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Abstract

Open ended and multiple choice questions are commonly placed on the same tests; however, there is a discussion on the effects of using dif-
ferent item types on the test and item statistics. This study aims to compare model and item fit statistics in a mixed format test where multiple 
choice and constructed response items are used together.  In this 25-item fourth grade science test administered to 2351 students in 35 schools 
in Turkey, items are calibrated separately and concurrently utilizing different IRT models.  An important aspect of this study is that the effect of 
the calibration method on model and item fit is investigated on real data.  Firstly, while the 1-, 2-, and 3-Parameter Logistic models are utilized 
to calibrate the binary coded items, the Graded Response Model and the Generalized Partial Credit Model are used to calibrate the open-ended 
ones.  Then, combinations of dichotomous and polytomous models are employed concurrently.  The results based on model comparisons 
revealed that the combination of the 3PL and the Graded Response Model produced the best fit statistics.
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Introduction

Tests play crucial roles in individuals’ lives.  Exams are used 
for many reasons, such as selection and placement of in-
dividuals, determining which knowledge areas need to be 
improved, and planning and revising educational programs.  
Test design, analysis of test scores, and interpretation of 
test results have been important aspects of measuring ex-
aminees’ trait levels (Kinsey, 2003).  Public concern boosts 
discussions on tests regarding their reliability and validity, 
which are affected by many elements, such as test length, 
item format, and scoring.  

Multiple choice (MC) items are the most common item 
types in tests.  Despite the fact that the MC format is criti-
cized since examinees can guess the answer correctly, many 
tests include only MC items due to not only budget and time 
constraints but also due to the difficulties in defending test 
scores to the public in plain terms. Although MC items are 
economically practical and they secure objective and reliable 
marking, it is difficult to measure higher order thinking with 
them. In addition, as Lissitz, Hou and Slater (2014) stress, if 
MC items are exclusively used in testing, the focus of instruc-
tion and learning will undermine the analysis, synthesis and 
evaluation skills of the learners, which in turn risk the loss 
of the active construction of knowledge. To eliminate these 
major limitations, it is possible to incorporate constructed 
response (CR) items in tests.  On the other hand, CR items 
are difficult to score objectively and reliably despite they are 
considered to be measuring examinees’ understanding of 
the content at a deeper level (Kim, Walker & McHale, 2008).  
Mixed format tests including both MC and CR items are high-
ly effective measurement tools for teaching and learning to 
overcome the limitations stemming from their separate use.  
When they are combined, more reliable content total scores 
are obtained and a more precise latent trait is defined (Sykes 
& Yen, 2000). However, as Hollingworth, Beard and Proctor 
(2007) state, some educators and policy makers believe that 
constructed response items and multiple choice items do not 
measure the same construct when placed on the same tests.

The purpose of the present study was to investigate the ap-
plicability of separately and concurrently calibrating the di-
chotomous and polytomous items on a 4th grade science 
examination data using different Item Response Theory (IRT) 
models. Therefore, it would be possible to examine how 
model and item fit statistics vary when MC and CR items are 
analyzed separately and together.  In addition, it will give 
insight regarding which IRT model is a better candidate for 
possible further use on achievement test data.

The Classical Test Theory (CTT) has been utilized in many 
testing systems; yet, it has many shortcomings such as the 
dependence of the values of item statistics (i.e., difficulty 
and discrimination) on a particular examinee sample, their 
average level of ability, and the range of scores. Another im-
portant shortcoming is that a valid comparison of examinees 
coming from different groups is possible only when the same 
or parallel tests are administered.  In CTT, test reliability is de-
scribed in terms of parallel forms although it is not practical 
in real world.

