
Citation: Gui, B.; Bhardwaj, A.; Sam,

L. Evaluating the Efficacy of Segment

Anything Model for Delineating

Agriculture and Urban Green Spaces

in Multiresolution Aerial and

Spaceborne Remote Sensing Images.

Remote Sens. 2024, 16, 414. https://

doi.org/10.3390/rs16020414

Academic Editors: Giuseppe Rossi,

Gabriel Araújo e Silva Ferraz,

Leonardo Conti and Diego

Bedin Marin

Received: 17 November 2023

Revised: 11 January 2024

Accepted: 18 January 2024

Published: 20 January 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Evaluating the Efficacy of Segment Anything Model for
Delineating Agriculture and Urban Green Spaces in
Multiresolution Aerial and Spaceborne Remote Sensing Images
Baoling Gui , Anshuman Bhardwaj * and Lydia Sam

School of Geosciences, University of Aberdeen, Aberdeen AB24 3UF, UK; b.gui.22@abdn.ac.uk (B.G.);
lydia.sam@abdn.ac.uk (L.S.)
* Correspondence: anshuman.bhardwaj@abdn.ac.uk

Abstract: Segmentation of Agricultural Remote Sensing Images (ARSIs) stands as a pivotal compo-
nent within the intelligent development path of agricultural information technology. Similarly, quick
and effective delineation of urban green spaces (UGSs) in high-resolution images is also increasingly
needed as input in various urban simulation models. Numerous segmentation algorithms exist for
ARSIs and UGSs; however, a model with exceptional generalization capabilities and accuracy remains
elusive. Notably, the newly released Segment Anything Model (SAM) by META AI is gaining signifi-
cant recognition in various domains for segmenting conventional images, yielding commendable
results. Nevertheless, SAM’s application in ARSI and UGS segmentation has been relatively limited.
ARSIs and UGSs exhibit distinct image characteristics, such as prominent boundaries, larger frame
sizes, and extensive data types and volumes. Presently, there is a dearth of research on how SAM can
effectively handle various ARSI and UGS image types and deliver superior segmentation outcomes.
Thus, as a novel attempt in this paper, we aim to evaluate SAM’s compatibility with a wide array of
ARSI and UGS image types. The data acquisition platform comprises both aerial and spaceborne
sensors, and the study sites encompass most regions of the United States, with images of varying
resolutions and frame sizes. It is noteworthy that the segmentation effect of SAM is significantly
influenced by the content of the image, as well as the stability and accuracy across images of different
resolutions and sizes. However, in general, our findings indicate that resolution has a minimal impact
on the effectiveness of conditional SAM-based segmentation, maintaining an overall segmentation
accuracy above 90%. In contrast, the unsupervised segmentation approach, SAM, exhibits perfor-
mance issues, with around 55% of images (3 m and coarser resolutions) experiencing lower accuracy
on low-resolution images. Whereas frame size exerts a more substantial influence, as the image
size increases, the accuracy of unsupervised segmentation methods decreases extremely fast, and
conditional segmentation methods also show some degree of degradation. Additionally, SAM’s
segmentation efficacy diminishes considerably in the case of images featuring unclear edges and min-
imal color distinctions. Consequently, we propose enhancing SAM’s capabilities by augmenting the
training dataset and fine-tuning hyperparameters to align with the demands of ARSI and UGS image
segmentation. Leveraging the multispectral nature and extensive data volumes of remote sensing
images, the secondary development of SAM can harness its formidable segmentation potential to
elevate the overall standard of ARSI and UGS image segmentation.

Keywords: Segment Anything Model (SAM); agriculture; vegetation; urban green spaces; aerial
imaging; unmanned aerial vehicles (UAVs); remote sensing; Landsat; Sentinel-2

1. Introduction

The estimation of assets and the prediction of yields for agricultural crops have
become integral components of achieving precision agriculture management. For example,
Aleksandra et al. [1] investigated the nonlinear relationship between wheat yield and
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environmental variables in India. They leveraged multi-source remote sensing data and
deep learning methods in an attempt to utilize remote sensing for accurate crop yield
prediction. In a separate study, Mathivanan et al. [2] employed a U-Net segmentation
network model and random forest to analyze crop yield estimation in the study area
under diverse climatic conditions. Notably, remote sensing data played a crucial role as a
significant support for their analysis. In order to quickly and efficiently obtain relatively
accurate agricultural remote sensing data, it is essential to accurately distinguish each type
of crop distribution. Similarly, with increasing focus on urban green spaces (UGSs), such
as botanical gardens, higher education campuses, and community parks and gardens, in
the wake of urban heat island effects [3] and regional warming, it becomes relevant to
investigate image segmentation techniques for quick and reliable delineation of UGSs in
aerial and satellite images. The derived UGS outlines act as direct input to various urban
simulation models. For instance, Liu et al. [4] employed a cellular automata model to
simulate and predict the urban green space system in the study area over a span of more
than 10 years. The data utilized included land use maps detailing green spaces and plazas.
Liu et al. [5] utilized Landsat remote sensing satellite data to capture images depicting
the distribution of urban green spaces and other relevant areas. By integrating processed
land classification results from land maps with a future land use simulation model, they
predicted the distribution and morphology of future urban green spaces (UGSs) in the
study area. This approach aimed to investigate the prospective development of urban heat
island intensity in the city. The predictions regarding distribution and morphology were
particularly valuable in exploring the future evolution of urban heat island intensity in the
city. Consequently, the utilization of very high spatial resolution images, captured using
unmanned aerial vehicles (UAVs), for semantic segmentation of remote sensing images has
emerged as a crucial area of research [6]. The high spatial resolutions of UAV images [7–10]
enable efficient differentiation of various crop and vegetation types and facilitate partition
analysis. Serving as the cornerstone of UGS and Agricultural Remote Sensing Image (ARSI)
analysis, continual enhancements in image segmentation algorithms are being pursued in
an effort to enhance mapping precision and accuracy.

