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A B S T R A C T

Understanding the mechanical behavior of nanoscale structures is crucial in the development of advanced nan-
otechnologies. In this study, a novel approach to investigate the thermal lateral vibration of cracked nanobeams
immersed in an elastic matrix is investigated. For this purpose, Reddy’s third-order shear deformation theory
(TSDT) is considered. In contrast to Timoshenko beam theory (First-order Shear Deformation Theory, FSDT),
TSDT does not depend on a shear correction coefficient. The nano-scale effect is modeled using Eringen’s
nonlocal continuum mechanics theory. The nonlocal form of the governing equation is obtained through the
application of Hamilton’s principle. The weak form of the finite element global mass and stiffness matrices are
obtained using Lagrange linear and Hermitian cubic interpolation. To model the crack in bending vibration, two
rotational springs are used for TSDT, unlike the use of a single rotational spring in traditional Bernoulli–Euler
(Classical Beam Theory, CBT) and FSDT. The stiffness of the springs is adjusted based on the severity of the
crack. The influences of the nonlocal parameter, beam slenderness, position of crack, crack severity, Pasternak
and Winkler foundation parameters, thermal effects and boundary conditions on the natural frequencies are
investigated. The model’s outcomes are compared with findings from prior publications, demonstrating a strong
level of agreement. This study contributes to the growing research on nanostructures by presenting a novel
approach to understanding the dynamics of cracked nanobeams using Reddy beam analysis-based solutions.
1. Introduction

Nanostructures have been proven to possess exceptional properties
and have discovered a broad range of uses in fields such as ther-
mal insulation, electronics, and micro/nano-electromechanical systems
(MEMS/NEMS) [1], optoelectronics, microsurgery [2], drug delivery,
cell manipulation [3] and etc. Gaining insight into the mechanical be-
havior of nanostructures is critical for developing an optimum design.
Such understanding can be achieved either through experimentation or
modeling. However, experimental investigation of nanoscale structures
presents numerous challenges, as manipulating and measuring parame-
ters at the nanometer scale is complex. Alternatively, modeling can be
performed using either computer-based atomistic simulations or size-
dependent nonlocal continuum mechanics. However, computer-based
atomistic simulations, such as molecular dynamics, are computationally
demanding and time-intensive [4]. The theory of nonlocal continuum
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mechanics examines the mechanical behavior of nanostructures, en-
compassing aspects like bending, vibration, and buckling [5], offers a
viable approach for studying these important objects at the nanoscale.

In the field of continuum mechanics, several nonlocal theories
have been formulated to account for size-related effects. These include
Eringen’s nonlocal elasticity theory, the surface energy method, and
the modified coupled stress theory [6,7]. These theories include addi-
tional terms in the governing equations that capture the interactions
between material points over a finite distance and account for the
size effect. Ceballes et al. [8] reviewed various nonclassical continuum
mechanics theories, including differential nonlocal theory, Eringen’s
integral nonlocal theory, and general nonlocal theory. Eringen’s strain-
driven differential nonlocal elasticity theory is widely used because it
can accurately model the size-dependent behavior of structures under
different loading and boundary conditions. Eringen’s hypothesis states
that stress at a location results from strain throughout the continuum
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Nomenclature

𝑎 Internal characteristic length or crack depth
𝐴 Beam cross-sectional area
𝑏 Rectangular beam width
𝐶𝑖𝑗𝑘𝑙 Elastic modulus tensor
d Mode shape vector
𝑒0 Calibration parameter
ei𝜔𝑡 Time term where, i =

√

(−1)
𝐸 Young’s modulus
𝐺 Shear modulus
ℎ Rectangular beam height
𝐻𝑖 Hermite cubic interpolation function
𝐼 Second moment of area
𝑘∗ Crack severity
𝑘𝑝 Dimensionless Pasternak stiffness
𝑘𝑤 Dimensionless Winkler stiffness
𝐾𝑒𝑞 Equivalent crack stiffness
𝐾𝑝 Pasternak’s stiffness parameter
𝐾𝑤 Winkler’s stiffness parameter
𝐾𝐸 Kinetic energy
K Global stiffness matrix
Kc Crack stiffness matrix
Ke Reddy element stiffness matrix
𝑙 External characteristic length
𝑙𝑐 𝐿𝑐∕𝐿 crack location ratio
𝐿 Total length of the beam
𝐿𝑐 Crack location from left
L𝑖 Linear Lagrange interpolation function
𝜃 Pure bending slope =−𝜕𝑤∕𝜕𝑥
𝜅 Shear correction factor
𝜆 Aspect or slenderness ratio = 𝐿∕ℎ
𝜇 = (𝑒0 𝑎)2 = (𝜁 𝐿)2

𝜈 Poisson’s ratio
𝜉 Crack depth to height ratio = 𝑎∕ℎ
𝜌 Density of the beam material
𝜎𝑥𝑥 Normal stress
𝜎𝑖𝑗 Stress tensor
𝑀 Resultant general bending moment stress
𝑀𝑏 Resultant pure bending moment stress
M Global mass matrix
M𝑒 Element mass matrix
𝑁 Resultant normal force stress
𝑃𝑡ℎ Axial thermal load
𝑃𝐸 Potential energy
𝑝𝑡ℎ Thermal parameter
𝑄 Resultant shear force stress
𝑡 Time
𝑢(𝑥, 𝑡) Axial displacement
𝑣(𝑥, 𝑡) Transverse displacement along 𝑦 axis
𝑤(𝑥, 𝑡) Transverse displacement along 𝑧 axis
𝑊𝐸 Work done by external loads
x Reference point
x ′ Any point in the body
𝛼 Thermal expansion coefficient
𝛼0 Nonlocal Kernel function
𝛾𝑥𝑧 Shear strain
2

𝛿 Variational symbol
𝚫𝑒 Nodal value vector
𝛥𝑇 Temperature change
𝜀𝑥𝑥 Normal strain
𝜀𝑘𝑙 Strain tensor
𝜀𝑡ℎ Thermal strain
𝜀𝑚 Mechanical strain
𝜁 Nonlocal parameter =(𝑒0 𝑎)∕𝑙
𝜎𝑐𝑖𝑗 Classical stress tensor
𝜏𝑥𝑧 Shear stress
𝜑𝑎𝑣 Average slope value
𝜓 The slope at 𝑧 = 0
𝜔 Natural frequency
𝜔̄ Dimensionless natural frequency
𝜔̂ = 𝜔𝑐𝑟𝑎𝑐𝑘𝑒𝑑∕𝜔𝑢𝑛𝑐𝑟𝑎𝑐𝑘𝑒𝑑
𝛺 Natural frequency in Hz
∇2 Second order spatial gradient

around it and not simply at the place under consideration and also,
allows for the inclusion of small-scale effects and interatomic forces as
material parameters in the constitutive equations [9]. This model has
been applied to study wave propagation, vibration, bending, buckling,
and crack or impurity modeling of structures of different sizes, such
as beams, shells, cones, plates, and graphene sheets [10–16]. The
differential model has several advantages over other nonlocal elasticity
models, including its simplicity, ease of implementation, and accuracy
in capturing the behavior of structures with complex geometries and
boundary conditions [17–19].

However, a paradox has emerged between Eringen’s nonlocal elas-
ticity integral and differential formulations, where some researchers
have discovered a stiffening effect that arises from nonlocal interactions
under certain boundary and loading conditions [20–22]. Proposed
solutions to the paradox include using finite element methods, iterative
techniques, Laplace transform methods, and the weighted residual
approach to derive boundary conditions that are consistent with vari-
ations. Nevertheless, the presence of a paradox signals an ill-posed
formulated elastostatic problem, wherein the stress field resulting from
convolution fails to satisfy equilibrium conditions. Consequently, the
choice of an appropriate theory should hinge upon the material’s struc-
ture and its inherent properties. Moreover, certain higher-order theories
within nonclassical continuum mechanics have not been implemented
in physical systems because of the challenges involved in determining
natural boundary conditions and interpreting the newly introduced
parameters [22].

Yin et al. [6] presented an isogeometric analysis approach for
size-dependent Euler–Bernoulli beams that satisfies the continuity re-
quirement at the boundary conditions. Lignola et al. [23] used a closed-
form analytical solution to present a well-posed analytical framework
for the problem of a Timoshenko beam in an elastic medium. By
applying constitutive boundary conditions, the integral form of the
constitutive equation can be transformed into an equivalent differential
equation [22,24].

Recently, Romano and Barretta introduced a stress-driven integral
model, in which they showed that the new model is capable of gener-
ating a well-posed nonlocal elastic problem [25,26]. For the purpose
of obtaining solutions to nonlocal problems, the differential form of
nonlocal elasticity is generally preferred, but the integral form of
nonlocal elasticity is a better choice for analyzing cantilever conditions
than the differential model because it does not exhibit paradoxical

behavior [19,23].
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Fig. 1. (a) Cracked Reddy nanobeam under axial thermal load supported on a Winkler–Pasternak foundation. (b) Reddy beam parabolic shear strain and stress distribution.
To characterize the dynamical behavior of beams, several theories
ave been developed, including the Reddy, Levinson, Timoshenko,
ayleigh, and Bernoulli–Euler theories [21]. There are limitations to
ach of these theories. The most fundamental and well-established
heory is the Bernoulli–Euler beam theory, which continues to be exten-
ively used for slender beams, see for example [11,27,28]. Transverse
hear deformation is not included in this theory. Timoshenko was the
ioneer in emphasizing the importance of shear deformations in elastic
eams [29]. Hence, Timoshenko beam theory is frequently utilized for
he study of thick beams, see for example [30–37]. The assumption that
he distribution of shear along the beam segment is roughly uniform
s a limitation of this theory. This issue is corrected using the shear
orrection coefficient. The creation of higher-order theories (HSDTs)
as prompted by the Timoshenko beam theory’s limitations. One of

he well-known HSDTs is the Reddy beam theory or (TSDT). It is
ssumed that the shear strain and stress in the transverse direction are
istributed parabolically across the thickness of the beam in TSDT, as
hown in Fig. 1(b). Unlike the Timoshenko theory, the TSDT does not
equire a shear coefficient 𝜅 [29].

