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Abstract. Contrastive instance discrimination outperforms supervised
learning in downstream tasks like image classification and object detec-
tion. However, this approach heavily relies on data augmentation during
representation learning, which may result in inferior results if not prop-
erly implemented. Random cropping followed by resizing is a common
form of data augmentation used in contrastive learning, but it can lead to
degraded representation learning if the two random crops contain distinct
semantic content. To address this issue, this paper introduces LeOCLR
(Leveraging Original Images for Contrastive Learning of Visual Repre-
sentations), a framework that employs a new instance discrimination
approach and an adapted loss function that ensures the shared region
between positive pairs is semantically correct. The experimental results
show that our approach consistently improves representation learning
across different datasets compared to baseline models. For example, our
approach outperforms MoCo-v2 by 5.1% on ImageNet-1K in linear eval-
uation and several other methods on transfer learning tasks.

Keywords: Self-supervised · Visual representation · Semantic features
· Contrastive learning · Instance discrimination

1 Introduction

Self-supervised learning (SSL) approaches based on instance discrimination [7–
9,16,30] heavily rely on data augmentations such as (random cropping, rotation,
and colour Jitter) to build invariant representation for all the instances in the
dataset. To do so, the two augmented views (i.e., positive pairs) for the same
instance are attracted in the latent representation while avoiding collapse to
the trivial solution (i.e., representation collapse). These approaches have proven
efficient in learning useful representations by using different downstream tasks
(i.e., image classification and object detection) as a proxy evaluation for repre-
sentation learning. However, these strategies ignore the important fact that the
augmented views may have different semantic content because of random crop-
ping and thus tend to degenerate visual representation learning [27, 29, 33, 36].
On the one hand, creating positive pairs by random cropping and encouraging
the model to bring these two views closer in the latent space based on the infor-
mation in the shared region between the two views makes the SSL model task
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harder and improves representation quality [7,29]. In addition, random cropping
followed by resizing leads model representation to capture information for the ob-
ject from varying aspect ratios and induce occlusion invariance [32]. Conversely,
minimizing the feature distance (i.e., maximizing similarity) between views con-
taining distinct semantic concepts tends to result in the loss of valuable image
information [32,33,36].

Fig. 1: Examples of positive pairs that might be created by random cropping and
resizing.

Fig. 1 (a and b) show examples of wrong semantic positive pairs that might
be created by random cropping. In case (a), when the model is forced to bring
the two representations of the dog’s head and leg into the latent space, it will
discard important semantic features. This is because the model makes the rep-
resentations of the views similar based on the information in the shared region
between the two views. Thus, the representation will be trivial if the shared
region between the two views is not semantically matched. The shared region
between the views must encompass the same semantic information to obtain the
advantage of random cropping and achieve occlusion invariance. In Fig. 1 (c and
d), the information in the shared region between the two views contains similar
semantic content. The dog’s head is presented in the two views of positive pairs
(c), which facilitates the model capturing the dog’s head features on variant
scales and angles.

As the examples show, creating random crops for one-centric object does
not guarantee obtaining correct semantic pairs. This fact should be considered
to improve representation learning. The instance discrimination SSL approaches
such as MoCo-v2 [8] and SimCLR [7] encourage the model to bring the positive
pairs closer in the latent space regardless of their semantic content [33,40]. This
may restrain the model from learning the representation of different object parts
and damage semantic features representation [33,36] (see Fig. 2 (left)).
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It has been shown that undesirable views containing different semantic con-
tent may be unavoidable when employing random cropping [36]. Therefore,
we need a method to train the model on different object parts to make a ro-
bust representation against natural transformations such as scale and occlusion
rather than just pulling the augmented views together indiscriminately [29].
This issue should be mitigated because the performance of downstream tasks
depends on high-quality visual representation learnt by self-supervised learn-
ing [1, 11,15,22,28,43]

This study introduces a new SSL training approach to solve the issue of ex-
isting approaches [7, 8, 19], which attract two random views regardless of the
distinct in their semantic content. As shown in Fig. 2 (right), we include the
original image X in the training process because it encompasses all the semantic
features of the views X1 and X2. In our approach, the positive pairs (i.e., X1

and X2) are pulled to the original image X in the latent space rather than at-
tracted to each other. This training method ensures that the information in the
shared region between the attracted views (X,X1) and (X,X2) is semantically
correct. Therefore, the model representation learning is improved because the
model captures better semantic features from the correct semantic positive pairs
rather than just matching two random views that might depict different seman-
tic information. In other words, the model learns the representation of diverse
parts of the object because the shared region includes correct semantic parts
of the object. This is contrary to other approaches, which discard important
semantic features due to incorrectly mapping object parts in positive pairs. Our
contributions are as follows:

– We introduce a new contrastive instance discrimination SSL method called
LeOCLR to alleviate discarding semantic features caused by mapping two
random views that are semantically not correct.

