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Abstract. Over fields of characteristic zero, we determine all absolutely irre-
ducible Yetter–Drinfeld modules over groups that have prime dimension and

yield a finite-dimensional Nichols algebra. To achieve our goal, we introduce

orders of braided vector spaces and study their degenerations and specializa-
tions.

1. Introduction

Pointed Hopf algebras form a central class of objects in the theory of Hopf
algebras since the beginning [49]. Besides the coradical of a pointed Hopf algebra,
which is the group ring of a group, the skew-primitive elements and the infinitesimal
braiding belong to the most important invariants [16]. The infinitesimal braiding V
is a braided vector space that yields another invariant: a connected strictly graded
braided Hopf algebra known as the Nichols algebra of V . Very prominent examples
are the positive part of quantum groups, but the structure theory is also deeply
understood for abelian groups and corresponding braided vector spaces of diagonal
type. For a general account, we refer to [1] and [33].

Nichols algebras also appear in the highly influential papers of Nichols [46],
Woronowicz [51, 52] and Majid [43], Schaubenburg [48], Rosso [47], Kharchenko
[40], and Andruskiewitsch and Schneider [17]. Recent interest and applications
of Nichols algebras appear in algebraic geometry in the work of Kapranov and
Schechtman [38], and in quantum field theory in the paper of Lentner [42]. In
number theory, Ellenberg, Tran and Westerland [24] used Nichols algebras to prove
an upper bound in the weak Malle conjecture on the distribution of finite extensions
of Fq(t) with specified Galois groups.

The classification of finite-dimensional Nichols algebras of Yetter–Drinfeld mod-
ules was achieved in [30] for abelian groups and fields of characteristic zero, and in
[34, 35] for non-abelian groups and semi-simple non-simple Yetter–Drinfeld modules
over arbitrary fields. The key structure in these classifications is the Weyl groupoid
[15, 29]. For most of the Nichols algebras in the classification, a construction
from Nichols algebras of diagonal type by folding was described by Lentner [41].
However, the classification problem is wide open for irreducible Yetter–Drinfeld
modules, despite of tremendous efforts taken by different authors using different
tools [5, 6, 7, 8, 9, 11, 12, 18, 19, 20, 22, 31, 32, 36]. Over non-abelian groups,
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not even a satisfactory unified explanation of the Hilbert series of the known finite-
dimensional examples is available. At the moment, only a few finite-dimensional
Nichols algebras are known.

For any group G, let kG
kGYD denote the category of Yetter–Drinfeld modules over

the group ring kG of G.

Example 1.1. Let G be a non-abelian epimorphic image of the group

⟨x1, x2, x3 : x1x2 = x3x1, x1x3 = x2x1, x2x3 = x1x2⟩.

For all i ∈ {1, 2, 3}, let gi ∈ G be the image of xi. Then gi ̸= gj for all i ̸= j. Let
⟨g1⟩ be the subgroup of G generated by g1, and let U be a one-dimensional Yetter–
Drinfeld module over ⟨g1⟩ with k⟨g1⟩-coaction δ(u) = g1 ⊗ u for all u ∈ U and
k⟨g1⟩-action g1u = −u for all u ∈ U . Then V = kG ⊗k⟨g1⟩ U is a Yetter–Drinfeld
module over kG. Let v1 = 1⊗ u for some u ∈ U with u ̸= 0. Then

v1, v2 = −g3v1, v3 = −g2v1

form a basis of V . The G-degrees of these vectors are g1, g2 and g3, respectively.
The action of G on V is given by

givj = −v2i−j mod 3, i, j ∈ {1, 2, 3}.

The support of V is the affine rack Aff(3, 2), see Section 2. Then dimB(V ) = 12.
This example appeared first in [45]; see also [27].

The following two examples appeared first in [14].

Example 1.2. Let G be a non-abelian epimorphic image of the group

⟨x1, x2, x3, x4, x5 : xixjx
−1
i = x−i+2j mod 5⟩.

For all i ∈ {1, 2, 3, 4, 5}, let gi ∈ G be the image of xi. Then gi ̸= gj for all i ̸= j.
Let ⟨g1⟩ be the subgroup of G generated by g1, and let U be a one-dimensional
Yetter–Drinfeld module over ⟨g1⟩ with k⟨g1⟩-coaction δ(u) = g1 ⊗ u for all u ∈ U
and k⟨g1⟩-action g1u = −u for all u ∈ U . Then V = kG ⊗k⟨g1⟩ U is a Yetter–
Drinfeld module over kG. Let v1 = 1 ⊗ u for some u ∈ U with u ̸= 0. Then the
vectors

v1, v2 = −g5v1, v3 = −g4v1, v4 = −g3v1, v5 = −g2v1

form a basis of V . For each i ∈ {1, 2, 3, 4, 5}, deg vi = gi. The action of G on V is
given by

givj = −v−i+2j mod 5, i, j ∈ {1, 2, 3, 4, 5}.
The support of V is the affine rack Aff(5, 2). Then dimB(V ) = 1280.

Example 1.3. Let G be a non-abelian epimorphic image of the group

⟨x1, x2, x3, x4, x5 : xixjx
−1
i = x3(i+j) mod 5⟩.

