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a Global Ecology | Partuyarta Ngadluku Wardli Kuu, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia 
b ARC Centre of Excellence for Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia 
c The Bio-Protection Research Centre, Lincoln University, PO Box 85084, Christchurch 7648, Canterbury, New Zealand 
d School of Agriculture, Food, and Ecosystem Sciences, University of Melbourne, Parkville 3010, Victoria, Australia 
e Department of Biology, McGill University, Montreal, Quebec, Canada 
f Bieler School of Environment, McGill University, Montreal, Quebec, Canada 
g University of Southern Denmark, Department of Sociology, Environmental and Business Economics, Esbjerg Ø, Denmark 
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A B S T R A C T   

While data on biological invasions and their economic toll are increasingly available, drivers of susceptibility to 
damage and cost-effectiveness of management in reducing long-term costs remain poorly understood. We used 
data describing the damage costs of, and management expenditure on, invasive species among 56 nations be-
tween 2000 and 2020 reported in the InvaCost database to test the overarching hypothesis that higher-income 
nations and those with higher trade volume have a higher efficiency to limit the damage incurred by invasive 
species by spending relatively more on management. We also tested whether nations with (i) more corruption 
have a reduced capacity to manage invasive species, leading to relatively higher damage costs, (ii) more educated 
citizens or greater technological and scientific output allow for improved incentives and ability to manage 
invasive species, thereby reducing relative damage costs, and (iii) economies based on higher primary resource 
dependencies (e.g., agriculture) are at greater risk of incurring high costs of invasive species, and so all other 
conditions being equal, have higher relative damage costs compared to management expenditure. By focusing on 
the ratio between damage costs and management expenditure, we analyse the willingness of countries to invest 
in management as a function of the extent of the damage suffered. We show that economic activity, measured by 
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the volume of trade, is the main determinant of this ratio — the greater the volume, the smaller the ratio. We also 
found a higher rate of increase in the damage:management ratio as a country’s proportion of total land area 
devoted to agriculture increased, suggesting that a higher economic dependency on agriculture predisposes a 
country to greater damage costs from invasive species over time. When considering the proportion of total costs 
identified as damage-related, results indicated that higher government investment in education produced higher 
proportional damage, and lower corruption and lower trade volume both reduced proportional damage. Our 
overall results suggest that wealthier nations with high per-capita imports of goods and services are more sus-
ceptible to damage, but also have a greater capacity to reduce it, and are therefore less threatened by biological 
invasions than countries with fewer resources and lower imports.   

1. Introduction 

There have been considerable recent advances in assessing the costs 
of invasive species on national economies (Ahmed et al., 2023). Invasive 
species have been estimated to cost US$423 billion annually at the 
global scale (Intergovernmental Platform on Biodiversity and Ecosystem 
Services, 2023), doubling approximately every six years (Diagne et al., 
2021; Henry et al., 2023). The rising number of new species in-
troductions as a result of increasing trade of goods and services is 
partially to blame for the rise in economic impacts over time (Chapman 
et al., 2017; Hulme, 2009; Perrings et al., 2005; Seebens et al., 2021; 
Seebens et al., 2017; Turbelin et al., 2022; Westphal et al., 2008), as well 
as the observed and expected expansion of the ranges of many invasive 
species — especially invertebrates — from drivers of global change such 
as climate disruption (Bellard et al., 2013). 

Researchers and practitioners recognise that early prevention and 
control is cost-effective because management becomes increasingly 
difficult and thus more costly as invasions progress (Ahmed et al., 
2022b; Haubrock et al., 2022; Leung et al., 2002). The direct and indi-
rect damage caused by invasive species can take many forms, including 
reduced agricultural yields (Stenseth et al., 2003), damage to infra-
structure (Bradshaw et al., 2016), and health effects (Jones, 2019; Jones 
and McDermott, 2018), with the total cost of damage exceeding the cost 
of managing invasive species globally by an order of magnitude (Cuth-
bert et al., 2022). Early management should therefore reduce relative 
future damage, although there are likely social and political factors that 
lead to predictable variation in the extent to which this occurs. Identi-
fying these factors is important to demonstrate support for cost-effective 
management regimes, whereby proactive or reactive management 
intervention efficiently reduce damage costs and highlight where im-
provements can be made. However, there is little information on which 
countries adopt cost-effective management in terms of magnitude and 
timing, the political and socio-economic profiles that drive in-
terventions, and the extent to which management efficiently reduces the 
costs of future damage. In principle, lower-income countries should 
have fewer financial resources and therefore, less capacity to invest in 
management, fewer physical capital assets to damage, but also poten-
tially more corruption that weakens their capacity to manage invasive 
species (Latombe et al., 2023). Conversely, higher-income countries 
could be more inclined to early management, but can also be expected to 
have better ‘reactive’ capacity (Early et al., 2016) to limit relative 
damage from invasive species (Lira-Noriega and Soberón, 2015; 
McDermott et al., 2013). 

