuracy is worth the computational expense.

With these comparisons in mind, we feel there is great potential for using gradient descent for state estimation
in high-dimensional models, and in particular the rotating annulus’ part in developing and testing the method. The
framework for using gradient descent in the annulus context is now in place. In the future one could extend it to
estimates of shadowing times in the various annulus flow regimes, experiments in the imperfect model scenario,
and experiments starting the gradient descent from laboratory data. Several questions present themselves: How
long can the laboratory annulus be shadowed in different flow regimes? How long a window is required to shadow
with the same accuracy as sequential methods (in particular analysis correction; Young and Read (2013) have
produced a set of rotating annulus assimilation results for comparison)? How quickly does the gradient descent
converge, and is it quicker when an analysis correction analysis is used to begin the gradient descent? How do
these results depend on model resolution, and is there a resolution beyond which no further improvements can be
made?

Finally, we intend to use gradient descent as part of a larger programme of research using the annulus as a
test bed for meteorological methods in current use and development. As mentioned above, analysis correction has
already been implemented by Young and Read (2013) as an example of a well-established assimilation method.
We intend to implement and compare some of the other methods discussed in this work in the annulus context,
for example 4D-Var and the particle filter; Ravela et al. (2010) have already made some progress with the EnKF.
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Table A.1: Annulus and MORALS parameters. Fluid properties are parameterized as a function of temperature
using the expressions in Hignett et al. (1985, Table 1).

Inner cylinder radius a 2.5 cm
Outer cylinder radius b 8.0 cm
Annulus depth d 14.0 cm
Rotation rate Ω 1.00 rad s−1

Reference temperature TR 22 ◦C
Inner cylinder temperature Ta 18 ◦C
Outer cylinder temperature Tb 22 ◦C
Temperature difference ∆T 4 degC

Fluid 17% glycerol / 83% water by volume
Density ρ0 1.043 g cm−3 at 22 ◦C
Viscosity ν0 0.0162 cm2 s−1 at 22 ◦C
Thermal diffusivity κ0 0.00129 cm2 s−1 at 22 ◦C

Model timestep δt 0.02 s
Radial grid points NR 16
Azimuthal grid points Nφ 32
Vertical grid points Nz 16

Shadowing methods also facilitate ensemble generation using the theory of indistinguishable states (Judd and
Smith, 2001, 2004), and we believe the application of this particular method in a real physical system would also
be a timely comparison to make with current methods for ensemble generation.
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Appendix A. Technical details

Appendix A.1. MORALS
MORALS solves the Navier-Stokes, heat transfer, and continuity equations subject to the Boussinesq approxi-

mation, in cylindrical polar coordinates. Four prognostic variables are defined: three velocity directions u (radial),
v (azimuthal), w (vertical), and temperature T. A fifth field required in the prognostic equations is kinetic pressure
Π ≡ p/ρ0, which is diagnostic and is calculated from the other four fields using a Poisson equation. ρ0 is the fluid
density at a reference temperature. The fluid rotates at constant angular velocity Ω, all velocities are set to zero
at the boundaries, the temperature gradient is zero across the top and bottom boundaries, and the temperatures at
R = a and R = b are Ta and Tb respectively. T is defined relative to a reference temperature TR (22 ◦C here) and Π
is relative to a reference pressure Π0(R, z) = 1

2 ΩR2 + g(d − z). The fields are discretized on a staggered Arakawa C
grid (Arakawa and Lamb, 1977), and are non-uniform in the radial and vertical directions to resolve the boundary
layers.

With four prognostic variables using the resolution in the table there are Ntot = 4NRNθNz = 32768 variables in
total. The number of independent variables, N, is less than this because points on and outside the fluid boundary
(outside points are required by some boundary conditions) are fixed by values at other grid points. We use N
as the dimension of the model, N = 24192. When working in the PMS and correspondence with the laboratory
experiment is less important, the choice of resolution depends on a balance between the available computer re-
sources and the number of simulations required for that experiment. Because of the large computational overhead
required by gradient descent, we have used a lower resolution than is normally used for annulus simulations that
are compared with laboratory observations.

Appendix A.2. Experimental parameters
Table A.1 lists the annulus and MORALS parameters. Table A.2 lists the experimental parameters for the

demonstration gradient descent in Sect. 4.
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Table A.2: Experimental parameters for the demonstration gradient descent in Sect. 4.