– We demonstrate that our approach enhances visual representation learn-
ing in Contrastive instance discrimination SSL compared to state-of-the-art
(SOTA) approaches.

– We demonstrate that our approach consistently enhances visual representa-
tion learning for contrastive instance discrimination across different datasets
and transfer learning scenarios.

2 Related Work

SSL approaches are divided into two broad categories: contrastive and non-
contrastive learning. Broadly speaking, all these approaches aim to attract the
positive pairs closer in latent space, but each has a different method to avoid
representation collapse. This section provides a brief overview of some of these
approaches, but we would like to encourage readers to read the respective papers
for more details.

Contrastive Learning: Instance discrimination, such as SimCLR, MoCo,
and PIRL [7,8,19,30] employ a similar idea. They attract the positive pairs to-
gether and push the negative pairs apart in the embedding space albeit through
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Fig. 2: On the left, an existing approach shows the embedding space of the SOTA
approaches [7, 8] where the two views are attracted to each other regardless of their
content. Conversely, the figure on the right depicts our approach, which clusters the
two random views together with the original image in the embedding space.

a different mechanism. SimCLR [7] uses an end-to-end approach where a large
batch size is used for the negative examples, and both encoders’ parameters
in the Siamese network are updated together. PIRL [30] uses a memory bank
for negative examples, and both encoders’ parameters are updated together.
MoCo [8, 19] uses a momentum contrastive approach whereby the query en-
coder is updated during backpropagation, and the query encoder updates the
key encoder. The negative examples are located in a dictionary separate from
the mini-batch, which enables holding large batch sizes.

Non-Contrastive Learning: Non-contrastive approaches use only positive
pairs to learn the visual representation with different methods to avoid represen-
tation collapse. The first approach is clustering-based methods, where samples
with similar features are assigned to the same cluster. DeepCluster [4] obtains
the pseudo-label from the previous iteration, which makes it computationally
expensive and hard to scale. SWAV [5] solved this issue by using online clus-
tering, but it needs to determine the correct number of prototypes. The second
approach is Knowledge distillation. BYOL [16] and SimSiam [9] use techniques
inspired by knowledge distillation where a Siamese network has an online en-
coder and a target encoder. The target network parameters are not updated
during backpropagation. Instead, the online network parameters are updated
while being encouraged to predict the representation of the target network. Al-
though these methods have produced promising results, how they avoid collapse
has yet to be fully understood. Self-distillation with no labels (DINO) [6] was
inspired by BYOL, but they use centring with sharping and different backbone
(ViT), which enables it to achieve better results than other self-supervised meth-
ods while being more computationally efficient. Bag of visual words [13,14] also
uses a teacher-student scheme inspired by natural language processing (NLP) to
avoid representation collapse. The student network is encouraged to predict the
features’ histogram for the augmented images, similar to the teacher network’s
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histogram. The last approach is information maximisation. Barlow twins [42] and
VICReg [2] do not require negative examples, stop gradient or clustering. Instead,
they use regularisation to avoid representation collapse. The objective function
of these methods aims to reduce the redundant information in the embeddings
by making the correlation of the embedding vectors closer to the identity matrix.
Though these methods provide promising results, they have limitations, such as
the representation learning being sensitive to regularisation. The effectiveness of
these methods is also reduced if certain statistical properties are not available
in the data.

Instance Discrimination With Multi-Crops: Different SSL approaches
introduce multi-crop methods to enable the model to learn the visual representa-
tion of the object from various aspects. However, creating multi-crop views from
the same instance might cause two map views containing distinct semantic in-
formation. To solve this issue, LoGo [33] creates two random global crops and N
local views. They assume that the global and local views share similar semantic
content, thus increasing their similarity, while decreasing the similarity between
the local views due to their presumed distinct semantic content. SCFS [36] intro-
duces a different solution to solve the unmatched semantic views. They search
for semantic-consistent features between the contrasted views. CLSA [39] cre-
ates multi-crops, then applies strong and weak augmentations to the crops. After
that, they use distance divergence loss to improve the representation learning of
the instance discrimination. The prior approaches assume that the global views
contain similar semantic content and treat them indiscriminately as positive
pairs. However, our approach argues that the global views may contain incorrect
semantic pairs due to random cropping, as illustrated in Fig. 1. Therefore, we
aim to attract the two global views to the original image (i.e., intact image and
not cropped) because it encompasses the semantic features of the crops.