In the past decade, some researchers have studied nanobeams mod-
led using TSDT in the literature. Reddy [13] and Aydogdu [14]
xamined the impact of nonlocal effects on the buckling, bending,
nd vibration of nanobeams. For each of the beam theories, such
s Bernoulli–Euler, Timoshenko, Reddy, or Levinson, the authors em-
loyed Eringen’s theory. For functionally graded micro/nano beams
alamat-Talab et al. [38] proposed the modified couple stress theory
ith TSDT. Lin and Xiang [39] studied the vibration of reinforced com-
osite carbon nanobeams based on Timoshenko and TSDTs theories.
nsari et al. [40] presented the nonlinear dynamics of magneto-electro-

hermo-elastic nanobeams under forced vibrations based on TSDT in
onjunction with nonlocal elasticity theory.

In accordance with the third order shear deformation theory and
ringen’s theory, Ebrahimi and Barati [41] researched the free vibra-
ion of functionally graded nanobeams. Mechab et al. [15] investigated
3

he vibration of nanocomposite beams using higher order shear, while
taking nonlocal elasticity and Poisson’s effect into account. Timoshenko
and third-order shear deformation theory with the influence of surface
stress were used by Lin et al. [42] to analyze the vibration and buckling
behavior of nanobeams.

The behavior of NEMS/MEMS structures is strongly influenced by
their atomic-scale features, and even small changes in the arrangement
of atoms can have a significant impact on their response. Numerous
studies have explored the fracture characteristics of carbon nanotubes,
revealing that imperfections, such as missing atoms, can have a pro-
found impact on the nanotube’s strength, leading to the formation of
cracks and eventual failure [43,44]. These cracked nanobeams are a
crucial consideration in the design and construction of NEMS/MEMS
structures because they can significantly impact the mechanical prop-
erties and overall performance of the structure. Thus, comprehending
the behavior of cracked nanobeams is essential to the development of
robust and dependable NEMS/MEMS devices.

Various techniques are available for modeling cracks, each with its
own set of advantages and disadvantages. Examples include the spring
model [44,45], reduction in cross section [46], and phase field [47–
50]. In the spring model, which is used in the present work, the
crack is modeled as a rotational spring. The stiffness of this spring
fluctuates based on the intensity of the crack. The phase field model
characterizes the crack as a diffuse area with a gradual gradient of
material properties. The Reduction in cross section model reduces the
cross-sectional area in the region where the crack is present, which
accounts for the reduction in stiffness of the beam or shaft that results
from the crack’s presence. Nazemnezhad and Fahimi [51] presented
free torsional vibration of nanobeams with a circumferential crack
incorporating surface energy effects. According to the modified couple
stress theory, Akbaş [52] studied the forced vibration of a cracked
nano Timoshenko cantilever beam with damping. Using a finite el-
ement model, Aria et al. [16] investigated the lateral vibration of
cracked Bernoulli–Euler nanobeams located in thermal environment.
The beam was embedded on nonlocal elastic media with two param-

eters. Akbaş et al. [53] applied the finite element method and adapted
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coupling stress theory to demonstrate the free vibration of cracked
Bernoulli–Euler microbeams.

There are several approaches to approximately model the effect of
elastic media such as Pasternak and Winkler foundations. Winkler’s
model describes the elastic medium as a linear elastic spring system
made up of dense independent linear springs [23,54]. According to the
Winkler model, deformation only happens in the area where the load is
applied. Loya et al. [55] studied the dynamic behavior of Timoshenko
beams with cracks, which are embedded in a Winkler foundation.
They modeled the crack using two massless extensional and rotational
springs. Another model that is used to illustrate an elastic media is
the Pasternak model. By fastening the spring ends to a beam or plate
that only receives transverse shear deformation, the existence of shear
interaction among the spring elements is allowed.

Nanomechanical devices may have to operate at a range of temper-
atures. The vibration characteristics alter when the temperature varies,
and the impact of temperature on the vibration captivated the interest
of scientists studying small-scale materials [56–59]. The majority of
the literature-based study focuses on the temperature effect as well as
the vibrational behavior of nanostructures contained in elastic medium.
Among them and based on Eringen’s theory and Bernoulli–Euler beam
theory, Demir and Civalek [60] considered the vibration of a nanobeam
embedded in an elastic matrix under the thermal influence.

From the previous literature, the importance of investigating the
dynamics of nanobeams, whether intact or cracked, is clear. This study
proposes a novel approach to investigate the thermal lateral vibration
behavior of nanoscale cracked beams by utilizing Reddy beam theory,
in contrast to the conventional approaches based on Classical Beam
Theory (CBT) and First-order Shear Deformation Theory (FSDT). To
account for the size effect of the nanostructure, a nonlocal elasticity
theory proposed by Eringen is incorporated into the model. More-
over, a crack model, comprising two rotational springs with stiffness
that varies based on the severity of the crack, is integrated into the
Reddy beam element. The analysis investigates the effects of several
parameters, including the nonlocal parameter, slenderness ratio, crack
location and severity, Pasternak and Winkler foundation parameters,
thermal effects, and boundary conditions, on the natural frequencies
of the nanobeam. After this introduction, the theoretical model based
on TSDT is presented in Section 2 and the crack model is also dis-
cussed. Section 3 presents the model findings and verifications. Finally,
Section 4 presents the key findings and conclusions.

2. Theoretical model

The model employed in this study is for a beam with total length 𝐿
long the axial coordinate 𝑥 and a uniform cross-sectional area 𝐴 with
idth 𝑏 and thickness (height) ℎ along coordinates 𝑦 and 𝑧 respectively.
𝑢, 𝑣, and 𝑤) are the displacements along the (𝑥, 𝑦, and 𝑧) coordinate

directions respectively. The transverse through edge crack on the beam
measures 𝑎 in depth and is located 𝐿𝑐 from the left. It is considered
that this crack will always be open. A two-parameter elastic base
supports the beam (Winkler–Pasternak). The Pasternak foundation’s
shear modulus is indicated as 𝐾𝑝, whereas the Winkler foundation’s
linear spring constant is denoted by 𝐾𝑤. The beam axial load resulted
from thermal stress is denoted by 𝑃𝑡ℎ.

2.1. The local formulation of governing equations

According to TSDT, the displacement field is expressed as follows:

𝑢(𝑥, 𝑧, 𝑡) =𝑢0 +
(

𝑧 − 4
3ℎ2

𝑧3
)

𝜓 − 4
3ℎ2

𝑧3
𝜕𝑤0
𝜕𝑥

,

𝑣(𝑥, 𝑧, 𝑡) =0, (1)
4

(𝑥, 𝑧, 𝑡) =𝑤0,
here 𝜓 denotes the slope 𝜑 = 𝜕𝑢
𝜕𝑧 at 𝑧 = 0 of the deformed line as

shown in Fig. 1(b). The slope is derives as:

𝜑 = 𝜕𝑢
𝜕𝑧

= 𝜓 − 4
ℎ2
𝑧2

(

𝜓 +
𝜕𝑤0
𝜕𝑥

)

. (2)

The slope’s average value across the range 𝑧 ∈ [−ℎ∕2, ℎ∕2 ] is given
by

𝜑𝑎𝑣 =
∫

ℎ
2

− ℎ
2

𝜑d𝑧

ℎ
=

[

𝑧𝜓 − 4
3ℎ2 𝑧

3
(

𝜓 + 𝜕𝑤0
𝜕𝑥

)]
ℎ
2

− ℎ
2

ℎ
= 2

3
𝜓 + 1

3
−𝜕𝑤0
𝜕𝑥

. (3)

The non-zero strain and stress components are described as:

𝜀𝑥𝑥 = 𝜕𝑢
𝜕𝑥

=
𝜕𝑢0
𝜕𝑥

+
(

𝑧 − 4
3ℎ2

𝑧3
)

𝜕𝜓
𝜕𝑥

− 4
3ℎ2

𝑧3
𝜕2𝑤0

𝜕𝑥2
,

𝛾𝑥𝑧 = 2𝜀𝑥𝑧 =
𝜕𝑢
𝜕𝑧

+ 𝜕𝑤
𝜕𝑥

=
(

1 − 4
ℎ2
𝑧2
)(

𝜓 +
𝜕𝑤0
𝜕𝑥

)

,
(4)

𝜎𝑥𝑥 = 𝐸𝜀𝑥𝑥 = 𝐸
(

𝜕𝑢0
𝜕𝑥

+
(

𝑧 − 4
3ℎ2

𝑧3
)

𝜕𝜓
𝜕𝑥

− 4
3ℎ2

𝑧3
𝜕2𝑤0

𝜕𝑥2

)

,

𝜏𝑥𝑧 = 𝐺𝛾𝑥𝑧 = 𝐺
(

1 − 4
ℎ2
𝑧2
)(

𝜓 +
𝜕𝑤0
𝜕𝑥

)

,
(5)

where the beam Young’s and shear moduli are 𝐸 and 𝐺 respectively.
In order to implement the nonlocal theory the following stress

resultants should be introduced

𝑁 =∫𝐴
𝜎𝑥𝑥 d𝐴 = 𝐸𝐴 𝑢

′

0,

𝑀 =∫𝐴

(

𝑧 − 4
3ℎ2

𝑧3
)

𝜎𝑥𝑥 d𝐴 = 𝐸𝐼
( 68
105

𝜓
′
− 16

105
𝑤

′′

0

)

,

𝑀𝑏 =∫𝐴
− 4
3ℎ2

𝑧3𝜎𝑥𝑥 d𝐴 = 𝐸𝐼
(

− 16
105

𝜓
′
+ 1

21
𝑤

′′

0

)

,

𝑄 =∫𝐴

(

1 − 4
ℎ2
𝑧2
)

𝜏𝑥𝑧 d𝐴 = 8
15

𝐺𝐴
(

𝜓 +𝑤
′

0

)

,

(6)

here the differentiation with respect to 𝑥 is denoted by superscript ′ .
= 𝑏 ℎ3

12 is the cross-section moment of inertia, ∫
(

𝑧2, 𝑧
4

ℎ2
, 𝑧

6

ℎ4

)

d𝐴 =
(

1, 3
20 ,

3
112

)

and ∫
(

1, 𝑧
2

ℎ2
, 𝑧

4

ℎ4

)

d𝐴 = 𝐴
(

1, 1
12 ,

1
80

)

.
To obtain the governing equation, Hamilton’s principle states that

the conservative system’s total potential energy must have a first vari-
ation equal to zero in the (𝑡1, 𝑡2) time range.