Demonstration gradient descent - truth and observations

Spin-up time tspinup 2000 s
Pre-sequence time tpreseq 100 s
Time between states ∆t 5 s
Window width w 64
Time of first state (i = 0) t0 2100 s
Time of final state (i = 64) tw 2420 s
Sequence length tw − t0 320 s
Observational noise σ 1/3

Demonstration gradient descent - gradient descent parameters

Initial step length ∆τ(τ = 0) 16.0
Cut-off indeterminism ε 10−28 (machine precision)
Gradient-free descent parameter λ 0.5
Maximum number of iterations hmax 500

Appendix A.3. Generating the initial sequence of observations
A full MORALS state x is a concatenation of the four fields u, v, w, and T :

x ≡


u
v
w
T

 (A.1)

where dim(x) = N = Nu + Nv + Nw + NT .
The sequence of artifical observations X0 was generated by adding noise ẽi to the true states x̂i generated by

MORALS. The method is very similar to the method used in Part I. The true sequence is generated by MORALS
in three stages: (1) from t = 0 to tspinup, (2) from t = tspinup to t0 = tspinup + tpreseq, and (3) from t = t0 to tw. The
third stage corresponds to X̂.

The first stage (the “spin-up” phase) is required to spin up the model from rest (in the rotating frame of
reference) to a state in which transient behaviour has decayed and a coherent flow structure is present.

The third stage (the “sequence” phase) contains the sequence of states X̂ used to obtain observations to start
the gradient descent. The states are separated in time by ∆t.

The second stage (the “pre-sequence” phase) is used purely for the generation of observations in the PMS. We
use the sequence of states between t = tspinup and t = tw to obtain an estimate, at each model grid point, of the
range of values admitted by the model when it is in dynamical equilibrium. This range can be interpreted as a
measure of the natural variability of the system at each point in space. We denote this range by the vector r, where
each element represents the range of values that encloses 99% of the values over the pre-sequence and sequence
phases at that grid point:

r = x̃[tspinup, ..., tw]99.5% − x̃[tspinup, ..., tw]0.5% (A.2)

We use an additional period of time before the sequence phase to ensure that the sequence of states used to
calculate the scaling is long enough to avoid problems of small-number statistics, while remaining short enough to
avoid including variability on longer time scales than are represented in the sequence. In practice the pre-sequence
was about 30% of the length of the sequence.

To generate the sequence of artificial observations X0 between t = t0 and tw we then add, at each ti, a vector of
random numbers ẽ (noise) to the true state:

xi,0 = x̂i + ẽi (A.3)

The random numbers are independently and identically distributed (IID) and are originally drawn from the Gaus-
sian distribution N(0, 1). These random numbers are then converted to observational error by multiplying by a
fixed fraction σ of the natural variability r at that grid point,

ẽi ∼ σ r N(0, 1) (A.4)

The effect of the scaling by r ensures that, statistically, the amount of noise added at each point and to each field
is the same fraction (σ) of the natural variability.
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Appendix A.4. Gradient descent applied to MORALS

To initialise the gradient descent algorithm, we first create a sequence of observations X0 of the true sequence
X̂ using the method described in Sect. Appendix A.3 above.

The algorithm then enters its main loop, which advances the gradient descent by one iteration from step h to
h + 1. The gradient descent loop begins with the sequence Xh. The first step is to initialise MORALS using each
state in the subsequence xi,h, i ∈ {0, . . . ,w − 1}, and then to integrate MORALS forward by ∆t = ti+1 − ti to obtain
the forecast images f (xi,h), i ∈ {0, . . . ,w − 1}. This is the forecasting step. The mismatch is then calculated for
each state-forecast pair, except for the first state where there is no corresponding forecast. The mismatch is given
by

δxi,h = xi+1,h − f (xi,h) ≡


δui,h

δvi,h

δwi,h

δTi,h

 ≡


ui+1,h
vi+1,h
wi+1,h
Ti+1,h

 − f


ui,h

vi,h

wi,h

Ti,h

 (A.5)

for i ∈ {0, 1, . . . ,w−1}. The indeterminism of the sequence is then calculated, using a calculation based on Eq. (3).
When applying this expression to MORALS, however, two problems must first be overcome.

