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A B S T R A C T   

The local responsive traffic signal control policy P0 was designed to maximise network capacity 
under certain conditions and it has been shown, in Smith (1979a, b, 1980) and Smith et al. 
(2019a, 2022), that the P0 policy and related policies do indeed maximise the capacity of many 
steady state networks or quasi-dynamic networks with vertical and spatial queues under various 
conditions. This current paper shows, by giving an example, that if queueing is spatial then the 
original policy P0 itself may not maximise network capacity, even if the queue storage capacity of 
each link is very large.   

Introduction 

Traffic control on road networks has been a transportation research subject since the seminal work of Webster (1958), and the 
complexity of dealing with the interaction between traffic control and route choices has been recognised since the works of Allsop 
(1974), Gartner (1977) and Smith (1979a). Still, after more than 60 years, finding a general traffic control policy capable of auto
matically maximising network capacity while accounting for the response of the road drivers is yet to be found when spatial and 
temporal dynamics of queues and delays are involved. In this paper, we show, via a simple example, how one local control policy which 
has been demonstrated to maximise network capacity under the assumption of a point-queue process at the traffic control signals, does 
not always maximise network capacity when the spatial extent of queues is included – even if the queue storage capacities are very 
large. 

This paper utilises an equilibrium traffic assignment model initially introduced by Thompson and Payne (1975). They formulated a 
rigid (or inelastic) demand steady state equilibrium model with capacity constraints and considered vertical queueing delays as in
dependent variables (not given by a cost flow function); they identified these vertical queueing delays as Lagrange multipliers asso
ciated with the capacity constraints in an optimisation model. This model may we suggest be called a quasi-dynamic model because the 
model has explicit (vertical) queues; it is not a fully dynamic model as (i) demand is constant and (ii) only equilibria are studied. A 
fairly full statement of this model, including green-times, is given in Smith et al. (2019a). 

Many researchers have sought to model capacity-constrained traffic assignment, aiming to achieve a more realistic or tractable 
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model with a better representation of the actual length or spatial extent of queues. Queue storage capacities and queue spillback still 
require further attention within fully dynamic, quasi-dynamic and steady state traffic assignment (especially if green-times are 
involved), despite work done on this by, for example, Lam and Zhang (2000), Gentile et al. (2007), Zhang et al. (2013), Bliemer et al. 
(2014), Bliemer and Raadsen (2017), Haddad and Zheng (2018), and also many others. 

Adding control 

This Section 1.1 and the Section 1.2 below show how certain traffic control policies may be added to the Thompson and Payne 
(1975) assignment model with queues. The control policies here use signal stages and stage pressures; the control policies we consider 
in this paper are all “pressure driven” where green-times swap away from stages with a lower pressure toward stages with a higher 
pressure, at each junction. The aim is to equalise the pressures on all stages at each junction; but constraints on stage green-times must 
be respected. 

We consider two traffic control models: an on-and-off model (in 1.2.1 below) and a continuum model (in 1.2.2 below). Han et al. 
(2014) compare these two models and Han and Gayah (2015) consider further and also extend the continuum signal model. In the 
main body of the paper we utilise the continuum signal model. 

In the on-and-off control model, at each signal-controlled junction: at each time t, a traffic signal gives green to a set of lanes 
approaching the junction, while all other approach lanes at the same junction are shown red. A single period of time during which this 
set of lanes is given green is in this paper called a “stage”. As time passes the signal switches green from one set of lanes to another. All- 
red is permitted: in this case the set of lanes given green is empty. In our modelling here every separate real-life single carriageway lane 
is represented by a “link” in a network. The simplest of real-life responsive traffic control systems have fixed cycle times and a set of 
fixed sets of non-conflicting approaches at each junction; where these sets of non-conflicting approaches must all be shown green in the 
same order in each cycle. 

At each junction the durations of the stage green-times in each cycle must add to the cycle time and also there are minimum green- 
times for stage durations so as to allow traffic flowing during one stage to clear the junction before conflicting traffic flows are given 
green during a subsequent stage. Van Vuren and Van Vliet (1992) and Smith and van Vuren (1993) consider traffic equilibrium with 
responsive traffic control, Smith (2010) shows how responsive P0 may be utilised to design fixed time signal timings. Taale and van 
Zuylen (2001) review the traffic control and route choice problem and proposed solution methods. 

Pressure-driven traffic signal control in more detail 

Compatible sets of approaches to a junction and an on-and-off control model 
Suppose given a capacitated network [N, L], with a set of nodes N and a set of links L. In this paper we suppose that each link 

represents a single traffic lane with a single exit saturation flow. 
We also suppose that at each node (representing a junction in real life) there are given sets Aj of approach links which may be shown 

green simultaneously; all traffic permitted on the approach links in each Aj is here to be non-conflicting. Such a set of non-conflicting 
approaches will here be called a compatible set of approach links. 

In the on-and-off control model we suppose that at each node there is a given (ordered) sequence 

[A1,A2,…,An]

of compatible sets of approaches. In each cycle these are given green during n contiguous time-periods called stages: 

[Stage1, Stage2,…, Stagen].

We suppose that the cycle time here is to be fixed at α seconds and that for each j the set Aj of compatible approach links is shown 
green during the time period Stagej of duration αGj seconds. We suppose that the ordered sequence 

[αG1, αG2, αG3,…αGn]

of stage green-time durations is constrained by a set of linear inequalities, in part to ensure that each link has a minimum green-time in 
each cycle and also to ensure that the sum of the αGj add to α (the cycle time). See Allsop (1971) for a picture of such constraints. 

In the on-and-off model; at each junction the durations of each stage during each cycle may be determined at the start of that cycle, 
using the flows, queues and green-times previously experienced, in the previous cycle. In this paper we consider such systems where 
stage green-times only move from one cycle to the next by swapping from less-pressurised stages to more pressurised stages. The 
pressure on stage j may be thought of as the stress that stage j is under; it then makes sense to allow green-time swaps away from stages 
with a low pressure (or stress) toward stages with a higher pressure (or stress). Such a responsive control system is said to be “pressure- 
driven”; examples of stage pressures are given below in Section 1.3. 