𝛿 ∫

𝑡2

𝑡1
(𝐾𝐸 − (𝑃𝐸 +𝑊𝐸 ))d𝑡 = 0, (7)

where 𝐾𝐸 , 𝑃𝐸 and 𝑊𝐸 denote the kinetic energy, potential (strain)
energy and work done by the external loads, respectively. The variation
of the kinetic energy is defined as

𝛿𝐾𝐸 = 𝜌∫

𝐿

0 ∫𝐴
(𝑤̇ 𝛿 (𝑤̇) + 𝑢̇ 𝛿 (𝑢̇)) d𝐴d𝑥, (8)

here time differentiation is represented by the dot notation and 𝜌 is
he mass density of the beam material. Thus,

𝐾𝐸 =𝜌∫

𝐿

0 ∫𝐴

[

(

𝑤̇0 𝛿
(

𝑤̇0
))

+
(

𝑢̇0 𝛿
(

𝑢̇0
))

+
(((

𝑧2 − 8
3ℎ2

𝑧4 + 16
9ℎ4

𝑧6
)

𝜓̇ +
(

−4
3ℎ2

𝑧4 + 16
9ℎ4

𝑧6
)

𝑤̇
′

0

)

𝛿 (𝜓̇)
)

+
(((

−4
3ℎ2

𝑧4 + 16
9ℎ4

𝑧6
)

𝜓̇ +
(

16
9ℎ4

𝑧6
)

𝑤̇
′

0

)

𝛿
(

𝑤̇
′

0

)

) ]

d𝐴d𝑥.

(9)

Simplifying Eq. (9) gives

𝛿𝐾𝐸 =∫

𝐿

0

[

𝜌𝐴
(

𝑤̇0 𝛿
(

𝑤̇0
)

+ 𝑢̇0 𝛿
(

𝑢̇0
))

+

𝜌𝐼
(( 68

105
𝜓̇ − 16

105
𝑤̇

′

0

)

𝛿 (𝜓̇) +
(−16
105

𝜓̇ + 1
21
𝑤̇

′

0

)

𝛿
(

𝑤̇
′

0

))

]

d𝑥.

(10)



Thin-Walled Structures 193 (2023) 111249M.S. Taima et al.

𝛿

t

𝛿

𝑃

𝑃

w
t

𝜀

w
c

𝛿

s
m
p
R
t
i
t
f
f
b
f
m
c
l
h

g

𝜎

𝑁

The strain energy’s 𝑃𝐸 variation may be represented as

(

𝑃𝐸
)

= ∫𝐴 ∫

𝐿

0

(

𝜎𝑥𝑥 𝛿
(

𝜀𝑥𝑥
)

+ 𝜏𝑥𝑧𝛿(𝛾𝑥𝑧)
)

d𝑥 d𝐴, (11)

simplifying Eq. (11) gives

𝛿
(

𝑃𝐸
)

= ∫

𝐿

0

(

𝑁 𝛿
(

𝑢
′

0

)

+𝑀 𝛿
(

𝜓
′
)

+𝑀𝑏 𝛿
(

𝑤
′′

0

)

+𝑄 𝛿 (𝜓)

+ 𝑄 𝛿
(

𝑤
′

0

))

d𝑥.
(12)

The variation of the virtual work due to the elastic foundation and
hermal load is given by
(

𝑊𝐸
)

= ∫

𝐿

0

(

𝑞𝛿(𝑤0) + 𝑃𝑡ℎ 𝑤
′

0𝛿
(

𝑤
′

0

))

d𝑥. (13)

The axial force resulting from constraining the thermal expansion
𝑡ℎ equals the restraining force but in the negative direction as follows

𝑡ℎ = 𝐸𝐴𝜀𝑚 = −𝐸𝐴𝜀𝑡ℎ, (14)

here 𝜀𝑡ℎ is the thermal strain and 𝜀𝑚 is the mechanical strain. The
hermal strain can be evaluated from

𝑡ℎ = 𝛼𝛥𝑇 , (15)

here 𝛥𝑇 is the temperature change and 𝛼 is the thermal expansion
oefficient. Substituting Eqs. (14) and (15) into Eq. (13) results in
(

𝑊𝐸
)

= ∫

𝐿

0

[

(

𝐾𝑝 − 𝐸𝐴𝛼𝛥𝑇
)

𝑤
′

0𝛿
(

𝑤
′

0

)

+𝐾𝑤 𝑤0 𝛿
(

𝑤0
)

]

d𝑥. (16)

The following weak form is obtained by inserting Eqs. (10), (12)
and (16) into Eq. (7) and conducting integration by parts.

∫

𝑡2

𝑡1
𝛿(𝐾𝐸 − (𝑃𝐸 +𝑊𝐸 ))d𝑡 = ∫

𝑡2

𝑡1
∫

𝐿

0

[

𝜌𝐴
(

−𝑢̈0 𝛿
(

𝑢0
)

− 𝑤̈0𝛿
(

𝑤0
))

+ 𝜌𝐼
((

− 68
105

𝜓̈ + 16
105

𝑤̈
′

0

)

𝛿 (𝜓) +
(−16
105

𝜓̈
′
+ 1

21
𝑤̈

′′

0

)

𝛿
(

𝑤0
)

)

+ 𝜕𝑁
𝜕𝑥

𝛿
(

𝑢0
)

+ 𝜕𝑀
𝜕𝑥

𝛿 (𝜓) −
𝜕2𝑀𝑏

𝜕𝑥2
𝛿
(

𝑤0
)

−𝑄 𝛿 (𝜓) + 𝜕𝑄
𝜕𝑥

𝛿
(

𝑤0
)

+
(

(

𝐾𝑝 − 𝐸𝐴𝛼𝛥𝑇
)

𝑤
′′

0 −𝐾𝑤𝑤0

)

𝛿
(

𝑤0
)

]

d𝑥d𝑡

+ ∫

𝑡2

𝑡1

[

𝜌𝐼
( 16
105

𝜓̈ − 1
21
𝑤̈

′

0

)

𝛿
(

𝑤0
)

−𝑁𝛿
(

𝑢0
)

+𝑀𝛿 (𝜓) −𝑀𝑏𝛿
(

𝑤
′

0

)

+
𝜕𝑀𝑏
𝜕𝑥

𝛿
(

𝑤0
)

−𝑄 𝛿
(

𝑤0
)

−
(

𝐾𝑝 − 𝐸𝐴𝛼𝛥𝑇
)

𝑤
′

0 𝛿
(

𝑤0
)

]

𝐿
0 d𝑡.

(17)

The Euler–Lagrange equations of motion are:
𝜕𝑁
𝜕𝑥

= 𝜌𝐴 𝑢̈0, (18)

𝜕𝑄
𝜕𝑥

−
𝜕2𝑀𝑏

𝜕𝑥2
= −

(

𝐾𝑝 − 𝐸𝐴𝛼𝛥𝑇
)

𝑤
′′

0 +𝐾𝑤𝑤0 + 𝜌𝐴𝑤̈0 +
16
105

𝜌𝐼𝜓̈
′

− 1
21
𝜌𝐼𝑤̈

′′

0 , (19)

𝜕𝑀
𝜕𝑥

−𝑄 = 68
105

𝜌𝐼𝜓̈ − 16
105

𝜌𝐼𝑤̈
′

0. (20)

The classical boundary conditions for the Reddy beam require spec-
ifying one element from each of the two pairs, as outlined in Table 1.

2.2. Nonlocal constitutive relation

The study in this paper is based on the differential form of nonlocal
elasticity theory, developed by Eringen [61], which is regarded as one
of the most powerful non-local continuum theories. According to Erin-
gen [24] the constitutive equation of linear, homogeneous, isotropic,
and nonlocal elastic solid with zero body forces are given by

𝜎𝑖𝑗 (x) = 𝛼0(|x
′
− x|, 𝜁 )𝜎𝑐 (x ′

) d𝜐(x ′
), (21)
5

∫𝜐 𝑖𝑗
where the classical stress tensor is 𝜎𝑐𝑖𝑗 and the stress tensor is 𝜎𝑖𝑗 . A
reference point is represented by x, a nearby point is represented by x ′ ,
and the nonlocal kernel function is represented by 𝛼0(|x

′ − x|, 𝜁). Both
the distance between the points x and x ′ and the nonlocal parameter
𝜁 = 𝑒0𝑎

𝑙 have an impact on the kernel function 𝛼0. The lengths of the
internal and external characteristics are denoted by the parameters 𝑎
and 𝑙, respectively. The findings of the nonlocal model are compared
to those of the atomic model using the parameter 𝑒0. However, it is still
unclear which values are better for the small scaling parameter 𝑒0. For
this parameter, numerous scholars proposed a number of values, and it
was discovered that these values had a significant amount of scatter [9].

Equation’s (21) integral may be reduced to the following partial
differential equation:
(

1 − 𝜁2𝑙2∇2) 𝜎𝑖𝑗 (𝑥) = 𝜎𝑐𝑖𝑗 (𝑥) = 𝐶𝑖𝑗𝑘𝑙𝜀𝑘𝑙 (𝑥) , (22)

where ∇2 symbolizes the second order spatial gradient, 𝜀𝑘𝑙 stands
for the strain tensor, and 𝐶𝑖𝑗𝑘𝑙 represents the elastic modulus ten-
or. However, it is worth noting that, the conversion of the nonlocal
odel’s integral form to its differential form represents a paradox in the
roblem of beam bending as discussed by Fernandez-Saez et al. [21],
omano et al. [22] and Barretta et al. [62]. They demonstrated how

his transformation indicated a link between the bending moment and
ts spatial derivative at the beam boundary conditions, and they proved
hat this relationship should be matched. This indicates that the integral
orm of the nonlocal problem should be used to verify the differential
orm solution that was found. For problem with displacement type
oundary conditions, this is important where the second order dif-
erential equation’s solution is the bending moment and the bending
oment boundary conditions that should be fulfilled by the integration

onstants. Nevertheless, the integral form is not viable to model the
ocal effects at the boundaries. Considering the fact that each method
as its limitations, here the differential form of the equation is used.

The nonlocal constitutive relations for beams (1D structures) are
iven as:

𝑥𝑥 − 𝜇
𝜕2𝜎𝑥𝑥
𝜕𝑥2

= 𝐸𝜀𝑥𝑥, 𝜏𝑥𝑧 − 𝜇
𝜕2𝜏𝑥𝑧
𝜕𝑥2

= 𝐺𝛾𝑥𝑧 where 𝜇 =
(

𝑒0𝑎
)2 .

