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EQUIVARIANT TOPOLOGICAL COMPLEXITIES

MARK GRANT

Abstract. Many mechanical systems have configuration spaces that admit
symmetries. Mathematically, such symmetries are modelled by the action of
a group on a topological space. Several variations of topological complex-
ity have emerged that take symmetry into account in various ways, either by
asking that the motion planners themselves admit compatible symmetries, or
by exploiting the symmetry to motion plan between functionally equivalent
configurations. We will survey the main definitions due to Colman-Grant,
Lubawski-Marzantowicz, B laszczyk-Kaluba and Dranishnikov, and some re-
lated notions. We conclude with a short list of open problems.

1. Introduction

As seen in previous chapters, the topological complexity TC(X) provides an in-
teresting measure of the complexity (from a topological perspective) of the motion
planning problem for a mechanical system with X as its configuration space. In
many naturally occurring examples, the configuration space admits non-trivial sym-
metries, which one may wish to take into account when designing motion planning
algorithms. This leads to several variations on the notion of topological complexity,
which will be surveyed in this chapter.

Symmetry is a central concept in mathematics, and symmetries of topological
spaces are particularly well studied. The set of symmetries forms a group G, which
acts on the configuration space X . Precise definitions will follow in the next section;
for the purposes of this introduction, we think it best to illustrate the concept with
some relevant examples.

Example 1.1. Consider a planar mechanism (such as a robot arm), one component
of which is anchored to a point in the plane. Denote its configuration space by Y .
Now add an extra revolute joint, giving one more degree of freedom. We imagine
creating a spatial mechanism by basing the anchor of the arm to a rotating platform
or circular track in 3-space. The configuration space of this new mechanism is the
topological product X := S1 × Y , where S1 is the unit circle.
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Figure 1. A configuration in Y

S1

Figure 2. A configuration in S1×Y

This new configuration space has an obvious rotational symmetry. Mathemati-
cally speaking, the group S1 (of unit complex numbers, say) acts on X by a formula
z(w, y) = (zw, y) for z, w ∈ S1 and y ∈ Y . It seems reasonable to suggest that
motion planners in X should be invariant under this symmetry, namely that the
motion from (zw1, y1) to (zw2, y2) should be the z-rotation of the motion from
(w1, y1) to (w2, y2), for all z ∈ S1 and (w1, y1), (w2, y2) ∈ S1 × Y . Whether or
not this condition is enforced, it could play a role in the design of motion planning
algorithms.

Example 1.2 (from [34]). Consider a planar robot arm with n revolute joints
and a “hand” at the end of the arm for grasping objects. Ignoring collisions, the
configuration space X = (S1)n is an n-dimensional torus. Pictured below is the
case n = 6. There is an obvious symmetry of the arm which exchanges the two
“fingers” of the “hand”.

θ1

θ2

θ3

θ4

θ5

θ6

Figure 3. A configuration
x = (θ1, . . . , θ6) in X

Figure 4. The symmetric
configuration τx

In terms of the joint angles, this is given by

(θ1, θ2, θ3, θ4, θ5, θ6) 7→ (θ1, θ2, θ5, θ6, θ3, θ4)

Mathematically speaking, the cyclic group of order two C2 = {1, τ} acts on X by
permuting coordinates. In this example, a configuration x and its image τx un-
der the involution are physically different, but functionally equivalent—the spatial
configuration of the robot is the same up to a relabeling of its parts. This suggests
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that rather than having to navigate a path between x and τx to perform tasks, the
robot should instead be able to “recalibrate” and exploit the symmetries to make
its task easier.

These two examples are of a very different nature. Example 1.1 is supposed to
illustrate that it may be natural to ask for motion planners that are themselves
symmetric. Example 1.2 illustrates that there may be functionally equivalent sym-
metric configurations, in which case there is no need to navigate a path in the
configuration space between them in order to perform tasks. There are many pos-
sible design requirements, and the mathematical discipline of equivariant topology
provides an unending supply of examples of configuration spaces with symmetry to
illustrate the various phenomena that can occur. This aspect, combined with the
differing motivations of the researchers involved, explains why several different def-
initions of topological complexity with symmetry have emerged in a relatively short
space of time. The catalyst for this seems to have been the Arbeitsgemeinschaft
in Topological Robotics held at the MFO in 2010, organized by Michael Farber,
Jesús González and Dirk Schütz, at which the author and Hellen Colman began
discussing the ideas that led to [16]. The subject also featured heavily at the Mini-
Workshop “Topological Complexity and Related Topics” held at the MFO in 2016,
organized by the author, Greg Lupton and Lucile Vandembroucq. We would like
to thank the MFO and the various organizers and co-organizers for providing such
a stimulating atmosphere.

There already exists an excellent survey article with the same title as this one,
written by Ándres Ángel and Hellen Colman [1]. While there is necessarily consid-
erable overlap in content between that article and this chapter, we have tried to add
to the narrative, and to cover developments since the publication of [1]. We also
include one new result, a cohomological lower bound for Dranishnikov’s strongly
equivariant topological complexity (Proposition 5.3). We conclude our survey with
a list of what we believe to be interesting research problems in the area.

The structure of this survey is as follows. In Section 2 we collect some basic
definitions about group actions which we will need, so as not to interrupt the flow
later on. Sections 3, 4, 5 and 6 focus on, respectively: the equivariant topologi-
cal complexity TCG(X) of Colman and the author [16]; the invariant topological

complexity TC
G(X) of Lubawski and Marzantowicz [34]; the strongly equivariant

topological complexity TC
∗
G(X) of Dranishnikov; and the effective topological com-

plexity TC
G,∞(X) of B laszczyk and Kaluba [7]. The final Section 7 contains our

list of open problems.
We adopt the convention of this volume, that all TC and cat invariants are

reduced. Thus some of the formulae from the original references [16, 34, 7] have
been adjusted to account for this.

2. Group actions

In this section we briefly recall some of the basic definitions from the theory of
group actions. The reader unfamiliar with the theory might wish to consult one of
the classic texts on the subject for further details, for example [9] or [17]. Further
definitions will be supplied in the text as required.

Recall that a group is a set G equipped with an associative binary operation
µ : G×G→ G that admits an identity element e ∈ G satisfying µ(e, g) = g = µ(g, e)
for all g ∈ G, and such that each g ∈ G admits an inverse g−1 ∈ G satisfying
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µ(g, g−1) = e = µ(g−1, g). The inverse is easily shown to be unique, hence we
may define a function ν : G → G, called inversion, by setting ν(g) = g−1. A
topological group is a group G equipped with a topology such that the operation
µ : G×G→ G and inversion ν : G→ G are continuous functions. A Lie group is a
group G equipped with the structure of a smooth manifold such that µ : G×G→ G
and ν : G→ G are smooth maps.

Definition 2.1. Let X be a space (respectively, smooth manifold), and let G
be a toplogical (respectively, Lie) group. An action of G on X is a continuous
(respectively, smooth) function α : G×X → X satisfying:

(1) α(g, α(h, x)) = α(µ(g, h), x) for all g, h ∈ G and x ∈ X ;
(2) α(e, x) = x for all x ∈ X , where e ∈ G is the identity element.