Currently, numerous research directions have been explored in the field of seman-
tic segmentation techniques for ARSI. However, a unique, precise algorithmic model or
method that can expedite mapping and monitoring has yet to emerge. The main research
focus until now has been on adopting diverse methods to address case-specific scenarios.
For instance, in tackling the bisection problem, Guijarro et al. [11] successfully differentiated
between weeds and crops through the application of a discrete wavelet transform-based
algorithm. This algorithm demonstrates enhanced capabilities in spatial texture and color
feature extraction, providing a notable advantage over the conventional threshold segmen-
tation technique that relies solely on color. Meanwhile, David and Ballado [12] employed an
object-based approach for vegetation segmentation and complemented it with traditional
machine learning classifiers to achieve diverse crop classification, yielding favorable results.
Beyond the conventional threshold-based and region-based image segmentation methods,
there is a growing adoption of deep learning-based algorithms in the realm of image seg-
mentation. A significant advantage of these algorithms lies in their inherent capacity for
generalization, reducing the need for extensive parameter adjustments to accommodate
various scenarios [6]. Deep learning algorithms autonomously extract diverse features
from images through multi-layer networks and assign semantics to each image element.
Since the inception of Fully Convolutional Networks (FCNs), encoder–decoder-based deep
neural network architectures have emerged as the central benchmark for semantic im-
age segmentation [13]. Subsequently, numerous frameworks built upon FCNs have been
developed to enhance the generalizability and precision of image segmentation. These
algorithms have found widespread applications in the field of agriculture. An illustrative
example is the work by Kerkech et al. [14], who employed SegNet networks to perform
qualitative segmentation of vineyards. Their research aimed to facilitate vine disease de-
tection and segmentation based on spectral images, addressing various health conditions.



Remote Sens. 2024, 16, 414 3 of 32

This exemplifies the potential of computer and drone-based image-assisted detection of
agricultural pests and diseases. Furthermore, state-of-the-art deep learning algorithms such
as Full Convolutional Networks (FCNs), U-Net, Dynamically Expanded Convolutional Net-
works (DDCNs), and DeepLabV3+ have been extensively tested and applied in the realm
of remote sensing in agriculture [15]. The ongoing investigations aim to assess the capacity
of these algorithms in enhancing segmentation capabilities. It has been demonstrated that
deep learning is a viable solution for a multitude of image segmentation applications in
agriculture [16–18]. Similarly, automated delineation of UGSs through segmentation from
aerial and satellite remote sensing images has been gaining momentum in recent years.
Across numerous fields, there is a growing inclination to employ automatic segmentation
methods for image processing. Examples include the application of these methods in
medicine for the automatic segmentation of chronic brain lesions [19], in geography for the
automatic segmentation analysis of geographic watersheds [20], and in glaciology for the
automatic segmentation of debris-covered glaciers using remotely sensed data [21]. These
endeavors encompass a variety of methods and levels of complexity. However, a common
thread emerges—the automatic segmentation of regions of interest appears to be a pivotal
and influential trend shaping the future of these diverse fields.

While the number of image segmentation algorithms continues to grow, and their
capabilities are constantly evolving and improving, it is evident that each algorithm comes
with its own set of strengths and limitations. For instance, some pixel-based segmentation
algorithms struggle to capture the texture and peripheral information of individual fea-
tures, object-based segmentation algorithms can be highly susceptible to noise, and image
segmentation using deep learning algorithms often demands high-end hardware and soft-
ware configurations. Additionally, segmentation in diverse scenarios frequently requires
adjustments to numerous parameters, potentially resulting in the presence of redundant
details in the results [22]. In general, there remains a scarcity of modeling approaches with
robust generalization capabilities for a wide range of scenarios. This challenge requires a
comprehensive knowledge base, extensive parameter adjustments, and the ability to select
appropriate models. Such a task can be daunting for both agricultural producers and the
majority of researchers. Therefore, it is important to provide a more general segmentation
model with strong generalization capabilities.

The newly released Segmentation Anything Model (SAM) by Meta AI (https://
segment-anything.com/, accessed on 21 December 2023) has garnered significant attention
as a potent and versatile image segmentation model. This model exhibits the capacity to
deliver highly precise image segmentation, offering variable degrees of segmentation masks
based on user inputs, as well as autonomous recognition and segmentation [23]. SAM’s
remarkable image segmentation capabilities stem from its robust architectural design, un-
derpinned by the training of over 100 million annotations. The central concept of the model
is to provide an intuitive and interactive approach for users to segment the specific elements
they require [24]. Currently, SAM is undergoing extensive testing across a broad spectrum
of applications within the medical field, with the aim of assessing its potential to super-
sede various previous algorithmic models [24–26]. Simultaneously, numerous SAM-based
extensions are gaining traction as researchers strive to address the potential limitations
of SAM through various means, capitalizing on its formidable generalized segmentation
capabilities to the fullest extent [23,27]. At present, there exists a dearth of research focused
on utilizing the SAM model for remote sensing image segmentation. It appears that the
distinctive advantages of this model remain largely unrecognized, particularly within the
realm of agricultural and UGS remote sensing. The well-defined and regular distribution
patterns of agricultural fields and UGSs present a significant opportunity to harness the
unique segmentation capabilities of SAM. Considering the focus of our research, i.e., the ap-
plicability of SAM for regular-shaped vegetation feature characterization, we acknowledge
that certain agricultural land use areas are in close proximity to urban regions, as can also
be seen in various satellite images presented in this paper. Through numerous runs of SAM
on such images, we have seen that urban cover types often exhibit considerable diversity,

https://segment-anything.com/
https://segment-anything.com/
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posing challenges for SAM segmentation. Moreover, UGSs are commonly found at the
periphery and near cultivated land, sharing similar characteristic attributes. Therefore, we
aimed to further verify SAM’s capability to adequately segment and distinguish between
ARSI and UGS land use types. Given that semantic segmentation is crucial for addressing
the issue of numerous coverage types in remote sensing images, it is useful and more infor-
mative to conduct tests involving multiple types of peri-urban/urban human-maintained
vegetation covers, i.e., farmlands and parks in this instance. As a result, our novel study
delves into the evaluation and testing of SAM’s performance for remote sensing image
segmentation in agricultural and UGS contexts, particularly utilizing very high spatial
resolution aerial images. We aim to offer distinctive insights that can facilitate the wider
adoption of SAM in the field of ARSI and UGS segmentation. Additionally, we conduct
an examination of the present constraints encountered by SAM within the realm of ARSI
processing, yielding valuable insights into the process.