(23)

The constitutive relations for Reddy beam theory are

− 𝜇 𝜕2𝑁
𝜕𝑥2

= 𝐸𝐴𝑢
′

0,

𝑀 − 𝜇 𝜕2𝑀
𝜕𝑥2

= 𝐸𝐼
( 68
105

𝜓
′
− 16

105
𝑤

′′

0

)

,

𝑄 − 𝜇 𝜕2𝑄
𝜕𝑥2

= 8
15

𝐺𝐴
(

𝜓 +𝑤
′

0

)

,

𝑀𝑏 − 𝜇
𝜕2𝑀𝑏

𝜕𝑥2
= 𝐸𝐼

(

− 16
105

𝜓
′
+ 1

21
𝑤

′′

0

)

,

(24)

Substituting 𝜕𝑁
𝜕𝑥 from Eq. (18) into the first of Eq. (24) gives

𝑁 = 𝐸𝐴𝑢
′

0 + 𝜇
(

𝜌𝐴𝑢̈
′

0

)

. (25)

Substituting 𝜕𝑄
𝜕𝑥 − 𝜕2𝑀𝑏

𝜕𝑥2
from Eq. (19) into the difference of the third

and the first derivative of the fourth equations of Eq. (24) results in

𝜕𝑄
𝜕𝑥

−
𝜕2𝑀𝑏

𝜕𝑥2
= 8

15
𝐺𝐴

(

𝜓
′
+𝑤

′′

0

)

+ 𝐸𝐼
( 16
105

𝜓
′′′
− 1

21
𝑤

′′′′

0

)

+ 𝜇
(

−
(

𝐾𝑝 − 𝐸𝐴𝛼𝛥𝑇
)

𝑤
′′′′

0 +𝐾𝑤𝑤
′′

0 + 𝜌𝐴𝑤̈
′′

0 + 16
105

𝜌𝐼𝜓̈
′′′
− 1

21
𝜌𝐼𝑤̈

′′′′

0

)

.

(26)

Using 𝜕𝑀
𝜕𝑥 −𝑄 from Eq. (20) and the difference of the first derivative

of the second and third equations of Eq. (24) the following equation can
be derived
𝜕𝑀
𝜕𝑥

−𝑄 = 𝐸𝐼
( 68
105

𝜓
′′
− 16

105
𝑤

′′′

0

)

− 8
15

𝐺𝐴
(

𝜓 +𝑤
′

0

)

+ 𝜇
( 68 𝜌𝐼𝜓̈

′′
− 16 𝜌𝐼𝑤̈

′′′
)

.
(27)
105 105 0
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(

𝐸

Table 1
Boundary conditions for Reddy beams.

Displacement
boundary conditions

Force boundary conditions

Clamped

𝑢0 = 0
𝑤0 = 0
− 𝜕𝑤0

𝜕𝑥
= 0

𝜓 = 0

Free

𝑁 = 0
𝑉 = 𝑄 − 𝜕𝑀𝑏

𝜕𝑥
+
(

𝐾𝑝 − 𝐸𝐴𝛼𝛥𝑇
)

𝑤′
0 −

16
105
𝜌𝐼𝜓̈ + 1

21
𝜌𝐼𝑤̈′

0 = 0
−𝑀𝑏 = 0
−𝑀 = 0

Simply supported 𝑢0 = 0 −𝑀𝑏 = 0
𝑤0 = 0 −𝑀 = 0
l
s
d

𝑈

w

𝛥

T
E
E
8

The following equations of motion are provided after using Eqs. (18),
19) and (20) with Eqs. (25), (26) and (27).

𝐴𝑢
′′

0 = 𝜌𝐴(𝑢0 − 𝜇𝑢
′′
0 ), (28)

8
15

𝐺𝐴
(

𝜓
′
+𝑤

′′

0

)

+ 𝐸𝐼
( 16
105

𝜓
′′′
− 1

21
𝑤

′′′′

0

)

+
(

𝐾𝑝 − 𝐸𝐴𝛼𝛥𝑇
)

(𝑤
′′

0 − 𝜇𝑤
′′′′

0 )

− 𝐾𝑤(𝑤0 − 𝜇𝑤
′′

0 ) = 𝜌𝐴(𝑤̈0 − 𝜇𝑤̈
′′

0 ) +
16
105

𝜌𝐼(𝜓̈
′
− 𝜇𝜓̈

′′′
)

− 1
21
𝜌𝐼(𝑤̈

′′

0 − 𝜇𝑤̈
′′′′

0 ),

(29)

𝐸𝐼
( 68
105

𝜓
′′
− 16

105
𝑤

′′′

0

)

− 8
15

𝐺𝐴
(

𝜓 +𝑤
′

0

)

= 68
105

𝜌𝐼(𝜓̈ − 𝜇𝜓̈
′′
) − 16

105
𝜌𝐼(𝑤̈′

0 − 𝜇𝑤
′′′
0 ).

(30)

The separation of variables concept is taken into account when
solving these equations, by assuming that 𝑢0 (𝑥, 𝑡) = 𝑈 (𝑥) ei𝜔𝑡, 𝑤0 (𝑥, 𝑡) =
𝑊 (𝑥) ei𝜔𝑡 and 𝜓 (𝑥, 𝑡) = 𝛹 (𝑥)ei𝜔𝑡, where 𝜔 is the natural frequency.
Substituting these relations into Eqs. (28), (29) and (30) results the
following spatial equations

− 𝐸𝐴𝑈
′′
− 𝜌𝐴𝜔2

(

𝑈 − 𝜇𝑈
′′
)

= 0, (31)

−8
15

𝐺𝐴
(

𝛹
′
+𝑊

′′
)

− 𝐸𝐼
( 16
105

𝛹
′′′
− 1

21
𝑊

′′′′
)

−
(

𝐾𝑝 − 𝐸𝐴𝛼𝛥𝑇
)

(𝑊
′′
− 𝜇𝑊

′′′′
)

+ 𝐾𝑤(𝑊 − 𝜇𝑊
′′
) − 𝜌𝐴𝜔2(𝑊 − 𝜇𝑊

′′
) − 16

105
𝜌𝐼𝜔2(𝛹

′
− 𝜇𝛹

′′′
)

+ 1
21
𝜌𝐼𝜔2(𝑊

′′
− 𝜇𝑊

′′′′
) = 0,

(32)

− 𝐸𝐼
( 68
105

𝛹
′′
− 16

105
𝑊

′′′
)

+ 8
15

𝐺𝐴
(

𝛹 +𝑊
′
)

− 68
105

𝜌𝐼𝜔2
(

𝛹 − 𝜇𝛹
′′
)

+ 16
105

𝜌𝐼𝜔2
(

𝑊
′
− 𝜇𝑊

′′′
)

= 0.

(33)

The weak form of Eqs. (31), (32) and (33) over an element (0, 𝐿)
can be developed using arbitrary virtual displacements 𝑉 , 𝑌 and 𝛷,
where 𝑉 is equivalent to the axial deflection 𝑈 , 𝑌 is equivalent to
the transverse deflection 𝑊 , and 𝛷 is equivalent to the rotation 𝛹 ,
i.e. 𝑉 ∼ 𝑈 , 𝑌 ∼ 𝑊 , and 𝛷 ∼ 𝛹 . After integration by parts (see
Appendix A for further details), we obtain

0 = ∫

𝐿

0

(

𝐸𝐴 𝑉
′
𝑈

′
− 𝜌𝐴𝜔2

(

𝑉 𝑈 + 𝜇𝑉
′
𝑈

′
) )

d𝑥

+
[

𝑉
(

−𝐸𝐴𝑈
′
+ 𝜇𝜌𝐴𝜔2𝑈

′
)]𝐿

,
(34)
6

0
d

0 =∫

𝐿

0

(

8
15

𝐺𝐴 𝑌
′
(

𝛹 +𝑊
′
)

− 𝐸𝐼 𝑌
′′
( 16
105

𝛹
′
− 1

21
𝑊

′′
)

+
(

𝐾𝑝 − 𝐸𝐴𝛼𝛥𝑇
)

(

𝑌
′
𝑊

′
+ 𝜇𝑌

′′
𝑊

′′
)

+𝐾𝑤
(

𝑌𝑊 + 𝜇𝑌
′
𝑊

′
)

− 𝜌𝐴𝜔2
(

𝑌𝑊 + 𝜇𝑌
′
𝑊

′
)

+ 16
105

𝜌𝐼𝜔2
(

𝑌
′
𝛹 + 𝜇𝑌

′′
𝛹

′
)

− 1
21
𝜌𝐼𝜔2

(

𝑌
′
𝑊

′
+ 𝜇𝑌

′′
𝑊

′′
)

)

d𝑥

+
[

𝑌
(−8
15

𝐺𝐴
(

𝛹 +𝑊
′
)

− 𝐸𝐼
( 16
105

𝛹
′′
− 1

21
𝑊

′′′
)

−
(

𝐾𝑝 − 𝐸𝐴𝛼𝛥𝑇
)

(

𝑊
′
− 𝜇𝑊

′′′
)

−𝐾𝑤
(

𝜇𝑊
′
)

+ 𝜌𝐴𝜔2
(

𝜇𝑊
′
)

− 16
105

𝜌𝐼𝜔2
(

𝛹 − 𝜇𝛹
′′
)

+ 1
21
𝜌𝐼𝜔2

(

𝑊
′
− 𝜇𝑊

′′′
))

+ 𝑌
′
(

𝐸𝐼
( 16
105

𝛹
′
− 1

21
𝑊

′′
)

−
(

𝐾𝑝 − 𝐸𝐴𝛼𝛥𝑇
)

(

𝜇𝑊
′′
)

− 16
105

𝜌𝐼𝜔2
(

𝜇𝛹
′
)

+ 1
21
𝜌𝐼𝜔2

(

𝜇𝑊
′′
))]𝐿

0
,

(35)

0 =∫

𝐿

0

(

𝐸𝐼𝛷
′
( 68
105

𝛹
′
− 16

105
𝑊

′′
)

+ 8
15

𝐺𝐴𝛷
(

𝛹 +𝑊
′
)

− 68
105

𝜌𝐼𝜔2
(

𝛷𝛹 + 𝜇𝛷
′
𝛹

′
)

+ 16
105

𝜌𝐼𝜔2
(

𝛷𝑊
′
+ 𝜇𝛷

′
𝑊

′′
))

d𝑥

+
[

𝛷
(

−𝐸𝐼
( 68
105

𝛹
′
− 16

105
𝑊

′′
)

+ 68
105

𝜌𝐼𝜔2
(

𝜇𝛹
′
)

− 16
105

𝜌𝐼𝜔2
(

𝜇𝑊
′′
))]𝐿

0
.