To test these hypotheses, we analysed the ratio between the total 
recorded cost of damage (D) arising from invasive species and expen-
diture on their management (M) at a national scale. The larger this ratio 
(D:M), the higher the relative management expenditure compared to the 
damage costs incurred in any given country. Examining which main 
political and socio-economic factors best explain variation in the D:M 
ratio among countries can therefore indicate the most likely drivers of 
management intervention. The D:M ratio can decrease by increasing a 
country capacity to manage invasions (increasing M), or by decreasing 
its susceptibility to damage (decreasing D). The advantage of analysing 
the factors explaining variation in the D:M, rather than those 

determining gross management costs, is to overcome the inevitable 
positive correlation between national wealth and investments in 
invasive-species management (Early et al., 2016; Hulme, 2009; Paini 
et al., 2016). For example, if a high-income nation experiences greater 
damage costs from invasive species because of the high value of its as-
sets, yet it invests in managing this threat at the same relative proportion 
of its total wealth as a lower-income nation with less valuable assets, the 
D:M ratios for the two nations would be the same. 

The challenge is to identify and test which socio-economic measures 
indicate the relative capacity to manage the economic threat of invasive 
species. We therefore identified the following measures to test compo-
nents of the main hypothesis. (1) We first predict that higher-income 
nations — measured as per-capita gross domestic product and impor-
tation of goods and services (Hudgins et al., 2023) — have greater ca-
pacity to respond to biological invasions (i.e., financial, capital, and 
human resources available, plus political and cultural (Reo and Ogden, 
2018) priorities, to manage invasive species), and so should demonstrate 
lower D:M compared to lower-income nations. (2) Next, we hypothesise 
that D:M will be higher for countries with more corruption because they 
have lower capacity to manage invasive species relative to countries 
with less corruption. (3) We also predict that countries with more 
educational attainment and greater technological and scientific output 
have lower ratios because of factors including greater access to knowl-
edge and tools that enhance management cost-effectiveness, and public 
acceptance (e.g., Drummond and Fischhoff, 2017) of management 
measures, among others. From the perspective of susceptibility to the 
damage caused from invasive species, we also predict that (4) countries 
more dependent on primary production (e.g., agriculture) for their 
economic output will be more at risk of incurring damage costs from 
existing and future biological invasions, and so all other conditions 
being equal, will have higher D:M. 

Because the D:M can also vary given time lags (years; decades) be-
tween actions and outcomes (Pendergast et al., 2015; Tobin et al., 2011), 
we also analysed the determinants of the rate of change of the D:M over 
time as an indicator of the cost effectiveness of early management. This 
is because a country with high management expenditure at time t should 
have reduced damage costs in the future, t + 1, and thus a ratio that 
decreases over time because management expenditure typically reduces 
alongside lower damage costs. Although in practice the temporal trend 
in the ratio might reveal other information than the cost effectiveness of 
early management (for example, costs might lag behind increasing 
population sizes of established invasive species), we predict that nations 
with higher capacity should have decreasing rates of D:M over time. 

2. Data and methods 

2.1. Standardising and comparing costs 

Using the InvaCost database (Diagne et al., 2020b) available from the 
invacost package (Leroy et al., 2020) in R (R Core Team, 2023), we 
compiled all derived annual costs (in 2017 US$; column ‘Cost_estima-
te_per_year_2017_USD_exchange_rate’) by country from 2000 to 2020 
(observed, highly reliable costs only, meaning that these costs were 
realised or empirically incurred within the invaded habitat and that they 
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originate from peer-reviewed articles and official reports, or grey ma-
terial but with documented, repeatable and traceable methods). We 
chose this period as a trade-off between maximising the number of years 
and cost data available for the highest number of countries to include in 
our sample. To make costs comparable, we applied the expandYearly-
Costs function in the invacost package using the fields ‘Proba-
ble_starting_year_adjusted’ and ‘Probable_ending_year_adjusted’ to 
expand costs through their probable duration (Leroy et al., 2022) 
(therefore, we retained costs from before 2000 expanded into that year, 
but removed expanded costs prior to 2000). 

To account for different sampling rates among countries and time 
periods (we excluded countries without recorded damage cost or man-
agement expenditure data), we divided the 20-year period into 3-year 
intervals, and then resampled (with replacement) each interval based 
on the maximum number of cost estimates within the expanded data-
base for any 3-year interval for that country between 2000 and 2020. 
Resampling was necessary to standardise the number of cost and 
expenditure estimates available across countries. We then took the 
median (± 95% confidence limits) annual values per category (damage 
costs or management expenditure based on the column ‘Type_-
of_cost_merged’) per interval and calculated the ratio of the two quan-
tities (i.e., D:M). From these intervals, we calculated a bootstrapped 
(10,000 samples) median ratio based on all data for each country over 
the entire 20-year interval. We also calculated the proportion of the total 
reported costs identified as ‘damage’ as a separate response variable. 

2.2. Temporal trends in relative damage costs and management 
expenditure 

We first describe seven plausible scenarios of temporal change in D: 
M (Fig. 1a,b). Under the assumption of increasing management expen-
diture over time, D:M declines at an increasing rate from a situation of 
weakly increasing damage costs (Scenario 1) to rapidly declining dam-
age costs (Scenario 4; Fig. 1a). When assuming constant management 
expenditure over time (Fig. 1b), D:M shifts from an increase over time 
when damage costs are increasing slowly (Scenario 5), to a rapidly 
decreasing trend when damage costs decrease rapidly (Scenario 7). As 
such, the mean rate of change of D:M, calculated as the median 
instantaneous exponential rate of change (r) over all 3-year intervals per 
country: 

rt = loge
(D : M)t+1

(D : M)t  

where t = any 3-year interval, becomes increasingly negative assuming 
an increasing management expenditure, or from positive to increasingly 
negative assuming constant management expenditure (Fig. 1c). We do 
not consider the rare cases where management expenditure decreases 
over time, considering the prevalent lack of cost-effectiveness in present 
day-management given the general trend in reactive rather than pro-
active management and spending (Epanchin-Niell and Hastings, 2010; 
Lodge et al., 2006; Simberloff et al., 2013). 