In theoretical work one often drops the names of the operations µ and α from the
notation, and writes these using concatenation and appropriate parentheses. Thus
the associativity property from the definition of a group becomes g(hk) = (gh)k,
and property (1) from the definition of an action becomes g(hx) = (gh)x.

Definition 2.2. Let X and Y be spaces, each with an action of G. A continuous
function φ : X → Y is called G-equivariant if φ(gx) = gφ(x) for all g ∈ G and
x ∈ X .

For brevity, we will refer to a space equipped with an action of a group G as a
G-space, and to a continuous G-equivariant function as a G-map.

Definition 2.3. Let X be a G-space, and let A ⊆ X be a subset. The G-saturation
of A is the set

GA := {ga | g ∈ G, a ∈ A} ⊆ X.

If GA = A, then A is called G-invariant.
As a special case of the above, let A = {x} be a singleton. We write Gx instead

of G{x}, and call this the G-orbit of x ∈ X .

If A ⊆ X is G-invariant then the G-action on X restricts to A, making A a
G-space. The inclusion ιA : A →֒ X is then a G-map, and (X,A) is called a pair of
G-spaces.

A subgroup of G is a subset H ⊆ G such that the binary operation µ : G×G→ G
restricts to an operation µ|H×H : H×H → H satisfying the group axioms (it suffices
to check that µ(g, h−1) ∈ H whenever g, h ∈ H). A subgroup of a topological group
is a topological group, and a closed subgroup of a Lie group is a Lie group. We will
write H ≤ G to signify that H is a subgroup of G. Given H ≤ G and a G-action
on a space X , restriction gives an H-action on X of the same type.

A subgroup H ≤ G is normal if ghg−1 ∈ H whenever g ∈ G and h ∈ H . Under
this condition, we can form the quotient group G/H whose elements are the cosets
gH and whose binary operation is given by µ(gH, g′H) = gg′H .

Definition 2.4. Let X be a G-space, and let H ≤ G be a subgroup. The H-fixed
point set of X is

XH := {x ∈ X | hx = x for all h ∈ H} ⊆ X.

Note that a G-map f : X → Y induces a map

fH := f |XH : XH → Y H

for every subgroup H ≤ G.
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Definition 2.5. Let X be a G-space, and let x ∈ X . The isotropy subgroup of x is

Gx := {g ∈ G | gx = x} ≤ G.

Note that if f : X → Y is a G-map then Gx ≤ Gf(x) for all x ∈ X .
Many of the results in this survey require some additional hypotheses about the

group G, the space X , or the action of G on X . Common hypotheses including
assuming thatG is a compact Lie group, or thatG is a finite group (with the discrete
topology; equivalently, a compact Lie group of dimension 0). Often arguments
require some point-set assumptions on X , such as metrizability, being an ANR
(absolute neighbourhood retract), or being (completely) normal, but it is not clear
whether the result is true without such hypotheses. When results as they originally
appeared in the literature admit straightforward generalizations, we have tried to
indicate this. We do not claim to have found the most general form of each result,
however.

Common assumptions on the action of G on X include:

• freeness: an action is free if Gx = {e} for all x ∈ X ;
• the existence of a fixed point x0 ∈ XG;
• properness: an action is proper if for any compact subset C ⊆ X the set

{g ∈ G | C ∩ gC 6= ∅}

is compact.

It is known that any smooth action of a compact Lie group G on a manifold X
is proper, and is obvious that any action of a finite group G is proper. Note that
properness implies that every isotropy group Gx is compact.

Definition 2.6. Let X be a G-space. The orbit space of a G-space X is the set of
orbits

X/G := {Gx | x ∈ X},

given the quotient topology via the surjection X → X/G sending x to its orbit Gx.

For general actions the orbit space can be fairly upsetting as a topological space.
For instance, if G is non-compact, then X/G can fail to be Hausdorff, even if X is
Hausdorff. However, if G is a compact Lie group acting freely on a smooth manifold
X , then X/G is in a natural way a smooth manifold and the orbit map X → X/G
is a smooth submersion.

We now turn to the basic definitions of equivariant homotopy theory.

Definition 2.7. Let X and Y be G-spaces, and let φ, ψ : X → Y be G-maps. A
G-homotopy from φ to ψ is a G-map H : X × [0, 1] → Y such that H(x, 0) = φ(x)
and H(x, 1) = ψ(x) for all x ∈ X . Here G acts on X × [0, 1] via g(x, t) = (gx, t). If
such a G-homotopy exists, then we say φ and ψ are G-homotopic and write φ ≃G ψ.
This defines an equivalence relation on the set of G-maps from X to Y .

In other words, twoG-maps areG-homotopic if one can be continuously deformed
into the other through G-maps.

Definition 2.8. We say that two G-spaces X and Y are G-homotopy equivalent,
and write X ≃G Y , if there exist G-maps φ : X → Y and ψ : Y → X such that
ψ ◦ φ ≃G IdX and φ ◦ ψ ≃G IdY .
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The reader familiar with ordinary homotopy theory will easily be able to provide
the definitions of G-fibration and G-cofibration.

Our working definition of a principal G-bundle is as follows. Suppose E is a
free G-space such that the orbit projection map p : E → E/G =: B is a fiber
bundle with fiber G. Then p : E → B is a principal G-bundle. Not every free
action gives rise to a principal G-bundle, but free smooth actions of compact Lie
groups on smooth manifolds do. There always exists a universal principal G-bundle
EG → BG, unique up to bundle isomorphism, in which the total space EG is a
free contractible G-space.

Given a G-space X and a principal G-bundle E → B, we can form the associated
bundle with fiber X , whose total space E ×G X is the orbit space of E ×X under
the diagonal action of G given by g(e, x) = (ge, gx), and whose bundle projection
E ×G X → B is given by [e, x] 7→ [e]. When E = EG, the total space EG×G X is
called the homotopy orbit space of X (or the Borel construction on X).

Remark 2.9. Definition 2.1 is of a left action of G on X . There is a corresponding
definition of right action. We’ll do everything here with left actions. It’s usually an
easy matter to translate between the two.

3. Equivariant topological complexity

The first version of topological complexity to take symmetries into account was
introduced by Colman and the author in [16], and called the equivariant topological
complexity. We let PX denote the space of continuous paths in X , equipped with
the compact-open topology. Note that if G acts on X , then it also acts on PX via
sending a path γ to the path gγ defined by (gγ)(t) = gγ(t), and on X ×X via the
diagonal action g(x, y) = (gx, gy). The end-point fibration πX : PX → X ×X is
then a G-map.

Definition 3.1 ([16, Definition 5.1]). Let X be a G-space. The equivariant topolog-
ical complexity of X , denoted TCG(X), is defined to be the minimal integer k such
that X ×X can be covered by G-invariant open sets U0, . . . , Uk, each admitting a
G-map si : Ui → PX such that πX ◦ si = ιUi

: Ui →֒ X ×X .