3 Methodology

Mapping incorrect semantic positive pairs (i.e., positive pairs containing differ-
ent semantic views) results in the discarding of semantic features, degrading
the learning of model representations. To overcome this, we introduce a new
contrastive instance discrimination SSL strategy called LeOCLR. Our approach
aims to capture meaningful features from two random positive pairs that con-
tain different semantic content to enhance representation learning. To achieve
this, it is essential to ensure that the information in the shared region between
the attracted views is semantically correct. This is because the choice of views
controls the information captured by the representations learnt in contrastive
learning [38]. Since we cannot guarantee that the shared region between the two
views includes correct semantic parts of the object, we propose to involve the
original image in the training process. The original image X is intact from crop-
ping (i.e., no random crop), so it encompasses all the semantic features of the
two cropped views X1 and X2.
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Fig. 3: LeOCLR: the concept of the proposed approach. The left part shows that
the original image X is not cropped (i.e., NC), just resized to (224 × 224), and then
transformations are applied. The other views (X1 and X2) are randomly cropped (i.e.,
RC1 and RC2) and resized to 224 × 224. After that, transformations are applied to
them. The embedding space of our approach is shown on the right of the Figure.

As shown in Fig. 3 (left), our methodology creates three views (X, X1, and
X2). The original image (i.e., X) is resized without cropping, while the other
views (X1 and X2) are randomly cropped and resized. After that, all the views
are randomly augmented to avoid the model learning trivial features. We use
similar data augmentations that are used in MoCo-v2 [8]. Then the original
image (i.e., X) is encoded by the encoder fq and the two views (i.e.,X1,X2) are
encoded by a momentum encoder fk which is parameters are updated by the
following formula:

θk ← mθk + (1−m)θq (1)

where m is the coefficient set to 0.999, (θq) are encoder parameters of (fq) which
are updated by the backpropagation and (θk) momentum encoder parameters
(i.e., fk) are updated by (θq). Finally, the objective function forces the model to
pull both views (i.e., X1, X2) toward the original image (X) in the embedding
space and push apart all other instances (as shown in Fig. 3 (right)).

3.1 Loss function

Firstly, we briefly describe the loss function of MoCo-v2 [8] since we are using
momentum contrastive learning for our approach, and then we will explain our
modification to the loss function.

ℓ(u, v+) = − log
exp(u · v+/τ)∑N
n=0 exp(u · vn/τ)

, (2)

where the similarity is measured by the dot product. The objective function
increases the similarity between the positive pairs (u·v+) by bringing them closer
in the embedding space and pushing apart all the negative samples (vn) in the
dictionary to avoid representation collapse. τ is a temperature hyperparameter of
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softmax. In our approach, we increase the similarity between the original image
(i.e., query’s feature representation) u = fq(x) with the positive pair (i.e., key’s
feature representation) v+ = fk(xi) (i = 1, 2) and push apart all the negative
examples(vn). Therefore the total loss for the mini-batch is:

TotalLoss =

N∑
i=1

ℓ(ui, sg(v
1
i )) + ℓ(ui, sg(v

2
i )) (3)

Note: sg(.) denotes the stop-gradient trick that is crucial to avoid representation
collapse. As shown in Eq. (3), the TotalLoss attracts the two views (v1i and v2i )
to their original instance ui. This facilitates the model to capture the seman-
tic features from the two random views even though they have distinct semantic
information. Our approach captures better semantic features than the prior con-
trastive approaches [7, 8, 19] because we ensure that the shared region between
the attracted views contains correct semantic information. In other words, the
original image contains all the parts of the object, so whatever the object’s part
contained in the random crop, this part is certainly present in the original image.
Thus, when we bring the original image with the two random views closer in the
embedding space, the model learns the representation of the different parts and
creates an occlusion invariant representation for the object from different scales
and angles. This is contrary to the prior approaches, which attract the two views
in the embedding space regardless of their semantic content, which leads to dis-
carding semantic features [27,32,36] (see Algorithm 1 for the implementation of
our approach).