2. Study Area and Data Used

We carefully handpicked study areas within the United States of America (USA),
strategically covering the southeast, northwest, and central regions, thus ensuring an
exhaustive representation of the USA’s primary agricultural field types and various forms
of UGSs (Figure 1). In our research, we employed remote sensing imagery of varying
resolutions. This study site selection was also based on the availability of multi-sensor and
multiresolution datasets for the ARSI and UGS types. Thus, we managed to ensure that our
resolution spectrum encompassed 0.5 m, 1 m, 3 m, 10 m, 20 m, and 30 m per pixel resolution
images acquired from various aerial and spaceborne platforms. The availability of very
high-resolution images also allowed for visual accuracy assessment of the segmentation
process. For the 10 m images, we used Sentinel-2 Multispectral Imager (MSI) data, while
for 30 m resolution images, we used data from Landsat 8 Optical Imager (OLI). While
testing the impact of spatial resolutions on the segmentation results, it is important to keep
the spectral bands constant across the images. Therefore, to ensure the incorporation of
relevant spectral information in the used RGB bands and avoid combinations of spectral
images of different bands affecting the test results, we employ the 10 m resolution bands
for further resampling to the 20 m data. Meanwhile, the 0.5 m and 1 m images were
obtained from the USGS archive of very high spatial resolution aerial images. Our 3 m
resolution PlanetScope remote sensing images were procured from Planet’s official website
(https://www.planet.com/, accessed on 16 December 2023), which offers global high-
resolution imagery at 3 m resolution. Detailed data attributes and access links can be found
in Table 1.

Table 1. List of data acquisition sites.

Vehicle
Designation Sensor Spatial

Resolution
Spectral Bands

Used Web Site for Data Acquisition

Aerial vehicle Z/I DMC 0.5 m RGB https://earthexplorer.usgs.gov/ (accessed
on 14 December 2023)

Aerial vehicle Leica ADS80 1 m RGB https://earthexplorer.usgs.gov/ (accessed
on 15 December 2023)

PlanetScope Dove Classic
(PS2) 3 m RGB https://www.planet.com/explorer/

(accessed on 16 December 2023)

Sentinel-2 MSI 10 m RGB https://dataspace.copernicus.eu/browser/
(accessed on 12 December 2023)

Landsat 8 OLI 30 m RGB https://earthexplorer.usgs.gov/ (accessed
on 13 December 2023)

https://www.planet.com/
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
https://www.planet.com/explorer/
https://dataspace.copernicus.eu/browser/
https://earthexplorer.usgs.gov/
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3. Methodology

In this section, we discuss the main data processing tool and processing and valida-
tion steps.

3.1. Segment Anything Model

In 2023, FAIR Lab which belongs to an American company called Platforms (formerly
known as Facebook) introduced its groundbreaking research on the Segment Anything
Model (SAM), an image segmentation model gaining quick popularity for its exceptional
generalization capabilities and high accuracy [28]. SAM was developed with the aim of
addressing the existing limitations in computer vision, particularly in enhancing the robust-
ness of image segmentation. Since the release of SAM, an increasing number of secondary
applications and derivative projects rooted in SAM have been deployed across a wide
spectrum of tasks. These include image inpainting, image editing, and object detection,
among others. Continuous testing and verification have consistently demonstrated SAM’s
significant impact in various fields [29–32]. For instance, SAM has found applications
in audio and video segmentation, and the enhanced version proposed in that study ex-
hibits robust performance in targeting and segmentation tasks. In civil engineering, a
comparative analysis has been conducted between traditional deep learning methods and
SAM for concrete defect segmentation, revealing distinctive strengths and limitations for
each approach. Similarly, in the domain of remote sensing image segmentation, SAM
has been explored for tasks such as semantic segmentation and target detection. The out-
comes highlight its robust generalization and zero-sample learning capabilities. Moreover,
across diverse fields like multimedia and space exploration, SAM is being investigated
for various applications [26,33–36]. The ongoing trend of continuously optimizing SAM
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models to cater to specific research domains is indicative of its adaptability and potential
for widespread utility.

SAM is currently freely accessible for use, and its source code has been made open
access. Utilizing SAM for image segmentation is remarkably straightforward. The model
comprises two primary functions: The first method involves the interactive and manual
selection of target points or the utilization of various input prompts, such as clicks, selected
boxes, and text. This approach leverages a form of approximate supervised learning to
achieve precise image segmentation with a minimal amount of sample data, as depicted in
Figure 2. The second method is more automated and requires minimal user intervention.
In this approach, the model autonomously completes the image segmentation process.
The model is processed by the mask decoder [37], delivering results that are illustrated
in Figure 3. The segmented portions can be readily exported, and each segmented image
is stored within the model, as demonstrated in Figure 4. This object-oriented image
segmentation significantly enhances the processing capabilities for ARSI and UGS images.
Both segmentation methods are notably efficient, typically requiring only a brief processing
time, which may vary depending on computer performance and the size and resolution of
the image.
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3.2. Data Preprocessing and Image Segmentation

This study delves into the feasibility of employing SAM for diverse types of remote
sensing data segmentation, encompassing various stages such as data preprocessing, seg-
mentation, accuracy evaluation, data analysis, and more. The comprehensive operational
workflow is elucidated in Figure 5. In preparation for image segmentation, preliminary
data preprocessing is essential for the original images. Due to variations in data acqui-
sition methods, distinct types of data necessitate separate processing approaches. For
high-resolution remote sensing images, such as 0.5 m, 1 m, and 3 m, RGB bands were used
for segmentation. In the case of 10 m and 30 m resolution remote sensing images, bands 2, 3,
and 4 were combined to generate three-band RGB images. Beyond data fusion, to facilitate
a more systematic evaluation, we have categorized the data into two distinct types:

1. Evaluation of SAM results for images with varied resolutions covering the same study
area frame;
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2. Evaluation of SAM results for images of different study areas at the same spatial
resolution.
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Figure 4. Visualization of a single segmented image.

To mitigate the impact of variable images on test results, image cropping becomes
imperative, requiring standardization and harmonization of variables. Comprehensive
details regarding the original image size, resolution, and the resulting cut image size
and resolution are presented in Tables 2 and 3. To ensure uniformity in image format,
we converted all images to JPG format. Typically, remote sensing images downloaded
directly from websites are in TIF format, which is presently not compatible with SAM.
This comprehensive testing approach enables us to validate SAM’s applicability in the
segmentation of various types of remote sensing images.
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Table 2. Images with varied resolutions within the same study area frame size. For 30 m resolution,
we have used the slightly bigger frame size to make the computations easier, while it covers the same
study area as others.

Spatial Resolution
Original

Image Size
(in Pixels)

Output Image Size (in
Pixels) Sensor Spectral Bands Used

0.5 m 10,000 × 10,000 8000 × 8000 Z/I DMC RGB
1 m 5000 × 5000 4000 × 4000 Leica ADS80 RGB
3 m 8908 × 4319 2000 × 2000 Dove Classic (PS2) RGB

10 m 10,980 × 10,980 400 × 400 MSI RGB
20 m 5490 × 5490 200 × 200 MSI RGB
30 m 1830 × 1830 150 × 150 OLI RGB

Table 3. Images of different study area frame image sizes at the same resolution.