Remark 3.2. The equivariant topological complexity TCG(X) equals secatG(πX),
the equivariant sectional category of the G-fibration πX [16, Definition 4.1]. Other
instances of this more general notion are considered in the subsequent articles [29]
and [31].

Note that removing all occurences of the group G from Definition 3.1 recovers
the definition of TC(X). Two easy observations follow:

(1) If the action is trivial, meaning that gx = x for all g ∈ G and x ∈ X , then
TCG(X) = TC(X);

(2) TCG(X) ≥ TC(X) for any G-space X .

Property (1) is something we would hope for and expect of any variant of TC(X)
which takes symmetry into account. Property (2) tells us that forcing our mo-
tion planning rules to be symmetric does not reduce the complexity of the motion
planning task.

Proposition 3.3 ([16, Theorem 5.2]). The equivariant topological complexity is
G-homotopy invariant. That is, if X ≃G Y , then TCG(X) = TCG(Y ).
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Thus the computation of equivariant topological complexity may be amenable
to the tools of equivariant algebraic topology. For example, there is a lower bound
for TCG(X) coming from equivariant cohomology.

Theorem 3.4 ([16, Theorem 5.15]). Let h∗G(−) denote a multiplicative G-equivariant
cohomology theory, and let ∆ : X → X ×X be the diagonal map. Then

TCG(X) ≥ nil ker
(

∆∗ : h∗G(X ×X) → h∗G(X)
)

.

The exact definition of “multiplicative G-equivariant cohomology theory” is de-
liberately left ambiguous, but examining the proof one sees that the only properties
required of h∗G(−) are G-homotopy invariance, the long exact sequence of a pair of
G-spaces and naturality of (relative) cup products. For example we may take as
h∗G(−) the Borel cohomology H∗

G(−;R) := H∗(EG ×G −;R), that is the ordinary
cellular or singular cohomology of the homotopy orbit space with coefficients in an
arbitrary commutative ring R.

Also by analogy with the non-equivariant case, we have the following product
formula, which was first stated as [28, Theorem 4.2] under the assumption that X
and Y are smooth G-manifolds.

Theorem 3.5. Let G be a compact Lie group, and let X and Y be paracompact
G-spaces. Then

TCG(X × Y ) ≤ TCG(X) + TCG(Y ).

where X × Y is given the diagonal G-action.

Proof. Examining the proof of the product inequality TC(X×Y ) ≤ TC(X)+TC(Y )
for ordinary topological complexity given in [22, Theorem 11], one sees that all that
is required to make it equivariant is the existence of G-equivariant partitions of
unity subordinate to G-invariant open covers. When G is compact Lie, this can be
arranged by averaging over non-equivariant partitions of unity, as in [29, Lemma
3.2]. �

The following results relate the equivariant topological complexity of a G-space
to the (equivariant) topological complexities of the fixed point sets. The origi-
nal statements include the assumption that H and K be closed subgroups, which
appears on closer inspection to be unnecessary.

Proposition 3.6 ([16, Proposition 5.3]). Let H and K be subgroups of G such that
XH ⊆ X is K-invariant. Then TCK(XH) ≤ TCG(X).

Corollary 3.7 ([16, Corollary 5.4]). For any subgroups H and K of G one has
TC(XH) ≤ TCG(X) and TCK(X) ≤ TCG(X).

Recall that TC(Y ) fails to be finite if Y is not path-connected. In particular, if
for some subgroup H of G the the fixed point set XH is not path-connected, then
by Corollary 3.7,

∞ = TC(XH) ≤ TCG(X).

Thus the equivariant topological complexity may be infinite, and the topological
complexity finite.

Example 3.8. Let G = C2 be cyclic of order two, acting on S1 ⊆ C by complex
conjugation. Then TCG(S1) = ∞, while TC(S1) = 1.
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Definition 3.9. A G-space X is called G-connected if the fixed point set XH is
path-connected for every subgroup H ≤ G.

Thus for TCG(X) to be finite, it is necessary that X be G-connected. The
notion of G-connectedness is also involved in inequalities relating the equivariant
topological complexity to the equivariant Lusternik–Schnirelmann category. We
recall the definition of the latter.

Definition 3.10 ([21, 35, 14]). Let X be a G-space. The equivariant (Lusternik–
Schnirelmann) category of X , denoted catG(X), is defined to be the minimal integer
k such that X can be covered by G-invariant open sets U0, . . . , Uk such that each
inclusion ιUi

: Ui →֒ X is G-homotopic to a map with values in a single orbit.

Proposition 3.11 ([16, Propositions 5.6, 5.7]). Let X be a G-space.

(a) If X is G-connected, then TCG(X) ≤ catG(X ×X).
(b) If H ⊆ G is the isotropy group of some x ∈ X, then catH(X) ≤ TCG(X).

Corollary 3.12 ([16, Corollary 5.8]). Let X be a completely normal G-connected
G-space with a fixed point x ∈ XG. Then

catG(X) ≤ TCG(X) ≤ 2catG(X).

Remark 3.13. To deduce Corollary 3.12 from Proposition 3.11 one needs a product
inequality for the equivariant category for a diagonal action. We note here that the
statements of [12, Proposition 3.2] and [16, Theorem 3.15] are missing assumptions
on the fixed point sets. The correct statement appears as Theorem 2.23 in the paper
[5] by Bayeh and Sarkar, which also includes counter-examples to [16, Theorems
3.15, 3.16].

One of the motivations for introducing the equivariant topological complexity
was to give upper bounds for the topological complexity of total spaces of fiber
bundles. Recall that given a G-space X and a principal G-bundle E → B, one gets
an associated bundle p : E ×G X → B whose fiber is X and whose total space is
the orbit space of the diagonal G-action on E ×X .

Theorem 3.14 ([16, Theorem 5.16]). Let X be a G-space, and let E → B be a
numerable principal G-bundle. Then

TC(E ×G X) < (TC(B) + 1)(TCG(X) + 1).

This theorem was applied in the paper [28] to obtain upper bounds on the
topological complexity of projective product spaces.

There is also a direct inequality relating the equivariant and parametrized topo-
logical complexities. The parametrized topological complexity TC[p : Y → B] of a
fibre bundle p : Y → B was defined elsewhere in this volume.

Theorem 3.15 ([25, Theorem 3.4]). For the associated bundle p : E ×G X → B
as above, one has

TC[p : E ×G X → B] ≤ TCG(X).

We mention in passing that the proof of Theorem 3.14 given in [16] can be
modified (perhaps simplified) to prove the stronger inequality

TC(E ×G X) < (TC(B) + 1)(TC[p : E ×G X → B] + 1).

We leave the details to the interested reader.
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Remark 3.16. Bayeh and Sarkar [6] have defined the sequential equivariant topo-
logical complexity TCr,G(X) for a G-space X and natural number r ≥ 2. Many (if
not all) of the results for r = 2 in this section for admit natural generalizations for
higher r. In particular, in [25] the authors treat sequential parametrized topological
complexity and Theorem 3.15 is stated in the sequential setting.