Different nations will likely have different starting points along the 
D:M trajectory for the interval of interest due to their unique invasion 
histories, so differences in D:M itself among nations might not 

Fig. 1. Relative scenario schematic for hypothesis testing. (a) Assuming management expenditure is increasing over time, the damage cost:management expenditure 
ratio (D:M) declines slowly when damage costs increase slowly (Scenario 1), with increasingly rapid declines in D:M as damage costs either remain constant (—; 
Scenario 2), decrease slowly (Scenario 3), or decrease rapidly (Scenario 4). In all four scenarios, management expenditure is cost-effective for reducing relative 
damage costs, but at increasing rates. (b) Assuming management expenditure remains constant over time, D:M increases when damage costs increase slowly over 
time (Scenario 5), or D:M decreases slowly when damage costs decline slowly (Scenario 6), or rapidly when damage costs decrease rapidly (Scenario 7). Only in the 
latter scenarios (6, 7) is management cost-effective for reducing relative damage costs. (c) The mean rate of change (rt = loge([D:M]t+1 / [D:M]t)) of D:M declines 
monotonically from Scenarios 1–4 (management expenditure increasing), and from Scenarios 5–7 (management expenditure constant). 
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necessarily reveal the whole picture of inter-country differences in the 
capacity to manage invasions. However, the rate of change in D:M 
should control for the potential differences where any given nation be-
gins its D:M trajectory. We also considered an additional response — the 
proportion of total costs arising from damage — to test our hypotheses, 
with the proviso that proportional data often compromise linear models 
because of inflation of variance at the extremes (near 0 or 1). 

2.3. Hypothesis-testing framework 

Given the small sample size of countries with cost and national-scale 
socio-economic data available in InvaCost, we split our hypothesis 
framework into three phases from which we selected the most supported 
correlates and then combined these into a final analysis phase. 

Phase 1: This phase analyses whether a country’s economic activ-
ities, health capacity index, and corruption affect management perfor-
mance. We first predict that D:M would decline as per-capita wealth 
(gross domestic product), per-capita imports of goods and services, and 
global health security (ability to deal with infectious disease outbreaks) 

increases, and that D:M would increase as its corruption declines 
(Fig. 2a). Or, one can hypothesise that increasing management expen-
diture is cost-ineffective for reducing D:M (Fig. 2b), or even that coun-
tries with less capacity to manage invasive species have lower gross 
domestic product and so invasive species do less relative damage 
(Fig. 2c). For each country, we took the median r for the available time 
series (i.e., countries with declining D:M over time have lower r 
compared to countries with stable or increasing D:M over time). 

We obtained the relevant data to test these hypotheses from the 
following sources: World Bank (data.worldbank.org) — per-capita gross 
domestic product (GDP) and per-capita imports of goods and services 
(mean of last five years); Global Health Security Index (ghsindex.org); 
Transparency International (transparency.org) — 2021 corruption 
perception index. We also considered another metric of trade (container 
port traffic), but there were too few data to provide reliable sample sizes. 

Phase 2: This phase encompasses a country’s reliance on and 
engagement in primary production. We predict that countries with a higher 
reliance on primary production (agriculture, fisheries, and forestry) 
have a higher D:M (primarily due to a higher proportion of costs arising 
from damages by invasive species) than those with a more diverse 
economic portfolio incorporating secondary and tertiary sectors. In 
essence, this represents a country’s susceptibility to incur direct eco-
nomic losses from biological invasions. We included two different 
metrics of primary production from the following sources: Food and 
Agriculture Organization of the United Nations (fao.org/faostat) — 
value-added net output of the agriculture, fishing, and forestry (primary 
production) sectors (% GDP); and World Bank (data.worldbank.org) — 
proportion of total land area devoted to agriculture. 

Phase 3: This phase includes metrics of a country’s educational and 
research capability. We predict that countries with greater investment in 
education and a higher research output would have lower D:M driven 
primarily from a concomitant higher investment in the management of 
invasive species (higher proportion of management costs) than countries 
with lower research investment. We acquired data describing these 
components from the following sources: World Bank (data.worldbank. 
org) — government expenditure on total education (% of gross domes-
tic product) and per-capita number of scientific and technical journal 
articles produced. We also considered including the number of re-
searchers and research and development expenditure per country, but 
there were too many missing data to provide reliable sample sizes. 

2.4. Multiple imputation 

We then applied multiple imputation by chained equations using the 
mice library (van Buuren and Groothuis-Oudshoorn, 2011) in R (R Core 
Team, 2023) to impute any missing values in the predictor variables to 
maintain the highest-possible sample size for subsequent analysis. 
Multiple imputation using this method is robust for up to 75% missing 
values (Takahashi, 2017), and provides stronger inferences than 
ignoring missing data (Nakagawa and Freckleton, 2008). Assuming 
values were missing at random, we employed predictive means match-
ing in the mice function with 500 maximum iterations to impute the 
missing data. There were 56 countries with cost data from InvaCost to 
derive the response variables. For the hypothesised explanatory vari-
ables, we applied multiple imputation to avoid having to delete records 
with missing data — total percent missing values were: 40.9% (value- 
added primary production); 34.8% (corruption perception index); 
29.3% (global health security index); 15.2% (imports of goods and 
services); 14.1% (government expenditure on education); 11.6% (per- 
capita scientific and technical journal articles); 6.9% (% agricultural 
land); and 5.4% (per-capita gross domestic product). We then trans-
formed and scaled each component variable as follows: log10 of the 
scaled (not centred) (i) D:M, (ii) per-capita gross domestic product, (iii) 
per-capita imports of goods and services, and (iv) per capita production 
of scientific and technical journal articles; scaled (not centred) logit of 
the proportions for (i) damage costs, (ii) agricultural land, (iii) value- 