For all i ∈ {1, 2, 3, 4, 5}, let gi ∈ G be the image of xi. Then gi ̸= gj for all i ̸= j.
Let ⟨g1⟩ be the subgroup of G generated by g1, and let U be a one-dimensional
Yetter–Drinfeld module over ⟨g1⟩ with k⟨g1⟩-coaction δ(u) = g1 ⊗ u for all u ∈ U
and k⟨g1⟩-action g1u = −u for all u ∈ U . Then V = kG ⊗k⟨g1⟩ U is a Yetter–
Drinfeld module over kG. Let v1 = 1 ⊗ u for some u ∈ U with u ̸= 0. Then the
vectors

v1, v2 = −x3v1, v3 = −x5v1, v4 = −x2v1, v5 = −x4v1
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form a basis of V . For each i ∈ {1, 2, 3, 4, 5}, deg vi = gi. The action of G on V is
given by

xivj = −v3(i+j) mod 5, i, j ∈ {1, 2, 3, 4, 5}.
The support of V is the affine rack Aff(5, 3). Then dimB(V ) = 1280.

Graña found the following two examples.

Example 1.4. Let G be a non-abelian epimorphic image of the group

⟨x1, x2, . . . , x7 : xixjx
−1
i = x5i+3j mod 7⟩.

For all i ∈ {1, 2, . . . , 7}, let gi ∈ G be the image of xi. Then gi ̸= gj for all i ̸= j.
Let ⟨g1⟩ be the subgroup of G generated by g1, and let U be a one-dimensional
Yetter–Drinfeld module over ⟨g1⟩ with k⟨g1⟩-coaction δ(u) = g1 ⊗ u for all u ∈ U
and k⟨g1⟩-action g1u = −u for all u ∈ U . Then V = kG ⊗k⟨g1⟩ U is a Yetter–
Drinfeld module over kG. Let v1 = 1 ⊗ u for some u ∈ U with u ̸= 0. Then the
vectors

v1, v2 = −g4v1, v3 = −g7v1, v4 = −g3v1, v5 = −g6v1, v6 = −g2v1, v7 = −g5v1,

form a basis of V . For each i ∈ {1, 2, . . . , 7}, deg vi = gi. The action of G on V is
given by

xivj = −v5i+3j mod 7, i, j ∈ {1, 2, . . . , 7}.
The support of V is the affine rack Aff(7, 3). Then dimB(V ) = 326592.

Example 1.5. Let G be a non-abelian epimorphic image of the group

⟨x1, x2, . . . , x7 : xixjx
−1
i = x3i+5j mod 7⟩.

For all i ∈ {1, 2, . . . , 7}, let gi ∈ G be the image of xi. Then gi ̸= gj for all i ̸= j.
Let ⟨g1⟩ be the subgroup of G generated by g1, and let U be a one-dimensional
Yetter–Drinfeld module over ⟨g1⟩ with k⟨g1⟩-coaction δ(u) = g1 ⊗ u for all u ∈ U
and k⟨g1⟩-action g1u = −u for all u ∈ U . Then V = kG ⊗k⟨g1⟩ U is a Yetter–
Drinfeld module over kG. Let v1 = 1 ⊗ u for some u ∈ U with u ̸= 0. Then the
vectors

v1, v2 = −g6v1, v3 = −g4v1, v4 = −g2v1, v5 = −g7v1, v6 = −g5v1, v7 = −g3v1,

form a basis of V . The degrees of these vectors are x1, x2, . . . , x7, respectively. The
action of G on V is given by

xivj = −v3i+5j mod 7, i, j ∈ {1, 2, . . . , 7}.
The support of V is the affine rack Aff(7, 5). Then dimB(V ) = 326592.

Examples 1.2–1.5 in arbitrary characteristic were discussed in [28]. We collected
some information on these Nichols algebras in Table 1, where we write

(n)t = 1 + t+ · · ·+ tn−1 ∈ Z[t]
for all integers n ≥ 0.

Be warned, that there exists at least one additional finite-dimensional Nichols
algebra over Aff(3, 2) in characteristic two; see [31, Appendix A]. Hence Table 1
should not be regarded as a complete list of finite-dimensional Nichols algebras over
simple racks with prime cardinality.

With the present paper, we initiate the study of deformations of braided vector
spaces to retrieve additional structural information about Nichols algebras of simple
Yetter–Drinfeld modules. We introduce and study braided vector space filtrations
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Table 1. Finite-dimensional Nichols algebras over affine racks (in
arbitrary characteristic).

dimV suppV dimB(V ) Hilbert series Comments
3 Aff(3, 2) 12 (2)2t (3)t Example 1.1
5 Aff(5, 2) 1280 (4)4t (5)t Example 1.2
5 Aff(5, 3) 1280 (4)4t (5)t Example 1.3
7 Aff(7, 3) 326592 (6)6t (7)t Example 1.4
7 Aff(7, 5) 326592 (6)6t (7)t Example 1.5

and orders of braided vector spaces. Note that filtrations of Yetter–Drinfeld mod-
ules are already commonly used, see e.g. [3]. For simple Yetter–Drinfeld modules
however those filtrations are trivial, whereas our definition is much less restrictive.
This fact is one of the main reasons that our approach leads to new results.