Compatible sets of approaches to a junction and a continuum model of control 
In the continuum signal control model in this paper we suppose that at each node there is a given set 

[A1,A2,…,An]
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of compatible sets of approaches. We also suppose, for simplicity in this paper, that each link i belongs to exactly one Aj. Now, in the 
continuum model, at each time t, Aj is given green for a green-time proportion Gj(t) where: at each time t:  

1 the green-time proportions Gj(t) add over j to 1 and also  
2 the set {Gj(t)} satisfies a set of linear inequalities, partly to ensure that each link has a minimum green-time. 

We again suppose here that flows exiting from different links in the same Aj do not conflict or interact. In this paper we will refer to 
each Aj as a “stage” in the continuum model. We let: 

Qi(t) = queue size (number of vehicles) in a queue at the exit of link i at time t (vehicles), 
si = saturation flow at the link i exit (vehicles/second), 
bi(t) = bottleneck delay felt by traffic exiting link i at time t (seconds), 
piu(t) = proportion of flow exiting link i at time t which then traverses signal-controlled link u, 
xi(t) = flow out of the link i exit at time t (vehicles/second), and 
Gj(t) = proportion of time that stage Aj is green at time t. 

Some stage pressure formulae and pressure-driven control policies 
Probably the earliest example of a pressure-driven traffic signal control policy is the equisaturation policy specified by Webster 

(1958). In this policy the pressure on stage j equals the maximum of the degrees of saturation xi/(siGj) (using the notation in Section 
1.2.2 above) over the links i given green during stage j; and Webster proposed that stage green-times should be chosen so that all stage 
pressures at a single signal-controlled junction are equal, or as equal as possible. Webster regarded this simple rule as a reasonable 
approximation to the policy of minimising the total rate of delay experienced at the junction, assuming that traffic flows are fixed, 
unaltered if the signal timings are changed. Webster suggested this equisaturation policy as a way of selecting stage green-times for 
implementation over a fairly long period of time, the morning peak or the inter-peak for example. So his equisaturation rule for setting 
signals was aimed at choosing fixed time signal settings; however “equisaturation” is often utilised as part of modern dynamic traffic 
signal control systems. 

Consider a single junction and let 

A(j) = Aj for j = 1, 2, 3,…, n.

Smith (1979a, 1980) introduces the stage j pressures: 

Pressj =
∑

link i belongs to A(j)

sibi.

These stage j pressures lead to the P0 control policy which seeks to equalize these pressures over the stages at each junction. A 
dynamical version of this policy (stated in Smith et al. (2022) and elsewhere) swaps green-time from less pressurised stages to more 
pressurised stages at each junction, aiming to equalise stage pressures at each junction. 

Smith et al. (2019a) introduce, for a constant vector h, policy Ph, a biased form of policy P0. This policy utilizes the stage j pressures 

Pressj =
∑

link i belongs to A(j)

(sibi + hi),

and again policy Ph swaps green-time from less to more pressurised stages aiming to equalise the stage pressures at each junction. 
Smith et al. (2019a) also introduces, for a vector k, policy Phk, a biased spatial form of policy P0. This policy utilizes the stage pressures 

Pressj =
∑

link i belongs to A(j)

(kisibi + hi),

and again policy Phk swaps green-time from less to more pressurised stages aiming to equalise the stage pressures at each junction. 
Varaiya (2013a, b) and Wongpiromsarn et al. (2012) introduced the stage pressures 

Pressj =
∑

link i belongs to A(j)

(

si

(

Qi −
∑

u
piuQu

))

.

The corresponding control policy is called the MaxPressure policy or MP. This swaps green-time away from less pressurised stages and 
toward more pressurised stages aiming to equalise all stage pressures at each junction. The idea of using backpressure terms, like −
∑

u
piuQu above, is suggested in telecommunication networks by Tassiulas and Ephremides (1992). This is an attractive idea for traffic 

control (suggested in this context by Varaiya (2013a, b) and Wongpiromsarn et al. (2012)) since it permits a pressure-driven control 
policy at a junction J to take some account of downstream congestion when updating the signal timings at junction J. Levin et al. 
(2020) extends MaxPressure to take account of the cyclical phase structure of traffic signals. 
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Contribution of this paper 

It has been shown in past papers that policy P0 maximises network capacity in many networks. This paper shows that the P0 policy 
does not always maximise network capacity when queueing is spatial, even if link queueing capacities are very large. 

A brief summary of past P0 studies 
Smith (1979a, b, 1980) show that, within a steady state model with cost-flow functions involving green-times, an equilibrium 

consistent with the original P0 policy exists if demand is within network capacity. (We say that P0 maximises the capacity of the 
network.) 

Smith (1987) and Smith et al. (2022) extend this result to the Payne-Thompson quasi-dynamic equilibrium model, which has 
explicit queues, provided queueing is vertical. (We say that P0 maximises the capacity of the network.) 

Smith et al. (2019a, 2022) extend the above capacity-maximising results to take some partial account of spatial queueing rather 
than vertical queueing. In order to achieve these extensions two new policies are introduced: a biased form of policy P0 called Ph and a 
biased spatial form of P0 called Phk. Here the bias vector h represents the estimated attractiveness of alternative routes, and helps Phk to 
reduce unnecessary queueing delays and k represents the degree to which links are full of vehicles and helps Phk to reduce link queues 
and overflows. These queues are however, although reduced, typically not eliminated and overflows are typically not eliminated by 
any of these P0 variations if pricing is not involved. Smith et al. (2022) extends these ideas to include prices (as well as delays) and 
shows that a pricing variant of P0 does eliminate queues at equilibrium while maximising network capacity. 

Smith et al. (2019b) shows that to maximise throughput in some simple networks when demand grows to exceed the network 
capacity the responsive signals (following P0) should be “frozen”; yielding fixed time, unresponsive, signal timings as soon as demand 
exceeds network capacity. 

The results in the P0 papers above are all essentially positive, even if the results are only very partial and depend on assumptions which 
do not always hold in reality. The P0, Ph and Phk capacity-maximising results above depend on the particular quasi-dynamic model 
utilised and this is described in detail in Smith et al. (2019a). 

This paper, on the other hand, gives a negative result: the paper shows that if queueing is spatial and the routeing follows Wardrop 
equilibrium (with all travellers on quickest routes) then the P0 responsive control policy does not always maximise network capacity – 
even if all road links are very long and all queue storage capacities are very large. This is done by giving an example: 

a simple two-route signalised network is specified and it is shown that, with spatial queueing, equilibria consistent with P0 do not exist for 
many feasible demands even if the queue storage capacities are very large. 