Algorithm 1 Proposed Approach

1: for X in dataloader do
2: X1, X2= rc(X) ▷ random crop first and second views
3: X,X1,X2 = augment(X,X1,X2) ▷ apply random augmentation for all the

views
4: X = fq(X) ▷ encode the original image
5: X1 = fk(X1) ▷ encode the first view by momentum encoder
6: X2 = fk(X2) ▷ encode the second view by momentum encoder
7: loss1 = ℓ(X,X1) ▷ computed as shown in eq.1
8: loss2 = ℓ(X,X2) ▷ computed as shown in eq.1
9: TotalLoss = loss1 + loss2 ▷ computed the total loss as shown in eq.2

10: end for
11:
12: def rc(x):
13: x= T.RandomResizedCrop(224,224) ▷ T is transformation from torchvision

module
14: return x
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4 Experiments

Datasets: We run multiple experiments on three datasets, i.e., STL-10 "unla-
beled" with 100K training images [10], CIFAR-10 with 50K training images [24],
and ImageNet-1K with 1.28M training images [34].
Training Setup: We use ResNet50 as a backbone, and the model is trained
with SGD optimizer, weight decay 0.0001, momentum 0.9 and initial learning
rate of 0.03. The mini-batch size is 256, and the model is trained for up to 800
epochs on ImageNet-1K.
Evaluation: We evaluated LeOCLR by using linear evaluation and semi-supervised
setting against leading SOTA approaches on ImageNet-1K. In linear evaluation,
we followed the standard evaluation protocol [7, 12, 19, 21]. We trained a linear
classifier for 100 epochs on top of a frozen backbone pre-trained with LeOCLR.
We used the ImageNet training set with random cropping and random left-
to-right flipping augmentations to train the linear classifier from scratch. The
results are reported on the ImageNet validation set with center crop (224×224).
In a semi-supervised setting, we fine-tune the network with 60 epochs using
1% labeled data and 30 epochs using 10% labeled data. Finally, we assess the
learned features from the ImageNet dataset on small datasets CIFAR [24] and
fine-grained datasets [3, 23,31] using transfer learning.
Comparing with SOTA Approaches: We use vanilla MoCo-v2 [8] as a base-
line to compare it with our approach on different benchmark datasets, given
our utilization of a momentum contrastive learning framework. Additionally,
we compare our approach with other state-of-the-art (SOTA) methods on the
ImageNet-1K dataset.

Tab. 1 presents the linear evaluation of our approach compared to other
SOTA methods. As depicted, our approach outperforms all others. For instance,
it surpasses the baseline (i.e., vanilla MoCo-v2) by 5.1%. This highlights our
hypothesis that two global views may encapsulate different semantic information
for the same object (e.g., a dog’s head and leg), which warrants consideration
for enhancing representation learning. The observed performance gap (i.e., the
difference between vanilla MoCo-v2 and LeOCLR) illustrates that mapping pairs
with divergent semantic content hampers representation learning and impedes
the model’s effectiveness in downstream tasks.

Semi-Supervised Learning on ImageNet: In this part, we evaluate the
performance of LeOCLR under the semi-supervised setting. Specifically, we use
1% and 10% of the labeled training data from ImageNet-1K for fine-tuning,
which follows the semi-supervised protocol introduced in SimCLR [7]. The top-1
accuracy, reported in Tab. 2 after fine-tuning with 1% and 10% of the training
data, showcases LeOCLR’s superiority over all compared methods. This can be
attributed to LeOCLR’s representation learning capabilities especially compared
to the other SOTA methods.

Transfer Learning on Downstream Tasks: We evaluate our self-supervised
pretrained model using transfer learning when fine-tuned on small datasets such
as CIFAR [24], Stanford Cars [23], Oxford-IIIT Pets [31], and Birdsnap [3].
We follow similar procedures for transfer learning as in [7, 16] to find optimal
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Table 1: Comparisons between our approach LeOCLR and SOTA approaches on Im-
ageNet.