Deformation techniques are common in several parts of mathematics. Even in
the representation theory of generalized quantum groups, (Poisson) orders have
been used successfully by Angiono, Andruskiewitsch and Yakimov in [4]. In our
context, orders of braided vector spaces and special properties in suitable singu-
lar points are studied to obtain information on the size of the Nichols algebra in
characteristic 0. This is a new approach, as orders have not yet been applied sys-
tematically in the structure theory of Nichols algebras of braided vector spaces.
We demonstrate the method’s power by solving the long-standing problem of clas-
sifying finite-dimensional Nichols algebras of irreducible Yetter–Drinfeld modules
of prime dimension over non-abelian groups. We confirm that there exist no finite-
dimensional Nichols algebras in this class except the known examples: Over fields
of characteristic 0, the Nichols algebras of Examples 1.1–1.5 are the only exam-
ples appearing when the (absolutely irreducible) braided vector space has prime
dimension.

Theorem 1.6. Assume that char(k) = 0. Let V be an absolutely irreducible Yetter–
Drinfeld module over a group G such that the support {x ∈ G : Vx ̸= 0} of V gen-
erates G. Assume that dimV is a prime number. Then B(V ) is finite-dimensional
if and only if dimV ∈ {3, 5, 7} and V is isomorphic to one of the Yetter–Drinfeld
modules of Examples 1.1, 1.2, 1.3, 1.4, 1.5.

We remark that in Theorem 1.6 the assumption on the group being generated
by the support of V is not too restrictive. Indeed, for the study of B(V ) one can
always replace G by its subgroup generated by the support of V .

In [45], Milinski and Schneider studied Nichols algebras of Yetter–Drinfeld mod-
ules over Coxeter groups. Later, in [13], Andruskiewitsch and Graña explicitly
considered the case of Nichols algebras over dihedral groups of size 2p, where p is a
prime number. In the non-abelian case, this boils down to study Nichols algebras
of braided vector spaces of dihedral type, that is, finite-dimensional vector spaces
Vp, where p ≥ 3 is a prime number and the braiding of Vp is of the form

c : Vp ⊗ Vp → Vp ⊗ Vp, c(vi ⊗ vj) = λv2i−j mod p ⊗ vi,

for some basis v0, v1, . . . , vp−1 and some non-zero scalar λ.
The case where (p, λ) = (3,−1) is that of Example 1.1.



NICHOLS ALGEBRAS OF SIMPLE YETTER–DRINFELD MODULES 5

The question of determining the finite-dimensional Nichols algebras whose sup-
port is a simple rack was raised in [11, page 228] and discussed in several papers,
including [10, 12, 26] and [2, §4.4]. Theorem 1.6 answers this question for simple
racks with a prime cardinal.

The paper is organized as follows. In Section 2 we discuss affine racks and abso-
lutely irreducible Yetter–Drinfeld modules of prime dimension. Section 3 concerns
orders of braided vector spaces. In Section 4 we discuss the passage from charac-
teristic zero to positive characteristic. The proof of Theorem 1.6 appears in Section
5. In an appendix, we discuss the applicability of our methods to similar problems
like that of Nichols algebras over symmetric groups or classes of non-abelian finite
groups (see Corollary 7.3).

The strategy of the proof. The proof of Theorem 1.6 consists of three major
steps. First, we study Nichols algebras of Yetter–Drinfeld orders and, in particular,
their specializations at well-chosen primes. Second, we relate these specializations
to Nichols algebras of diagonal type using filtrations of braided vector spaces. Fi-
nally, we use the classification of rank two Nichols algebras of diagonal type in
positive characteristic obtained in [50]. To deal with the cases not treated by this
method, we develop a second technique based on Yetter–Drinfeld orders which re-
lies on the classification of finite-dimensional Nichols algebras of semisimple Yetter–
Drinfeld modules in positive characteristic in [35].

2. Preliminaries

In this section, we review some basic notions about racks and quandles. We
refer to [14] for more details. A rack is a set X together with a binary operation
(x, y) 7→ x ▷ y on X such that every map φx : X → X, y 7→ x ▷ y, is bijective,
and x ▷ (y ▷ z) = (x ▷ y) ▷ (x ▷ z) holds for all x, y, z ∈ X. A rack is said to be
indecomposable if the group generated by {φx : x ∈ X} acts transitively on X.

A rack is a quandle if x ▷ x = x for all x ∈ X.
In this work, we deal with a particular family of racks. An affine (or Alexander)

rack is a triple (A, g, ▷), where A is an abelian group, g ∈ Aut(A) and (a, b) 7→ a▷ b
is the binary operation on A given by a ▷ b = (id− g)(a) + g(b) for all a, b ∈ A. In
this case, we denote this rack by Aff(A, g).

An affine rack Aff(A, g) is indecomposable if and only if id− g is surjective.
In this work, the following family of affine racks will be crucial. Let p be a prime

number and Z/pZ be the ring of integers modulo p. For α ∈ Z/pZ\{0, 1}, Aff(p, α)
denotes the affine rack Aff(Z/pZ, g), where

g : Z/pZ → Z/pZ, g(x) = αx.

Then Aff(p, α) is an affine indecomposable rack.
The following lemmas give some information on the structure of groups generated

by a conjugacy class. We will need this when studying Yetter–Drinfeld modules
over such groups. For any element g of a group G, we write ⟨g⟩ for the subgroup
generated by g.