4. Invariant topological complexity

Although the definition of TCG(X) is fairly natural from a mathematical per-
spective, it has a number of drawbacks. Firstly, requiring our motion planners to
be equivariant only makes the motion planning task more complex, as evidenced by
the inequality TC(X) ≤ TCG(X) which can certainly be strict (see Example 3.8).
One might hope instead to exploit the symmetries to ease the motion planning
task. Secondly, from a mathematical perspective it would be desirable if for a free
G-action the equivariant topological complexity were equal to the topological com-
plexity of the orbit space. However this is not the case, as the following example
shows.

Example 4.1. Let G = X = S1 be the circle group, acting on itself by rotation.
The orbit space X/G is a point, hence TC(X/G) = 0. However 1 = TC(X) ≤
TCG(X). Therefore TCG(X) 6= TC(X/G) in this example, although the action is
free.

One reason underlying this phenomenon is that the definition of TCG(X) involves
the diagonal action of G on X × X , while the definition of TC(X/G) involves
X/G×X/G, which is the orbit space of the action of G×G on X×X . Motivated by
this, Lubawski and Marzantowicz introduced in [34] a different variant of topological
complexity with symmetry, called the invariant topological complexity, which takes
into account the action of G × G. Note that the path space PX does not carry a
natural action of G×G, so Lubawaski and Marzantowicz introduce the space

PX ×X/G PX = {(γ, δ) ∈ PX × PX | Gγ(1) = Gδ(0)}.

The notation reflects the fact that this space is the topological pullback of the
maps q ◦ ev0, q ◦ ev1 : PX → X/G obtained by composing the two end-point
evaluation maps ev0, ev1 : PX → X with the projection q : X → X/G onto the
orbit space. One can think of PX ×X/G PX as a space of broken paths in X ,
which are continuous except for at one point where they are allowed to “jump” to
a point in the same G-orbit. Now the product G × G acts on PX ×X/G PX via
(g, h)(γ, δ) = (gγ, hδ), and the projection map

pX : PX ×X/G PX → X ×X, (γ, δ) 7→ (γ(0), δ(1))

is (G×G)-equivariant.

Definition 4.2 ([34]). Let X be a G-space. The invariant topological complexity

of X , denoted TC
G(X), is defined to be the minimal integer k such that X×X may

be covered by (G × G)-invariant open sets U0, . . . , Uk, each admitting a (G × G)-
map si : Ui → PX ×X/G PX such that pX ◦ si = ιUi

: Ui →֒ X × X . Briefly,

TC
G(X) = secatG×G(pX).

Proposition 4.3 ([34, Proposition 3.25]). The invariant topological complexity is

G-homotopy invariant. That is, if X ≃G Y , then TC
G(X) = TC

G(Y ).



10 MARK GRANT

This definition of TCG(X) in terms of path spaces is one of several equivalent def-
initions given in [34]. Another is given in terms of a specialization of the equivariant
A -category of Clapp and Puppe [13].

Definition 4.4 ([34, Definition 2.2]). Let X be a G-space, and let A ⊆ X be a G-
invariant subset. The equivariant A-category of X , denoted AcatG(X), is defined to
be the minimal k such that X may be covered by G-invariant open sets U0, . . . , Uk

such that each inclusion ιUi
: Ui →֒ X is G-homotopic to a map with values in A.

Example 4.5. Let G = {e} be the trivial group, let X be any space, and let
∆(X) ⊆ X ×X be the diagonal. Then

TC(X) = ∆(X)cat{e}(X ×X) =: ∆(X)cat(X ×X).

Note that for a G-space X the diagonal ∆(X) ⊆ X×X does not carry a natural
action of G×G. Lubawski and Marzantowicz introduce the saturated diagonal

k(X) := (G×G)∆(X) = {(x, gx) | x ∈ X, g ∈ G},

which is a (G×G)-invariant subset k(X) ⊆ X ×X .

Proposition 4.6 ([34, Lemmas 3.5, 3.8]). Let X be a G-space. Then:

(1) TCG(X) = ∆(X)catG(X ×X);

(2) TC
G(X) = k(X)catG×G(X ×X).

Remark 4.7. The arguments used to prove Proposition 4.6 show more generally
that if A ⊆ X is a G-invariant subset and p : A′ → X is a G-fibrational substitute
of the inclusion ιA : A ⊆ X , then AcatG(X) = secatG(p).

Analogously to the non-equivariant case, there is a Whitehead definition of

AcatG(X) in terms of a “fat wedge” construction. Given a G-invariant subset
A ⊆ X , let

F k
A(X) := {(x0, . . . , xk) ∈ Xk+1 | xi ∈ A for some 0 ≤ i ≤ k},

the (k + 1)-fold fat A-sum. Note that F k
A(X) ⊆ Xk+1 is G-invariant under the

diagonal action of G on Xk+1.

Definition 4.8. The Whitehead equivariant A-category of X , denoted Acat
Wh
G (X),

is defined to be the minimal integer k such that the (k + 1)-fold diagonal map
∆k+1 : X → Xk+1 is G-homotopic to a map with values in F k

A(X).

Theorem 4.9 ([34, Theorem 2.7]). Suppose G is compact Lie, X is a compact
G-ANR, and the inclusion ιA : A →֒ X is a closed G-cofibration. Then

AcatG(X) = Acat
Wh
G (X).

A proof of Theorem 4.9 can be found in the preprint version [33] of [34]. The
non-equivariant case was observed in the FU Berlin thesis of A. Fassó Velenik [27].
Note that the diagonal inclusion ∆(X) →֒ X×X is a closed G-cofibration whenever
X is a metric G-ANR or G-CW complex, as follows from [32], so in either of these
cases one has

TCG(X) = ∆(X)cat
Wh
G (X ×X).

The question of when the saturated diagonal inclusion k(X) →֒ X×X is a (G×G)-
cofibration appears to be more subtle, and is left open in [34]. It is shown in
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[34, Theorem 3.15] that if G is a finite group and X is a compact G-ANR, then
k(X) →֒ X ×X is a (G×G)-cofibration, and so

TC
G(X) = k(X)cat

Wh
G×G(X ×X)

under these hypotheses. The Whitehead definitions are purely homotopical in that
they do not involve open sets, and so different proof techniques can be applied. The
authors apply the Whitehead definitions to prove the following product formulae.

Theorem 4.10 ([34, Theorem 3.18]). Let G and H be compact Lie groups, let X
be a compact G-ANR and let Y be a compact H-ANR. Then

TCG×H(X × Y ) ≤ TCG(X) + TCH(Y ).

Furthermore, if k(X) ⊆ X ×X is a (G ×G)-cofibration and k(Y ) ⊆ Y × Y is an
(H ×H)-cofibration (for example if G and H are finite), then

TC
G×H(X × Y ) ≤ TC

G(X) + TC
H(Y ).