(36)

The nonlocal boundary conditions for Reddy beam can be obtained
from Eqs. (34)–(36) in Table 2

According to Eq. (34) the axially displacement 𝑈 must be dif-
ferentiable at least once. Eqs. (35) and (36) demonstrate that, it is
necessary for the rotation 𝛹 to be once differentiable and the transverse
displacement 𝑊 to be twice differentiable at least. For 𝑈 and 𝛹 , linear
Lagrange 𝐿𝑖 functions are used, as well as Hermite cubic 𝐻𝑖 interpo-
ation functions for 𝑊 , exact integration is used to get the element
tiffness and mass matrices, which are presented in Appendix B. The
isplacements and rotation are approximated by:

(𝑥) =
2
∑

𝑖
𝑈𝑖𝑉𝑖 (𝑥), 𝛹 (𝑥) =

2
∑

𝑖=1
𝛹𝑖𝛷𝑖(𝑥) and 𝑊 (𝑥) =

4
∑

𝑖
𝛥𝑖𝑌𝑖(𝑥), (37)

here 𝛥𝑖 are given by:

1 = [𝑤]𝑥=𝑥𝑗 , 𝛥2 = [𝜃]𝑥=𝑥𝑗 =
[

−d𝑤
d𝑥

]

𝑥=𝑥𝑗
,

𝛥3 = [𝑤]𝑥=𝑥𝑗+1 and 𝛥4 = [𝜃]𝑥=𝑥𝑗+1 =
[

−d𝑤
d𝑥

]

𝑥=𝑥𝑗+1
,

(38)

he 𝑗th element global nodal coordinates are (𝑥𝑗 , 𝑥𝑗+1). Substituting
q. (37) into Eqs. (34), (35) and (36) gives the finite element model
q. (39) for free vibration analysis. The Reddy beam element has
× 8 mass and stiffness matrices, 𝐌𝐞 and 𝐊𝐞 with nodal generalized

isplacement vector ∆ =
[

𝑈 𝛥 𝛥 𝜓 𝑈 𝛥 𝛥 𝜓
]𝑇 . Thus the local
𝐞 1 1 2 1 2 3 4 2
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Table 2
Nonlocal boundary conditions for Reddy beams.

Essential boundary conditions Natural boundary conditions

𝑢0 = 0 𝑁 = 𝐸𝐴𝑢′0 + 𝜇𝜌𝐴 𝑢̈′0 = 0
𝑤0 = 0 𝑉 ≡ 8

15
𝐺𝐴

(

𝜓 +𝑤′
0

)

− 𝐸𝐼
(

− 16
105
𝜓 ′′ + 1

21
𝑤′′′

0

)

+
(

𝐾𝑝 − 𝐸𝐴𝛼𝛥𝑇
) (

𝑤′
0 − 𝜇𝑤

′′′

0

)

− 16
105
𝜌𝐼

(

𝜓̈ − 𝜇𝜓̈ ′′ ) + 1
21
𝜌𝐼

(

𝑤̈′
0 − 𝜇𝑤̈

′′′

0

)

+ 𝜇
(

𝐾𝑤𝑤′
0 + 𝜌𝐴𝑤̈

′
0

)

= 0

− d𝑤0

d𝑥
= 0 𝑀𝑏 = 𝐸𝐼

(

− 16
105
𝜓 ′ + 1

21
𝑤′′

0

)

+
(

𝐾𝑝 − 𝐸𝐴𝛼𝛥𝑇
)

𝜇𝑤′′

0 − 𝜇𝜌𝐼
(

16
105
𝜓̈ ′ + 1

21
𝑤̈′′

0

)

= 0

𝜓 = 0 𝑀 = 𝐸𝐼
(

68
105
𝜓 ′ − 16

105
𝑤′′

0

)

+ 𝜇𝜌𝐼
(

68
105
𝜓̈ ′ − 16

105
𝑤̈′′

0

)

= 0
element equation of motion is
(

𝐊𝑒 − 𝜔2𝐌𝑒
)

∆𝑒 = 𝐟𝑒. (39)

here 𝐟𝑒 is the external force on the element from the rest of the
eam. In Appendix B, these element matrices are provided. The thermal
ransverse vibrations are examined in this work, and therefore Eqs. (32)
nd (33) will be considered. Then, only the transverse and rotation
egrees of freedom will be considered which reduces the element
atrix size from 8 × 8 to 6 × 6.

.3. The model used for the crack

The crack is often represented as massless rotational and longi-
udinal elastic springs at the crack node, leading to a substructure
pproach [16,63]. This method’s primary benefit is the division of a
verall nonlinear system into several systems with local stiffness in
inear subsystems discontinuities. In the case of locally cracked beams,
he spring stiffnesses may be estimated using fracture mechanics. The
oss of a single or many atoms from the nanobeams’ structure as a
esult of manufacturing errors leads to higher strain energy, which
ay be likened to a crack in the continuum. The crack stiffness of a
anobeam must be determined using either preliminary investigations
r molecular dynamics modeling. Furthermore, the coupling flexibility
etween axial and rotational directions is assumed to be negligible, and
ence only the spring associated with the moment 𝑀 is considered.
he transverse deflections at the right and left nodes are comparable,
ccording to the continuity requirement at the crack position, and it is
ssumed that the lateral the beam’s stiffness at the crack point has not
ltered. It is assumed that the crack depth 𝑎 is connected to the crack
otary spring’s overall equivalent stiffness by:

𝑒𝑞 = 𝐸𝐼
𝐿

1
𝑘∗

, (40)

where the crack severity in the case of local beams is measured by
the dimensionless local compliance known as 𝑘∗ = ℎ

𝐿 𝐶(𝜉). The
dimensionless function 𝐶 (𝜉) is given by [63]

𝐶 (𝜉) =
𝜉 (2 − 𝜉)

0.9 (𝜉 − 1)2
. (41)

The crack depth to height ratio is given by 𝜉 = 𝑎
ℎ . Eq. (40)

etermines the stiffness of the corresponding rotational spring 𝐾𝑒𝑞 at
he location of the cracked node. The value of 𝐾𝑒𝑞 approaches infinity
or uncracked nodes.

The crack related rotational spring moment at the node is assessed
n this case using the value of 𝜑𝑎𝑣 determined by Eq. (3). The moment
aused by a rotational spring 𝐾𝑟 may thus be split into two components
enoted by 𝜓 and 𝜃 as follows.

= −d𝑤
d𝑥

,

𝑀 = 𝐾𝑟𝜑𝑎𝑣 = 𝐾𝑟
( 2
3
𝜓 + 1

3
𝜃
)

= 𝐾𝑐𝜓𝜓 +𝐾𝑐𝜃𝜃,
(42)

where 𝐾𝑐𝜓 = 2
3𝐾𝑟 and 𝐾𝑐𝜃 =

1
3𝐾𝑟 and the subscript 𝑐 denotes the crack.

According to Fig. 2, two parallel rotational springs hold the cross
ections of the Reddy beam together. The bending and rotation slopes
t the left end of the element are 𝜃𝐿 and 𝜓𝐿, respectively. Also, the
otation and bending slopes at the right end of the element are 𝜓𝑅,

𝑅

7

nd 𝜃 , respectively. 𝑤 is the lateral displacement of the node. The
Fig. 2. The crack rotational spring model.

continuity criteria at the crack position imply that the lateral deflection
at the right and left nodes is equal, i.e. 𝑤𝑅 = 𝑤𝐿. The torsional stiffness
links the rotations 𝜓𝐿, 𝜃𝐿, and 𝜓𝑅, 𝜃𝑅 of these nodes. The crack’s
stiffness matrix may be derived in the form:

𝐊𝐜 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐾𝑐𝜃 0 0 −𝐾𝑐𝜃 0
0 𝐾𝑐𝜓 0 0 −𝐾𝑐𝜓
0 0 0 0 0

−𝐾𝑐𝜃 0 0 𝐾𝑐𝜃 0
0 −𝐾𝑐𝜓 0 0 𝐾𝑐𝜓

⎤

⎥

⎥

⎥

⎥

⎥

⎦

. (43)

With the exception of the fractured zone, the conventional finite
element method is used in the assembly process for the cracked beam.
The two elements surrounding the crack are combined with the crack
element as shown in Eq. (44). The left element to the crack will be
reordered according to displacement vector [𝑤1 𝜃1 𝜓1 𝜃2 𝜓2 𝑤2] and
coupled to the crack matrix as shown in the matrix (see Eq. (44) given
in Box I
where 𝐾𝐿

𝑖𝑗 and 𝐾𝑅
𝑖𝑗 (𝑖, 𝑗 = 1 ∶ 6) are the stiffness matrices for left and

right beam elements, which are assembled with the crack torsional
springs with stiffnesses 𝐾𝑐𝜃 and 𝐾𝑐𝜓 .

2.4. The overall mass and stiffness matrices

In the overall matrices, 𝑛 cracks and 𝑁 nodes combine to form a
(3𝑁 + 2𝑛) × (3𝑁 + 2𝑛) matrix. The cracked beam is assembled using
the traditional finite element technique except at the cracked region
where the two elements surrounding the crack are replaced by the crack
element which leads to evaluating the overall mass 𝐌 and stiffness 𝐊
matrices of a cracked Reddy beam.