Lemma 2.1. Let G be a group generated by a finite conjugacy class X, let m be
the order of the conjugation action of any x ∈ X on X, let < be a total order of
X, and let z be the maximal element of (X,<). Then for all n ≥ 0, every element
of Xn ⊆ G is of the form xn1

1 xn2
2 · · ·xnk

k zl with k, l ≥ 0, n1 + n2 + · · ·+ nk + l = n,
x1 < x2 < · · · < xk < z, and 1 ≤ ni ≤ m− 1 for all 1 ≤ i ≤ k.
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See Dietzmann’s theorem in [37, Theorem 5.10] and Lemmas 2.18 and 2.19 in
[28] for related claims.

Proof. The claim is trivial for n ≤ 1. Let n ∈ N with n ≥ 2. Then in any
x1x2 · · ·xn ∈ Xn, a factor xixi+1 ∈ X2 with 1 ≤ i ≤ k − 1 and xi+1 < xi can be
replaced by the lexicographically smaller factor xi+1(x

−1
i+1xixi+1) ∈ X2. We now

prove that xm = zm for all x ∈ X. Then using that zm is in the center of G, we
can achieve that the exponents of the factors xi ̸= z are at most m− 1.

Note that xmy = yxm = (yxy−1)my for all x, y ∈ X, Hence xm = (yxy−1)m for
all x, y ∈ X. It follows that xm = (gxg−1)m for all x ∈ X and g ∈ G, since G is
generated by X. Moreover, X is a conjugacy class of G, and hence xm = zm for all
x ∈ X. This completes the proof of the lemma. □

Our main objects of interest are Yetter–Drinfeld modules of prime dimension
over non-abelian groups.

Lemma 2.2. Let G be a group generated by a finite conjugacy class X. Then the
derived subgroup [G,G] of G is finite and is generated by the elements xy−1 with
x, y ∈ X. Moreover, for all z ∈ X,

G = [G,G]⟨z⟩ and CG(z) =
(
[G,G] ∩ CG(z)

)
⟨z⟩.

Proof. Since G is generated by the conjugacy class X, the group [G,G] is generated
by the elements uyu−1y−1 with u, y ∈ X, and since uyu−1 ∈ X, by the elements
xy−1 with x, y ∈ X.

Since (xy−1)−1 = yx−1 and y−1x = (y−1xy)y−1 for all x, y ∈ X,

[G,G] = {x1x2 · · ·xn(y1y2 · · · yn)−1 : n ≥ 0, x1, x2, . . . , xn, y1, y2, . . . , yn ∈ X}.
Let z ∈ X. Since

x = xz−1z ∈ [G,G]z and x−1 = x−1zz−1 ∈ [G,G]z−1

for all x ∈ X, it follows that G = [G,G]⟨z⟩. Hence CG(z) =
(
[G,G] ∩ CG(z)

)
⟨z⟩.

It remains to prove that [G,G] is finite. Let < be a total order ofX with maximal
element z. By Lemma 2.1, in this description, we may assume that the monomials
x1x2 · · ·xn and y1y2 · · · yn are ordered and do not contain factors of the form xm,
x ∈ X \ {z}, where m is the order of the conjugation action of any x ∈ X on X.
Thus, [G,G] is the set of all elements x̄zlȳ−1, where x̄, ȳ are ordered monomials in
the letters X \ {z} without factors xm, x ∈ X \ {z}, and l = |y| − |x|. This set is
finite. □

Lemma 2.3. Let G be a group and let X be a conjugacy class of G. Assume that
X generates G, and that there is a rack isomorphism φ : Aff(p, α) → X for some
prime p and some α ∈ Z/pZ \ {0, 1}. For all i ∈ Z/pZ let gi = φ(i), and let
γ = g0g

−1
1 .

(1) The following relations hold in G:

gxg
−1
y = gx+zg

−1
y+z,

g0g
−1
k = γk,

gxγ = γαgx

for all x, y, z ∈ Z/pZ and k ≥ 0.
(2) The derived subgroup of G is cyclic of order p and is generated by γ.
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Proof. We write ▷ for the rack action of X.
(1) Since φ is a rack isomorphism, we obtain that

gi ▷ gj = g(1−α)i+αj = gj+(1−α)(i−j),

g−1
i ▷ gj = gj+(1−α−1)(i−j)

for all i, j ∈ Z/pZ. Therefore, for all i, j ∈ Z/pZ the relations

gig
−1
j = g−1

i▷jgi = gi+(1−α−1)((i▷j)−i)g
−1
i▷j = gi+(1−α)(i−j)g

−1
j+(1−α)(i−j)

hold in G. Since the difference of i+ (1− α)(i− j) and j + (1− α)(i− j) is i− j,
it follows that

gig
−1
j = gi+k(α−1)(i−j)g

−1
j+k(α−1)(i−j)

for all k ∈ Z. Since α ̸= 1, we conclude that gxg
−1
y = gx+zg

−1
y+z for all x, y, z ∈ Z/pZ.

As a direct consequence,

(g0g
−1
1 )k = g0g

−1
1 g1g

−1
2 · · · gk−1g

−1
k = g0g

−1
k

for all k ≥ 0. Moreover, for all x ∈ Z/pZ we obtain that

gxγ = gxg0g
−1
1 = gx▷0g

−1
x▷1gx = g(1−α)xg

−1
(1−α)x+αgx = g0g

−1
α gx = γαgx.