As pointed out in [34, Remark 3.20], if G = H and X and Y are G-spaces, the
inequality

TC
G(X × Y ) ≤ TC

G(X) + TC
G(Y )

for the diagonal action on X × Y , analogous to Theorem 3.5, is false in general.
See Example 4.12 below.

We now return to what apparently motivated the definition of invariant topolog-
ical complexity: its relationship to the ordinary topological complexity of the orbit
space. It is fairly easy to check from the definitions that

TC(X/G) ≤ TC
G(X)

for any G-space X . Using the Covering Homotopy Theorem of Palais ([36], see also
[9, Theorem II.7.3]) one can prove the opposite inequality in case G is compact Lie
and the action has a single orbit type.

Theorem 4.11 ([34, Theorem 3.10]). Let G be a compact Lie group, and let X be

a G-space with a single orbit type. Then TC(X/G) = TC
G(X).

Example 4.12. Let G = S1 act on X = S1 by rotation. Since the action is free
and transitive, TCG(X) = TC(X/G) = 0. Now consider the diagonal G-action on
the torus X×X = S1×S1. This action is still free, and the orbit space (X×X)/G

is diffeomorphic to S1. Therefore TC
G(X ×X) = TC((X ×X)/G) = TC(S1) = 1.

Note in particular that TC
G(X ×X) > TC

G(X) + TC
G(X).

Example 4.13. Let G = C2 act on a closed orientable surface Σ of positive genus,
via an orientation-reversing free involution. After the calculation of the topological
complexity of non-orientable surfaces due to Dranishnikov [19, 20] and Cohen–

Vandembroucq [15], we have TC
G(Σ) = TC(Σ/G) = 4.

Example 4.14. Let G = C2 act on the sphere Sn via the antipodal map. Then
TC

G(Sn) = TC(RPn), and the latter equals the immersion dimension of the real
projective space RPn for n 6= 1, 3, 7, by the result of Farber–Tabachnikov–Yuzvinsky
[26].

In fact more is true: the invariant topological complexity is invariant under
quotients and induction. Let us now explain what we mean by this. Let X be a
G-space. If K ⊳ G is a normal subgroup, one can check that the quotient group
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G/K acts on the orbit space X/K via (gK)(Kx) = Kgx. If G ≤ H , one can induce
an H-space from X by taking H ×GX , the orbit space of the diagonal action of G
on H ×X , where G acts on H via the group operation.

Theorem 4.15 ([3, Corollary 5.10]). Let K ⊳G ≤ H be compact Lie groups and
let X be a metrizable G-space. Then

TC
H(H ×G X) = TC

G(X),

and assuming K acts freely on X,

TC
G/K(X/K) = TC

G(X).

The above two properties imply that the invariant topological complexity is
Morita invariant. Two group actions G × X → X and H × Y → Y are Morita
equivalent if the translation groupoids G⋉X and H ⋉Y they define are equivalent
as orbifolds. It has recently been shown [37] that all orbifolds arise as orbit spaces
of compact group actions, and therefore the invariant topological complexity can be
used to define a topological complexity of orbifolds. We refer the reader to [3] and

the subsequent paper [2] by Ángel and Colman for more background and references
on orbifolds and their Lusternik–Schnirelmann-type invariants.

Remark 4.16. Theorem 4.15 is deduced as a special case of a more general result
[3, Theorem 5.1], that asserts that the equivariant A -category A catG(X) is Morita
invariant, for certain families A of G-spaces. This applies also to show that the
equivariant category catG(X) is Morita invariant [3, Corollary 5.9], and so also gives
an orbifold invariant. The resulting invariant is compared in [2] with a notion of
orbifold category defined in terms of open covers and orbifold homotopy, and the
two notions are shown to coincide for G finite.

We next describe the relationship between invariant topological complexity and
equivariant category.

Proposition 4.17 ([34, Proposition 3.23, Remark 3.24]). Let X be any G-space

and x0 ∈ X any point. Then TC
G(X) ≤ Gx0×Gx0

catG×G(X ×X). In particular, if

x0 ∈ XG is a fixed point and X is G-connected, then TC
G(X) ≤ 2catG(X).

Proposition 4.18 ([8, Proposition 2.7]). Let X be a G-space with fixed point x0 ∈
XG. Then catG(X) ≤ TC

G(X).

Corollary 4.19. Let X be a G-connected G-space with fixed point x0 ∈ XG.
Then catG(X) ≤ TC

G(X) ≤ 2catG(X). In particular, under these assumptions

TC
G(X) = 0 if and only if X is G-contractible.

Recall that a G-space X is called G-contractible if the identity map idX : X → X
is G-homotopic to a map with values in a single orbit, or equivalently, catG(X) = 0.
As remarked in [8, Corollary 2.8, Remark 2.9], the fact thatG-contractibility implies

TC
G(X) = 0 is true without the assumptions of G-connectivity or the existence of

a fixed point. The same is not true of TCG(X), as Example 4.1 shows.
Finally, we give the relationship of the invariant topological complexity with the

topological complexity of the fixed point sets of the action.

Theorem 4.20 ([34, Corollary 3.26]). For any G-space X, we have TC(XG) ≤
TC

G(X).
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Note that, in contrast to Corollary 3.7 for the equivariant topological complexity,
it is not true that TC(XH) ≤ TC

G(X) for all subgroups H ≤ G. As a consequence,

TC
G(X) may be finite, even if X fails to be G-connected. The following example

illustrates these facts.

Example 4.21 ([8, Example 2.10]). Let G = C2 ×C2 be the product of two cyclic
groups of order two; call the generators of these cyclic factors a and b. Define
an action of G on X = S1 \ {i,−i} ⊆ C by setting a(x + iy) = −x + iy and
b(x+ iy) = x− iy. In other words, G acts on the circle with North and South pole
removed, via reflections in the coordinate axes. One can easily imagine that the
identity map idX : X → X is G-homotopic to a map with values in the G-orbit
{1,−1}, hence X is G-contractible. It follows that TC

G(X) = 0. On the other
hand, TC(X〈b〉) = TC({−1, 1}) = ∞.

Remark 4.22. B laszczyk and Kaluba in [8] investigate the equivariant and invari-
ant topological complexities of Cp-spheres, where Cp is the cyclic group of order p,
a prime. They show that if the action is linear or semi-linear, then

1 ≤ TCCp
(Sn),TCCp(Sn) ≤ 2,

while for arbitrary smooth actions both invariants will generically be at least 3, and
may be as large as n− 2.

Remark 4.23. In [6] the authors define the sequential invariant topological com-

plexity TC
r,G(X) for a G-space X and r ≥ 2, and establish some natural gener-

alizations of results in this section. Sequential versions of Theorem 4.15 are also
established in [3].

5. Strongly equivariant topological complexity

A third version of topological complexity with symmetries was introduced by
Dranishnikov in [18], with the aim of giving improved upper bounds for the ordinary
topological complexity.