Fig. 2. Schematic for hypothesis testing. With the mean ratio of damage cost: 
management expenditure (D:M) per country, (a) the first hypothesis is that 
nations with higher ‘capacity’ to manage invasions and/or lower susceptibility 
to invasions have lower damage costs relative to management expenditure 
(black dots represent individual countries). In contrast, (b) higher capacity and/ 
or lower susceptibility is cost-ineffective at reducing D:M. The third contrasting 
hypothesis in (c) predicts that nations with the lowest ‘capacity’ and/or highest 
susceptibility have fewer resources to be damaged, so D:M would in fact in-
crease with capacity. 
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added primary production, and (iv) government expenditure on educa-
tion; and scaled (not centred) (i) corruption perception index and (ii) 
global health security index. 

2.5. Models to test hypotheses 

Using the imputed and transformed dataset, we first built a set of 
general linear mixed-effects models with different combinations of the 
best-supported predictor variables from each of the three phases because 
we suspected potential non-independence among the country values (i. 
e., similarity among countries within a region). We used the lme4 
package (Bates et al., 2013) in R (R Core Team, 2023), coding a random 
effect according to continental region — North America & Caribbean (n 
= 6 countries); South America (n = 8); Africa (n = 9); Europe and Middle 
East (n = 18); Asia & Oceania (n = 15) — to account partially for spatial 
non-independence (no further subdivision of the random effect is 
possible given inadequate replicates [countries] to do so). We deter-
mined both the evidence for a non-random effect of the variables on D: 
M, as well as the goodness of fit (percent deviance explained per model). 
We ranked all models according to Akaike’s information criterion cor-
rected for small samples (AICc), which not only identifies relative model 
probabilities, it also explicitly reduces the impact of potential collin-
earity among variables by downweighting models containing highly 
correlated predictors (Burnham and Anderson, 2002; Burnham and 
Anderson, 2004). Nonetheless, we also tested for collinearity among 
variables using the check_collinearity function in the performance library 
(Lüdecke et al., 2021) in R (R Core Team, 2023). 

We also built boosted-regression trees (Elith et al., 2008) with the 
imputed dataset using the gbm library (Greenwell et al., 2022) in R (R 
Core Team, 2023) to account for potential nonlinearity in the relation-
ships between the response (D:M, proportion of total costs arising from 
damage, or the D:M rate of change r) and the phase-specific indicators. 
Machine-learning methods such as boosted regression trees are also 
generally insensitive to collinearity among predictor variables (Brei-
man, 2001; Cutler et al., 2007; Dormann et al., 2013; Elith et al., 2008). 
All boosted regressions had a bag fraction = 0.75 and a tree complexity 
= 2, but depending on response and analysis phase in question, the 
learning rate varied between 10− 7 and 10− 4, and the tolerance varied 
between 10− 6 and 10− 4 (see R code at doi: 10.5281/zenodo.10801170 
and https://zenodo.org/doi/10.5281/zenodo.10801170 for test- 
specific values). The general linear mixed-effects models developed in 
the previous section potentially miss sub-regional spatial non- 
independence, so to account for a deeper level of potential non- 
independence, and to quantify uncertainty in the relationships be-
tween the responses and each explanatory variable, we resampled 
countries from the dataset with replacement 1000 times. We then passed 
each resampled dataset to the boosted regression tree algorithm and 
then calculated the 2.5th and 97.5th percentiles for the respective dis-
tribution for each predicted ratio as the uncertainty bounds. We applied 
kappa (κ) limitation to the resampled selections to limit the influence of 
outliers (Bradshaw and Brook, 2016), where we retained only the 
resampled mean ranks within κσ of the overall average mean (κ = 2). We 
then recalculated the average and standard deviation of the mean rank, 
with the process repeated five times. 

Finally, we applied general least-squares models that are designed 
explicitly to account for spatial autocorrelation among spatial units 
(countries, in this case) to the final model set using the gls function in the 
nlme library (Pinheiro et al., 2019) in R (R Core Team, 2023). For each 
country, we coded the centroid coordinates (in latitude/longitude) using 
the rworldmap (South, 2011) and rgeos (Bivand and Rundel, 2021) 
libraries in R (R Core Team, 2023), and determined which within-group 
spatial correlation structure was the top-ranked for the saturated model; 
we therefore ran the models in the final phase as per the general linear 
mixed-effects models. We ranked the ensuing models according to 
wAICc, and calculated relative goodness-of-fit using three different 
pseudo-R2 metrics: McFadden, Cox and Snell, and Craig and Uhler 

(Bradshaw et al., 2019) using the nagelkerke function in the library 
rcompanion (Mangiafico, 2020) in R (R Core Team, 2023). We ran all 
code on the Flinders University High-Performance Computing facility 
DeepThought (Flinders University, 2023), and the R code and data to 
reproduce the analysis are available at doi: 10.5281/zenodo.10801170 
https://zenodo.org/doi/10.5281/zenodo.10801170. 