First, it is not appropriate to add together the different MORALS fields because they represent different quan-
tities expressed in different units. To combine the quantities in this way they should be expressed in a non-
dimensional form. This is true even for a non-physical quantity like the indeterminism because otherwise I is
poorly-defined - it depends on the units used for the different fields and its value can be changed just by chang-
ing those units even when the physical sequence of states itself has not changed. Second, the range of values
in the four MORALS fields are quite different. T is usually O(1), u and v are O(10−2), and w is O(10−3). The
indeterminism combines the mismatch from all four fields, so the range of values in each field should be scaled
before they are combined, otherwise the contribution to I from the velocity mismatches will be swamped by the
contribution from the temperature mismatches.

Both these problems are solved by dividing the mismatches grid point-wise by the natural variability r de-
scribed in Appendix A.3. r remains constant over the course of the gradient descent, so the scaling is the same for
each iteration. This solves the first problem by converting each value into a dimensionless quantity, and it solves
the second by dividing by a natural scale for each field and at each grid point. With this scaling, we define the
mean squared indeterminism for a sequence Xh to be

I(Xh) =
1

wN

w−1∑
i=0

∥∥∥ δxi,h ◦ r−1
∥∥∥2

(A.6)

where ◦ denotes the Hadamard (pointwise) product. The indeterminism may also be calculated for a particular
xi,h:

I(xi,h) =
1
N

∥∥∥ δxi,h ◦ r−1
∥∥∥2

(A.7)

and for a single field, say temperature:

I(Ti,h) =
1

NT

∥∥∥ δTi,h ◦ r−1
T

∥∥∥2
(A.8)

where rT denotes the temperature components of the r vector. Because each field is scaled in the same way,
comparing these quantities between fields provides information about which fields are contributing most to the
overall mismatch. As I is a squared quantity, sums of these quantities also preserve the squared Euclidean norm:

I(xi,h) =
NuI(ui,h) + NvI(vi,h) + NwI(wi,h) + NT I(Ti,h)

N
(A.9)

I(Xh) =
1
w

w−1∑
i=0

I(xi,h) (A.10)

This definition of the indeterminism reflects its standard use by previous authors, as a mean over the model
mismatches. The model grid itself is non-uniform; the model assigns higher grid resolution near the boundaries
in order to resolve the boundary layers, but this is not reflected in the definition of the indeterminism as it should
not be interpreted physically but as a purely mathematical construct.

Once I(Xh) has been calculated it is compared with a user-specified value ε. If I(Xh) ≤ ε then the gradient
descent is terminated; ε is a parameter set by the user. If I > ε then a further check compares I(Xh) with I(Xh−1).
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Table A.3: Shadowing test parameters.

Best-case gradient descent λ 0.25
Best-case iteration h 9
Additional time tend − tw 1500 s
Time of final state tend 3920 s
Number of Type I errors accepted R 1
Number of candidate trajectories E 130
Maximum number of significance tests in a trajectory n 365

If I(Xh) > I(Xh−1) then the step length ∆τ is halved, and the algorithm returns to the start of the previous iteration:
h→ h−1. If I(Xh) ≤ I(Xh−1) then ∆τ is doubled for the next iteration. This adaptive refinement of the step length
allows the algorithm to proceed quickly both in regions of the state space where I varies slowly with τ (adapting
towards larger ∆τ) and where I varies rapidly (adapting towards smaller ∆τ). In our runs we disable doubling of
the step length once a point is reached when I(Xh) > I(Xh−1). The effect of this feature is that in the first few
gradient descent steps ∆τ equilibrates to a value that causes I to fall smoothly in subsequent steps, while making
optimum use of the available resources by running as few iterations as possible.

Finally Xh is updated. Using the gradient-free descent method of Judd et al. (2004) with A = λI, each new
state is given by

xi,h+1 = xi,h −
2 ∆τ

w
×


− λδx0,h i = 0

δxi−1,h − λδxi,h 1 ≤ i ≤ w − 1

δxw−1,h i = w

(A.11)

where δxi,h = xi+1,h − f (xi,h) and λ is a scalar. Xh+1 is then the input for the next iteration of the gradient descent.
The loop repeats while I > ε and h ≤ hmax, where hmax is a maximum iteration number.