Definition 5.1. [18] Let X be a G-space. The strongly equivariant topological
complexity of X , denoted TC

∗
G(X), is defined to be the minimal integer k such that

X ×X can be covered by (G ×G)-invariant open sets U0, . . . , Uk, each admitting
a G-map si : Ui → PX such that πX ◦ si = ιUi

: Ui →֒ X ×X .

Proposition 5.2. The strongly equivariant topological complexity is G-homotopy
invariant. That is, if X ≃G Y , then TC

∗
G(X) = TC

∗
G(Y ).

Proof. This is an easy adaptation of the proof ofG-homotopy invariance of TCG(X),
which itself is an easy generalization of the proof of homotopy invariance of TC(X).

�

Note that the only difference in Definition 5.1 compared to Definition 3.1 of
TCG(X) is that the sets Ui are required to be (G ×G)-invariant, rather than just
invariant under the action of the diagonal subgroup G ∼= ∆(G). Hence TCG(X) ≤
TC

∗
G(X) is obvious. Finding examples of strict inequality seems to be a subtle

problem. One needs a lower bound for TC
∗
G(X) which is not a lower bound for

TCG(X).



14 MARK GRANT

To this end, we offer the following cohomological lower bound for TC∗
G(X) when

G is finite. In that case, G = ∆(G) ≤ G×G is a finite index subgroup, and there
results a transfer map

tr : H∗
G(Y ) → H∗

G×G(Y )

in Borel equivariant cohomology for any (G × G)-space Y . If E = E(G × G) is
a contractible free (G ×G)-space, then this is the transfer associated to the finite
cover E ×G Y → E ×G×G Y . Here and elsewhere below, we take coefficients in an
arbitrary commutative ring R which is omitted from the notation. More generally,
we could make a similar statement in any multiplicative equivariant cohomology
theory with transfers.

Proposition 5.3. Let X be a G-space with G finite. Suppose there are cohomology
classes x1, . . . , xk ∈ ker

(

∆∗ : H∗
G(X ×X) → H∗

G(X)
)

such that

0 6= tr(x1) · · · tr(xk) ∈ H∗
G×G(X ×X).

Then TC
∗
G(X) ≥ k.

Proof. Assume for a contradiction that TC
∗
G(X) < k. Then we have a cover of

X ×X by (G ×G)-invariant open sets U1, . . . , Uk, each of which admits a G-map
si : Ui → PX such that πX ◦ si = ιUi

. It follows that for each i = 1, . . . , k the
cohomology class xi in the statement is in the kernel of the restriction-induced map
H∗

G(X ×X) → H∗
G(Ui). By naturality of the transfer we have a commuting square

H∗
G(X ×X) H∗

G(Ui)

H∗
G×G(X ×X) H∗

G×G(Ui).

tr tr

The additivity of the transfer then implies that tr(xi) is in the kernel of the
restriction-induced map H∗

G×G(X × X) → H∗
G×G(Ui). The usual argument in-

volving the long exact sequences of the pairs (X ×X,Ui) and naturality of relative
cup products completes the proof. �

Remark 5.4. Note that we do not require that the product x1 · · ·xk is nonzero in
H∗

G(X ×X ;R), and so the above does not constitute a lower bound for TCG(X).
Since the transfer is not multiplicative in general, this lower bound might in theory
exceed the lower bound for TCG(X) described in Theorem 3.4.

If we take coefficients for cohomology in a field whose characteristic does not
divide the order of G, then H∗

G(Y ) ∼= H∗(Y )G, the sub-algebra of H∗(Y ) consisting
of elements fixed under the action of G. The transfer in Proposition 5.3 then is
given by

tr : H∗(X ×X)G → H∗(X ×X)G×G, tr





∑

j

αj ⊗ βj



 =
∑

g∈G

∑

j

αj ⊗ g∗(βj).

We note that there can exist invariant zero-divisors x ∈ ker
(

∆∗ : H∗(X ×X)G →

H∗(X)G
)

such that tr(x) ∈ H∗(X ×X)G×G is not a zero-divisor.

Recall that for a principal G-bundle E → B and a G-space X , Theorem 3.14
gives an upper bound for the topological complexity TC(E×GX) of the total space
of the associated bundle with fibre X , in terms of the topological complexity TC(B)
of the base and the equivariant topological complexity TCG(X) of the fibre. By
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replacing TCG(X) by TC
∗
G(X), Dranishnikov is able to improve this multiplicative

upper bound to an additive one.

Theorem 5.5 ([18, Theorem 3.1]). Let E → B be a principal G-bundle, and let
X be a proper G-space. Suppose further that E ×G X and B are locally compact
metric ANRs. Then

TC(E ×G X) ≤ TC(B) + TC
∗
G(X).

Strongly equivariant topological complexity admits the following dimensional
upper bound.

Proposition 5.6 ([18, Proposition 3.2]). Suppose that a discrete group π acts
freely and properly on a simply-connected locally compact ANR space Y . Then
TC

∗
π(Y ) ≤ dim(Y ), where dim denotes the covering dimension.

Recall that the topological complexity of a discrete group π is defined by TC(π) :=
TC(Bπ), where Bπ = Eπ/π is the base space of a universal principal π-bundle.

Theorem 5.7 ([18, Theorem 3.3]). Let X be a CW complex with fundamental
group π := π1(X). Then TC(X) ≤ TC(π) + dim(X).

Proof. Let Eπ → Bπ be a universal principal π-bundle and let X̃ be the universal
cover of X . The action of π on X̃ is free and proper, and the associated bundle
Eπ×π X̃ is homotopy equivalent to X . Therefore Theorem 5.5 and Proposition 5.6
give

TC(X) = TC(Eπ ×π X̃) ≤ TC(π) + TC
∗
π(X̃) ≤ TC(π) + dim(X).

�

When the fundamental group π has torsion, TC(π) is infinite, and the bound

TC(X) ≤ TC(π) + TC
∗
π(X̃) contains no information. In the paper [23], Farber, the

author, Lupton and Oprea prove a strengthening of this bound which can be of use
even when π has torsion.

Theorem 5.8 ([23, Theorem 3, Proposition 3.8]). Let X be a locally finite cell

complex with fundamental group π and universal cover X̃. Then

TC(X) ≤ TC
D(X) + TC

∗
π(X̃).

Here TC
D(X) is the D-topological complexity of X, defined to be secat(Q) where

Q : X̃×π X̃ → X×X is the cover of X×X corresponding to the diagonal subgroup.

In fact, from the results in [23] we can deduce the following dimension-connectivity
estimate for the strongly equivariant topological complexity of the universal cover,
which may improve on the estimate given by Proposition 5.6.

Proposition 5.9. Let X be a locally finite simplicial complex with fundamental
group π. Suppose the universal cover X̃ is k-connected, where k ≥ 1. Then

TC
∗
π(X̃) ≤

⌈

2dim(X) − k

k + 1

⌉

.