3. Results 

The expanded database included 22,433 entries, of which 5208 
related to damage costs (sum = US$1.578 trillion) and 16,638 to man-
agement expenditure (US$147.545 billion); 587 were ‘mixed’). Damage 
costs were predominately (90.5%) due to loss of capital and repair of 
damaged goods ($US142.463 trillion), and management expenditure 
was predominately (73.4%) intervention/control (US$108.245 billion). 

There were 56 countries with sufficient InvaCost data to calculate the 
bootstrapped median D:M (Fig. 3). In general, there was evidence for a 
power-law relationship between mean annual damage costs and mean 
annual management expenditure among countries (Fig. 4). However, 
the region-specific slopes and intercepts of this relationship varied 
markedly (Fig. 4), justifying the inclusion of region as a random effect in 
the general linear mixed-effects models. 

We initially anticipated that we would need to control for the 
number of invasive species per country to compare costs among coun-
tries, but we found no relationship between either damage costs or 
management expenditure and the number of reported genera (Fig. S1; 
see also Discussion). For the correlates we considered, the median 

Fig. 3. Map showing distribution of countries included in our analyses, (a) 
their regional classification for the general linear mixed-effects models, and (b) 
their 2021–2022 income category according to the World Bank (data.world 
bank.org). 
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absolute Kendall’s τ across all correlate combinations was = 0.41, and 
the maximum absolute τ was = 0.79 (Fig. S2; Table S1). Per-capita gross 
domestic product and imports of goods and services had the highest 
positive correlation (0.79; Table S1). 

3.1. Damage cost:management expenditure ratio (D:M) 

a. Phase 1: economics/health security/corruption — Per-capita gross 
domestic product was collinear and correlated positively with per-capita 
imports of goods and services (Appendices 1 and 2), so we removed the 
former from all subsequent analyses. The general linear mixed-effects 
models demonstrated support for per-capita imports of goods and ser-
vices, and the corruption perception index, but weak to no support for 
the global health security index in explaining variation in D:M among 
countries (Table S2). The boosted regression tree for Phase 1 also sup-
ported the inclusion of per-capita imports of goods and services and 
much weaker support for the corruption perception index, with a final 
coefficient of variation = 29.4 ± 16.9% for 37,500 trees (Fig. S3). 

b. Phase 2: Reliance and engagement in primary production — Ac-
cording to the general linear mixed-effects models, neither value-added 
%GDP from primary production (agriculture, fisheries, and forestry) nor 
the proportion of terrestrial land area devoted to agriculture explained 
much variation in D:M (marginal R2 = 4.6–5.3%; Table S3). The boosted 
regression tree for Phase 2 supported the inclusion of value-added % 
GDP from primary production (agriculture, fisheries, and forestry), but 
little support for the proportion of terrestrial land area devoted to 
agriculture, with a final coefficient of variation = 6.9 ± 22.8% for 5700 
trees (Fig. S4). 

c. Phase 3: Educational and research capability — There was little 
support from the general linear mixed-effects models to include per- 
capita production of scientific and technical journal articles (marginal 
R2 = 4.4%) or government investment in education in the combined- 
phase analysis (marginal R2 = 0.6%; Table S4). While the boosted 
regression tree for Phase 3 suggested approximately equal contribution 
of per-capita production of scientific and technical journal articles and 
government investment in education to variation in D:M, there was 
more support for the former. The final coefficient of variation = 40.8 ±
12.9% for 48,600 trees (Fig. S5). 

d. Combined phases — We therefore retained the following four 
variables for the combined-phase analysis: (i) per-capita imports of 
goods and services, (ii) corruption perception index, (iii) value-added % 
GDP from primary production (agriculture, fisheries, and forestry), and 
(iv) per-capita production of scientific and technical journal articles. 
According to the general linear mixed-effects models, the economic in-
dicator per-capita imports of goods and services) had the highest indi-
vidual contribution (Rm = 22%) to explaining the variance in D:M 
among countries (Table 1), supporting the hypothesis that increasing 
economic activity reduces the D:M. All other variables provided low 
explanatory power in comparison (Rm = 4.5%–9.6%; Table 1), and none 
added much additional explanation when combined with imports of 
goods and services (Table 1). 

The resampled-dataset boosted regression tree analyses for the 
combined phases had a final coefficient of variation = 51.5–80.8%, and 
also showed that per-capita imports of goods and services explained the 
most variation in the D:M ratio among countries (Fig. 5). Here, greater 
imports led to reduced damage costs relative to management expendi-
ture (Fig. 5b). 

While the corruption index (CPI) had some support in the boosted 
regression trees in terms of relative influence (Fig. 5c), it had a complex, 
non-monotonic relationship to D:M (Fig. 5c), which only partially sup-
ports our hypothesis that increasing corruption led to a higher D:M. The 
influences of value-added primary production (VAPP) and science/ 
technology journal articles (STJA) on variation in D:M were weak 
(Fig. 5d,e). 

The most-supported spatial autocorrelation structure in the general 
least-squares models was spheroid, with the country centroids explain-
ing 21–23% of the variation in the D:M. After accounting for spatial 
relationships, there was support for all variables considered, although 
per-capita imports of goods and services had the highest relative 
explanatory power among the single-parameter models for variation in 
D:M among countries (Appendix 2, Table S5). 