(2) By Lemma 2.2, the derived subgroup of G is generated by the elements gxg
−1
y

with x, y ∈ X. Thus [G,G] is generated by γ because of (1). Since γp = 1 and
since g0 ̸= g1 in G, the order of γ in G is p. □

Theorem 2.4 (Etingof–Guralnick–Soloviev). Any indecomposable quandle with a
prime number of elements is isomorphic to Aff(p, α) for some prime number p and
α ∈ Z/pZ \ {0, 1}.

Proof. It follows from [25, Theorems 2.5 and 3.1]. □

Recall that a Yetter–Drinfeld module V over a group G is absolutely irreducible
if and only if its support is a conjugacy class of G and for some (equivalently, any)
x ∈ G with Vx ̸= 0 the kCG(x)-module Vg is absolutely irreducible.

Corollary 2.5. Let k be a field, G be a group, and V be an absolutely irreducible
Yetter–Drinfeld module over kG of dimension p for some prime p. Let

X = {x ∈ G : Vx ̸= 0},
and assume that G is generated by X. Then X ∼= Aff(p, α) for some α ∈ Z/pZ,
dimVx = 1 for all x ∈ X, and there is a scalar λ ∈ k× and a family (vx)x∈X of
vectors vx ∈ Vx, such that

xvy = λvx▷y

for all x, y ∈ X.

Proof. Let X be the support of V . Since V is irreducible, X is a conjugacy class
of G. Since dimV = p, we obtain that |X| ∈ {1, p}. By assumption, X generates
G. Since V is absolutely irreducible and dim(V ) = p > 1, the group G can not be
abelian and hence |X| = p. Thus X is an indecomposable quandle of size p, and it
follows from Theorem 2.4 that there is a rack isomorphism

φ : Aff(p, α) → X

for some α ∈ Z/pZ \ {0, 1}. For all i ∈ Z/pZ let gi = φ(i) ∈ X, and let γ = g0g
−1
1 .

Since |X| = dimV , it follows that dimVx = 1 for all x ∈ X. Let w0 ∈ Vg0 be a
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non-zero element, vφ(0) = w0, and let λ ∈ k with g0w0 = λw0. For all 1 ≤ i ≤ p− 1
let

wi = γiβw0, vφ(i) = wi,

where β ∈ Z/pZ with β(α− 1) = 1. (Note that the claim of the corollary is on the
family (vx)x∈X . We use the vectors wi in order to simplify the notation.)

By Lemma 2.3(1),

giwj = giγ
jβw0 = γjαβgig

−1
0 λw0 = γjαβg0g

−1
p−iλw0 = γjαβγp−iλw0.

Now note that p− i = (p− i)(α− 1)β, and hence

giwj = λγ(jα+i(1−α))βw0 = λwi▷j .

This proves the corollary. □

The following lemma will be needed later for technical reasons.

Lemma 2.6. Let G be a group generated by a conjugacy class xG of an element
x ∈ G. Let m be the order of the conjugation action of x on xG. Then for all r ∈ N
with gcd(r,m) = 1, (xr)G is a conjugacy class of G of size |xG|.

Proof. Let a, b ∈ Z with ar + bm = 1. Then

(gxrg−1)a = gxarg−1 = gx1−bmg−1 = gxg−1xbm

for all g ∈ G, since xm is central in G. Hence the map (xr)G → xG, y 7→ yax−bm,
is bijective. □

Lastly, for our analysis, the following proposition will be crucial.

Proposition 2.7. Let k be a field. Let G be a group and V and W be absolutely
irreducible Yetter–Drinfeld modules over kG. Assume that the supports of V and
W do not commute and their union generates G. If dimB(V ⊕W ) < ∞, then

{dimV,dimW} = {{1, 3}, {1, 4}, {2}, {2, 3}, {2, 4}}.

Proof. This is a consequence of [35, Theorem 2.1] by inspection of [35, Table 1]. □

At this point it is interesting to mention that Proposition 2.7 is the main tool in
[7, 8, 9, 22] to study Nichols algebras over simple groups.

3. Orders of braided vector spaces and Nichols algebras

Assume that char(k) = 0 and let H be a Hopf algebra over k with bijective
antipode. To study Nichols algebras of Yetter–Drinfeld modules over H, we will
use orders of the underlying braided vector spaces.

Definition 3.1. Let V be a finite-dimensional Yetter–Drinfeld module over H and
let R be a subring of k. An R-order of the braided vector space V is a finitely
generated projective R-submodule VR of V such that

(1) the canonical map k⊗R VR → V , λ⊗ v 7→ λv, is bijective, and
(2) c(V ⊗2

R ) ⊆ V ⊗2
R and c−1(V ⊗2

R ) ⊆ V ⊗2
R .

Example 3.2. Let R be a subring of k, which is a Dedekind domain, e.g., the
ring of integers Z[q] of a cyclotomic field. Then finitely generated R-submodules of
vector spaces over k are torsion-free and hence projective. In our applications, in
particular in the proof of Theorem 3.7 and of Theorem 1.6, the R-orders will be of
this form.
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Example 3.3. Let R be a subring of k and let V be a Yetter–Drinfeld module over
H. Assume that dim(H) < ∞ and let X be a Hopf order of H. This means that X
is an R-order of H as a k-vector space and that X is closed under multiplication,
comultiplication, unit, counit, and the antipode (see [23] for precise definitions).
The dual Hopf algebra H∗ admits a dual Hopf order X⋆. By definition,

X⋆ = {f ∈ H∗ : f(X) ⊆ R}.