Approach Epochs Batch Accuracy
MoCo-v2 [8] 800 256 71.1%
BYOL [16] 1000 4096 74.4%
SimCLR [7] 1000 4096 69.3%
SimSiam [9] 800 512 71.3%
VICReg [2] 1000 2048 73.2%
SWAV [5] 800 4096 75.3%
OBoW [14] 200 256 73.8%
DINO [6] 800 1024 75.3%

Barlow Twins [42] 1000 2048 73.2%
CLSA [39] 800 256 76.2%
HCSC [18] 200 256 73.3%
UniVIP [26] 300 4096 74.2%
SCFS [37] 800 1024 75.7%

RegionCL-M [41] 800 256 73.9%
UnMix [35] 800 256 71.8%
HEXA [25] 800 256 71.7%

MixSiam [17] 800 128 72.3%
LeOCLR(ours) 800 256 76.2%

hyperparameters for each downstream task. Tab. 3 shows that our approach,
LeOCLR, outperforms all compared approaches on various downstream tasks.
This demonstrates that our model learns useful semantic features, enabling it to
generalize better to unseen data in different downstream tasks than other coun-
terpart approaches. Our method preserves the semantic features of the given
objects, thereby improving the model’s representation learning ability. As a re-
sult, it becomes more effective at extracting important features and predicting
correct classes on transferred tasks.

5 Ablation Studies

In this section, we conduct further analysis of our approach using another con-
trastive instance discrimination approach SimCLR [7] to explore how our ap-
proach will perform within this end-to-end framework. Also, we perform studies
on the benchmark datasets STL-10 and CIFAR-10 with a different backbone
(Resnet18) to check the consistency of our approach with other datasets and
backbones. Furthermore, we employ a random crop test to simulate natural
transformations, such as variations in scale or occlusion of objects appearing in
the image, in order to conduct further analysis on the robustness of features
learned by our approach, LeOCLR. In addition, we compare our approach with
vanilla MoCo when manipulating their data augmentation to see which model’s
performance is more affected by removing some of the data augmentation. Fi-
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Table 2: Semi-supervised training results on ImageNet: Top-1 performances are re-
ported for fine-tuning a pre-trained ResNet-50 with the ImageNet 1% and 10% datasets.
* denotes the results are reproduced in this study.

Approach\Fraction ImageNet 1% ImageNet 10%
MoCo-v2 [8] * 47.6% 64.8%
SimCLR [7] 48.3% 65.6%
BYOL [16] 53.2% 68.8%
SWAV [5] 53.9% 70.2%
DINO [12] 50.2% 69.3%
SCFS [37] 54.3% 70.5%

RegionCL-M [41] 46.1% 60.4%
LeOCLR(ours) 62.8% 71.5%

Table 3: Transfer learning results from ImageNet with the standard ResNet-50 archi-
tecture.
* denotes the results are reproduced in this study.

Approach CIFAR-10 CIFAR-100 Car Birdsnap Pets
MoCo-v2 [8]* 97.2% 85.6% 91.2% 75.6% 90.3%
SimCLR [7] 97.7% 85.9% 91.3% 75.9% 89.2%
BYOL [16] 97.8% 86.1% 91.6% 76.3% 91.7%
DINO [37] 97.7% 86.6% 91.1% - 91.5%
SCFS [37] 97.8% 86.7% 91.6% - 91.9%

LeOCLR(ours) 98.1% 86.9% 91.6% 76.8% 92.1%

nally, we use different fine-tuning settings to check which model learns better
and faster.

Table 4: Comparing vanilla SimCLR with LeOCLR after training our approach 200
epochs on ImageNet

Approach ImageNet
SimCLR [7] 62%

LeOCLR(ours) 65.5%

We use an end-to-end framework, where the two encoders fq and fk are up-
dated via backpropagation, to train a model with our approach for 200 epochs
and 256 batch size. Subsequently, we perform a linear evaluation of our model
against SimCLR, which uses an end-to-end mechanism. As shown in Tab. 4, our
approach outperforms vanilla SimCLR by a significant margin of 3.5%, demon-
strating its suitability for integration with various contrastive learning frame-
works.

In Tab. 5, we evaluate our approach on different datasets (STL-10 and
CIFAR-10) using another backbone, namely ResNet18, to ensure its consistency
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Table 5: Vanilla MoCo-v2 versus LeOCLR on CIFAR-10 and STL-10 with ResNet18.

Approach STL-10 CIFAR-10
MoCo-v2 80.08% 73.88%

LeOCLR(ours) 85.20% 79.59%

across various backbones and datasets. We pre-trained both models (Vanilla
MoCo-v2 and LeOCLR) for 800 epochs on both datasets and then conducted a
linear evaluation for both models. Our approach demonstrates superior perfor-
mance on both datasets compared to vanilla MoCo-v2, achieving accuracies of
5.12% and 5.71% on STL-10 and CIFAR-10, respectively.