3.2. Proportion of total costs from damage 

Changing the response to the proportion of total costs arising from 
damage (damage cost ÷ [damage cost + management expenditure]), 
per-capita gross domestic product was also identified as collinear with 
this response (as for when D:M was the response; Section 3.1), so we 
removed it from subsequent analyses. In Phase 1 we again found most 
support for the import of goods and services (Appendix 4, Table S6; 
Fig. S7). After completing each phase analysis (Appendix 4), we retained 
per-capita imports of goods and services, corruption perception index, 
proportion of terrestrial land area devoted to agriculture, government 
investment in education, and per-capita production of scientific and 
technical journal articles in the final phase (Table S9, Fig. S9). Overall, 
the general linear mixed-effects models revealed lower explanatory 
power (~ half) for the response of proportional damage (Rm =

10.5–13.8% for the highest-ranked models; Table S9) compared to when 
the response was D:M (Rm = 19.2–23.4% for the highest-ranked models; 
Table 1), consistent with our expectation that proportions can often be 
problematic for linear models. The resampled boosted regression trees in 
the final phase showed the strongest influence of government invest-
ment in education (more investment = higher proportional damage), 
followed by the corruption perception index (lower corruption = lower 

Fig. 4. Power-law relationship between resampled mean annual management 
expenditure and damage costs from invasive species across 56 countries. There 
is a weak, non-random linear increase in the log10 of damage cost as log10 
management expenditure rises (information-theoretic evidence ratio for the 
entire dataset >5.12 × 1028; R2 = 0.04). Also shown are the power-law lines of 
best fit for the entire dataset (black, dashed) and for each region separately 
(dashed). Also see Fig. 3 for a map of sampled countries. 
ISO3 country codes: ARG = Argentina; AUS = Australia; AUT = Austria; BEN 
= Benin; BRA = Brazil; CAN = Canada; CHE = Switzerland; CHL = Chile; CHN 
= China; COL = Columbia; CUB = Cuba; DEU = Germany; DNK = Denmark; 
ECU = Ecuador; ESP = Spain; ETH = Ethiopia; FIN = Finland; FJI = Fiji; FRA 
= France; GBR = United Kingdom; GHA = Ghana; GRC = Greece; GRD =
Grenada; IDN = Indonesia; IND = India; ISR = Israel; ITA = Italy; JPN =
Japan; KEN = Kenya; KHM = Cambodia; MDV = Maldives; MEX = Mexico; 
MYS = Malaysia; NLD = Netherlands; NOR = Norway; NZL = New Zealand; 
PAK = Pakistan; PAN = Panama; PER = Peru; PHL = Philippines; PRT =
Portugal; RUS = Russia; SEN = Senegal; SGP = Singapore; SVN = Slovenia; 
SWE = Sweden; SYC = Seychelles; THA = Thailand; UGA = Uganda; UKR =
Ukraine; URY = Uruguay; USA = United States; VEN = Venezuela; VNM =
Vietnam; ZAF = South Africa; ZWE = Zimbabwe. 
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Table 1 
General linear mixed-effects models of the relationship between the ratio of damage cost to management expenditure (D:M) among countries and four predictor 
variables for the combined-phase analysis (only models where ΣwAICc > 0.8 shown): IGS = per-capita imports of goods and services; CPI = corruption perception 
index; VAPP = value-added %GDP from primary production (agriculture, fisheries, and forestry), and STJA = per-capita production of science/technology journal 
articles. k = number of model parameters; ℓ = log-likelihood; AICc = Akaike’s information criterion corrected for small samples; ΔAICc = difference in AICc between 
model and top-ranked model; wAICc = AICc weight (≈ model probability); Rm = marginal R2; Rc = conditional R2 (%).  

model k ℓ AICc ΔAICc wAICc Rm Rc 

~IGS + VAPP 5 − 91.711 193.961 0 0.311 23.4 42.5 
~IGS 4 − 94.187 195.533 1.571 0.142 22.0 41.6 
~IGS + CPI + VAPP 6 − 91.122 195.690 1.728 0.131 22.9 43.1 
~IGS + VAPP+STJA 6 − 91.585 195.844 1.882 0.121 22.6 42.0 
~IGS + STJA 5 − 93.606 196.278 2.316 0.098 20.6 40.7 
~IGS + CPI + VAPP+STJA 7 − 90.542 197.082 3.120 0.065 21.1 43.6 
~IGS + CPI + STJA 6 − 92.434 197.268 3.306 0.060 19.2 42.4 
~IGS + CPI 5 − 93.726 197.505 3.544 0.053 21.6 41.4 
~CPI 4 − 96.537 201.314 7.353 0.008 9.6 36.8 
~CPI + STJA 5 − 95.911 202.620 8.658 0.004 8.4 41.0 
~CPI + VAPP 5 − 95.915 203.314 9.352 0.003 9.4 37.1 
~CPI + VAPP+STJA 6 − 95.098 204.430 10.468 0.002 8.7 40.3 
~VAPP 4 − 98.190 205.057 11.095 0.001 5.3 31.2 
~STJA 4 − 99.054 205.568 11.606 0.001 4.5 30.1 
intercept-only 3 − 99.754 205.657 11.695 0.001 0.0 32.2 
~VAPP+STJA 5 − 97.966 206.876 12.915 0.000 6.0 31.0  