This negative P0 result shows the importance of considering the “spatial” vector k in Phk. The paper also shows that: 
in the same simple two-route signalised network, with spatial queueing, equilibria consistent with Phk do exist for any feasible demands 

provided queue storage capacities are sufficiently large, if k is correctly chosen. 

An explanation of the capacity-maximising property of P0 
The capacity maximising property of P0 is as follows. Suppose given a capacitated model which allows route choice. Suppose also 

that there is a given inelastic demand D which can be met by some (typically unknown) signal timings and some (typically unknown) 
route-flows; then under additional conditions there is a 

[route-flow pattern and signal timing] pair for which 

1. the routeing satisfies Wardrop’s equilibrium condition and 
2. the signal timings satisfy P0. 

This holds under various different “additional conditions” in various different models: (a) with a Beckmann-style cost function in a 
steady state flow model, (b) with “vertical” queueing in the quasi-dynamic model in Smith et al. (2019a), and (c) with certain spatial 
queueing models also in Smith et al. (2019a). Yet the policy requires no knowledge of the origin – destination distribution and so may 
be implemented locally and automatically. 

Under certain, further, conditions the above equilibrium [route-flow pattern and signal timing] pair will be stable: natural route 
swapping and green-time swapping will converge to the above pair. Further research on this stability topic is underway. 

These properties of P0 make the policy ideal for the digital age and so important. There are many opportunities for development of 
this policy especially using pricing and signal control together (Smith et al., 2022). 

A road map of topics considered in the following sections of the paper 

The following sections and their central elements are as follows. 
Section 2: A fixed demand capacitated traffic assignment model with spatial queues. 
This section outlines the general assignment / control model utilised and also specifies: 

the simple network studied in the paper, 
three responsive control policies P0, Ph and Phk, 
two link performance models, one with vertical queues and one with spatial queues, and 
five equilibrium / control performance tests of the control policies P0, Ph and Phk. 
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Section 3. The five equilibrium / control performance results. 
This gives the performances of the three control policies P0, Ph and Phk in tests 1, 2, 3a, 3b and 4. 
Section 4. Graphs of the performance results of tests 1, 2, 3a, 3b and 4. 
This shows graphs comparing the performances of the three policies P0, Ph and Phk in tests 1, 2, 3a, 3b and 4. 
Section 5. The Daganzo network with signal control and the three policies P0, Ph and Phk. 
Here this study is connected to previous research in Daganzo (1998), which gives a network where a lack of queueing space causes 

blocking back; this prevents equililibrium for certain feasible demands. 
Section 6. This study in the context of modern information systems and real-time control 
This section discusses the equilibrium modelling in this paper in the context of greater data availability. 
Section 7. Conclusion. 
This section gives conclusions and opportunities for further work. 

A fixed demand capacitated traffic assignment model with spatial queues 

The route-choice principle adopted throughout this paper follows the familiar Wardrop (1952) equilibrium notion: for each 
origin-destination pair, more costly routes are not used. This Wardrop equilibrium traffic assignment principle may also be expressed 
using link flows and bottleneck or queueing delays instead of route flows. In this paper we utilise a link formulation of “equilibrium 
with queueing delays”; this formulation is given in detail in Smith et al. (2019a) and Smith et al. (2022), and, in less detail, later in this 
paper. 

One of the aims of this study is to analyse traffic control policies for planning applications. We do not consider signal phase se
quences in detail, neither the detailed dynamics of the queuing process caused by the signal process (queue formation and dissipation 
during red and green phases, front and back of queue shockwave dynamics, etc.). Instead, the models described in this paper may be 
thought of as seeking to model the peak of a peak period where queues are at their maximum, without modelling the building up or the 
decay of those queues. 

Moreover, our modelling approach is fully deterministic, hence we do not consider overflow queues at understaturated conditions 
caused by the stochastic nature of the arrival and departure processes and due to the probability of vehicles arriving during red or 
green phases (Viti and Van Zuylen, 2010), but we assume that queues and delays occur only at oversaturated signals. These are 
considered acceptable assumptions considering that the aim of the study is to understand how to make the best use of available 
network capacity. We do suggest further work to include more signal control detail in the conclusion of the paper. 

Finally, in this paper we will, in the main, suppose that the queueing capacity of all links is very large but finite. 

A basic link model with a spatial representation of queues and a finite queue storage capacity 

As often in traffic modelling, each real-life traffic lane is here represented by: 

a node which represents the entry point of the lane, 
a node which represents the exit point or the stop line of the lane, and 
a directed link joining these two nodes, which represents the stretch of lane between the entry and the exit of the lane. 

A graphical representation of link i is shown in Fig. 1. The flow along link i is to be vi vehicles per second; the saturation flow at the 
exit of link i is si vehicles per second; the queue originating at the exit of link i contains Qi vehicles; the maximum possible value of Qi is 
MaxQi (fixed for a link i); and the freeflow travel time to traverse the entire length of link i (when the queue Qi = 0 and the flow is vi) is 
ci. The link i “state” may be thought of as (vi,Qi) and this link state 2-vector is to be confined to a set of supply-feasible pairs as follows: 

vi ≤ si and Qi ≤ MaxQi.

Throughout the rest of the paper, each link cost ci is to be a positive constant and link costs will be measured in seconds. All 
travellers have the same value of time. 

Suppose that the saturation flow si at the link i exit is the only constraint on the link flow vi (vehicles per second). To calculate the 
queueing or bottleneck delay bi (seconds per vehicle) at the link i exit, it has often been proposed that (see for example Thompson and 
Payne, 1975; Smith et al. 2019b, 2022): 

bi =
Qi

si
. (1) 

Fig. 1. A single link model representing a single traffic lane.  
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The whole time ti of travel along link i has then often been written, by for example Thompson and Payne (1975); Smith et al. 
(2019a), as follows: 

ti = ci + bi. (2) 

This formula (2) may be regarded as the definition of “vertical queueing delay”. Eq. (2) says that the total travel time taken to exit 
link i equals the time taken to traverse the whole length of link i added to the bottleneck delay at the link i exit. There are two in
terpretations of this formula (2). First: the bottleneck queue is here only entered when the whole link length has been traversed and the 
queue must then be thought of as being vertical. Second, Eq. (2) may also be thought of as a definition of the bottleneck delay bi if the 
link traversal time ti = ci + bi can be measured (perhaps using Bluetooth) and ci is known; see Mercader et al. (2020). 