IRT has been employed to compute scale scores for achieve-
ment tests by most of the testing agencies throughout the 
world. When there is a reasonable fit between the selected 
model and data, IRT models produce invariant item statis-
tics and ability estimates. As Hambleton and Swaminathan 
(1991) explained, the IRT estimate of an examinee’s ability 
does not depend on a particular sample of test items.  Also, 
the precision of ability estimates is known, and free to vary 
from one examinee to another (Baker, 2001). However, as 
Bergan (2010) reports, IRT model selection is often based 
solely on philosophical considerations rather than empirical 
tests. In general education policies dictate the choice of IRT 
model which results in a danger of misinterpretation of the 
data being analyzed as measures of relative fit are ignored 
(Brown, Templin & Cohen, 2015). Therefore, it is imperative 
to compare relative fit of competing models to avoid mis-
leading interpretations about the data and making wrong 
decisions about test takers’ performance.
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IRT Models

Many different approaches have been developed to cal-
ibrate items in the IRT framework. The current study fo-
cuses on item calibrations based on the 1-, 2-, and 3- Pa-
rameter Logistic Models (1PL, 2PL, 3PL), the Generalized 
Partial Credit Model (GPCM), and the Graded Response 
Model (GRM). The roots of the 1PL model were introduced 
by a Danish mathematician, Georg Rasch. He demonstrat-
ed that item difficulties and examinee ability are sufficient 
statistics for measurement and introduced the Rasch 
Model (Rasch, 1960).  In the 1PL model which was devel-
oped based on the Rasch’s work, the probability of getting 
a correct response is plotted as a function of ability.

where θj is the ability and βi is the difficulty parameter.  The 
letter e is the base of natural logarithms (e≈ 2.118) and the 
1.7 in the exponent lets the logistic function approximate 
the normal function (Warm, 1978). Although Rasch Mod-
el and 1PL are philosophically different (Andrich, 2004; 
Linacre, 2005), the differences between them are not in 
the scope of the current study. The 1PL model assumes 
an equal discrimination among all items, and a guessing 
parameter is not included in the model as it assumes that 
ability parameter is the sufficient statistic to compare in-
dividuals taking a particular test (Baghei and Carstensen, 
2013). The two-parameter model was developed by Lord 
(1952) based on cumulative normal distribution. Birn-
baum (1968) replaced the two-parameter logistic function 
with the two-parameter normal ogive function to model 
item characteristics (Hambleton, Swaminathan & Rogers, 
1991). He modeled the probability of getting a correct re-
sponse as a function of difficulty and discrimination pa-
rameters.

where αi is the discrimination parameter.

Birnbaum (1968) modified the 2PL model by adding a pa-
rameter that represents the contribution of guessing to 
the probability of correct response (Baker, 2001). That is, 
the probability of correct response depends on guessing 
besides difficulty and discrimination in the 3PL model.

where ci is the guessing parameter. 

The partial credit model (PCM) was introduced in 1982 by 
Masters, who decomposed the response to an item into 
a series of ordered pairs of adjacent categories, then ap-
plied a dichotomous model to each pair assuming equal 
discriminations across the items (De Ayala, 2009). On the 
other hand, Muraki (1992) extended the equal discrim-
ination assumption and applied the 2PL model to poly-
tomously scored items and introduced the GPCM. This 
model assumes that the probability of choosing the kth cat-
egory over the (k-l)th category is expressed as the logistic 
dichotomous response model (Muraki, 1992), expressed 
as,

where, k represents the n= 2, 3, ….m, which are the re-
sponse options.  The GPCM is, then, written as

and

where, D is a scaling constant (1.7) that sets the θ in the 
same metric as the normal ogive model, bjk is an item cat-
egory, and bj  is an item location parameter. While bj rep-
resents the slope, dk is the category parameter (Muraki, 
1993). 

GRM was developed by Fumiko Samejima (1969).  With-
in the GRM, the b-parameter for each response category 
indicates the probability of an examinee whose θ is equal 
to the value of location parameter (b), scoring x or higher 
is 50% on the CCRF (Tang, 1996). Samejima modeled the 
probability of a person responding in category k or higher 
versus responding categories lower than k as

where, P*
ix (θ) is the cumulative category response function 

(CCRF) representing the probability of scoring x or above 
on item i by an examinee with the proficiency level of θ.   
Probability of each score category is as follows:

and the score category response function (SCRF) of the 
GRM can be written as

The Partial Credit and Generalized Partial Credit Models 
are generalized from the dichotomous IRT models to de-
scribe an examinee’s probability of selecting a possible 
score category among all score categories. Dichotomous 
IRT models describe how likely individuals at a certain abil-
ity level reach the score category k rather than k-1. So, k 
and k-1 categories of polytomously scored items can be 
viewed as dichotomous categories.  While the Partial Cred-
it Model assumes that discrimination indices of all items 
are constant, the Generalized Partial Credit Model releas-
es them free. These differences between the PCM and the 
GPCM are similar to those between the Rasch or the 1PL 
and 2PL models (Tang & Eignor, 1997). GRM, on the oth-
er hand, assumes that the boundary parameters of the 
categories are ordered. That is, each score category has 
a point where the probability of that category is highest.

Method

To realize the aims of the study, different IRT models were 
applied on the data collected form 2351 fourth grade stu-
dents in 35 elementary schools in Turkey. The exam was 
part of a formative assessment initiative. Twenty five sci-
ence items were asked to all participants, 14 of which were 
scored dichotomously and the remaining 11 were scored 
polytomously.

Before the items were written, 10 science teachers were 
selected as item writers based on school administrators’ 
references and peer ratings about their teaching quality.  
A two-day training on item-writing was provided to teach-
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ers by two educational measurement specialists. Seventy 
five items were generated by those item writers and 25 
items were selected based on content validity indicators 
set in accordance with the 4th grade science curriculum.  
The two educational measurement specialists participated 
in the item selection process along with the item writers.  
After the selection process, answer keys for each item 
was prepared by three item writers and the two special-
ists. During this process, possible and plausible answers 
for the graded items were prepared and a detailed rubric 
was developed. After the implementation of the exam, 
constructed response items were coded 0 if the answer 
was incorrect.  It is coded as 1 if the answer was partially 
correct, 2 if it was correct, and number 9 was used to sym-
bolize unattempted items.

After data collection, all answer sheets were graded by at 
least two teachers who also participated in the item writ-
ing process. In case there were discrepancies between 
the ratings of an item, the raters convened, discussed, 
and decided on the final mark.  After the data collection, 
the dichotomous items were calibrated utilizing the 1PL, 
2PL, and 3PL models, and the constructed response items 
were calibrated through GPCM and GRM.  Then, all items 
were calibrated concurrently using mixed models.  After 
estimating a model, it was compared with a competing 
more complicated better fitting one. Model selection was 
based on RMSEA, -2LL, number of unfitting items and item 
fit statistics as more parsimonious model is preferable. 
Violating the principle of parsimony creates unnecessarily 
complicated models and reduces predictions about new 
data sets (Kang, Cohen & Sung, 2009).

Results

Before performing analysis with IRTPRO (Cai, du Toit & 
Thissen, 2011), the unidimensionality assumption was 
tested by performing a categorical confirmatory factor 
analysis (Cat-CFA) with Mplus (Muthen & Muthen, 2012).  
A χ2 value of 1549.42 with a 275 degrees of freedom in-
dicated a poor fit (p< .01); however, it is known that Chi-
square is affected by the sample size and this result is not 
surprising.  An investigation of TLI (NNFI) (.90) and CFI (.91) 
results indicated a reasonable fit (Hu & Bentler, 1999).  In 
addition, an obtained RMSEA value of .04 represented a 
good fit (Steiger, 2007).  Therefore, the data set was con-
sidered unidimensional.

The first step of the IRT analysis in the current study was 
calibrating the MC and CR items separately and determin-
ing the number of misfitting items. Orlando and Thissen’s 
(2000, 2003) S-X2 statistics were computed to evaluate item 
misfits throughout the study. This statistic was originally 
developed for dichotomous IRT models and was found to 
perform better than the traditional item-fit statistics.  S-X2  
was generalized to the polytomous models by Kang and 
Chen (2008, 2010). Dichotomously scored 14 items were 
calibrated with the 1PL, 2PL, and 3PL models. Table 1 be-
low includes the results of the analyses.