Resolution Large Size
(in Pixels)

Medium Size (in
Pixels)

Small Area Size
(in Pixels) Sensor Spectral Bands

Used

0.5 m 10,000 × 10,000 5000 × 5000 2500 × 2500 Z/I DMC RGB
1 m 5000 × 5000 2500 × 2500 1250 × 1250 Leica ADS80 RGB
3 m 5000 × 5000 2500 × 2500 1250 × 1250 Dove Classic (PS2) RGB

10 m 5000 × 5000 2500 × 2500 1250 × 1250 MSI RGB
20 m 5000 × 5000 2500 × 2500 1250 × 1250 MSI RGB
30 m 5000 × 5000 2500 × 2500 1250 × 1250 OLI RGB

Upon completing the data preprocessing, the data can be systematically input into the
SAM for segmentation testing. We employ two segmentation methods, condition-based
segmentation and unsupervised segmentation, to assess and compare the segmentation
results across various types of scenarios depicted in Tables 2 and 3. Conditional-based
segmentation, also recognized as a form of approximate supervised learning as described
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above, accomplishes region-of-interest extraction through interactive clicks, offering mini-
mal samples for model training. Unsupervised classification takes a more direct approach,
relying on the pre-trained model to automatically select sample points for image segmenta-
tion and extraction. This is why certain images may resemble those obtained through the
conditional segmentation of labeled points. Following the segmentation process, we can
then extract and merge our regions of interest in the subsequent results. To obtain a holistic
grasp of SAM’s segmentation capabilities concerning cultivated land and UGSs, simultane-
ous tests were conducted for general cropland, urban public green space areas, peri-urban
cropland, and urban green belts, and these four types of segmentation can be referred to as
shown in Figure 6. Nearly ten images of each category were examined, with efforts made
to ensure that each image accurately represented the local land use distribution.
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3.3. Validation of Results

To evaluate the segmentation accuracy for different image types in SAM, we utilize
a simple random sampling approach, which has also been used in previous studies [38].
This involves the random selection of 50 uniformly distributed checkpoints per image as
sampling locations. We then used the highest resolution images for visual analysis-based
comparison between the segmentation results and the actual land cover to determine the
segmentation accuracy. Equation (1) shows the formula for this accuracy assessment is
as follows:

SAE =
K
50

(1)

where segmentation accuracy evaluation (SAE) represents the degree of accuracy, with
values ranging from 0 to 1. K represents the number of points out of a total of 50 sample
points falling within the correctly segmented boundary.

Considering that the primary objective of this paper is to evaluate the segmentation
performance of SAM for agricultural and UGS areas, we are aiming for binary segmen-
tation, i.e., achieving delineation between agriculture/UGS areas and all the other land
cover classes. To achieve this, we will predominantly focus on farmland/grassland as
the primary agricultural objects and parks/gardens as UGS objects, given their uniform
dimensions and distribution characteristics. Other land cover classes, such as woodlands,
buildings, water bodies, and so forth, are classified as ‘others.’ We only test the simpler
binary classification problem since, after all, currently, conditional segmentation on SAM
can only extract a single type of image region when processing an image. In the unsu-
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pervised segmentation process, the model automatically generates numerous segments.
We, therefore, manually consolidated the agricultural/UGS objects and created binary
partitioned datasets for further evaluation. We aim to incorporate unsupervised segmen-
tation into our considerations as we seek to comprehensively assess SAM’s capability to
recognize and segment agricultural or UGS regions under the current models trained on a
vast dataset. Exploring unsupervised segmentation and extraction of agricultural or UGS
regions could be a significant avenue for future research. After all, dealing with a large
number of datasets can become cumbersome if heavy reliance on the manual addition of
even a small number of samples is still required.

4. Result

We chose a diverse array of scenarios for testing to assess the generalization capability
of SAM-based segmentation for ARSIs and UGSs. To assess the suitability of SAM’s
segmentation for various image types, we systematically controlled two variables, namely
resolution and study area size. The following sections summarize the main results of
our segmentation.

4.1. Same Study Area Size at Different Resolutions

The detailed image segmentation results are presented in Figures 7–12, showcasing
the segmentation outcomes at resolutions of 0.5 m, 1 m, 3 m, 10 m, 20 m, and 30 m. Both
conditional-based segmentation and unsupervised segmentation results are depicted in-
dividually. Table 4 provides the segmentation accuracy values for each image. Overall,
SAM exhibits robust segmentation capabilities, regardless of whether it is applied to high-
resolution or low-resolution ARSI and UGS images. As illustrated in Figure 13, we provide
a visualization of all the SAE values. The accuracy of conditional-based image segmentation
is consistently high, with the majority exceeding 0.9. In contrast, unsupervised classifi-
cation methods exhibit sensitivity to image resolution, particularly underperforming on
low-resolution images (3 m and above), where approximately 35% of the images experience
a decline to 60% or even lower accuracy. It also suggests that resolution had less impact on
conditional segmentation in SAM, whereas, for unsupervised segmentation, higher reso-
lutions showed better segmentation accuracy. This observation indicates that, in practice,
resolution has a relatively limited impact on the segmentation effectiveness of conditional
segmentation in SAM. It is worth noting that unsupervised segmentation, while generally
effective, has some segmentation results below 0.4, indicating its comparative limitations
in certain scenarios. While SAM generally showcases robust segmentation capabilities,
excelling in delineating cultivated areas with distinct boundaries and public green spaces
within urban environments, it encounters challenges with certain image types, resulting in
performance issues, such as overfitting. Typically, when annotating a substantial amount of
contextual sample information for specific images, the segmentation effectiveness improves,
as demonstrated in Graph 8 in Figure 10. However, some images exhibit a counterintuitive
trend, where increasing annotations leads to a decrease in segmentation accuracy, as ob-
served in Graph 6 in Figure 10, Graph 10 in Figure 8, and several others. These problematic
images share a common issue—during the segmentation of the region of interest, they tend
to distribute a significant number of extraneous elements, manifesting as sporadic features
of other types. Alternatively, they may exhibit a distribution with closely related colors,
as illustrated in Graph 4 in Figure 9. This underscores the limitations of SAM in handling
more complex remote sensing images in certain segmentation scenarios.
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Figure 7. The 0.5 m resolution test results for different images. Graphs 1, 2, 3, 4, 6, 7, 8, and 10 in
dataset A were utilized to extract general cropland areas, while Graph 5 was dedicated to extracting
cropland areas in an urban context, and Graph 9 was employed to extract greenfield areas within the
city. Different colors in the Unsupervised panel represent different segmentation polygons.