Related studies have been done by Lawson et al. (1997) who discuss two interpretations of “queueing delay” in dynamic traffic flow 
modelling: this discussion also applies in our case here where we have green-times gi. In addition to the delay bi above, which is the 
excess travel time felt by the vehicle, they discuss the time a vehicle is in a queue: with spatial queueing this queueing delay must be 
larger (perhaps much larger) than the excess travel time bi above. Lawson et al. (1997) point out that social costs (such as pollution and 
the space taken up by queueing vehicles) depend greatly on the spatial queueing delay and depend much less on the excess travel time 
delay. 

To estimate this spatial queueing delay, we consider three cases. 
First suppose that Qi = 0. In this case (using (1)), bi = 0., and formula (2) is entirely reasonable and the travel time simply consists of 

the traversing time of the whole link ci. 
Second, suppose that Qi = MaxQi. The queue will, in this case, take up all the available space on link i and so if bi now represents the 

horizontal queuing delay, formula (2) overestimates the travel time for a link; in this case the formula should be: ti = bi and not ti = ci +

bi. 
Third, suppose now that 0 < Qi < MaxQi. In this case, in real life, the queue on link i covers part of its length and only the remainder 

has to be traversed (with no queue). The queue will, in this case, take up some space on link i and so if bi now represents the horizontal 
queuing delay, formula (2) overestimates the travel time for a link; the overestimation is greater the larger the real, spatially extensive, 
queue is and the error is maximum when the queue reaches the upstream node. At this point the formula should be: ti = bi and not ti = ci 
+ bi. 

To create a more realistic formula than the vertical queueing formula (2), so that bi represents real-life spatial queueing, we suppose 
that the head of the queue on link i is always adjacent to the link exit and that the total travel time ti spent in traversing link i is given by: 

ti(bi) = aici + bi; (3)  

a sum of non-queueing travel time aici and a queueing travel time biseconds. Here, in (3), the “shrinkage factor” ai ≤ 1 is to be chosen so 
as to take some careful but simple account of the fact that as the horizontal queueing delay bi (and hence the horizontal queue length or 
volume Qi) grows, the unqueued link length (and hence the non-queueing travel time aici) shrinks. 

In this paper we put: 

ai =
MaxQi − Qi

MaxQi
. (4) 

If Qi = MaxQi, then ai = 0 and all the time spent traversing link i using (3) becomes entirely queueing time bi. Also if Qi = 0 then bi =

0 and ai = 1, and all the time spent traversing link i using (3) becomes entirely running time ci. Both are reasonable, and intermediate 
cases where 0 < Qi < MaxQi are also reasonable. In this intermediate case the Qivehicles in a queue at the link exit will occupy a 
proportion Qi

MaxQi 
of the length of link i, leaving only the proportion 1 − Qi

MaxQi 
of the length of link i to be traversed without queueing. This 

will take 
(

1 − Qi
MaxQi

)
ci seconds to traverse since the traversal time of the whole length of link i is ci seconds. 

Substituting ai =
MaxQi − Qi

MaxQi
= 1 − Qi

MaxQi 
into (3), we obtain: 

ti(bi) =

(

1 −
Qi

MaxQi

)

ci + bi = ci −
Qi

MaxQi
ci + bi = ci −

bisi

MaxQi
ci + bi = ci +

(

1 −
sici

MaxQi

)

bi.

Thus, this value of ai in (3) leads to the following equations: 

ti(bi) = ci + kibi (5a)  

where 

ki = 1 −
sici

MaxQi
. (5b) 

We now may naturally generalise (5a, b) to take account of a green-time proportion gi at the link exit (as well as the exit saturation 
flow si). The corresponding formulae are: 

ti(gi, bi) = ci + ki(gi)bi (5c)  

where ki now depends on gi as follows: 
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ki = ki(gi) = 1 −
sigici

MaxQi
. (5d) 

Formula (5d) defines a shrinkage factor, which has a central role in our study. Since its definition contains both saturation flow and 
queue capacities (i.e. buffer spaces), it allows us to explicitly consider both physical constraints characterising horizontal queueing 
processes. 

A new road parameter, θi, and a link feature captured by θi 
Motivated by (5c,d), for each link i we let 

θi =
sici

MaxQi
=

ci

MaxQi/si
= (link i freeflow travel time)

/

(maximum link i queueing time when gi = 1). (6) 

We now suppose, partly for simplicity in this paper, that 0 < θi ≤ 1 for all links i. This implies (for all links i) that the link i freeflow 
travel time is never more than (the maximum link i queueing time when gi = 1). This is a very reasonable condition since it is unlikely 
that vehicles would move more quickly while moving in a queue than in free flow conditions. (However θi > 1 may arise if vehicles 
form a “train” or a tightly controlled platoon. We do not consider this possibility in this paper; we assume throughout this paper that 
0 < θi ≤ 1 for all links i.) 

The parameter θi, by definition, relates the minimum time a vehicle needs to traverse the link in free flow conditions, with the time 
needed by the same vehicle to traverse the link when the queue has completely filled the storage capacity. Hence, the parameter 
includes the main infrastructural design parameters for link i, namely the link staturation flow si, the link storage capacity MaxQi and 
the link free flow travel time ci. 

Here, in Fig. 2, we give three example links (1, 2, 3) to illustrate how the value of θi reflects or represents the shape of link i. Each of 
the three links here in Fig. 2 has the same length, the same freeflow speed or freeflow travel time, the same link-exit-width and the 
same link-exit saturation flow. 

But the three road links, 1, 2, 3, in Fig. 2 differ in the widths (and hence the areas and queue storage capacities) of the link upstream 
of the link exits. The average width of link 1 is less than the average width of link 2 which is less than the average width of link 3. Thus 
link 1 has a smaller area and maximum queue, MaxQi, than link 2 which has a smaller area and maximum queue than link 3. These 
three links may represent a part of a real-life road section where the number of lanes increases downstream (e.g. from one to two lanes), 
a section where the number of lanes remains constant, and a section where there is one or more lanes dropped (e.g. from three to two 
lanes), respectively. 