Table 1. Comparison of 1PL, 2PL, and 3PL Models

1PL 2PL 3PL

RMSEA .05 .04 .04

Marginal Reliability .56 .57 .62

-2LL 33170 33111.03 33037.58

Number of Misfitting Items 2 1 0

As seen above, the 1PL, 2PL, and 3PL models fit the data 
well based on the RMSEA statistics, each of which has an 
RMSEA value of .05 or less, indicating a close approximate 
fit (Kline, 2005).   However, the reliability statistics were 
considered low, which may be due to the small number 

of items.  It is important to note that although marginal 
reliability in the IRT framework is similar to the reliability 
in the CTT framework in that it is a measure of the overall 
test, marginal reliability is based on the average condition-
al standard errors at various levels on the measurement 
scale (Geen, Bock, Linn, & Reckase, 1984). Marginal relia-
bility can be expressed as

in which  is the conditional error variance and  
is the population density (Florida Department of Educa-
tion, 2015). The literature suggests that the deviance test 
based on -2log likelihood (-2LL) statistics can be used to 
assess the model improvement. The difference in the -2LL 
statistic is distributed as a χ2 statistic with the degrees of 
freedom equal to the difference in the number of param-
eters between the two models. If the difference in the -2LL 
is greater than the critical value, the addition of the extra 
parameters contributes significantly to the fit of the model 
(Hambleton, Swaminathan & Rogers, 1991).  The differ-
ence in -2LL between 1PL and 2PL (χ2(13)= 58.97, p< .05) 
was found statistically significant. Similarly, that difference 
between 2PL and 3PL (χ2(14)= 73.45, p< .05) was also signif-
icant. These findings indicate that, as the parameters are 
added, model fit gets better.  Furthermore, while 2 out of 
14 items showed misfit in the 1PL model, 1 item showed 
misfit in the 2PL. All of the items fit the 3 PL model well. Ta-
ble 2 includes detailed information regarding the S-X2 item 
level diagnostic statistics of 14 dichotomous items.

Table 2. S-X2 Item Level Diagnostic Statistics of MC Items

Item
1PL 2PL 3PL

X2 df X2 df X2 df

1 12.98 11 11.51 11 13.10 10

2 21.43 9 18.46 9 5.13 9

4 17.87 10 16.26 10 15.92 9

6 28.82* 10 22.13 10 9.37 10

7 19.54 11 15.59 11 15.26 10

8 19.61 11 19.13 11 20.52 10

10 15.46 11 16.01 11 8.39 10

13 21.03 10 21.41 10 21.34 10

16 8.22 9 9.49 8 2.94 7

18 43.64* 11 27.62* 11 13.38 10

19 15.80 10 15.41 10 11.70 9

20 11.66 11 11.29 10 10.62 9

22 19.22 11 19.52 11 17.62 10

24 21.38 11 20.03 11 17.74 10
*p< .01

An investigation of item difficulties help one see how those 
values change as the model improves. As seen above, fit 
statistics increase significantly as the parameters are add-
ed. When Table 3 is examined it is seen that not only item 
difficulties but also order of the items based on their diffi-
culty values are changed dramatically. For example while 
item 16 is the most difficult item when 1PL or 2PL is the 
model of choice, it is the fourth difficult one in 3PL model.

Considering RMSEA values, it might seem logical not to 
compare models and conclude that 1PL fits the data con-
siderably well, further analysis of -2LL statistics on mod-
el improvement it is seen that not only the 3PL model is 
preferred over the 1PL and 2PL, it can be concluded that 
the difficulty values obtained for the first two models are 
misleading. Recall that difficulty parameter represents the 



542

June 2019, Volume 11, Issue 5, 539-545

proportion of examinees who respond correctly in 1PL, it 
represents that proportion after accounting for item-spe-
cific discrimination and guessing parameters (Bergan, 
2010). After analyzing the MC items, the remaining 11 CR 
items in the test were analyzed through Muraki’s GPCM 
and Semajima’s GRM. As provided in Table 4, the fit statis-
tics based on those two models are similar.