2.5. Obtaining mode shapes and natural frequencies

In free vibration analysis of an undamped beam, mode shapes
and the natural frequencies may be found using the overall mass 𝐌
and stiffness 𝐊 matrices. Typically, the undamped eigenvalues may be
found by solving
[

𝐊 − 𝜔2
𝑖𝐌

]

𝐝𝑖 = 0, (45)

where 𝐝𝑖 is the beam’s matching mode shape vector and 𝜔𝑖 denotes the
𝑖 th natural frequency. The natural frequencies and beam mode shapes

were determined using MATLAB code.
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𝐊 =

𝑤1

𝜃1
𝜓1

𝜃𝐿2
𝜓𝐿2
𝑤2

𝜃𝑅2
𝜓𝑅2
𝑤3

𝜃3
𝜓3

𝑤1 𝜃1 𝜓1 𝜃𝐿2 𝜓𝐿2 𝑤2 𝜃𝑅2 𝜓𝑅2 𝑤3 𝜃3 𝜓3

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐾𝐿
11 𝐾𝐿

12 𝐾𝐿
13 𝐾𝐿

14 𝐾𝐿
15 𝐾𝐿

16 0 0 0 0 0

𝐾𝐿
21 𝐾𝐿

22 𝐾𝐿
23 𝐾𝐿

24 𝐾𝐿
25 𝐾𝐿

26 0 0 0 0 0

𝐾𝐿
31 𝐾𝐿

32 𝐾𝐿
33 𝐾𝐿

34 𝐾𝐿
35 𝐾𝐿

36 0 0 0 0 0

𝐾𝐿
41 𝐾𝐿

42 𝐾𝐿
43 𝐾𝐿

44 +𝐾𝑐𝜃 𝐾𝐿
45 𝐾𝐿

46 −𝐾𝑐𝜃 0 0 0 0

𝐾𝐿
51 𝐾𝐿

52 𝐾𝐿
53 𝐾𝐿

54 𝐾𝐿
55 +𝐾𝑐𝜓 𝐾𝐿

56 0 −𝐾𝑐𝜓 0 0 0

𝐾𝐿
61 𝐾𝐿

62 𝐾𝐿
63 𝐾𝐿

64 𝐾𝐿
65 𝐾𝐿

66 +𝐾
𝑅
11 𝐾𝑅

12 𝐾𝑅
13 𝐾𝑅

14 𝐾𝑅
15 𝐾𝑅

16

0 0 0 −𝐾𝑐𝜃 0 𝐾𝑅
21 𝐾𝑅

22 + +𝐾𝑐𝜃 𝐾𝑅
23 𝐾𝑅

24 𝐾𝑅
25 𝐾𝑅

26

0 0 0 0 −𝐾𝑐𝜓 𝐾𝑅
31 𝐾𝑅

32 𝐾𝑅
33 +𝐾𝑐𝜓 𝐾𝑅

34 𝐾𝑅
35 𝐾𝑅

36

0 0 0 0 0 𝐾𝑅
41 𝐾𝑅

42 𝐾𝑅
43 𝐾𝑅

44 𝐾𝑅
45 𝐾𝑅

46

0 0 0 0 0 𝐾𝑅
51 𝐾𝑅

52 𝐾𝑅
53 𝐾𝑅

54 𝐾𝑅
55 𝐾𝑅

56

0 0 0 0 0 𝐾𝑅
61 𝐾𝑅

62 𝐾𝑅
63 𝐾𝑅

64 𝐾𝑅
65 𝐾𝑅

66

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,
(44)

Box I.
m

a
e

. Results and discussion

The current section includes two subsections, the first of which
alidates the model using previously published literature. The second
ection presents and discusses new findings.

The dimensionless parameters utilized in this investigation are

𝜔̄ =
(

𝜌𝐴
𝐸𝐼

𝜔2𝐿4
)

1
4
, 𝜉 = 𝑎

ℎ
, (46)

𝜉 = 𝑎
ℎ
, (47)

𝑘∗ = ℎ
𝐿

𝜉 (2 − 𝜉)
0.9 (𝜉 − 1 )2

(48)

𝑙𝑐 =
𝐿𝑐
𝐿
, (49)

𝜆 = 𝐿
ℎ
, (50)

𝑘𝑤 =
𝐾𝑤𝐿4

𝐸𝐼
, (51)

𝑘𝑝 =
𝐾𝑝𝐿2

𝐸𝐼
, (52)

𝑝𝑡ℎ = 𝐸𝐴𝛼𝛥𝑇𝐿2

𝐸𝐼
, (53)

𝜔̂ =
𝜔cracked
𝜔uncracked

(54)

where, 𝜔̄ refers to the dimensionless natural frequency, 𝜉 is the crack
epth ratio, 𝑘∗ is the crack severity, 𝑙𝑐 represents the crack position
atio, and 𝜆 denotes slenderness ratio. Additionally, 𝑝𝑡ℎ is the dimen-
ionless temperature, 𝑘𝑝 is Pasternak stiffness, and 𝑘𝑤 refers to Winkler
tiffness. The natural frequency in Hertz (𝛺 = 𝜔

2𝜋 ) and the frequency
atio of the cracked to uncracked state 𝜔̂ are also defined. The results
re obtained based on a numerical model consisting of 100 beam
lements.

.1. Validation

The current study includes many parameters that should be taken
nto consideration to ensure a thorough verification procedure. The
arious parameters are the aspect (or slenderness) ratio, crack loca-
ion, crack depth or severity, nonlocal parameters, elastic foundation
tiffness, temperature, and boundary conditions.

.1.1. Convergence rate
Table 3 provides convergence rates, offering a comparative analysis

etween the present model at nonlocal 𝜁 = 𝑒0𝑎 = 0 against outcomes
8

𝐿

derived from the classical 3D Finite Element Analysis (FEA) executed
via ANSYS from Ref. [64]. Within Table 3, the natural frequencies
𝛺𝑖 (Hz) are presented for both the intact beam (𝜉 = 0) and the
cracked beam characterized by a depth ratio of 𝜉 = 0.4. These analyses
encompass two distinct crack location ratios, 𝑙𝑐 = 0.25 and 0.5, within a
beam with a total length of 𝐿 = 0.4 m, a slenderness ratio of 𝜆 = 20, and

aterial properties denoted by 𝐸 = 216 GPa, 𝜌 = 7850 kg
m3 , and 𝜈 = 0.3.

The results in Table 3 show rapid convergence in response to an
increase in the number of elements (𝑁𝑒). As 𝑁𝑒 approaches 100, the
level of accuracy attained within the results is deemed satisfactory.
Therefore, this specific number of elements is selected. Furthermore,
the inclusion of the percentage error demonstrates a strong agreement
between the present model and 3D FE [64], as the error percentage
remains consistently below 1.32%.

3.1.2. Effects of crack location ratio for normal size Reddy beam
A simply supported-simply supported (S-S) cracked beam’s first

three natural frequencies are contrasted with those from Ref. [64] in
Fig. 3. The natural frequencies results for a beam with crack depth
ratios of 𝜉 = 0 and 0.4 are plotted versus different crack location ratios
𝑙𝑐 . The total length of beam is 𝐿 = 0.4 m and a slenderness ratio
𝜆 = 20. The beam properties are 𝐸 = 216 GPa, 𝜌 = 7850 kg/m3, and
𝜈 = 0.3. The results of Fig. 3 show that the present model results are
coincident with that of TSDT in Ref. [64] . Also, the figure shows that
the sensitivity of the natural frequencies change with the crack location
and the vibration mode.

3.1.3. Thermal effect on an uncracked nonlocal beam
The dimensionless fundamental natural frequency 𝜔̄1 for a very thin

clamped–clamped (C-C) beam is compared with that of [16,60] and
the results are given in Table 4. The results are obtained for different
temperature parameter (thermal load) 𝑝𝑡ℎ and nonlocal parameter 𝜁 =
𝑒𝟎𝑎
𝐿 . The results in Table 4 indicate that increasing the temperature or

nonlocal parameters decreases the natural frequency. The findings of
this investigation and those of Refs. [16,60] are in good agreement

3.1.4. Nonlocal parameter effect on beam embedded in an elastic Winkler
and Pasternak foundation

The effects of the nonlocal parameter 𝜁 for very thin S-S beams
re compared with those from Ref. [16,60] in Table 5. The beam is
mbedded in an elastic foundation with stiffness parameters 𝑘𝑤 =
10, 𝑘𝑝 = 5. The results in Table 5 show the first four dimensionless
frequencies

(

𝜔̄𝑛
)2, which indicate that the natural frequencies decrease

as the nonlocal parameter is increased. The validation results indicate
that the findings of this study and the relevant literature reference
studies show a strong agreement.
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Table 3
Convergence rate and error percentage (Er%) of the first three natural frequencies 𝛺𝑖 (Hz).

Case 𝛺𝑖(Hz) 𝑁𝑒 3D FE [64]

Er % 4 8 12 16 20 40 60 80 100

Uncracked 1st 303.5 297.7 296.7 296.4 296.2 296.1 296.1 296.1 296.1 296.1
Er % 2.5 0.54 0.2 0.09 0.04 −0.01 −0.01 −0.01 −0.01
2nd 1290.8 1196 1179.7 1174.5 1172.4 1170.1 1169.9 1169.8 1169.8 1170.4
Er % 10.29 2.19 0.8 0.35 0.17 −0.02 −0.04 −0.05 −0.05
3rd 3153.7 2710.3 2629.6 2603.8 2593.2 2582.4 2581.2 2580.9 2580.8 2583.7
Er % 22.06 4.9 1.78 0.78 0.37 −0.05 −0.1 −0.11 −0.11

𝑙𝑐 = 0.25 1st 288.5 283.5 282.6 282.3 282.1 281.9 281.9 281.8 281.8 283.9
Er % 1.63 −0.13 −0.46 −0.57 −0.62 −0.7 −0.72 −0.73 −0.74
2nd 1167 1095.6 1083.2 1079.1 1077.3 1075.2 1074.8 1074.5 1074.4 1086.8
Er % 7.38 0.81 −0.33 −0.71 −0.87 −1.06 −1.1 −1.13 −1.14
3rd 3015.6 2606.5 2534.9 2511.9 2502.4 2492.5 2491.3 2490.9 2490.7 2502
Er % 20.52 4.18 1.31 0.4 0.02 −0.38 −0.43 −0.45 −0.45

𝑙𝑐 = 0.5 1st 275.9 271.4 270.6 270.3 270.1 269.9 269.8 269.7 269.7 273.3
Er % 0.94 −0.68 −0.99 −1.1 −1.16 −1.25 −1.28 −1.31 −1.32
2nd 1290.8 1196 1179.7 1174.5 1172.4 1170.1 1169.9 1169.8 1169.8 1170.2
Er % 10.31 2.2 0.81 0.37 0.18 −0.01 −0.03 −0.04 −0.04
3rd 2854.9 2490 2428.4 2408.6 2400.3 2391.4 2390 2389.5 2389.1 2411.3
Er % 18.39 3.26 0.71 −0.11 −0.46 −0.83 −0.88 −0.91 −0.92
Fig. 3. (Color online) First three natural frequencies of a cracked beam 𝛺𝑖 in Hertz with crack depth ratios 𝜉 = 0 and 0.4 versus crack location ratio.
Table 4
The fundamental dimensionless natural frequency 𝜔̄1 for different temperature 𝑝𝑡ℎ and nonlocal 𝜁 = 𝑒0𝑎

𝐿
parameters.