Appendix A.5. Significance level for the shadowing definition
We require a significance level p for the shadowing definition such that Type I errors are avoided for all the

model trajectories. The largest significance level p such that in the event that the true candidate shadowing time is
the trajectory length equivalent of n significance tests, fewer than R trajectories in a set of E candidates will suffer
a Type I error, is (Part I, Eq. 14)

p = 1 −
(
1 −

R
E

)1/2n

(A.12)

We set n to the longest possible model trajectory in this context, n = 365. For the trajectory started from position
i = 0, n = 365 comes from one significance test at lead time zero, 320/5 = 64 tests over the sequence, and
1500/5 = 300 over the extra period of observations. There are E = 129 candidates (not including candidates
started from forecast images, which use the same data), and to ensure fewer than one Type I error throughout the
whole sequence we require R < 1. Putting these into Eq. A.12 gives p < 10−5.

Appendix A.6. Some comments on computational expense
The computational resources required to run the gradient descent algorithm are considerable, even without

a full adjoint model. The procedure was partially parallelized by running on a multi-core computer, with the
forecast stage split into blocks of four simulations at a time. Even then each iteration of the gradient descent
took approximately 90 s (running on a single desktop computer with four Intel R© CoreTM 2 Q9400 CPUs running
at 2.66GHz with 8GB RAM). 50–60% of this time was spent on the forecast stage and 30–40% setting up the
parameter files for each simulation. Both of these steps require no cross-referencing from other simulations, so if
run on a large cluster the computational overhead would be reduced significantly. The MORALS resolution is less
than is normally used for simulations that are compared with laboratory data, which usually use NR = 24, Nθ = 64,
Nz = 24 or higher (Young and Read, 2008; Jacoby et al., 2011). On a slightly older machine the 16 × 32 × 16
run took 5 min per iteration, a test run at 24 × 64 × 24 required about 15 min per iteration, and another test run
at 8 × 16 × 8 required only 90 s. The medium resolution is sufficient for demonstration purposes and because we
are working in the PMS, but if laboratory data were used to initialise the gradient descent then a higher resolution
would be required.
Arakawa, A., and V. R. Lamb (1977), Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model,

Meth. Comput. Phys., 17:173–265, doi:10.1016/B978-0-12-460817-7.50009-4.
21



Bowen, R. (1975), omega-Limit Sets for Axiom A Diffeomorphisms, J. Differ. Equations, 18:333–339, doi:10.1016/0022-0396(75)90065-0.
Du, H. (2009), Combining Statistical Methods with Dynamical Insight to Improve Nonlinear Estimation, Ph.D. thesis, London School of

Economics.
Evensen, G. (1994), Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error

statistics, J. Geophys. Res., 99:10,143–10,162, doi:10.1029/94JC00572.
Farmer, J. D., and J. J. Sidorowich (1991), Optimal shadowing and noise reduction, Physica D, 47:373–392, doi:10.1016/0167-2789(91)

90037-A.
Farnell, L., and R. Plumb (1976), Numerical integration of flow in a rotating annulus II: three dimensional model, Tech. rep., Occasional Note

Met O 21 76/1, Geophysical Fluid Dynamics Laboratory, Meteorological Office, Bracknell, Berkshire.
Gilmour, I. (1998), ‘ι-shadowing, probabilistic prediction and weather forecasting’, Ph.D. thesis, University of Oxford.
Grebogi, C., S. M. Hammel, J. A. Yorke, and T. Sauer (1990), Shadowing of physical trajectories in chaotic dynamics: Containment and

refinement, Phys. Rev. Lett., 65:1527–1530, doi:10.1103/PhysRevLett.65.1527.
Hammel, S. M. (1990), A noise reduction method for chaotic systems, Phys. Lett. A, 148:421–428, doi:10.1016/0375-9601(90)90493-8.
Hide, R. (1953), Some experiments on thermal convection in a rotating liquid, Q. J. Roy. Meteor. Soc., 79:161, doi:10.1002/qj.49707933916.
Hide, R., and P. Mason (1975), Sloping convection in a rotating fluid, Adv. Phys., 24:47–100, doi:10.1080/00018737500101371.
Hignett, P., A. A. White, R. D. Carter, W. D. N. Jackson, and R. M. Small (1985), A comparison of laboratory measurements and numerical

simulations of baroclinic wave flows in a rotating cylindrical annulus, Q. J. Roy. Meteor. Soc., 111:131–154, doi:10.1002/qj.49711146705.
Hussain, M. (2010), Tangent Linear and Adjoint Models for Fluid Flow in a Rotating Annulus, Master’s thesis, Johann Wolfgang Goethe

University.
Ikeda, K. (1979), Multiple-valued stationary state and its instability of the transmitted light by a ring cavity system, Opt. Commun., 30:257–