Table 3. Difficulty Parameters and Order of Items Based 
on Their Difficulties

Item
1PL 2PL 3PL

b Order of 
Difficulty b Order of 

Difficulty b Order of 
Difficulty

1 -2.92 12 -2.62 14 -2.84 14

2 0.73 2 0.87 2 1.36 1

4 -3.03 13 -2.58 11 -2.54 11

6 0.13 3 0.17 3 1.12 2

7 -1.99 9 -2.59 13 -2.56 12

8 -2.64 11 -2.14 1 -2.17 10

10 -1.31 6 -1.28 6 -0.31 6

13 -0.65 4 -0.75 4 0.91 5

16 1.04 1 0.88 1 0.94 4

18 -1.06 5 -1.74 8 1.04 3

19 -1.46 7 -1.19 5 -1.15 7

20 -1.77 8 -1.56 7 -1.57 8

22 -2.09 1 -1.80 9 -1.80 9

24 -3.16 14 -2.58 12 -2.71 13
*p< .01

Table 4. Comparison of GRM and GPCM

GRM GPCM

RMSEA .04 .05

Marginal Reliability .78 .77

-2LL 44509.85 44564.98

Number of Misfitting Items 3 3

Although RMSEA was computed as .05, indicating a good 
overall model fit, three items had poor fit statistics at .01 
level when GPCM was used to conduct the analysis.  A re-
liability value of .77 is considered to be acceptable.  When 
the same 11 CR items were analyzed through Samejima’s 
Graded Response Model (GRM), an RMSEA of .04 and a re-
liability of .78 indicate a slightly better overall fit than that 
of the GPCM. Both models had 3 misfitting items. Item sta-
tistics are provided in Table 5 below.

As the second step of the IRT analyses, all the MC and CR 
items were calibrated simultaneously and fit indices were 
examined to compare different models. The results of 
those analyses are given below.

Table 6 shows that the data have acceptable RMSEA and 
marginal reliability statistics in all combined models.  The 
1PL, 2PL, and 3PL models combined with GRM and GPCM 
fit the data well based on the RMSEA statistics.  That is, 
when dichotomous and polytomous items are analyzed 
together in the current achievement test, both GRM and 
GPCM can be chosen. 

Table 5. S-X2 Item Level Diagnostic Statistics for Polyto-
mous Items

Item
GRM GPCM

 X2 df X2 df

3 47.11 34 38.76 33

5 60.61* 32 54.41* 31

9 38.43 35 39.80 34

11 34.47 33 42.06 32

12 42.63 32 66.51* 31

14 33.73 32 39.97 32

15 37.00 32 45.54 33

17 55.07* 32 48.00 32

21 46.42 32 44.05 32

23 68.39* 34 87.18* 34

25 41.61 35 43.68 34
*p< .01

A close look at the differences in -2LL statistics revealed 
that, as more parameters are added to the model, fit gets 
better. The -2LL difference between the 1PL and the 2PL 
(χ2(13)= 545.05, p< .05) was significant; however, the dif-
ference between the 2PL and the 3PL was not (χ2(14)= 
13.62, p> .05) if GRM is used for the CR items.  Similar-
ly, -2LL statistics difference between the 1PL and the 2PL 
(χ2(13)= 287.95, p< .05) was significant; however, between 
the 2PL and the 3PL (χ2(14)= 13.42, p> .05), the difference 
was not significant when GPCM is used for the CR items. 
These preliminary results suggest that when dichotomous 
and polytomous models are combined in the same test, 
GRM and GPCM produce similar results. That is, consider-
ing the overall model fit statistics, after one decides which 
polytomous model will be used; s/he can choose the 2PL 
or 3PL model for the dichotomously scored items. Yet, 
one should take the item statistics in consideration before 
making the final decision regarding the model. Table 7 
provides item-level fit values for all combined models.