In the case of free actions of discrete groups, the strongly equivariant topological
complexity is bounded above by the invariant topological complexity.
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Proposition 5.10 ([1, Proposition 4.29]). Let π be a discrete group acting freely
and properly discontinuously on a simply-connected space X. Then

TC
∗
π(X) ≤ TC(X/π) ≤ TC

π(X).

The conditions on the action in Proposition 5.10 are to ensure that the maps
X×X → X×πX and X×πX → X/π×X/π are covering maps, and the homotopy
lifting property for covering maps is used heavily in the proof. Even for a proper
free action of a compact Lie group G on a simply-connected space X , the inequality
TC

∗
G(X) ≤ TC

G(X) need not hold. For example, letG be a non-contractible simply-

connected Lie group (such as S3) acting on itself by translation. Then TC
G(G) =

TC(G/G) = 0 by Theorem 4.11, while TC
∗
G(G) ≥ TCG(G) ≥ TC(G) > 0.

Remark 5.11. In [38], Paul and Sen have defined the sequential strongly equi-
variant topological complexity TC

∗
r,G(X) for a G-space X and r ≥ 2, and proved

generalizations of many of the results in this section.

6. Effective topological complexity

The fourth and final version of topological complexity with symmetry we shall
consider is the effective topological complexity of B laszczyk and Kaluba [7]. Al-
though it shares some commonalities with the invariant topological complexity, the
effective topological complexity is quite different from the other three in that it
does not require motion planners to be equivariant. Instead the symmetries are
used only to reduce the complexity of the motion planning task.

Given a G-space X and natural number n ≥ 1, let

Pn(X) := {(γ1, . . . , γn) ∈ PXn | Gγi(1) = Gγi+1(0) for i = 1, . . . , n− 1}.

Note that P1(X) = PX and P2(X) = PX ×X/G PX is the space of broken paths

appearing in the definition of TC
G(X). We think of Pn(X) as paths in X that

are continuous except for at n − 1 points, where they are allowed to “jump” to a
point in the same G-orbit. The evaluation map πn,X : Pn(X) → X ×X defined by
πn,X(γ1, . . . , γn) =

(

γ1(0), γn(1)
)

is shown to be a fibration in [7].

Definition 6.1 ([7, Definition 3.1]). Given a G-space X and natural number n ≥ 1,

define TC
G,n(X) to be the minimal integer n such that X ×X can be covered by

open sets U0, . . . , Uk, each admitting a continuous map si : Ui → Pn(X) such that

πn,X ◦ si = ιUi
: Ui →֒ X ×X . In short, TCG,n(X) = secat(πn,X).

It is clear that TC
G,1(X) = TC(X). Since the maps si are not required to be

(G×G)-equivariant, we also have TC
G,2(X) ≤ TC

G(X).

Lemma 6.2 ([7, Lemma 3.2]). One has TC
G,n+1(X) ≤ TC

G,n(X) for all n ≥ 1.

Thus {TCG,n(X)}n≥1 is a decreasing sequence of integers, bounded below by 0.

It follows that there exists n0 such that TC
G,n(X) = TC

G,n0(X) for all n ≥ n0.

Definition 6.3 ([7, Definition 3.4]). Let n0 ∈ N be such that TCG,n(X) = TC
G,n0(X)

for all n ≥ n0. The effective topological complexity of the G-space X is defined to
be TC

G,∞(X) := TC
G,n0(X).

Proposition 6.4 ([7, Theorem 3.3]). If X ≃G Y , then TC
G,n(X) = TC

G,n(Y )
for all n ∈ N. In particular, the effective topological complexity is G-homotopy
invariant.
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It is evident that

TC
G,∞(X) ≤ TC

G,1(X) = TC(X) ≤ TCG(X) ≤ TC
∗
G(X).

and that
TC

G,∞(X) ≤ TC
G,2(X) ≤ TC

G(X).

Hence effective topological complexity is less than or equal to all of the other equi-
variant topological complexities discussed in this chapter.

For free G-actions one can take n0 = 2, giving TC
G,∞(X) = TC

G,2(X), as shown
in [7, Theorem 5.1] (the assumption that G be finite is unnecessary).

Remark 6.5. In [11] the authors revisit the definition of effective topological com-

plexity, defining a variant which they denote TC
G
effv(X), and which agrees with

TC
G,∞(X) for free actions. In essence, one replaces the broken path space Pn(X)

by the space of tuples

{(γ1, g1, . . . , gn−1, γn) ∈ (PX×G)n−1×PX | giγi(1) = γi+1(0) for i = 1, . . . , n−1},

thereby keeping track of the group element used to “jump” within the G-orbit
at each break. This has the nice effect that the resulting sequence of sectional
categories stabilizes at n = 2 even for non-free actions, so that TC

G
effv

(X) can be
defined simply to be the sectional category of the evaluation map (γ1, g1, γ2) 7→
(

γ1(0), γ2(1)
)

. Following a suggestion of Pavešić [39], they also define the effec-

tual topological complexity, denoted TC
G
effl(X), to be the sectional category of the

evaluation map PX → X × (X/G) given by γ 7→
(

γ(0), Gγ(1)
)

. It is shown in
[11, Theorem 1.1] that if G is a discrete group acting properly discontinuously on
a Hausdorff space X then

TC
G
effv(X) ≤ TC

G
effl(X) ≤ TC(X/G),

and in fact both inequalities above can be strict, as happens for the antipodal
involution on the 2-torus [11, Theorem 1.2].

Proposition 6.6 ([7, Proposition 3.6]). If the G-space X is G-contractible, then

TC
G,∞(X) = 0.

The converse is false, as shown by the following example, which also illustrates
that the effective topological complexity is not bounded below by the equivariant
category. The problem of characterizing exactly which G-spaces have TC

G,∞(X) =
0 is stated in [7, Section 7.2], and appears to still be open.

Example 6.7. Let G be a discrete group, and let EG be a contractible free G-
space. Since TC

G,∞(EG) ≤ TC(EG) = 0, we have TC
G,∞(EG) = 0. However the

G-space EG is not G-contractible. In fact

catG(EG) = cat(EG/G) = cat(BG) = cd(G),

where cd(G) denotes the cohomological dimension of G. This is infinite if G is
finite, and positive whenever G is non-trivial.

This example also shows that TC
G,∞(X) does not in general coincide with

TC(X/G) for free G-actions.

Since TC
G,n(X) = secat(πn,X : Pn(X) → X × X), it admits a cohomological

lower bound in the form of the nilpotency of the kernel of the map induced by πn,X
in cohomology. Using transfer arguments, B laszczyk and Kaluba are able to prove
the following results.
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Theorem 6.8 ([7, Theorem 4.1]). Let G be a finite group and let X be a G-CW
complex. If k is a field of characteristic zero or p prime to |G|, then

TC
G,∞(X) ≥ nil ker

(

∪ : H∗(X/G; k) ⊗H∗(X/G; k) → H∗(X/G; k)
)

.