𝑝𝑡ℎ 𝜁 = 𝑒0𝑎
𝐿

= 0 𝜁 = 𝑒0𝑎
𝐿

= 0.1 𝜁 = 𝑒0𝑎
𝐿

= 0.2

a b c a b c a b c

−3 4.8148 4.8140 4.8134 4.7095 4.7087 4.7083 4.4712 4.4703 4.4701
−2 4.7871 4.7861 4.7857 4.6721 4.6713 4.6709 4.4092 4.4084 4.4081
−1 4.7588 4.7582 4.7575 4.6338 4.6330 4.6325 4.3444 4.3436 4.3433
0 4.7300 4.7292 4.7287 4.5945 4.5936 4.5931 4.2766 4.2759 4.2754
1 4.7007 4.6993 4.6993 4.5541 4.5532 4.5527 4.2054 4.2047 4.2041
2 4.6707 4.6696 4.6693 4.5125 4.5117 4.5111 4.1304 4.1296 4.1285
3 4.6402 4.6397 4.6387 4.4697 4.4689 4.4683 4.0510 4.0503 4.0499

a- Ref. [60], b- Ref. [16], c- Present results.
t
.2. New results

This subsection examines the vibrational behavior of a relatively
hick cracked nano-beam embedded in an elastic foundation. The
ength and thickness of the beam are assumed to be 𝐿 = 10 nm and
= 1 nm, respectively (i.e. a beam aspect ratio of 10). The results are

btained for two boundary conditions, which are S-S and C–C, and the
9

spect ratio 𝜆, nonlocal parameters 𝜁 , foundation stiffnesses 𝑘𝑤 and 𝑘𝑝,
emperature parameter 𝑝𝑡ℎ, crack severity 𝑘∗, and crack location 𝑙𝑐 are
varied.

3.2.1. Effect of beam aspect ratio, nonlocal and temperature parameters
In this section, the effect of changing the beam aspect ratio and

the nonlocal parameter on the beam fundamental natural frequency is
considered. These cases are studied for three different dimensionless

thermal loads (temperature parameter). The following range of study
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Table 5
First four dimensionless frequencies

(

𝜔̄𝑛
)2 with 𝑘𝑤 = 10, 𝑘𝑝 = 5 and S-S boundary condition for different nonlocal parameters 𝜁 .

𝜁
(

𝜔̄1
)2 (

𝜔̄2
)2 (

𝜔̄3
)2 (

𝜔̄4
)2

a b c a b c a b c a b c

0 12.5203 12.5146 12.5189 42.0231 42.0126 42.0005 91.3470 91.3260 91.2313 160.425 160.383 160.059
0.1 12.1658 12.1636 12.1646 36.3978 36.3884 36.3791 68.0635 68.0447 67.9812 102.314 102.285 102.091
0.2 11.3660 11.3636 11.3649 28.4900 28.4815 28.4767 46.7661 46.7512 46.7149 64.8678 64.8468 64.7402
0.3 10.5325 10.5297 10.5316 23.4457 23.4372 23.4359 36.4878 36.4738 36.4526 49.3844 49.3651 49.2987
0.4 9.85475 9.85130 9.85396 20.5039 20.4945 20.4963 31.1898 31.1748 31.1633 41.8205 41.8001 41.7567
0.5 9.35098 9.34680 9.35030 18.7291 18.7183 18.7229 28.1803 28.1633 28.1590 37.6247 37.6017 37.5739

a- Ref. [65], b- Ref. [16], c- Present results.
Fig. 4. (Color online) Dimensionless fundamental natural frequency 𝜔̄1 versus nonlocal parameter 𝜁 and aspect ratio 𝜆 for three thermal parameter values 𝑝𝑡ℎ and (a) S-S and (b)
C–C boundary conditions.
c
u
𝜋
f

was selected; the beam aspect ratio 𝜆 ∈ [20, 80] and the nonlocal
parameter 𝜁 ∈ [0, 0.5]. Two boundary conditions are considered which
are S-S and C–C as shown in Figs. 4(a) and 4(b) respectively. For each
boundary condition, three temperature parameters 𝑝𝑡ℎ ∈ {−1, 0, 1} are
considered as shown in Fig. 4. The results show that increasing both
the nonlocal and thermal parameters decreases the beam dimensionless
natural frequency. Furthermore, increasing the aspect ratio increases
the beam dimensionless natural frequency.

3.2.2. Effects of elastic foundation parameters versus the temperature pa-
rameter

In this section, similar analysis to the previous section is adopted to
investigate the effect Winkler 𝑘𝑤 and Pasternak 𝑘𝑝 elastic foundation
stiffness parameters on the dimensionless fundamental frequency. The
ranges of the parameters are 𝑘𝑤 ∈ [0, 10] and 𝑘𝑝 ∈ [0, 10], as shown in
Fig. 5. C–C and S-S boundary conditions are considered in Figs. 5(a)
and 5(b) respectively. All the results are obtained at three different
temperatures 𝑝𝑡ℎ ∈ {−1, 0, 1}. The results shown in Fig. 5 indicate that
increasing the elastic foundation stiffness increases the dimensionless
fundamental frequency. Moreover, the effect of changing the Pasternak
foundation stiffness on the fundamental frequency is higher than that of
the Winkler foundation. In addition, the effect of increasing the thermal
parameter is to decrease the fundamental frequency which makes
sense as increasing the temperature will increase the axial force for
these boundary conditions. Subsequently, the fundamental frequency
decreases.

3.2.3. Effects of crack severity 𝑘∗ and crack location ratio 𝑙𝑐 versus the
thermal parameter

In this section the combined effect of crack location, crack severity
and the thermal parameter are investigated. The first three natural
frequencies are evaluated while changing the crack location in the
range 𝑙𝑐 ∈ [0.05, 0.95]. Two values of crack severity are considered,
𝑘∗ ∈ {1, 2}, and two boundary conditions are considered. The results
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are plotted in Fig. 6, where the first row gives the S-S results and the b
second row gives the C–C results. The first, second and third columns of
the figure give the first, second and third natural frequencies. In each
subfigure of Fig. 6 there are six plots which represent three different
thermal loading parameters 𝑝𝑡ℎ ∈ {−2, 0, 2} at two different crack
severities. The vertical axis of all subfigures represents the frequency
ratio 𝜔̂.

The results of the figure indicate that increasing either or both the
crack severity and thermal parameter decreases the frequency ratio.
Also, along the beam length there are insensitive crack locations and
sensitive crack locations which varies with the boundary condition and
with vibration mode, as shown in Fig. 6. It is important to note that,
the insensitive location is the crack location at which 𝜔̂ ≈ 1 and the
most sensitive location is the location of min(𝜔̂).

In sub- Fig. 6(a1), which is the first mode for the S-S cracked
beam, it can be seen that the dashed blue line goes to zero when
𝑙𝑐 ∈ [0.3, 0.7]. This case occurs at conditions of a crack severity 𝑘∗ = 2
and thermal dimensionless parameter 𝑝𝑡ℎ = 2. This phenomenon may
be explained by the fact that both the crack and the axial load resulted
from heating reduces the beam stiffness until the Hopf bifurcation point
corresponding to the critical buckling load is reached. This case is
further investigated in the next subsection.

3.2.4. Effects of crack location ratio and thermal parameter at several crack
severities

In this section, the effects of crack location 𝑙𝑐 ∈ [0.05, 0.95] and
the thermal parameter on the fundamental natural frequency are in-
vestigated. The investigation is performed for a S-S beam as shown
Figs. 7(a1), 7(a2) and 7(a3) and for a C–C beam as shown in Figs. 7(b1),
7(b2) and 7(b3). Three different crack severities are considered, which
are 𝑘∗ ∈ {0, 2, 4}, which are shown in the first, second and third
olumns of Fig. 7 respectively. Fig. 7(a1) is obtained for the case of an
ncracked simply supported nano-beam. The results show that at 𝑝𝑡ℎ ≈
2, which corresponds to the critical buckling load, the fundamental
requency approaches zero. Fig. 7(a2) is for a cracked simply supported

∗
eam with crack severity 𝑘 = 2, which shows that the lowest thermal
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S

Fig. 5. (Color online) Dimensionless fundamental natural frequency 𝜔̄1 versus elastic foundation parameters (Winkler 𝑘𝑤 and Pasternak 𝑘𝑝) for temperature parameter 𝑝𝑡ℎ and (a)
-S and (b) C–C boundary conditions.
Fig. 6. (Color online) dimensionless first three natural frequencies ratio 𝜔̂𝑛 versus crack location 𝑙𝑐 for crack severity 𝑘∗ and temperature parameter 𝑝𝑡ℎ of (a) S-S and (b) C–C
boundary conditions.
dimensionless load required to reach the condition of zero fundamental
frequency, i.e. the buckling load, occurs at 𝑝𝑡ℎ ≈ 2 and 𝑙𝑐 ∈ [0.3, 0.7].
This critical thermal load value increases when the crack location is
outside this range, i.e. 𝑙𝑐 ∉ [0.3, 0.7]. Further increases of the crack
severity increases the range of crack location at which the critical
thermal load occurs, i.e. 𝑙𝑐 ∈ [0.15, 0.85] in Fig. 7(a3) for 𝑘∗ = 4.

The analysis for the case of a C–C beam shows similar behavior but
at different values of critical thermal load. Theoretically, the critical
buckling load for a C–C Euler beam is 𝑝𝑡ℎ = 4 × 𝜋2 and this explains
why 𝜔̄1 > 0 in Fig. 7(b1) where the investigated range is 𝑝𝑡ℎ ∈ [10, 20].
However, with the increase of crack severity the critical thermal load is
reached earlier, as shown in Figs. 7(b2) and 7(b3), with critical loads
𝑝𝑡ℎ ≈ 14 and 𝑝𝑡ℎ ≈ 12 respectively. The results in Fig. 7 demonstrate
that the critical thermal load occurs earlier for S-S beams than for C–C
beams.

3.2.5. Various crack severities, foundation stiffness, temperature parameter,
and nonlocal parameter effects

In this section, the variations in dimensionless fundamental fre-
quency 𝜔̄1 for both S-S and C–C beams with various temperature
parameters 𝑃 , foundation stiffnesses 𝑘 and 𝑘 , crack severities 𝑘∗,
11

𝑡ℎ 𝑤 𝑝
and nonlocal parameter 𝜁 are listed in Table 6 for a crack located at
𝑙𝑐 = 0.5. The results show that increasing the crack severity, nonlocal
parameter or temperature parameter decreases the fundamental fre-
quency. In addition, increasing the elastic foundation stiffness increases
the fundamental frequency.