As Table 7 displays, out of 25 items, 8 items misfit the 1PL, 
4 items misfit the 2PL models, and 3 items misfit the 3 PL 
model when GRM is the model of choice for polytomous 
items.   On the other hand, 8 out of 25 items displayed 
misfit when the 1PL is applied to the dichotomously 
scored items when GPCM is the model of choice for the 
polytomous ones.  This number went down to 6 in the 2PL 
and to 4 in the 3 PL model with the combination of GPCM.  
When the item diagnostics regarding the MC items are ex-
amined, it is seen that items 2 and 7 do not fit under any 
combined models.  Item 6 fits all the models except when 
the GRM or the GPCM is combined with the 1 PL.  Item 13 
fits all the models except when the GRM is combined with 
the 1PL, and the item 18 fits all the models except when 
the GRM or the GPCM is combined with 3PL.  There are 
three CR items displaying misfit under different models.  
The fit statistics of the item 12 appear to be acceptable 
only when the GRM is combined with the 2PL or the 3PL.  
Item 14 is considered as misfitting like item 18 when the 
GRM is combined with the 1PL.  Item 23 does not fit when 
the GPCM is combined with the 2PL or the 3PL. Based on 
the item level statistics, it can be concluded that the data 
have best fit statistics when the 3PL and GRM models are 
combined.

Table 6. Model Fit Statistics of Combined Models

1PL & GRM 1PL & GPCM 2PL & GRM 2PL & GPCM 3PL & GRM 3PL & GPCM

RMSEA .05 .04 .04 .04 .04 .04

Marginal Reliability .80 .80 .82 .82 .82 .82

-2LL 77330.80 77112.34 76785.75 76824.39 76772.13 76810.97

Number of Misfitting Items 7 8 4 6 3 4
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Since the GRM and the GPCM are not nested models, tra-
ditional model comparison statistics, such as comparing 
-2LL differences, are not appropriate to decide whether a 
combination of the 3PL and GRM or the 3PL and GPCM 
models provide better fit for the data used in this study.  
On the other hand, it is possible to use Akaike's Informa-
tion Criterion (AIC: Akaike, 1974) and Schwarz's Bayesian 
Information Criterion (BIC: Schwarz, 1978) for this purpose 
(Kang, Cohen, & Sung, 2005).  As both GRM and GPCM 
models have the same number of parameters (Bartolucci, 
Bacci, & Gnaldi, 2015), it is logical to compare them utiliz-

ing AIC and BIC.  Although significance tests are not avail-
able with these statistics, they provide estimates of the 
relative differences between the two options.

AIC and BIC statistics were computed as 76960.97 and 
77393.23 respectively for the combination of the 3PL with 
the GPCM; on the other hand, an AIC of 76920.13 and a 
BIC of 77346.63 were obtained when the GRM was select-
ed with the 3PL model for the dichotomous items, which 
can be considered as a sign that supports the conclusion 
that the combination of the 3PL and GRM models has a 