Recall that Yetter–Drinfeld modules can be considered as modules over the Drinfeld
double D(H) of H. As a coalgebra, D(H) = (Hop)∗ ⊗ H, and as an algebra the
multiplication is given by the rule

(f ⊗ a)(g ⊗ b) = g(1)(S
−1(a(3)))g3(a(1))fg(2) ⊗ a(2)b;

see [39, §IX.4.1] for more details. In particular, by using the formulas for the
multiplication and comultiplication, it is straightforward to show that the image of
X⋆ ⊗R X inside D(H) provides a Hopf order of D(H) that we will write as D(X).
The R-matrix is then given by M =

∑
i e

i ⊗ ei ∈ D(H), where {ei} is a basis of
H and {ei} denotes the dual basis of H∗. This element is necessarily contained
in D(X) as well. Indeed, D(X) can be characterized as the set of all elements in
H∗ ⊗H such that their pairing with any element in X ⊗R X⋆ is in R, and it holds
that M(x⊗ f) = f(x).

Let now v1, . . . , vn be a basis of V . Then{
n∑

i=1

tivi : ti ∈ D(X)

}
⊆ V

is an example of an R-order of V as a braided vector space.

Recall from [33, Definition 7.1.13] that for any V ∈ H
HYD, the Nichols algebra of

V is

B(V ) = T (V )/IV ,

where T (V ) is the tensor algebra of V and

IV =

∞⊕
n=2

ker(∆1n : Tn(V ) → Tn(V )) ⊆ T (V ),

and for each n ≥ 2, ∆1n is the n-th symmetrizer morphism. It is well-known that
IV is an ideal and coideal of T (V ). The Nichols algebra B(V ) is an N0-graded
algebra and coalgebra with homogeneous components

Bn(V ) = Tn(V )/ ker(∆1n)

for all n ≥ 0.
Now assume that V is finite-dimensional. Let R be a subring of k and let VR be

an R-order of the braided vector space V . Then for all n ∈ N0,

V ⊗n
R := VR ⊗R VR ⊗R · · · ⊗R VR

is a finitely generated projective module. Moreover, the inclusion VR → V induces
injections V ⊗n

R → V ⊗n, and isomorphisms

k⊗R V ⊗n
R

∼=→ V ⊗n.
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Hence

B(VR) =

∞⊕
n=0

(
V ⊗n
R + ker(∆1n)

)
/ ker(∆1n) ∼=

∞⊕
n=0

V ⊗n
R /

(
V ⊗n
R ∩ ker(∆1n)

)
is a graded braided Hopf algebra over R. As an algebra, it is generated in degree
one. We call it the Nichols algebra of VR. We would like to stress that this Hopf
algebra is one of the basic points of the paper.

Remark 3.4. In the literature, authors use different approaches to introduce or-
ders. Alternatively to our definition, we could start with an integral domain R, a
Hopf order HR over R, and a Yetter–Drinfeld module VR over HR which is finitely
generated projective as an R-module. Then B(VR) could be introduced as the quo-
tient of the tensor algebra of VR by the kernel of ⊕n∆1n . Note however, that our
definition of an R-order of V does not require the existence of an R-order of H.

Let now m be a maximal ideal of R. Then R/m is a field, and for each finitely
generated projective R-module M , R/m ⊗R M is a vector space over R/m of di-
mension dimk(k⊗RM). (This follows e.g. from Theorem 1 of [21, V.2]; see also the
remark on page 111.) Let c = cV,V be the braiding of V . By Definition 3.1,

id⊗ c ∈ EndR/m(R/m⊗R V ⊗2
R ).

It follows that

VR,m := R/m⊗R VR

is a braided vector space and R/m⊗R B(VR) is an N0-graded braided Hopf algebra
with degree one part VR,m. As an algebra, R/m ⊗R B(VR) is generated by VR,m.
Hence R/m⊗R B(VR) is a pre-Nichols algebra of VR,m. In other words, we have a
canonical surjection

R/m⊗R B(VR) → B(VR,m).

The analysis in this section is based on the observation that the above surjection
might not be injective, which means that it is possible that R/m⊗R B(VR) will not
be a Nichols algebra. This has consequences for the structure of B(V ).

We keep our notation and assumptions regarding k, H, V and R. The following
lemma is immediately clear from the preceding discussion.

Lemma 3.5. Let VR be an R-order of V and let m be a maximal ideal of R. Then
cV,V induces a braided vector space structure on VR,m, and R/m ⊗R B(VR) is a
pre-Nichols algebra of VR,m. If B(V ) is finite-dimensional, then R/m⊗RB(VR) and
B(VR,m) are finite-dimensional.

We recall Takeuchi’s notion of categorical subspaces, see for example [33, Defi-
nition 6.1.5]. A categorical subspace of a braided vector space (W, c) is a subspace
U of W such that

c(U ⊗W ) = W ⊗ U and c(W ⊗ U) = U ⊗W.

Next we formulate a very useful criterion to identify infinite-dimensional Nichols
algebras. Another one we will discuss in Section 4.2.