Remote Sens. 2024, 16, 414 12 of 32

Remote Sens. 2024, 16, x FOR PEER REVIEW 13 of 34 
 

 

Figure 7. The 0.5 m resolution test results for different images. Graphs 1, 2, 3, 4, 6, 7, 8, and 10 in 

dataset A were utilized to extract general cropland areas, while Graph 5 was dedicated to extracting 

cropland areas in an urban context, and Graph 9 was employed to extract greenfield areas within 

the city. Different colors in the Unsupervised panel represent different segmentation polygons. 

 

Figure 8. The 1 m resolution test results for different images. Graphs 1, 2, 3, 4, 6, 7, and 8 in dataset 

B were utilized to extract general cropland areas, while Graphs 5 and 10 were dedicated to extracting 

public green areas in an urban context, and Graph 9 was dedicated to extracting cropland areas in 

an urban context. Different colors in the Unsupervised panel represent different segmentation pol-

ygons. 

Figure 8. The 1 m resolution test results for different images. Graphs 1, 2, 3, 4, 6, 7, and 8 in dataset B
were utilized to extract general cropland areas, while Graphs 5 and 10 were dedicated to extracting
public green areas in an urban context, and Graph 9 was dedicated to extracting cropland areas in an
urban context. Different colors in the Unsupervised panel represent different segmentation polygons.
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Figure 9. The 3 m resolution test results for different images. Graphs 2, 3, 4, 5, 6, 7, 8, 9, and 10 in
dataset C were utilized to extract general cropland areas, while Graph 1 was dedicated to extracting
public green areas in an urban context. Different colors in the Unsupervised panel represent different
segmentation polygons.
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Figure 10. The 10 m resolution test results for different images. Graphs 2, 3, 5, 7, and 8 in dataset D
were utilized to extract general cropland areas, while Graphs 1 and 9 were dedicated to extracting
public green areas in an urban context, and Graphs 6 and 10 were dedicated to extracting cropland
areas in an urban context. Different colors in the Unsupervised panel represent different segmenta-
tion polygons.
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Figure 11. The 20 m resolution test results for different images. Graphs 1, 3, 7, 8, and 9 in dataset E 
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Figure 11. The 20 m resolution test results for different images. Graphs 1, 3, 7, 8, and 9 in dataset E
were utilized to extract general cropland areas, while Graphs 2 and 5 were dedicated to extracting
public green areas in an urban context, and Graphs 4 and 10 were dedicated to extracting cropland
areas in an urban context. Different colors in the Unsupervised panel represent different segmenta-
tion polygons.
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Figure 12. The 30 m resolution test results for different images. Graphs 1, 2, 3, 4, 6, and 10 in
dataset F were utilized to extract general cropland areas, while Graphs 5, 7, 8, and 9 were dedicated
to extracting public green areas in an urban context. Different colors in the Unsupervised panel
represent different segmentation polygons.
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Table 4. Test SAE results for photos with different resolutions. The serial number in the table
corresponds to the corresponding graph number in the figure set.

Resolution Serial Number Unsupervised (SAE) Conditional (SAE)

0.5 m

A_1 0.84 0.92
A_2 0.94 0.96
A_3 0.92 0.96
A_4 0.90 0.92
A_5 0.98 0.74
A_6 0.96 0.94
A_7 0.94 0.98
A_8 0.98 1
A_9 0.74 0.78
A_10 0.94 0.98

1 m

B_1 0.84 0.90
B_2 0.94 0.98
B_3 1 0.90
B_4 0.94 0.98
B_5 0.74 0.94
B_6 0.98 0.92
B_7 0.98 0.94
B_8 0.92 1
B_9 0.94 0.98
B_10 0.94 0.96

3 m

C_1 0.2 0.5
C_2 1 1
C_3 0.1 0.9
C_4 0.9 0.6
C_5 0.5 0.85
C_6 0.9 0.55
C_7 1 1
C_8 1 1
C_9 0.4 0.75
C_10 0.5 0.9

10 m

D_1 0.54 0.9
D_2 0.8 0.98
D_3 0.84 0.94
D_4 0.54 0.64
D_5 0.32 0.94
D_6 0.94 0.96
D_7 0.88 0.96
D_8 0.74 0.94
D_9 0.94 1
D_10 0.98 0.98

20 m

E_1 0.34 0.94
E_2 0.24 0.99
E_3 0.44 0.89
E_4 0.57 0.94
E_5 0.94 0.98
E_6 0.47 0.81
E_7 0.92 0.99
E_8 0.21 0.97
E_9 0.92 0.98
E_10 0.21 0.91

30 m

F_1 0.94 0.98
F_2 0.98 1
F_3 0.84 0.94
F_4 0.88 0.94
F_5 0.9 0.9
F_6 0.92 0.98
F_7 0.98 1
F_8 0.98 0.98
F_9 0.94 0.96
F_10 0.66 0.74
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Figure 13. Visualization of test results for the same study area size at different resolutions, DATA NO.
represents the number of images segmented for each data resolution type. Each data point in the
figure is identified by a unique number.

In terms of segmentation types, peri-urban cropland, common cropland, and urban
public green spaces consistently exhibited suitable classification accuracy across various
resolutions. Extensive testing of cultivated fields in different scenarios yielded positive
results attributed to the inherent texture and color uniformity of cultivated areas. Similarly,
urban public green spaces often presented clearer boundaries. However, as mentioned
earlier, challenges arise when there is a substantial amount of noise within certain cultivated
land or public green space areas, as illustrated in Graph 1 in Figure 9. Furthermore, the
segmentation of green belt areas within the city or the green spaces around buildings
proved particularly challenging. Notably, the segmentation of urban green areas remains
possible in some high-resolution images where arable land is absent, as seen in Graph 8 in
Figure 14. However, the segmentation of urban green belts becomes notably challenging in
images with a multitude of distributed feature types, as seen in Graph 10 in Figure 8.

To enhance the experiment’s credibility, we conducted re-tests using images of different
resolutions. The content information of the images was standardized, and high-resolution
images (0.5 m) were resampled/compressed to 1 m, 3 m, 10 m, 20 m, and 30 m resolutions.
Four image datasets representing the distribution of ARSIs and UGSs were selected as test
data. We aimed to verify the impact of resolution on SAM segmentation accuracy while
maintaining uniform information across images and changing only the image resolution.