Corollary 6.9 ([7, Corollary 4.2]). Let G be a finite group and let k be a field of
characteristic zero or p prime to |G|. If G acts trivially on H∗(X ; k) and

TC(X) = nil ker
(

∪ : H∗(X ; k) ⊗H∗(X ; k) → H∗(X ; k)
)

,

then TC
G,∞(X) = TC(X).

B laszczyk and Kaluba compute the effective topological complexity of all linear
Cp-actions on spheres, and some non-linear ones. The result quoted below follows
easily from Corollary 6.9 on taking rational cohomology. For the remaining cases
we refer to [7, Corollary 5.10].

Proposition 6.10 ([7, Proposition 5.3]). Suppose the cyclic group Cp acts on the
sphere Sn, where p is prime and n ≥ 1. If p > 2, or if p = 2 and the action is
orientation preserving, then

TC
Cp,∞(Sn) = TC(Sn) =

{

1 if n odd,

2 if n even.

As mentioned above, for free actions

TC
G,∞(X) = TC

G,2(X) = secat(π2,X : P2(X) → X ×X).

For free actions with G finite, one easily checks that there is a commutative diagram

P2(X)

k(X) X ×X

π2,X
≃

j

in which the vertical arrow is a homotopy equivalence. This motivates the following
definition.

Definition 6.11 ([10, Definition 7.3]). Let j : k(X) →֒ X ×X be the inclusion of
the saturated diagonal. An element in the kernel of j∗ : H∗(X×X) → H∗(k(X)) is
called an effective zero-divisor, where we take cohomology with arbitrary, possibly
twisted, coefficients.

Lemma 6.12. Let R be a commutative ring, and let X be a free G-space with G
finite. Then TC

G,∞(X) is bounded below by the effective zero-divisors cup-length
with R coefficients. In symbols,

TC
G,∞(X) ≥ nil ker

(

j∗ : H∗(X ×X ;R) → H∗(k(X);R)
)

.

The above lemma is implicit in [10], where the authors are motivated by po-
tentially giving a new calculation of the topological complexity of non-orientable
surfaces using effective topological complexity. Recall that the non-orientable sur-
face of genus g + 1 may be written as the orbit space Ng+1 = Σg/C2 of a free,
orientation-reversing involution on Σg, the orientable surface of genus g. It follows
that

TC
C2,∞(Σg) ≤ TC

C2(Σg) = TC(Σg/C2) = TC(Ng+1),
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which raises the possibility of using the effective zero-divisors cup-length of Σg to
bound TC(Ng+1) from below. In the low genus cases g = 0, 1 one has

TC
C2,∞(Σg) = g + 1 < g + 3 = TC(Ng+1),

as follows from results of B laszczyk–Kaluba [7] and Farber–Tabachnikov–Yuzvinsky
[26] in the g = 0 case and González–B laszczyk–Kaluba (unpublished) and Cohen–
Vandembroucq [15] in the g = 1 case. For higher genera, the authors of [10] show
the following using effective zero-divisors cup-length with Z coefficients.

Theorem 6.13 ([10, Theorem 1.1]). Let g ≥ 2. For the antipodal involution on

Σg, one has TC
C2,∞(Σg) ≥ 3. Therefore, a posteriori,

3 ≤ TC
C2,∞(Σg) ≤ TC(Ng+1) = 4.

Although the above is proved by exhibiting a nonzero product in untwisted
integral cohomology, showing that the three classes involved are effective zero-
divisors requires some non-trivial calculations in the group cohomology of orientable
surface groups (with twisted integral coefficients). The authors express optimism
in [10, Remark 7.7] that using effective zero-divisors with twisted coefficients might

lead to a proof that TC
C2,∞(Σg) ≥ 4 in sufficiently high genera, and hence to an

alternative proof that TC(Ng+1) = 4.
Finally in this section we discuss the product inequality for effective topological

complexity, which is analogous to Theorem 4.10.

Theorem 6.14 ([7, Theorem 6.1]). Let X be a paracompact G-space and Y be
a paracompact H-space, where G and H are topological groups. Give X × Y the
product action of G×H. Then

TC
G×H,∞(X × Y ) ≤ TC

G,∞(X) + TC
H,∞(Y ).

If G = H and we replace the product action in the above with the diagonal
G-action, then the analogous inequality is false in general, as illustrated by the
following example.

Example 6.15 ([7]). Let G = C2 act on S1 ⊆ C via complex conjugation. Then

TC
C2,∞(S1) = 0: an effective motion planner on X ×X is described in [7, Propo-

sition 5.7]. The diagonal C2-action on S1 × S1 is best visualized as a rotation
through π radians of the standard embedded torus in R3 around an axis (think of
barbecuing a donut). The orbit space (S1×S1)/C2 is an orbifold homeomorphic to
S2 with 4 singular points (think of a pillowcase). Now an application of Theorem
6.8 with rational coefficients gives

TC
C2,∞(S1 × S1) ≥ 2 > 0 = TC

C2,∞(S1) + TC
C2,∞(S1).

Remark 6.16. The preprint [4] by Balzer and Torres-Giese introduces sequential
versions of the effective and effectual topological complexities, as well as a further
variant they call the orbital topological complexity. Basic properties are derived,
and computations are given for involutions on spheres and surfaces.

7. Problems

We conclude this survey with a selection of open problems, which we hope will
stimulate further research.
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Problem 7.1. Give an example of a G-space X and multiplicative G-equivariant
cohomology theory h∗G for which

nil ker
(

∆∗ : h∗G(X ×X) → h∗G(X)
)

> max{TC(XH) | H ≤ G},

that is, for which the lower bound for TCG(X) coming from equivariant cohomology
exceeds the lower bound coming from the topological complexity of the fixed sets.

Problem 7.2. Give an example of a G-space X for which TC
∗
G(X) > TCG(X).

(Proposition 5.3 and Remark 5.4 may be useful in this regard.)

Problem 7.3 (Z. B laszczyk, M. Kaluba). For which G-spaces X is TCG,∞(X) = 0?

Problem 7.4 (Z. B laszczyk, J. González, M. Kaluba). Compute TC
C2,∞(Σg) for

the antipodal involution on an orientable surface of genus g ≥ 2.

Problem 7.5 (Z. B laszczyk, M. Kaluba [8]). Is it true that if Sn is a smooth Cp-
sphere with non-empty and path connected fixed point set, then Sn is equivariantly
equivalent to a linear Cp-sphere if and only if TCCp(Sn) ≤ 2? (By Smith Theory,
it would suffice to show that TC(Σ) ≥ 3 for any mod p homology sphere Σ.)

Let π be a discrete group equipped with an action of a finite group G by auto-
morphisms. Briefly, we call π a G-group.

Problem 7.6. Define the equivariant topological complexity TCG(π) of the G-
group π. Prove equivariant analogues of the results in [30] and [24].

Problem 7.7. Define TC
G(π), TC∗

G(π) and TC
G,∞(π). Do any of these admit an

algebraic description in terms of equivariant group cohomology? (Compare [31],
where catG(π) is defined and shown to be equal to an equivariant cohomological
dimension catG(π).)
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