So, since the links have the same freeflow travel time ci and the same exit saturation flow si, the value of θi (given by (6)) for link 1 in 
Fig. 2 will be larger than the value of θi for link 2 which will in turn be larger than the value of θi for link 3. 

A simple example 
It is interesting to compare five [control policy / queueing model] combinations in a simple example; to do this we utilise the Fig. 3 

network. Let 

si = the saturation flow at the link i exit (in vehicles per second: i = 1, 2, 3); 
ci = the free flow cost/time of travel via link i (in seconds; constant: i = 1, 2, 3); 
Ci = the free flow cost/time of travel via route i (in seconds; constant: i = 1, 2); 
xi = the flow along link i (in vehicles per second: i = 1, 2, 3); 
bi = the bottleneck delay felt at the link i exit (in seconds: i = 1, 2); 
T = the steady total inflow at the origin, heading for the destination (v/s); 
MaxQi = the maximum queue possible on link i = 1, 2; and, following (6), 
θi = ci/(MaxQi/si) = cisi/MaxQi for i = 1, 2. 

Fig. 2. Three road links with the same lengths, outflow widths w (metres) and saturation flows; but different shapes. The expanding road link 1 has 
a smaller area and so a smaller maximum queue, a smaller maximum queueing time and so a larger value of θ than the rectangular link 2. The 
rectangular road link 2 has a smaller area and so a smaller maximum queue, a smaller maximum queueing time and so a larger value of θ than the 
narrowing link 3. 
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We suppose that c1, c2 and c3 are constant, that C1 = c1 + c3 and C2 = c2 + c3. 
Throughout we suppose that 

0 < s1 < s2 < s3,

0 < θ1 = θ2 = θ ≤ 1,

andc2 = c1 + Δwhere Δ > 0. We also define 

r = s1/s2  

so that r < 1. Here, with the above definition (6) of θi and our assumption that θ1 = θ2 = θ, (5d) becomes: 

ki = ki(gi) = 1 −
sigici

MaxQi
= 1 −

sici

MaxQi
gi = 1 − θgi.

Definition of spatial queueing equilibrium consistent with P0 on this network 

Given a steady demand T (v/s) satisfying 0 < T < s2; we now consider (x, g, b) where 

x = (x1, x2, x3), g = (g1, g2) and b = (b1, b2).

Fig. 3. A simple two route signal-controlled network; link 2 is wider and longer than link 1.  

Fig. 4. The graphs show how E(T) varies with T in tests 1, 2, 3a, 3b, and 4 when T increases from 0 to s2. For all tests E = 0 when T < s1. In tests 1, 2, 
3a and 4, E jumps upwards from 0 at = s1; the jump is greatest when the policy is P0 and is least with Phk, the biased spatial version of P0. The test 3a 
performance results are given by the lower solid curve. The test 3b performance results are given by the thicker upper solid curve; there is a gap here 
because there is no consistent equilibrium when s1 < T < T∗

large. This range of T is indicated by the thick short black line on the horizontal or T axis. 
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Definition. (x, g, b) is a spatial queueing equilibrium consistent with P0 if and only if  

1 x is demand feasible or satisfies the given demand or x1 + x2 = T = x3, x1 ≥ 0, x2 ≥ 0;  
2 (x, g) is supply-feasible or x1 ≤ s1g1 and x2 ≤ s2g2 and g1 + g2 = 1;  
3 (x, b) is a spatial Wardrop equilibrium so that if s1 < T < s2 then c1 + k1b1 = c2 + k2b2;  
4 (x, g, b) satisfies P0 so that if s1 < T < s2: s1b1 = s2b2 and  
5 (x, g, b) is a queueing equilibrium or (bi = 0ifxi < sigi). 

Notes:  

1 The last of these conditions, condition (5), says that the bottleneck delay and the queue length stay at zero if the link is un
saturated. This condition is more severe than the usual assumption for signal control. This condition is used here as it enables a 
relatively simple analysis. We believe that this condition may be relaxed, while obtaining similar results, by letting si depend on 
bi. But we leave that to further work. In this particular case here this assumption is used only to derive the flat part of the E(T) 
graphs in Fig. 4 where T < s1.  

2 In (3) above, if ki = 1 the queueing is said to be vertical.  
3 In (3) above, ki depends on gi.  
4 The definition of P0 in (4) above is given in more detail in Smith et al. (2019a, b, 2022). 

The five equilibrium / control performance tests 

The “extra (or excess) travel time E = E(T)” will be utilised as the performance measure in each test, where 

E = E(T) = (the travel time at equilibrium minus C1)(s).

This will be the only performance measure for all five tests. In each test E will depend importantly on the constant origin-destination 
flow T (v/s), on Δ = c2 − c1 > 0, on the control policy employed, and also, very importantly, on the queueing model (vertical or spatial) 
employed. 

Throughout the performance tests 1, 2, 3a, 3b and 4 we assume that 

0 < θ ≤ 1 and ki = ki(gi) = 1 − θgi (for i= 1, 2).

In test 4 we also assume that h = (s1c1,s1c2). 
The 5 tests are as follows (Here r = s1/s2 < 1): 
Test 1. Equilibrium performance of the P0 control policy (choose g so that s1b1 = s2b2) with vertical queueing; 
Test 2. Equilibrium performance of spatial P0, P0k (choose g so that k1s1b1 = k2s2b2) with spatial queueing; 
Test 3a. Equilibrium performance of P0 (choose g so that s1b1 = s2b2) with spatial queueing when θ = θsmall where θsmall < 1 − r; 
Test 3b. Equilibrium performance of P0 (choose g so that s1b1 = s2b2) with spatial queueing when θ = θlarge where θlarge > 1 − r; 
Test 4. Equilibrium performance of Phk (choose g so that k1s1b1 + h1 = k2s2b2 + h2), biased spatial P0 (see Smith et al. (2019b) for its 

derivation) with spatial queueing. 
Notes:  

1. θsmall and θlarge are two possible values of θ in relation to the ratio s1/s2 of the saturation flows of the two links merging at the 
signalized intersection; the test results in these two tests 3a and 3b are very different.  

2. Policies Ph and Phk are variations on P0 introduced in Smith et al. (2019b). Ph has improved performance relative to P0 and Phk has 
improved performance relative to P0, and also takes account of spatial rather than vertical queueuing. 