The results are presented in Figure 14, with Figures 15 and 16 providing numerical sta-
tistical visualizations of accuracy for the two segmentation methods. Regarding the results
of condition-based SAM segmentation, it is evident that certain images exhibit stability in
terms of smoothness. However, for certain images like Graph Sets 1 and 3 in Figure 14, SAM
segmentation gradually weakens as the resolution decreases. These images display uni-
form characteristics with scattered noise in cultivated or urban areas, such as the scattered
woodland in the middle of the cultivated area in Graph 1 of Figure 14. High-resolution
images allow for more accurate noise removal by increasing labeled points during training,
but for low-resolution images, increasing training points appears to have minimal impact.
Additionally, image segmentation accuracy exhibits more obvious differences, with the
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best segmentation observed in Graph Set 2 in Figure 14, featuring clear boundaries and
stable textures. This further supports the earlier findings that the image type has a more
significant impact on SAM segmentation compared to resolution. Additionally, variations
in image types also influence the sensitivity of SAM to changes in resolution.
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Figure 16. Statistical graph of test results of image segmentation with different resolutions at the
same location (unsupervised).

Turning to the results of unsupervised segmentation, except for Graph Set 2 in
Figure 14, the other three graph sets show great instability. Segmentation accuracy performs
poorly as resolution decreases. Without training points, unsupervised segmentation results
are relatively unable to achieve the segmentation accuracy of conditional segmentation.
Errors manifest in the fineness of segmentation, especially noticeable as the resolution de-
creases in Graph Sets 3 and 4 in Figure 14, where fewer and fewer regions can be segmented,
even with clearer boundaries. Simultaneously, there is progressively less segmentation for
finer parts, highlighting a significant limitation of unsupervised segmentation.

4.2. Same Resolution with Different Study Area Size

The results for different image sizes are presented in Figures 17–22, showcasing seg-
mentation outcomes for images in large, medium, and small scales. The segmentation
accuracy values for each image can be found in Table 5. For ease of interpretation, we have
visually represented the results from Table 5 by assigning different colors to the SAE values
associated with various study area sizes, as depicted in Figures 23 and 24. A clear pattern
emerges from the visualization: larger image sizes tend to result in poorer segmentation
outcomes. Conversely, for small-sized images, regardless of resolution, the SAE values
consistently hover around 0.8. This reaffirms that image size significantly influences the
segmentation performance of SAM, with smaller frame-sized images generally yielding
more accurate segmentations. In the context of unsupervised segmentation, SAM exhibits
limitations across various image sizes, particularly struggling with low-resolution images
where the accuracy sharply decreases. Conversely, SAM tends to achieve higher accuracy
when processing smaller-sized high-resolution images. However, challenges arise with
larger-sized high-resolution images, as seen in Graphs 6 and 8 in Figure 17, where extracted
objects in urban areas appear more fragmented. Larger map sizes, indicative of increased
feature information, pose challenges for SAM, especially in segmenting scattered urban
green spaces. Shifting to conditional segmentation, larger images generally display com-
paratively poorer performance, especially with decreased image resolution, resulting in
significant fluctuations in accuracy. Notably, for small-sized image segmentation, some
images exhibit increased accuracy with additional training samples, illustrated in Graph 2
in Figure 21. However, this improvement is not as pronounced for large-sized images of
the same style, as shown in Graph 5 in Figure 21 and Graph 9 in Figure 22. The abundance
of information significantly limits SAM’s segmentation ability, even with the addition of
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more training samples. For large-sized images, SAM-based segmentation achieves better
performance even without more obvious boundaries. Feature texture differences play
a crucial role in segmentation success, even when colors are closer, as demonstrated in
Graph 9 in Figure 18 and in Graphs 4 and 6 in Figure 22. Nevertheless, clearer boundaries
generally result in improved segmentation outcomes.

In terms of segmentation types, urban public green spaces, and peri-urban culti-
vated land exhibit strong adaptive capabilities, showcasing effective segmentation in both
large-scale and small-scale images. Their common characteristic is the presence of dis-
tinct boundaries within the urban area and unique texture characteristics. Conversely,
common arable land and urban green belt areas show poorer segmentation performance.
Common arable land, however, demonstrates higher segmentation effectiveness in high-
resolution images (0.5 m and 1 m), delivering excellent results across various image sizes.
For low-resolution images (3 m and above), the segmentation effectiveness improves for
smaller-sized images and continues to enhance with an increased number of sample points.
However, in medium-size and large-size images, disorder phenomena become prominent,
leading to a segmentation preference for object-oriented methods. This tendency hampers
the segmentation of finer and more scattered distributions of cultivated areas. The segmen-
tation performance of SAM on urban green zones in high-resolution images relies on the
distribution of features in the photographs. Generally, the performance is better in low-
resolution photographs, and as the size of the photographs increases, SAM’s segmentation
effect surpasses that of medium-size images. However, with increasing size and variety of
land use types, the segmentation effect fluctuates. In the case of low-resolution areas, the
segmentation results for urban green belts are not as favorable.
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Figure 17. The 0.5 m resolution image test results for different sizes. Graphs 1, 4, 5, and 7 in
dataset H were utilized to extract general cropland areas, while Graphs 2, 6, and 8 were dedicated
to extracting greenfield areas in an urban context, and Graphs 3 and 9 were dedicated to extracting
cropland areas in an urban context. Different colors in the Unsupervised panel represent different
segmentation polygons.
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Figure 18. The 1 m resolution image test results for different sizes. Graphs 1, 2, 3, 4, 5, 6, and 7 in
dataset I were utilized to extract general cropland areas, while Graph 9 was dedicated to extracting
greenfield areas in an urban context, and Graph 8 was dedicated to extracting cropland areas in an
urban context. Different colors in the Unsupervised panel represent different segmentation polygons.