4. Conclusion

The study introduces a novel approach to investigate the thermal
lateral vibration behavior of cracked nanobeams embedded on two
distinct elastic foundations, using Reddy beam theory. This research
contribution is significant for the field of nanostructures, as it provides
valuable insights into the behavior of these nanostructures, which are
crucial for designing and developing nanoscale devices. Furthermore,
nonlocal elasticity theory is incorporated to account for the size effect
of the nanostructure, which is an essential consideration in the analysis
of such systems. Two rotational springs with stiffness corresponding
to the crack severity were used to simulate the nanobeam’s cracked
section. This approach differs from traditional CBT and FSDT, where
only one rotational spring was used to simulate the presence of a crack
in bending vibration. Although the model is general, only the effect of
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Fig. 7. (Color online) Dimensionless fundamental natural frequency 𝜔̄1 versus different crack location 𝑙𝑐 and thermal parameter 𝑝𝑡ℎ for crack severity 𝑘∗ for (a) S-S and (b) C–C
boundary conditions, where (a1), (a2) and (a3) are for 𝑘∗ ∈ {0 2 4} and (b1), (b2) and (b3) are for 𝑘∗ ∈ {0 2 4} respectively.
Table 6
Dimensionless fundamental natural frequency 𝜔̄1 for different nonlocal parameters 𝜁 , elastic foundation (𝑘𝑤 , 𝑘𝑝), crack severity 𝐾∗ and
temperature parameter 𝑝𝑡ℎ for S-S and C-C boundary conditions.

S-S C-C

𝑘∗
(

𝑘𝑤 , 𝑘𝑝
)

𝜁 = 0 𝜁 = 0.2 𝑘∗
(

𝑘𝑤 , 𝑘𝑝
)

𝜁 = 0 𝜁 = 0.2

𝑝𝑡ℎ 𝑝𝑡ℎ 𝑝𝑡ℎ 𝑝𝑡ℎ
−1 0 1 −1 0 −1 −1 −1 0 −1 0 1

0 (0, 0) 3.194 3.116 3.031 2.966 2.867 2.757 0 (0, 0) 4.613 4.582 4.551 4.221 4.147 3.591
(5, 5) 3.545 3.489 3.430 3.385 3.320 3.251 (5, 5) 4.767 4.739 4.712 4.552 4.494 4.434
(10, 5) 3.573 3.518 3.460 3.416 3.353 3.286 (10, 5) 4.778 4.751 4.723 4.565 4.508 4.448
(10, 10) 3.815 3.770 3.724 3.689 3.639 3.587 (10, 10) 4.906 4.881 4.856 4.823 4.775 4.725

1 (0, 0) 2.546 2.366 2.130 2.338 2.163 1.957 1 (0, 0) 4.081 4.024 3.964 3.643 3.560 3.444
(5, 5) 3.162 3.075 2.980 2.932 2.852 2.764 (5, 5) 4.342 4.297 4.251 4.001 3.941 3.879
(10, 5) 3.200 3.117 3.026 2.980 2.904 2.821 (10, 5) 4.357 4.313 4.267 4.020 3.961 3.900
(10, 10) 3.541 3.481 3.417 3.294 3.238 3.180 (10, 10) 4.556 4.519 4.480 4.280 4.232 4.182

2 (0, 0) 2.340 2.084 1.666 2.139 1.901 1.528 2 (0, 0) 3.965 3.899 3.829 3.518 3.428 3.314
(5, 5) 3.076 2.979 2.870 2.839 2.749 2.650 (5, 5) 4.260 4.210 4.158 3.906 3.842 3.774
(10, 5) 3.118 3.024 2.921 2.891 2.807 2.715 (10, 5) 4.276 4.227 4.175 3.926 3.863 3.797
(10, 10) 3.488 3.424 3.355 3.229 3.170 3.107 (10, 10) 4.494 4.454 4.412 4.202 4.151 4.099

3 (0, 0) 2.231 1.917 1.209 2.036 1.746 1.114 3 (0, 0) 3.913 3.843 3.767 3.464 3.369 3.255
(5, 5) 3.038 2.935 2.819 2.798 2.704 2.600 (5, 5) 4.225 4.172 4.118 3.867 3.800 3.731
(10, 5) 3.081 2.983 2.873 2.853 2.765 2.668 (10, 5) 4.241 4.189 4.135 3.888 3.823 3.754
(10, 10) 3.465 3.399 3.328 3.203 3.142 3.077 (10, 10) 4.468 4.427 4.383 4.171 4.119 4.065
two boundary conditions, S-S and C–C, are considered. In addition, the
influence of other important parameters such as the Winkler and Paster-
nak foundation stiffnesses, nonlocal parameter, aspect ratio, thermal
effect, crack severity and crack location are investigated. The following
crucial conclusions may be derived from the results:

∙ It is crucial to emphasize TSDT’s advantage over FSDT in thick
beam analysis is that the determination of a shear correction coefficient
𝜅 is not required.
12
∙ Insensitive and sensitive crack locations are dependent on the
boundary conditions and vibration mode.

∙ A thermal parameter higher than zero acts as a compression load,
which may cause buckling to the beam if it reaches the critical buckling
load value.

∙ The presence of a crack reduces the critical thermal load parame-
ter. This effect increases when the crack is located in a sensitive crack
location.
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The results obtained from this study are expected to provide a
useful reference for future research on the thermal vibration behavior
of cracked nanobeams.
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Appendix A. FE weak form

The weak form of Eq. (31) for the beam length from 0 to 𝐿 can be
btained using traditional finite element (FE) techniques, resulting in
q. (34). The first step involves multiplying Eq. (31) with the weight
unction 𝑉 to obtain:

− 𝐸𝐴𝑉 𝑈 ′′ − 𝜌𝐴𝜔2 (𝑉 𝑈 − 𝜇𝑉 𝑈 ′′) = 0. (A.1)

Integrating Eq. (A.1) over the length of the beam and using integratio
by-parts, we obtain:

∫

𝐿

0
−𝐸𝐴𝑉 𝑈 ′′ − 𝜌𝐴𝜔2 (𝑉 𝑈 − 𝜇𝑉 𝑈 ′′)d𝑥 =

∫

𝐿

0
𝐸𝐴𝑉 ′𝑈 ′ − 𝜌𝐴𝜔2(𝑉 𝑈 + 𝜇𝑉 ′𝑈 ′)𝑑𝑥 +

[

𝑉
(

−𝐸𝐴𝑈 ′ + 𝜇𝜌𝐴𝜔2𝑈 ′)]𝐿
0 .

(A.2)

Appendix B. Elements of stiffness and mass matrix

The finite element stiffness and mass matrices may be written as

[

𝐊𝑒
]

= 𝐸𝐴 𝐱𝟐 +𝐾𝑤 𝐱3 +
( 8
15
𝐺𝐴 +𝐾𝑝 − 𝐸𝐴𝛼𝛥𝑇 + 𝜇𝐾𝑤

)

𝐱4

+
( 1
21
𝐸𝐼 + 𝜇

(

𝐾𝑝 − 𝐸𝐴𝛼𝛥𝑇
)

)

𝐱5

+ 8
15
𝐺𝐴 𝐱6 +

68
105

𝐸𝐼 𝐱7 +
8
15
𝐺𝐴

(

𝐱′

𝟖 + 𝐱8
)

− 16
105

𝐸𝐼
(

𝐱′

𝟗 + 𝐱9
)

,

(B.1)

and
[

𝐌𝑒
]

= 𝜌𝐴
(

𝐱1 + 𝜇𝐱2 + 𝐱3 + 𝜇𝐱4
)

+ 1
21
𝜌𝐼

(

𝐱4 + 𝜇𝐱5
)

+ 68
105

𝜌𝐼
(

𝐱6 + 𝜇𝐱7
)

− 16
105

𝜌𝐼
(

𝐱′

8 + 𝐱8 + 𝜇
(

𝐱′

9 + 𝐱9
))

,
(B.2)

where

𝐱1 = ∫

𝐿

0
𝐕𝐢𝐕𝐓

𝐣 d𝑥, (B.3)

𝐱2 =
𝐿
𝐕′𝐕′𝐓d𝑥, (B.4)
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∫0 𝐢 𝐣
𝐱3 = ∫

𝐿

0
𝐘𝐢𝐘𝐓

𝐣 d𝑥, (B.5)

4 = ∫

𝐿

0
𝐘′

𝐢𝐘
𝐓′

𝐣 d𝑥, (B.6)

5 = ∫

𝐿

0
𝐘′′

𝐢 𝐘
′′𝐓
𝐣 d𝑥, (B.7)

6 = ∫

𝐿

0
𝜱𝒊Φ

𝐓
𝐣 d𝑥, (B.8)

7 = ∫

𝐿

0
Φ

′

𝐢Φ
′𝐓
𝐣 d𝑥, (B.9)

8 = ∫

𝐿

0
𝜱𝒊𝐘

′𝐓
𝐣 d𝑥, (B.10)

9 = ∫

𝐿

0
Φ

′

𝐢𝐘
′′𝐓
𝐣 d𝑥. (B.11)

The stiffness and mass matrices and force vector are rearranged
ccording to the displacement vector ∆𝑒 =

[

𝑢1 𝑤1 𝜃1 𝜓1 𝑢2 𝑤2 𝜃2 𝜓2
]𝑇

he shape functions for a Reddy beam for generalized displacements
, 𝐘 and Φ are:

𝐕𝑖 =
[

1 − 𝑥
𝐿
, 0, 0, 0, 𝑥

𝑙
, 0, 0, 0

]

, (B.12)

𝐘𝑖 =
[

0, 1 − 3
(𝑥
𝑙

)2
+ 2

(𝑥
𝑙

)3
, 𝑥

(

1 − 𝑥
𝑙

)2
, 0, 0, 3

(𝑥
𝑙

)2
,

−2
(𝑥
𝑙

)3
, 𝑥

(

(𝑥
𝑙

)2
− 𝑥
𝑙

)

, 0
]

, (B.13)

Φ𝑖 =
[

0, 0, 0, 1 − 𝑥
𝐿
, 0, 0, 0, 𝑥

𝑙

]

. (B.14)
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