261, doi:10.1016/0030-4018(79)90090-7.
Jacoby, T. N. L., P. L. Read, P. D. Williams, and R. M. B. Young (2011), Generation of inertia-gravity waves in the rotating thermal annulus

by a localised boundary layer instability, Geophys. Astro. Fluid, 105:161–181, doi:10.1080/03091929.2011.560151.
Judd, K. (2003), Nonlinear state estimation, indistinguishable states, and the extended Kalman filter, Physica D, 183:273–281, doi:10.1016/

S0167-2789(03)00180-5.
Judd, K. (2007), Failure of maximum likelihood methods for chaotic dynamical systems, Phys. Rev. E, 75:036,210, doi:10.1103/PhysRevE.

75.036210.
Judd, K. (2008), Forecasting with imperfect models, dynamically constrained inverse problems, and gradient descent algorithms, Physica D,

237:216–232, doi:10.1016/j.physd.2007.08.017.
Judd, K., and L. Smith (2001), Indistinguishable states: I. Perfect model scenario, Physica D, 151:125–141, doi:10.1016/S0167-2789(01)

00225-1.
Judd, K., and L. A. Smith (2004), Indistinguishable states II. The imperfect model scenario, Physica D, 196:224–242, doi:10.1016/j.physd.

2004.03.020.
Judd, K., and T. Stemler (2009), Failures of sequential Bayesian filters and the successes of shadowing filters in tracking of nonlinear deter-

ministic and stochastic systems, Phys. Rev. E, 79:066,206, doi:10.1103/PhysRevE.79.066206.
Judd, K., and T. Stemler (2010), Forecasting: it is not about statistics, it is about dynamics., Philos. T. Roy. Soc. A, 368:263–71, doi:

10.1098/rsta.2009.0195.
Judd, K., L. Smith, and A. Weisheimer (2004), Gradient free descent: Shadowing, and state estimation using limited derivative information,

Physica D, 190:153–166, doi:10.1016/j.physd.2003.10.011.
Judd, K., C. A. Reynolds, T. E. Rosmond, and L. A. Smith (2008), The Geometry of Model Error, J. Atmos. Sci., 65:1749–1772, doi:

10.1175/2007JAS2327.1.
Kostelich, E. J., and J. A. Yorke (1988), Noise reduction in dynamical systems, Phys. Rev. A, 38:1649–1652, doi:10.1103/PhysRevA.38.1649.
Lorenc, A. C., R. S. Bell, and B. Macpherson (1991), The Meteorological Office analysis correction data assimilation scheme, Q. J. Roy.

Meteor. Soc., 117:59–89, doi:10.1002/qj.49711749704.
Lorenz, E. N. (1963), Deterministic nonperiodic flow, J. Atmos. Sci., 20:130–141, doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2.
Ravela, S., J. Marshall, C. Hill, A. Wong, and S. Stransky (2010), A realtime observatory for laboratory simulation of planetary flows, Exp.

Fluids, 48:915–925, doi:10.1007/s00348-009-0752-0.
Rawlins, F., S. P. Ballard, K. J. Bovis, A. M. Clayton, D. Li, G. W. Inverarity, A. C. Lorenc, and T. J. Payne (2007), The Met Office global

four-dimensional variational data assimilation scheme, Q. J. Roy. Meteor. Soc., 133:347–362, doi:10.1002/qj.32.
Read, P. L., M. J. Bell, D. W. Johnson, and R. M. Small (1992), Quasi-periodic and chaotic flow regimes in a thermally driven, rotating fluid

annulus, J. Fluid Mech., 238:599–632, doi:10.1017/S0022112092001836.
Read, P. L., N. P. J. Thomas, and S. H. Risch (2000), An evaluation of Eulerian and semi-Lagrangian advection schemes in simulations of

rotating, stratified flows in the laboratory. Part I: Axisymmetric flow., Mon. Weather Rev., 128:2835–2852, doi:10.1175/1520-0493(2000)
128<2835:AEOEAS>2.0.CO;2.

Ridout, D., and K. Judd (2002), Convergence properties of gradient descent noise reduction, Physica D, 165:26–47, doi:10.1016/

S0167-2789(02)00376-7.
Smith, L. A. (2000), Disentangling uncertainty and error: On the predictability of nonlinear systems, in Nonlinear Dyanmics and Statistics,

edited by A. Mees, pp. 31–64, Birkhäuser Boston.
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