Remote Sens. 2024, 16, x FOR PEER REVIEW 24 of 34 
 

 

greenfield areas in an urban context, and Graph 8 was dedicated to extracting cropland areas in an 

urban context. Different colors in the Unsupervised panel represent different segmentation poly-

gons. 
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Figure 19. The 3 m resolution image test results for different sizes. Graphs 1, 5, 6, 7, 8, and 9 in dataset
J were utilized to extract general cropland areas, while Graphs 2, 3, and 4 were dedicated to extracting
public green areas in an urban context. Different colors in the Unsupervised panel represent different
segmentation polygons.
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Figure 20. The 10 m resolution image test results for different sizes. Graphs 1, 3, 7, 8, and 9 in dataset K
were utilized to extract general cropland areas, while Graph 2 was dedicated to extracting public green
areas in an urban context, and Graphs 4, 5, and 6 were dedicated to extracting cropland areas in an
urban context. Different colors in the Unsupervised panel represent different segmentation polygons.
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Figure 21. The 20 m resolution image test results for different sizes. Graphs 1–9 in dataset L were
utilized to extract general cropland areas. Different colors in the Unsupervised panel represent
different segmentation polygons.
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Figure 22. The 30 m resolution image test results for different sizes. Graphs 1–9 in dataset M were
utilized to extract general cropland areas. Different colors in the Unsupervised panel represent
different segmentation polygons.
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Figure 23. Visualization of test results for different study area sizes at the same resolution (unsuper-
vised). DATA NO. represents the number of images used for each data resolution type. Each data
point in the figure is identified by a unique number. The bidirectional arrows at the bottom of the
figure signify those points within the arrow range, irrespective of their shape, corresponding to the
associated resolution.
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Table 5. Test SAE results for photos of different sizes with the same resolution. The serial number in
the table corresponds to the corresponding graph number in the figure set.

Resolution Serial
Number Area Size Unsupervised (SAE) Conditional (SAE)

0.5 m

H_1 1250 × 1250 (Small) 0.94 0.98
H_2 1250 × 1250 (Small) 0.56 0.94
H_3 1250 × 1250 (Small) 0.92 0.98
H_4 2500 × 2500 (Medium) 0.94 0.96
H_5 2500 × 2500 (Medium) 0.92 0.96
H_6 2500 × 2500 (Medium) 0.74 0.98
H_7 5000 × 5000 (Large) 0.94 0.96
H_8 5000 × 5000 (Large) 0.46 0.64
H_9 5000 × 5000 (Large) 0.94 0.98

1 m

I_1 1250 × 1250 (Small) 0.94 0.96
I_2 1250 × 1250 (Small) 0.98 0.98
I_3 1250 × 1250 (Small) 1 0.98
I_4 2500 × 2500 (Medium) 0.98 1
I_5 2500 × 2500 (Medium) 0.96 1
I_6 2500 × 2500 (Medium) 1 1
I_7 5000 × 5000 (Large) 0.92 1
I_8 5000 × 5000 (Large) 0.54 0.52
I_9 5000 × 5000 (Large) 0.94 0.98

3 m

J_1 1250 × 1250 (Small) 0.44 0.94
J_2 1250 × 1250 (Small) 0.94 0.96
J_3 1250 × 1250 (Small) 0.96 0.98
J_4 2500 × 2500 (Medium) 0.94 1
J_5 2500 × 2500 (Medium) 0.74 0.98
J_6 2500 × 2500 (Medium) 0.44 0.84
J_7 5000 × 5000 (Large) 0.74 0.88
J_8 5000 × 5000 (Large) 0.56 0.84
J_9 5000 × 5000 (Large) 0.44 0.88

10 m

K_1 1250 × 1250 (Small) 0.68 0.94
K_2 1250 × 1250 (Small) 0.74 0.90
K_3 1250 × 1250 (Small) 0.32 0.95
K_4 2500 × 2500 (Medium) 0.92 0.96
K_5 2500 × 2500 (Medium) 0.53 0.82
K_6 2500 × 2500 (Medium) 0.78 0.88
K_7 5000 × 5000 (Large) 0.94 0.98
K_8 5000 × 5000 (Large) 0.44 0.84
K_9 5000 × 5000 (Large) 0.76 0.64

20 m

L_1 1250 × 1250 (Small) 0.43 0.83
L_2 1250 × 1250 (Small) 0.82 0.93
L_3 1250 × 1250 (Small) 0.43 0.92
L_4 2500 × 2500 (Medium) 0.47 0.56
L_5 2500 × 2500 (Medium) 0.67 0.82
L_6 2500 × 2500 (Medium) 0.33 0.44
L_7 5000 × 5000 (Large) 0.24 0.43
L_8 5000 × 5000 (Large) 0.69 0.90
L_9 5000 × 5000 (Large) 0.41 0.24

30 m

M_1 1250 × 1250 (Small) 0.14 0.68
M_2 1250 × 1250 (Small) 0.42 0.68
M_3 1250 × 1250 (Small) 0.24 0.74
M_4 2500 × 2500 (Medium) 0.68 0.98
M_5 2500 × 2500 (Medium) 0.24 0.84
M_6 2500 × 2500 (Medium) 0.12 0.86
M_7 5000 × 5000 (Large) 0.08 0.84
M_8 5000 × 5000 (Large) 0.04 0.56
M_9 5000 × 5000 (Large) 0.22 0.78
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Figure 24. Visualization of test results for different study area sizes at the same resolution (conditional).
DATA NO. represents the number of images used for each data resolution type. Each data point
in the figure is identified by a unique number. The bidirectional arrows at the bottom of the figure
signify that those points within the arrow range, irrespective of their shape, correspond to the
associated resolution.

5. Discussion: Limitations and Future Work

As evident from our results, SAM demonstrates a distinct advantage in ARSI and UGS
image processing and segmentation. Nevertheless, it is undeniable that both resolution
and image size have some influence on the segmentation effectiveness of SAM. However, a
consistent imaging pattern was not demonstrated, as there was some variation in the pattern
and extent among different images across various image types. In terms of resolution,
conditional-based segmentation has minimal impact, while the unsupervised segmentation-
based approach is susceptible to a certain extent. In some images, particularly those with
resolutions reaching 10 m and above, the segmentation accuracy significantly decreases.
It is worth noting that the accuracy of segmentation is also influenced by the type of
segmented image. Regarding size, as the image size continues to increase, the segmentation
accuracy is somewhat affected, especially for images with unclear boundaries and excessive
information coverage. This impact becomes more pronounced, emphasizing the importance
of image characteristics in determining segmentation accuracy. It is worth noting that SAM
prioritizes object-oriented segmentation during the segmentation process, followed by
texture and color analysis at the individual object level before merging them seamlessly.
Overall, the segmentation performance for cultivated land and urban public green spaces
is consistently good across various image types, with few exceptions, such as instances of
excessive noise or closely matched colors between different ground objects. However, the
segmentation of urban green belts, characterized by a more chaotic distribution, tends to
be generally poor.