The following two link queueing models (LQMs) will be considered in these 5 tests: 
LQM1. Vertical queueing: Here we suppose that the total time ti(bi) of traversing link i is ci + bi. 
LQM2. Spatial queueing: Here we suppose that the total time ti(bi) of traversing link i is ci + kibi where ki = 1 − θgi. (This is an 

application to this example of (5a) and (5b), including green-time proportions.) 
We now give, in Fig. 4 in Section 3, the equilibrium performance results for all of the five [control, queueing model] tests 1, 2, 3a, 

3b, 4. In the derivation of all these results we only consider s1 < T < s2 in detail. 
See Smith et al. (2019b) for detailed justifications of the test results 1, 2 and 4. These results are reproduced here in Fig. 4 for 

comparison with the results of tests 3a and 3b, which are the main concerns of this paper. 

The five equilibrium / control performance results 

In calculating the results of tests 1, 2, 3a, 3b, 4 below we only consider values of T satisfying s1 < T < s2. 
Here r = s1/s2 < 1. Also we suppose in this example that MaxQ1and MaxQ2 satisfy: 
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s1c1

MaxQ1
=

s2c2

MaxQ2
= θ  

and that s3 is very large, so there is no queueing on link 3. Given T satisfying s1 < T < s2, at equilibrium both links 1 and 2 must be used 
and here we suppose that at equilibrium there must be (stationary) queues on both links 1 and 2. In this case, where T satisfies s1 < T <
s2, the equilibrium green-time vector 

g =

(
s2 − T
s2 − s1

,
T − s1

s2 − s1

)

.

Any other green-time vector does not support stationary queues on links 1 and 2 at equilibrium if s1 < T < s2. (See for example 
Smith et al. (2019b, 2022).) 

1. Equilibrium performance of the P0 control policy, with vertical queueing. In this case: 

E(T) = (travel time at equilibrium minus C1) = C2 + b2 − C1 = C1 + b1 − C1 = b1 = b2 + Δ = Δ/(1 − r)

2. Equilibrium performance of spatial P0, P0k with spatial queueing. In this case: 

E(T) = (travel time at equilibrium minus C1) = C2 + k2b2 − C1 = k1b1 = k2b2 + Δ = Δ/(1 − r)

3. Equilibrium performance of P0 with spatial queueing. 
In this case, for any T which has an equilibrium consistent with spatial queueing and policy P0: 

E(T) = (travel time at equilibrium minus C1) =
Δ

1
r.

1− θg1
1− θg2

− 1
+ Δ =

Δ 1
r.

1− θg1
1− θg2

1
r.

1− θg1
1− θg2

− 1
. (7) 

In (7), g =
(

s2 − T
s2 − s1

, T− s1
s2 − s1

)
. Other green-time vectors do not support stationary queues on links 1, 2. 

Proof of this formula (7). 
Suppose that T satisfies s1 < T < s2 and that T has an equilibrium consistent with spatial queueing and policy P0. Then at any such 

equilibrium we have the following statements. 
At a Wardrop equilibrium with spatial queueing: C1 + k1b1 = C2 + k2b2. 
Thus at Wardrop equilibrium with spatial queueing: k1b1 = k2b2 + Δ. (Here Δ = C2 − C1.) 
The P0 policy ensures that: s1b1 = s2b2. 
Therefore: s1k2b2 + s1Δ = s1k1b1 = k1s1b1 = k1s2b2, and so: s1Δ = (k1s2 − s1k2)b2 or: Δ = ((k1/k2)(s2/s1) − 1)k2b2. 
Thus: k2b2 = Δ/((k1/k2)(s2/s1) − 1). 
Now ki = 1 − θgi for i = 1, 2. (k satisfies (5d).) So for any T which satisfies s1 < T < s2 and has an equilibrium consistent with spatial 

queueing and policy P0: 

E(T) = [the travel time at equilibrium minus C1]

= C2 + k2b2 − C1 = k2b2 + Δ = Δ/((k1/k2)(s2/s1) − 1) + Δ

=
Δ

1
r
.
1 − s1g1C1/MaxQ1

1 − s2g2C2/MaxQ2
− 1

+ Δ

=
Δ

1
r
.
1 − θg1

1 − θg2
− 1

+ Δ =

Δ
1
r
.
1 − θg1

1 − θg2
1
r
.
1 − θg1

1 − θg2
− 1

.

(8)  

QED. 
We now consider two cases: 3a and 3b. 
In 3a, 0 < θ = θsmall < 1 − r and in 3b, 1 − r < θ = θlarge ≤ 1. 
In both of these two cases we utilise Theorem 1 below which is proved in the appendix. 
Theorem 1. In the equilibrium model above, where 0 < θ ≤ 1, suppose that T satisfies s1 < T < s2. Then there is an equilibrium consistent 

with spatial queueing and P0 (and also the extra travel time E(T)is given by (7), (8)) if and only if 

T > T∗(θ) =
s2

1 + s2
2 − (s2 − s1)

2/θ
s1 + s2

(9) 

3a. Existence of equilibrium and the equilibrium performance of P0 (s1b1 = s2b2) with spatial queueing when 

θ = θsmall < 1 − r or equivalently (1 − θ)s2 > s1.

Suppose θ = θsmall < 1 − r or (1 − θsmall)s2 > s1. Let the corresponding value of T* (given in (9)) be T∗
small. It follows that in this case 

3a, where θsmall < 1 − r or (1 − θsmall)s2 > s1, 
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T∗
small =

s2
1 + s2

2 − (s2 − s1)
2/θsmall

s1 + s2

<
s2

1 + s2
2 − (s2 − s1)

2/
(1 − r)

s1 + s2

=
s2

1 + s2
2 − s2(s2 − s1)

2/
(s2 − s1)

s1 + s2

=
s2

1 + s2
2 − s2(s2 − s1)

s1 + s2

=
s2

1 + s1s2

s1 + s2
= s1 

Thus s1 > T∗
small, and since s1 < T < s2, it follows that T > s1 > T∗

small and so by Theorem 1 (proved in the appendix) there is an 
equilibrium consistent with spatial queueing and P0. Further, E(T) is given by (7) and (8). 

3b. Existence of equilibrium and the equilibrium performance of P0 (s1b1 = s2b2) with spatial queueing when θ = θlarge where θlarge > 1 − r 
or equivalently (1 − θlarge)s2 < s1. 