Fig. 5. Final-phase boosted regression trees (Phase 1–3 results shown in Supplementary Information, Appendix 3, Fig. S4–S6, Tables S2–S4) for the D:M ratio after 
removing per-capita gross domestic product (GDP) because of high collinearity (Appendix 2). (a) Relative contribution and relationships in predictor variables (b–e) 
to variation in the ratio of damage cost:management expenditure (D:M) derived from boosted regression trees, explaining 48.2–80.3% of the deviance. (a) Bars 
represent the relative influence of the resampled-dataset boosted regression trees (± 95% confidence bounds) for the variables described below. Predicted D:M 
expressed as a function of variation in (b) per-capita imports of goods and services, (c) corruption perception index (higher values = lower corruption), (d) per-capita 
scientific/technological journal articles, and (e) value-added primary production. In panels b–e, centred and scaled covariate values are displayed along the x axis. 
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proportional damage), and per-capita imports of goods and services 
(higher imports = lower proportional damage) (Fig. S9). The coefficient 
of variation for the final-phase boosted regression trees was slightly 
higher for the D:M responses (51.5–80.8%) compared to the proportion 
damage response (44.4–78.4%). 

3.3. Median instantaneous exponential rate of change in D:M (r) 

The phase-specific tests (Appendix 5; Tables S10–S12) revealed 
support only for the inclusion of proportion of land area devoted to 
agriculture (Table S11, Fig. S10) to explain variation in r. According to 
the general linear mixed-effects model, the proportion of land area 
devoted to agriculture alone explained 13.1% of the variation in r among 
countries (Table 2). 

The resampled-dataset boosted regression tree analyses had a coef-
ficient of variation = 9.4–56.1%, and revealed that as the proportion of 
agricultural land increased, the rate of temporal change (r) in D:M also 
increased (Fig. 6). There is therefore support for the hypothesis that an 
increasing dependence on agriculture results in an increasing r. 

4. Discussion 

Our study highlights that countries with lower per-capita imports of 
goods and services as an indicator of economic activity generally have a 
lower capacity to control and prevent potential damages caused by 
invasive species. Using the ratio of reported damage costs to reported 
management expenditure, we found that nations with greater trade 
volume tend to have lower damage cost:management expenditure ratios 
(Fig. 5). Our results thus suggest that even if the risks of biological in-
vasions are higher as trade increases (Hulme, 2021), more economically 
active nations appear to be able to prevent at least some invasions and/ 
or limit the damage of those invasive species that do establish. 

Importantly, our results appear to support the notion that manage-
ment expenditure reduces overall damage costs, because those nations 
investing more in management have lower relative damage costs. 
Although less likely, a high ratio might also indicate a laissez-faire 
attitude towards the invasion process, and potentially a lack of capac-
ity to manage the threats cost-effectively. This suggests an implicit 
(conscious or unconscious) acceptance of accumulating damage caused 
by biological invasions because it is either too costly to manage the in-
vasion relative to the damage it causes, or the perceived magnitude of 
the damage is not high enough to justify intervention. In addition, the D: 
M could potentially remain high when damage costs of biological in-
vasions are not ultimately borne by those paying for their management 
— for example, retail customers paying higher produce prices following 
reductions in crop yield due to damage by invasive species, but the in-
dustry itself avoids the additional costs from neglecting to invest in cost- 
effective biosecurity measures. 

Changing the response variable to proportion of the total costs 
identified as damage provided lower explanatory power, possibly 
because proportions are constrained between 0 and 1, but revealed 
again the importance of trade volume as a predictor of changing 

proportions among nations. However, using this response also identified 
the counter-intuitive outcome that greater educational investment led to 
higher proportional damage, a result we cannot easily explain. Perhaps 
another cultural or economic component we could not measure here 
might be responsible (e.g., more informed people might in fact challenge 
management intervention), warranting further investigation. Addition-
ally, we found some evidence for corruption increasing proportional 
damage, probably because it prevents the implementation of cost- 
effective management. Finally, that higher proportions of land 
devoted to agriculture were correlated with higher rates of increase in 
the D:M suggest that all other conditions being equal, a greater eco-
nomic reliance on agriculture might predispose nations to a greater 
potential for damage from invasive species. This could arise because 
agricultural activity generally occurs over spatial scales much broader 
than individual ownership (e.g., many independent actors), so effi-
ciently managing established invasive species in the agriculture sector 
would require exceptional jurisdictional coordination and landowner 
cooperation. 

We found no relationship between the number of invasive genera 
reported in the database and the total costs, either expressed as damage 
costs or management expenditure (Fig. S1). This result is counter- 
intuitive given suggestions that future increases in invasions will likely 
precipitate higher costs (Hudgins et al., 2023). However, there are many 
non-exclusive explanations for this inconsistency, including high vari-
ance in damage costs and/or reporting rates among countries, the 
disproportionate focus on reporting the damage from the worst invaders 
(and managing their damage), conflation of damage caused by native or 
invasive ‘pests’ (Diagne et al., 2023), and perhaps the notion that the 
most affected countries might not always have the capacity or will to 
manage all their invasive species, but only a (perceived-to-be-tractable 
or costliest in terms of damage) subset. Indeed, only about 3% of inva-
sive species have associated cost data (Henry et al., 2023; Intergovern-
mental Platform on Biodiversity and Ecosystem Services, 2023). 