The strengths of SAM in the realm of agricultural and UGS remote sensing image
segmentation can be summarized as follows:

1. Preliminary object-oriented segmentation excels in accurately segmenting individual
agricultural regions, producing smooth images with minimal noise compared to
pixel-based algorithms, as demonstrated in Figure 25′s pixel-based segmentation
image results;
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2. SAM’s processing speed is exceptional with the existing framework of trained models,
allowing for zero-shot generalization to unfamiliar objects and images without the
need for additional training.
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Figure 25. Comparison of SAM-based and pixel-based segmentation results. We used Maximum
Likelihood Segmentation, a pixel-based segmentation method, to compare the segmentation results
of SAM, and the results show that pixel-based segmentation yields more cluttered and less smooth
results, but the pixel-based segmentation approach performs significantly finer and more approximate
than SAM on certain images. Meanwhile, SAM, which uses unsupervised segmentation, does not
seem to play any role in processing some of the large-size photos, as shown in the upper-right graph,
where SAM only segments a small region in the lower-right.

SAM in the field of agriculture and UGS remote sensing image segmentation also
exhibits some limitations, as outlined below:

1. For ordinary cultivated land, in terms of conditional segmentation, a small amount of
noise will affect the segmentation effect of SAM, and the effect may be less for small
size or high resolution. Details are shown in Figures 26 and 27;

2. For green belts inside the city, the segmentation effect based on SAM performs poorly
regardless of the resolution or size, and when buildings and green belts are inter-
spersed with each other in the urban system, which is relatively complex to display
on the image, as shown in Figure 28, the SAM performance is very weak;

3. Various types of large-sized images, SAM shows poor results, which may be affected
by too many types of objects;

4. For unsupervised classification, the segmentation of the images is consistently poor,
and the overall accuracy and stability are ineffective.

This segmentation method is particularly advantageous for ARSI and UGS images
with well-defined edges. However, the limitations of the SAM model become apparent
in images with larger sizes or blurred edges, as they are poorly segmented. In such cases,
pixel-based semantic segmentation, such as maximum likelihood classification, appears
to be a more suitable choice, as shown in Figure 25, which compares the results of both
segmentation methods. For some images that are more complex and heterogeneous,
having more types of features, the SAM model performs suboptimally. In general, pixel-
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based image segmentation offers certain advantages, especially for large-scale images.
Upon closer examination of these subpar images, it becomes evident that they lack well-
defined boundaries, and the distinctions in color and texture among various features
are insufficiently pronounced. Consequently, additional computations are necessary to
accentuate these differences. This could indeed be one of the limitations of SAM when
it comes to processing agricultural remote sensing images. Overall, the segmentation
performance for cultivated land and urban public green spaces is consistently good across
various image types, with few exceptions, such as instances of excessive noise or closely
matched colors between different ground objects. However, the segmentation of urban
green belts, characterized by a more chaotic distribution, tends to be generally poor.
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Figure 26. Comparison of segmentation performance of noisy plowed fields on different resolution
images. Graph 1 illustrates the segmentation results at a resolution of 0.5, and Graph 2 depicts the
results at a resolution of 10 m. As indicated by the arrows on the graph, there is a small amount of
woodland within the cropland area. These woodlands can be accurately segmented using a small
number of sample points on the high-resolution image. However, for the low-resolution image, even
with an ample number of sample points added, the result is not satisfactory. The red arrow points to
the region we need to segment out.
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Figure 27. Comparison of segmentation performance of noisy plowed fields on different image sizes.
Graph 1 shows the segmentation results for small-size images, and Graph 2 shows the segmentation
results for medium-size images. As the arrows in the figure point to the part of the woodland that
needs to be eliminated, it is clear to see that the smaller-sized images are segmented better. The red
arrow points to the region we need to segment out.
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Figure 28. Schematic diagram of green space segmentation within the city. In general, when
employing conditional green space extraction, it proves challenging to effectively extract green spaces
in the presence of small buildings. Conversely, with unsupervised classification, the extraction of
buildings is more successful. The red arrow points to the region we need to segment out.
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Currently, the adoption of SAM in the field of agricultural remote sensing is not
widespread. The primary reason for this may be the SAM model’s current inability to
perform minimal interactive data processing and analysis. Specifically, agricultural re-
searchers or operators, even after segmenting acquired images, are unable to extract useful
information from the segmented images and must rely on other data analysis software for
further operations. Moreover, the data processing results obtained using SAM lack essential
geographic information, which can lead to significant errors in researchers’ area or scale
measurements. Effective data statistics and visualization are also unfeasible. While the
SAM framework has been extended and utilized in various fields, such as image captioning,
object tracking, and 3D detection, there have been fewer secondary development projects
centered around ARSI. Given the abundance of ARSIs available on various websites, sup-
port for handling substantial datasets can facilitate the development of comprehensive
remote sensing image models, offering researchers significant opportunities. The overall
SAM framework for image segmentation exhibits substantial potential. ARSI possesses
unique characteristics, including clearly defined edge distribution, variations in image size,
and similarities in color distribution between vegetation and cultivated land. With ongoing
algorithm enhancements, model optimizations, and continuous data training, we anticipate
that the ARSI segmentation model, based on the secondary development of SAM, will
acquire enhanced capabilities.

6. Conclusions

By assessing the segmentation accuracy across various data types to evaluate SAM’s
utility in processing ARSI and UGS images, we have uncovered substantial potential
within SAM for such applications. Nevertheless, SAM does exhibit certain limitations,
including challenges in segmenting agricultural regions within large-scale images, areas
with subtle edges, and agricultural and forestry regions with minimal color differentiation.
These limitations could be attributed to the lack of samples and an algorithm model
structure or hyperparameters setting that places excessive emphasis on object-oriented
segmentation in the processing hierarchy. Therefore, we propose that the SAM model
can be further specialized based on agricultural and UGS remote sensing big data, with
an emphasis on expanding training datasets. Meanwhile, SAM based on unsupervised
segmentation exhibits poor performance and high instability. Nevertheless, unsupervised
segmentation in specific scenarios may become a primary tool in the future for urban
green space segmentation and agriculture. After all, even adding a small number of
interactive samples on top of a large volume of raw data can result in a significant workload.
Therefore, the further expansion and targeted improvement of unsupervised segmentation
for extraction may represent the future direction of development. Additionally, model
adjustments tailored to the specific demands of ARSI, including greater focus on individual
pixels and heightened multispectral model training to augment feature diversity, can
pave the way for SAM to achieve even more robust results in the realm of ARSI and
UGS image segmentation.
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