Suppose θ = θlarge where θlarge > 1 − r or (1 − θlarge)s2 < s1. Let the corresponding value of T* (given in Eq. (9)) be T∗
large. 

It follows in this case 3b, where 1 ≥ θlarge > 1 − r or 0 ≤ (1 − θlarge)s2 < s1, that 

T∗
large =

s2
1 + s2

2 − (s2 − s1)
2/θlarge

s1 + s2

>
s2

1 + s2
2 − (s2 − s1)

2/
(1 − r)

s1 + s2

=
s2

1 + s2
2 − s2(s2 − s1)

2/
(s2 − s1)

s1 + s2

=
s2

1 + s2
2 − s2(s2 − s1)

s1 + s2

=
s2

1 + s1s2

s1 + s2
= s1 

It also follows in this case that 

T∗
large =

s2
1 + s2

2 − (s2 − s1)
2/θlarge

s1 + s2

≤
s2

1 + s2
2 − (s2 − s1)

2/1
s1 + s2

=
2s1s2

s1 + s2
= s2

s1 + s1

s1 + s2
< s2.

Thus, in this 3b case, where 1 ≥ θlarge > 1 − r or 0 ≤ (1 − θlarge)s2 < s1, 

s1 < T∗
large =

s2
1 + s2

2 − (s2 − s1)
2/θlarge

s1 + s2
< s2  

and we now consider the two cases s1 < T < T∗
large and T∗

large < T < s2. 
Theorem 1 immediately yields the following results:  

(i) if s1 < T < T∗
large then there can be no equilibrium consistent with P0 and  

(ii) if T∗
large < T < s2 then there exists an equilibrium consistent with P0. 

The equilibrium in (ii) has performance E(T) which is given by Eq. (7). 
Spatial equilibrium performance of biased spatial P0, Phk, whereh = [s1c1,s1c2], ki = 1 − θgi. 
In this case: 

E = (the travel time at equilibrium minus C1) = C2 + k2b2 − C1 = k2b2 + Δ = (Δ − (h2 − h1) / s1)/((s2 / s1) − 1) + Δ = Δ.
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Graphs of the performance results of tests 1, 2, 3a, 3b and 4 

Comparisons of the equilibrium performance results 1, 2, 3a, 3b and 4 

Now we compare the performance measure E = E(T) in all five tests, as T increases from 0 to s2. In this Fig. 4, (1 − θ)s2 > s1 (in test 
3a) and (1 − θ)s2 < s1 (in test 3b) where 0 < θ ≤ 1. 

An important feature of this whole picture in Fig. 4 is that we consider two values of θ: these are θsmall and θlarge where 

θsmall < 1 − r < θlarge or equivalently
(
1 − θlarge

)
s2 < s1 < (1 − θsmall)s2.

Focussing first on test 3a, when θsmall < 1 − r or equivalently s1 < (1 − θsmall)s2, the lower curved bold line in Fig. 4 shows that if 
responsive P0 policy is utilised when spatial queueing occurs and θsmall < 1 − r or equivalently s1 < (1 − θsmall)s2, then the extra delay E 
will, at equilibrium when T is only slightly larger than s1, be Δ/(1 − r/(1 − θsmall)); which may be much greater than Δ/(1 − r) seconds 
(which is the value of E with vertical queueing when T is just slightly larger than s1; see Test 1). 

The lower curved bold line in Fig. 4 shows also that, when T > s1, E(T) decreases with T. This decreasing behaviour of E(T)may seem 
counterintuitive; it is the result of the three-way interaction between (i) the responsive P0 policy, (ii) routeing decisions by drivers, and 
(iii) the spatial queueing model adopted. 

The horizontal dotted lines in Fig. 4 also show how the spatial queueing performance is improved (compared to the P0 perfor
mances in both tests 3a and 3b, shown by the solid curved lines) by switching to P0k, the spatial version of P0, and how performance is 
further improved by switching to the biased spatial version of P0, namely Phk, with suitable h and k. 

Focussing now on test 3b, when θlarge > 1 − r or equivalently s1 > (1 − θlarge)s2, the upper bold line in Fig. 4 shows that if responsive 
P0 policy is utilised when spatial queueing occurs and θlarge > 1 − r or equivalently s1 > (1 − θlarge)s2, then T*(θlarge) > s1. Now the extra 
delay E(T) will become increasingly large as T decreases toward T*(θlarge) (which is > s1). There is no consistent equilibrium when s1 < T ≤
T*(θlarge). 

The Daganzo network with signal control and the three policies P0, P0k and Phk 

The study we have presented in this paper has analogies with previous research by Daganzo (1998), which gives a network where a 
lack of queueing space causes blocking back; this prevents equilibrium in a spatial queueing model for certain feasible demands. 

Here, following Daganzo, we now assune that MaxQi is not large in our Fig. 1 network. We show how the three policies P0, P0k and 
Phk perform on the network in Fig. 1 in this case. 

QUESTIONS: When T is slightly greater than s1, what are the equilibrium link 1 delay and the equilibrium link 1 queue for these 
three policies? 

Table 1. The top row shows the three traffic control policies P0 (with two cases), P0k and Phk. The figures in column 3, 4 and 5 give 
the equilibrium delay and the equilibrium queue for these three policies when T is just larger than s1. With P0 there are two cases: θ < 1 
− r and θ > 1 − r. If θ > 1 − r and T is slightly larger than s1 there is no equilibrium delay consistent with P0, and also no equilibrium 
queue. 

Now 

Δ/(1 − r / (1 − θ))〉Δ/(1 − r) > Δ.

Using these two inequalities and the results in Table 1 we obtain, for T slightly larger than s1,  

(A) If θ > 1 − r there is no equilibrium consistent with P0;  
(B) If θ < 1 − r, P0 has a larger equilibrium delay on link 1 and requires more queueing space than P0k, and  
(C) P0k has a larger equilibrium delay and requires more queueing space than Phk. 

This study in the context of modern information systems and real-time control 

Equilibrium modelling with signal control has typically involved equilibrium route choice modelling for fixed signals, combined 
with rather slow signal control adjustments to change those fixed signal settings. For example, see Allsop (1974); Smith and van Vuren 
(1993) discuss day-to-day iterations involving signal control updates on one day followed by routeing adjustments on the next day. So 
it is reasonable to ask whether our equilibrium discussions in this paper are relevant when: 

Table 1 
shows the equilibrium delay and the equilibrium queue for these three policies when T is slightly greater than s1.   