Lemma 3.6. Let VR be an R-order of V and let m be a maximal ideal of R.
Let W ⊆

⊕
n≥2 R/m ⊗R Bn(VR) be a categorical subspace consisting of primitive

elements. Assume that the Nichols algebra of VR,m ⊕ W is infinite-dimensional.
Then B(V ) is infinite-dimensional.
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Proof. Let F be the increasing algebra filtration by N0 of R/m ⊗R B(VR) such
that VR,m and W are in degree one. Then F is a Hopf algebra filtration. To
prove that F is a coalgebra filtration it is needed that W is a categorical subspace.
The graded Hopf algebra associated to F is a pre-Nichols algebra of VR,m ⊕W by
construction. Since its canonical quotient Nichols algebra is infinite-dimensional by
assumption, it follows that R/m⊗R B(VR) is infinite-dimensional, and hence B(V )
is infinite-dimensional by Lemma 3.5. □

Theorem 3.7. Assume that char(k) = 0. Let V be an absolutely irreducible Yetter–
Drinfeld module over a group G such that dimVx ≤ 1 for all x ∈ G. Assume that
the support X = {x ∈ G : Vx ̸= 0} of V generates G and has at least three elements.
Let m be the order of the conjugation action of any x ∈ X on X. Let λ ∈ k \ {0}
be such that

xv = λv for all x ∈ X and v ∈ Vx,

and that

(1) λ is a root of 1,
(2) the order N of λ is divisible by at least two distinct prime factors, and
(3) either gcd(m,N) = 1 or there is a (unique) prime number p such that

gcd(m,N) = pk for some k ≥ 1.

Then dimB(V ) = ∞.

Proof. Let z ∈ X and let 0 ̸= vz ∈ Vz. Let R be the smallest subring of k such that

gvz ∈ Rvz for all g ∈ CG(z).(3.1)

Note that CG(z) =
(
[G,G] ∩ CG(z)

)
⟨z⟩. Since [G,G] is finite by Lemma 2.2 and

zvz = λvz, where λ is a root of 1, we conclude that R is an extension of Z by a
root of 1, and λ ∈ R.

Now we define an R-order of V . For all y ∈ X let hy ∈ G be such that hyvz ∈ Vy,
where hz = 1. Let VR be the (free) R-submodule of V generated by hyvz for all
y ∈ X. Then Equation (3.1) implies that VR is an R-order of V .

If gcd(m,N) = 1, let p be a prime divisor of N . Note that otherwise p is by
assumption the unique common prime divisor of m and N .

Let l ≥ 1 and r ≥ 2 be such that N = plr and gcd(p, r) = 1. Let

WR =
∑
y∈X

R(hyvz)
r ⊆ B(VR).(3.2)

Note that WR is an RG-subcomodule and an RG-submodule, since the action of G
on VR permutes the R-submodules Rhyvz with y ∈ X. Moreover,

∆((hyvz)
r) =

r∑
i=0

(
r

i

)
λ

(hyvz)
i ⊗ (hyvz)

r−i(3.3)

for all y ∈ X, where the scalars
(
r
i

)
λ
are Gaussian binomial coefficients (see e.g.

[33, Section 1.9]).
Let m be a maximal ideal of R containing p. Then WR,m = R/m ⊗R WR is a

Yetter–Drinfeld submodule over (R/m)G of R/m ⊗R B(VR). Since the order of λ
in R/m is r, Equation (3.3) implies that WR,m consists of primitive elements.

Next we prove that WR,m is absolutely irreducible as a Yetter–Drinfeld module
over (R/m)G and determine its dimension. Equation (3.2) implies that the support
of WR,m is {xr : x ∈ X}. Since gcd(r,m) = 1, Lemma 2.6 implies that the
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support of WR,m consists of |X| elements. Then dim(WR,m)zr = 1, and WR,m is
absolutely irreducible. Note that |X| ≥ 3. Therefore dimB(VR,m ⊕WR,m) = ∞ by
Proposition 2.7 and hence dimB(V ) = ∞ by Lemma 3.6. □

4. Nichols algebras in positive characteristic

4.1. Nichols algebras of diagonal type. Let D = D(G, (gi)i∈{1,2}, (χi)i∈{1,2})
be a Yetter–Drinfeld datum in the sense of [33, Definition 8.2.2]. Let

(qij)i,j∈{1,2} = (χj(gi))i,j∈{1,2}

be the braiding matrix of D. Let V ∈ kG
kGYD be a Yetter–Drinfeld module defined

by D with basis x1, x2, see [33, Section 8.3]. Thus

δ(xi) = gi ⊗ xi, gxi = χi(g)xi

for all i ∈ {1, 2} and g ∈ G. Then V is a braided vector space of diagonal type with
braiding c = cV,V and

c(xi ⊗ xj) = qijxj ⊗ xi

for all i, j ∈ {1, 2}.
The generalized Dynkin diagram of the braiding matrix (qij)i,j∈{1,2} is the la-

beled graph d dq11 r q22

with r = q12q21, where the edge and the label q12q21 are omitted if q12q21 = 1.
The following result is a particular case of the classification of rank two Nichols

algebras of diagonal type in positive characteristic:

Proposition 4.1. Assume that char(k) = p > 0. Let V be a two-dimensional
braided vector space of diagonal type with generalized Dynkin diagram

d d1 a b

where a ∈ {2, 3, . . . , p− 1} and 0 ̸= b ∈ k. Then dimB(V ) < ∞ if and only if

(p, a, b) ∈ {(3, 2,−1), (5, 2,−1), (5, 3,−1), (7, 3,−1), (7, 5,−1)}.