Table 6: Comparing LeOCLR with vanilla MoCo-v2 and CLSA after training 200
epochs on ImageNet.

Approach Center Crop Random Crop
MoCo-v2 [8] 67.5% 63.2%
CLSA [39] 69.4% -

LeOCLR(ours) 71.7% 68.9%

In Tab. 6, we reported the top-1 accuracy for vanilla MoCo-v2 and our ap-
proach after 200 epochs on ImageNet. Tab. 6 shows two testing methods: center
crop test similar to [7,8]: images are resized to 256 pixels along the shorter side
using bicubic resampling, after which a 224 × 224 center crop is applied. The
second test is a random crop, where the image is resized to 256 × 256 but ran-
domly cropped and resized to 224×224. We took the MoCo-v2 center crop result
directly from [8], while the random crop result was not reported. Therefore, we
replicated the MoCo-v2 with the same hyperparameters used in the original
paper to report the center crop, ensuring a fair comparison. According to the
results, the performance of MoCo-v2 dropped by 4.3% with random cropping,
whereas our approach experienced a smaller drop of 2.8%. This suggests that
our approach learns better semantic features, as it demonstrates greater invari-
ance to natural transformations such as occlusion and variations in object scales.
Also, we compare the performance of CLSA [39] with our approach because we
have the same performance after 800 epochs (see Tab. 1. Note that the CLSA
approach uses multi-crop (i.e., five strong and two weak augmentations), while
our approach only uses two random crops and the original image. As shown in
Tab. 5 LeOCLR outperforms the CLSA approach by 2.3% after 200 epochs on
ImageNet-1K.

Contrastive instance discrimination approaches are sensitive to the choice of
image augmentations [16]. Thus, we do further analysis of our approach against
Moco-v2 [8]. These experiments aim to see which model learns better semantic
features and creates robust representation under different data augmentations.
As shown in Fig. 4, both models are affected by removing some data augmen-
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Fig. 4: Decrease in top-1 accuracy (in % points) of LeOCLR and our own reproduction
of Vanilla MoCo at 200 epochs, under linear evaluation on ImageNet. R_Grayscale
means to remove the grayscale augmentations, and R_color removes color jitter with
grayscale augmentations.

tations. However, our approach shows a more invariant representation and Less
performance impact due to transformation manipulation than vanilla MoCo-v2.
For example, when we apply only random cropping augmentation, the perfor-
mance of vanilla MoCo-v2 is reduced by 28 points (i.e., from 67.5% baseline to
39.5% only random cropping), while our approach reduces only 25 points (i.e.,
from 71.7% baseline to 46.6% only random cropping). This means our approach
learns better semantic features and creates better representation for the given
objects than vanilla MoCo-v2.

Tab. 2 presented in Sec. 4, we fine-tune the representation over the 1% and
10% ImageNet splits from [7] with ResNet-50 architecture. In the ablation study,
we compare the fine-tuned representation of our approach and reproduced vanilla
MoCo-v2 [8] over 1%, 2%, 5%, 10%, 20%, 50%, and 100% of the ImageNet
dataset as in [16, 20]. In this setting, we observed that tuning a LeOCLR rep-
resentation always outperforms vanilla MoCo-v2. For instance, Fig. 5 (a) shows
that LeOCLR fine-tuned with 10% of ImageNet labeled data performed better
than Vanilla Moco-v2 [8] fine-tuned with 20% of labeled data. This means that
our approach is suitable in case we have small labeled data for downstream task
than vanilla MoCo-v2.
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Fig. 5: Semi-supervised training with a fraction of ImageNet labels on a ResNet-50.

6 Conclusion

In this paper, we introduce a new SSL approach to improve contrastive instance
discrimination representation learning. Our approach alleviates discarding se-
mantic features while attracting two views containing distinct semantic content
by incorporating the original image in training. Our approach consistently en-
hances representation learning for contrastive instance discrimination across dif-
ferent benchmark datasets and various mechanisms, such as momentum contrast
and end-to-end methods. In linear evaluation, we achieved an accuracy of 76.2%
on ImageNet after 800 epochs, outperforming several SOTA SSL approaches.
Through extensive ablation studies and experiments, we have demonstrated the
robustness and invariance of our method to different backbones and datasets.
These findings suggest that our method could be a promising candidate for adop-
tion in various settings where semi-supervised learning methods are employed,
extending beyond the contexts considered in this paper.
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