P0 (θ > 1 - r) P0 (θ < 1 - r) P0k Phk 

Link 1 equilibrium delay b1 when T is slightly larger than s1 (see the vertical axis in Fig. 4) There is no link 1 equilibrium delay Δ/[1-r/(1-θ)] Δ/[1-r] Δ 
Link 1 equilibrium queue Q1 when T is slightly larger than s1. There is no link 1 equilibrium queue s1Δ/[1-r/(1-θ)] s1Δ/[1-r] s1Δ  
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(A) information is now much more up-to-date and available, and  
(B) signal responses are now much quicker and potentially much more discriminating. 

Because of (A) and (B) above, modern signal control systems have a much greater potential impact than historic fixed time systems, 
and yet often modern traffic control systems have been, and are, used with policies which do not take proper account of route choice. 
This deficiency may now be having a much greater impact than previously when signals were more often fixed time. 

So perhaps it is now more important to understand how to choose signal settings which take good account of route choice. With 
such understanding, currently powerful control systems would perhaps be much more productive in controlling traffic conditions 
while allowing properly for route (and mode) choices. 

Local responsive control policies P0, P0k and Phk have all been designed to take some proper account of route choice. Our study here 
shows that P0k or Phk are may well be much better than P0. Fig. 4 shows that the equilibrium performnce disparities are very large even 
on this very simple network. 

Conclusion 

The central model discussed in this paper is a steady-state, link-based, fixed (or inelastic) demand equilibrium model with explicit 
link-exit capacities, explicit spatial-queueing delays, explicit (but large) bounds on queue storage capacities, and green-times. The 
model is a spatial quasi-dynamic assignment/control model. The main link model at the heart of this equilibrium model takes some 
account of the space taken up by queues. We have called this link model a “spatial queueing” model. 

In the paper we have considered a simple example network and have given the results in Smith et al. (2019a) involving the three 
responsive control policies: P0, P0k (spatial P0) and Phk (biased spatial P0) using a vertical queueing model and a spatial queueing 
model. We have also given the results of one new test, test 3b, and we have illustrated the results of all five tests 1, 2, 3a, 3b and 4 in 
Fig. 4. 

Test 3a in this paper involves spatial queueing and the P0 result obtained in test 3a depends on the inequality 

θ < 1 − r or (1 − θ)s2 > s1.

We have shown that, in this case, each feasible value of the demand T gives rise to a (unique) extra travel time E(T). So P0 maximises 
the capacity of this network if θ < 1 − r. We have in this paper also shown, in test 3b, that if, on the other hand, 

θ > 1 − r or (1 − θ)s2 < s1,

then T*(θ) > s1 and there is a non-empty range R of the fixed demand T satisfying: 
if T belongs to R then T is feasible but there is no equilibrium consistent with policy P0. 
R = (s1,T*(θ), the set of those T between s1 and T*(θ) in Fig. 4. So the control policy P0 does not maximise the capacity of this simple 

network in this case. 
Thus we have shown that P0 does not always maximise the capacity of this simple network. There are many opportunities for 

further work: for example we might consider networks with links having differing values of θi and we might consider representing 
different link characteristics such as surface quality. 

The main implication of this work is that when there is spatial queueing, as there must be in reality, it is important for this simple 
network to use either P0k (spatial P0) or Phk (biased spatial P0) rather than P0. We believe that this result is likely to hold also for many 
other networks. 

There are very many opportunities for further work; for example:  

(1) more general networks need to be considered,  
(2) stochasticity and overflow queues need consideration,  
(3) inflow control to suit P0k or Phk merit consideration to extend this study to large peak-hour demands, and  
(4) the stability of these policies has never been studied and this represents another opportunity. 
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Appendix 

Theorem 1. In the model above, where 0 < θ ≤ 1, suppose that T satisfies s1 < T < s2. Then there is an equilibrium consistent with spatial 
queueing and P0 and also the extra travel time E(T) is given by (7) if and only if 

T > T∗(θ) =
s2

1 + s2
2 − (s2 − s1)

2/θ
s1 + s2

.
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Proof. 
Fix T where s1 < T < s2. Put g = ((s2 − T)/(s2 − s1),(T − s1)/(s2 − s1))and 

F(T) =
1 − θg1

1 − θg2
=

1 − θ(s2 − T)/(s2 − s1)

1 − θ(T − s1)/(s2 − s1)
.

Now s1 < T < s2 and 0 < θ ≤ 1, so 

1 − θ(s2 − T)/(s2 − s1)〉0 and 1 − θ(T − s1)/(s2 − s1)〉0.

It follows that F(T) is well-defined and > 0 and hence that 
Δ 1

r.
1− θg1
1− θg2

1
r.

1− θg1
1− θg2

− 1
is well-defined and positive if and only if 1r.

1− θg1
1− θg2

− 1 > 0. 

Under what conditions is 1r.
1− θg1
1− θg2

− 1 > 0? 
1
r.

1− θg1
1− θg2

− 1 > 0 if and only if F(T) = 1− θ(s2 − T)/(s2 − s1)
1− θ(T− s1)/(s2 − s1)

> r = s1
s2
, which happens if and only if s2(1 − θ(s2 − T)/(s2 − s1)) > s1(1 − θ(T −

s1)/(s2 − s1))(since 1 − θ(T − s1)/(s2 − s1) > 0), which happens if and only if (s1 + s2)θT/(s2 − s1) > s1(1 + θs1/(s2 − s1)) − s2(1 − θs2/ 
(s2 − s1)), which happens if and only if (s1 + s2)θT/(s2 − s1) > (s1 − s2)+ θ(s2

1 + s2
2)/(s2 − s1), which happens if and only if T > (s2

1 +

s2
2 − (s2 − s1)

2
/θ)/(s1 + s2). 

Let 

T∗ = T∗(θ) =
(
s2

1 + s2
2 − (s2 − s1)

2 / θ
)/

(s1 + s2).

It follows then that there is an equilibrium consistent with spatial queueing and policy P0 with performance given by (7) and (8) if 
and only if T > T*(θ). QED 
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