Table 7. S-X2 Item Level Diagnostic Statistics for All Items

Items
1PL&GRM 2PL&GRM 3PL&GRM 1PL&GPCM 2PL&GPCM 3PL&GPCM

X2 df X2 df X2 df X2 df X2 df X2 df

1 35.83 26 28.69 25 28.65 24 31.15 26 28.73 25 28.69 24

2 89.85* 24 48.06* 26 48.04* 25 75.22* 26 48.19* 26 48.18* 25

3 68.77 49 68.17 49 67.63 49 53.85 47 53.99 47 53.55 47

4 36.66 26 36.73 26 36.73 25 34.70 25 36.74 26 36.76 25

5 83.45* 49 76.67* 47 75.38* 46 76.33* 48 70.04* 45 69.92 45

6 97.52* 25 42.55 28 33.74 27 68.36* 25 42.39 28 33.86 27

7 76.48* 27 50.72* 28 50.48* 27 60.94* 27 50.94* 28 50.70* 27

8 38.01 26 26.75 25 26.55 24 49.48* 26 26.67 24 26.45 23

9 52.33 47 52.06 47 51.91 47 55.57 48 51.32 47 51.26 47

10 37.28 27 28.39 28 28.40 27 28.53 27 28.44 28 28.51 27

11 73.48 48 46.78 45 46.60 45 59.63 46 53.24 46 53.11 46

12 94.30* 51 66.12 47 66.22 47 95.18* 49 87.58* 45 87.77* 45

13 64.41* 26 30.75 28 30.73 27 45.39 26 30.77 28 30.75 27

14 78.14* 48 42.36 43 42.05 43 69.66 45 53.50 44 53.16 44

15 68.54 49 40.65 44 39.63 43 48.04 46 47.08 45 47.19 45

16 30.63 24 29.25 24 29.28 24 30.24 25 29.54 24 30.27 24

17 68.61 44 64.22 43 63.97 43 61.76 44 64.07 44 63.84 44

18 136.53* 27 51.17* 28 41.38 27 102.20* 27 51.03* 28 41.37 27

19 25.00 27 21.04 27 21.10 26 21.10 27 21.09 27 21.15 26

20 43.58 27 36.47 28 36.43 27 37.43 28 36.56 28 36.51 27

21 64.76 46 58.70 44 59.00 44 62.03 44 61.46 44 61.62 44

22 28.45 26 27.89 26 27.91 25 31.87 27 27.90 26 27.91 25

23 67.58 52 61.73 48 61.61 48 77.30* 47 75.05* 47 74.95* 47

24 26.71 25 25.77 25 25.76 24 25.63 25 25.78 25 25.76 24

25 60.69 50 63.48 52 63.78 52 73.98 49 68.48 52 66.35 51
*p< .01

Figure 1. Total Information Functions and Standard Errors Obtained Through Final Models
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better model fit than that of the 3PL and the GPCM. A fur-
ther analysis of total information functions and standard 
errors would show the difference between the two com-
peting choices.

Above graph compares the test information functions 
and corresponding standard errors. Combination of 3PL 
and GRM models provide higher information with lower 
standard errors as the ability of test takers get closer to 
the lower end and higher end of the theta distribution. On 
the other hand, the combination of 3PL and GPCM models 
provides slightly more information for the students with 
ability level close to the mean.

General Discussion

The goal of this study was to assess the changes in fit 
statistics when dichotomous and polytomous items were 
calibrated separately and concurrently. The 1PL, 2PL, and 
3PL IRT models were applied to dichotomously coded MC 
items, and it was seen that, in general, as the parameters 
are added to the model, fit statistics get better. When the 
GPCM and GRM models are compared, the GRM is the 
model of choice for the analyzed data due to higher re-
liability and lower RMSEA and -2LL statistics. The results 
show that multiple choice and constructed response items 
can effectively be used in the same test when the data are 
analyzed through IRT models.

It is seen that 1PL&GRM and 1PL&GPCM have the same 
number of misfitting items; however, 2PL&GPCM has 
more misfitting items than 2PL&GRM.  In addition, 3PL&G-
PCM has more misfitting items than 3PL&GRM.  RMSEA 
statistics are (.04) the same for all combinations except for 
the 1PL&GRM (.05). Reliabilities are the same (.82) for all 
the combined models except for 1PL&GRM and 1PL&G-
PCM (.80).

Considering the reliability statistics, the change in the 
number of misfitting items and RMSEA statistics, the most 
promising combination is 3PL&GRM for the data utilized 
in this research. The findings support the conclusions 
reached by Sykes and Yen (2000), who reported substan-
tially more items not fitted when the 1PL is combined with 
polytomous response models than 3PL.  On the other 
hand, the findings of current study do not fully confirm 
the findings of Chon, Lee and Ansley (2007), who stated 
that the 3PLM and GPCM models tended to fit the mixed 
format data best.

This study serves as a promising step in the utilization of 
combined models in elementary school tests. More stud-
ies are needed to discover the applicability of such analy-
ses in different subjects, such as literacy and mathematics.  
As indicated previously, the data used in this study are un-
idimensional.  In real situations, it is likely to have a mul-
tidimensional data set. Therefore, further studies should 
be conducted on such data sets. Although misfitting items 
are determined, the reason for the misfit is out of the 
scope of the current study.  Further studies using effect 
sizes to quantify the misfits and exploring the reasons for 
the misfit are encouraged.
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