The emergence of statistically supported relationships despite the 
high uncertainty and irregular sampling effort among nations is an 
important outcome, but there are still several caveats regarding the 
general interpretation. We were unable to distinguish ratios between 
damage cost and pre- (preventative; proactive) versus post- (reactive) 
invasion management expenditure, even though there are different re-
lationships with damage costs between these two categories. For 
example, there is evidence that pre-invasion management is more cost- 
effective in limiting future damage costs compared to post-invasion in-
vestment (Cuthbert et al., 2022; Leung et al., 2002). While proactive 
management expenditure is approximately one order of magnitude 
lower than reactive management (Cuthbert et al., 2022), higher 

Table 2 
General linear mixed-effects models of the relationship between the median 
instantaneous exponential rate of temporal change (r) in the ratio of damage 
cost:management expenditure (D:M) among countries and one predictor vari-
ables for the combined-phase analysis: AGRL = proportion of total land area 
devoted to agriculture. k = number of model parameters; ℓ = log-likelihood; 
AICc = Akaike’s information criterion corrected for small samples; ΔAICc =

difference in AICc between model and top-ranked model; wAICc = AICc weight 
(≈ model probability); Rm = marginal R2; Rc = conditional R2 (%).  

model k ℓ AICc ΔAICc wAICc Rm Rc 

~AGRL 4 10.220 − 22.901 – 0.945 13.1 17.1 
intercept-only 3 9.064 − 17.207 5.695 0.055 – 4.5  

Fig. 6. Predicted median r of D:M expressed as a function of variation in 
proportion of total land area devoted to agriculture from the boosted regression 
tree analysis. 

C.J.A. Bradshaw et al.                                                                                                                                                                                                                         



Ecological Economics 220 (2024) 108166

9

proactive spending would likely reduce the D:M further. In addition, the 
types of management expenditure likely vary in response to the partic-
ular groups of species any one nation intends to manage, meaning that 
monetary damages might not capture all of the negative aspects of the 
invasions (i.e., intangible impacts, non-use values, intrinsic values, etc.). 
Another issue is that, while the damage costs:management expenditure 
ratio controls for some of the impact of reporting bias when it is 
consistent across these two cost dimensions, values might be reported 
differently by different actors driven by different reporting capacities. 
For instance, management expenditure records might be more often 
provided in more obscure government reports and grey literature, 
whereas many damage costs might be more likely in the form of readily 
available academic articles. The quality and availability of record- 
keeping can also introduce bias, especially in cases where data from 
low-income regions are under-represented. This limitation is particu-
larly pertinent for regions like sub-Saharan Africa where record-keeping 
practices might not be as comprehensive or consistent as in higher- 
income regions. This phenomenon could potentially inflate the D:M, 
especially in nations where expenditure records are difficult to procure. 
For example, different socio-political drivers could also alter patterns in 
the relative reporting bias of these cost types across countries, with some 
species not deemed to warrant concern in some regions, whereas they 
can be considered harmful and worthy of reporting in others (Carneiro 
et al., 2024). Future research will benefit from enhanced sensitivity 
analyses to understand the impact of missing data or incorporate addi-
tional data sources/proxies that fill the gaps in regions with sparse re-
cord-keeping. 

The scenarios in Fig. 1 consider D:M ratios when gross damage costs 
either increase or decrease at different rates, or remain constant, in 
combination with either increasing or stagnant management expendi-
ture. Although informative, we concede that this might present a 
simplistic overview, because temporal cost dynamics within countries 
can be more complex. For example, they can exhibit fundamental dif-
ferences in the duration of the invasion, the ecology of the species 
involved, the dominant pathways of spread (Hudgins et al., 2023), or the 
impacted economic sectors (Cuthbert et al., 2021; Diagne et al., 2021; 
Henry et al., 2023). This is supported by empirical cost data for many 
taxonomic groups (Diagne et al., 2020a), where reported costs can be 
smaller by several orders of magnitude than the maximum values, 
indicating a tendency towards diminishing costs over time. Moreover, 
this has been substantiated by analysing damage costs for several genera 
(Ahmed et al., 2022a), and at the global scale when pooling all invasive 
species (Cuthbert et al., 2022). Although untested, it is plausible to as-
sume that the same trends apply at the national scale, at least for some of 
the nations we considered. Ahmed et al. (2022b) formulated such 
logistic-type cost functions to quantify the cost of inaction — the addi-
tional expenditure due to delayed management. These cost functions can 
be parametrised using national damage cost and management expen-
diture data to construct a more dynamic D:M ratio, while still allowing 
for variable delays and efficiencies in management. We therefore require 
additional analyses to contrast nations with varying socio-economic 
capacities based on a D:M that accounts for time lags between man-
agement actions and outcomes, as well as cost effectiveness. 

5. Conclusions 

The ability to reveal the potential drivers of variation in the eco-
nomic implications of invasive species across countries without explicit 
information on marginal costs and benefits maximises the utility of 
analysing data in global cost databases such as InvaCost. Improvements 
to the database could include, at least for well-studied systems or spe-
cies, additional information on the methods underlying cost estimation 
(Ahmed et al., 2023; Hulme et al., 2024), as well as estimates of mar-
ginal costs that take management efficiency into account. Our analyses 
were able to control for the uneven sampling and potential reporting 
biases in these costs among countries, and demonstrate that nations with 

lower trade volume have a clear disadvantage in tackling the massive 
economic losses incurred from invasive species (Diagne et al., 2021). 
The implications are profound for countries with a relatively low ca-
pacity to address such losses, suggesting that because more economi-
cally active nations are susceptible to additional invasions originating 
from their potentially less management-capable neighbours, they would 
be wise to invest in the management of invasive species abroad. Such a 
form of international aid is self-serving, but could ultimately reduce the 
impact of invasive species across entire regions of the globe (Henry 
et al., 2023; Hulme, 2021). 
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