Proof. See [50, Theorem 5.1 and Remark 5.3]. □

For all m ≥ 0, let βm = (adx1)
m(x2) in B(V ). By [33, Proposition 4.3.12],

∆(βm) = βm ⊗ 1 +

m∑
k=0

(
m

k

)
q11

(
m−1∏

l=m−k

(1− ql11q12q21)

)
xk
1g

m−k
1 g2 ⊗ βm−k

in B(V )#kG for all m ≥ 0.
Assume now that q11 = q12 = 1 and let a = q21 and b = q22. Thus the generalized

Dynkin diagram of V is d d1 a b

Moreover,

∆(βm) = βm ⊗ 1 +

m∑
k=0

(
m

k

)
(1− a)kxk

1g
m−k
1 g2 ⊗ βm−k

in B(V )#kG for all m ≥ 0.
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Let A = B(kx1)#kG and let K = (B(V )#kG)coA, see [33, Section 13.2]. Let

W = (adA)(kx2) ⊆ B(V ).(4.1)

Then W ∈ A
AYD by [33, Proposition 13.2.4], and consists of primitive elements of

the Hopf algebra K ∈ A
AYD. The vector space W is spanned by the elements βm

with m ≥ 0. The braiding of W is given by

(4.2) c(βm ⊗ βn) = b

m∑
k=0

(
m

k

)
(1− a)kanβn+k ⊗ βm−k.

By [33, Theorem 13.2.8], K ∼= B(W ) as braided Hopf algebras in A
AYD. Moreover,

B(V )#kG ∼= K#A and B(V ) ∼= K#k[x1]

via bosonization.
Let now p be a prime number and assume that char(k) = p. Then xp

1 = 0 in
B(V ) (since q11 = 1) and βp is gp1g2-primitive in B(V )#kG and hence βp = 0 in
B(V ). In particular, dimK < ∞ if and only if dimB(V ) < ∞. Therefore, by
Proposition 4.1, the following holds.

Lemma 4.2. Let W,K, p, a, b as above. Assume that char(k) = p. Then the Nichols
algebra B(W ) ∼= K is finite-dimensional if and only if

(p, a, b) ∈ {(3,−1,−1), (5, 2,−1), (5, 3,−1), (7, 3,−1), (7, 5,−1)}.

4.2. Deformation of the braided vector space.

Definition 4.3. Let (V, c) be a braided vector space. A decreasing filtration of V
is a family (F iV )i≥0 of subspaces F iV ⊆ V such that

(1) V = F0V ⊇ FkV ⊇ F lV for all 0 ≤ k ≤ l,
(2)

⋂
i≥0 F iV = {0}, and

(3) c(F iV ⊗F jV ) ⊆
⊕

k+l≥i+j FkV ⊗F lV for all i, j ≥ 0.

Definition 4.4. Let (V, c) be a braided vector space with a decreasing filtration
(F iV )i≥0. The pair (V gr, cgr) with

V gr =
⊕
i≥0

F iV/F i+1V,

cgr :V gr ⊗ V gr → V gr ⊗ V gr, x⊗ y 7→ c(x⊗ y) +
∑

k+l>i+j

FkV ⊗F lV

for all x ∈ F iV , y ∈ FjV , i, j ≥ 0,

is called the associated graded braided vector space. We also say that (V, c) degen-
erates to (V gr, cgr).

Remark 4.5. In [44], the terminology “specializes” instead of “degenerates” is
used.

Remark 4.6. Let V be an object in a braided monoidal category, where V is in
particular a vector space. In Definition 4.4, we do not require that the filtration
consists of objects in the same category. In particular, the degeneration is possibly
not an object of the category where V comes from.

The notion introduced in Definition 4.4 is justified by the following lemma. The
proof of this lemma is fairly elementary and is omitted.
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Lemma 4.7. Let (V, c) be a braided vector space and (F iV )i≥0 be a decreasing
filtration of V . Then (V gr, cgr) is a braided vector space, and

cgr(F iV/F i+1V ⊗F jV/F j+1V ) ⊆
⊕

k+l=i+j

FkV/Fk+1V ⊗F lV/F l+1V.

For our analysis, the following observation will be crucial.

Proposition 4.8. Let (V, c) be a braided vector space with a decreasing filtration
(F iV )i≥0. Then grB(V ) is a pre-Nichols algebra of V gr. In particular, if B(V ) is
finite-dimensional, then B(V gr) is finite-dimensional.

For Yetter–Drinfeld modules, there is an elementary construction of decreasing
filtrations using decreasing Hopf algebra filtrations of finite length.

For any Hopf algebra H with comultiplication ∆, counit ϵ and antipode S, we
say that a family (Hi)i≥0 of subspaces of H is a decreasing Hopf algebra filtration if
the following conditions hold:

(1) H0 = H, and Hi ⊇ Hj for all 0 ≤ i ≤ j.
(2) HiHj ⊆ Hi+j for all i, j ≥ 0.

(3) ∆(Hi) ⊆
∑i

j=0 Hj ⊗Hi−j for all i ≥ 0.

(4) ε(Hi) = 0 and S(Hi) ⊆ Hi for all i ≥ 1.

We say that this filtration has finite length, if Hn = {0} for some n ≥ 1.

Proposition 4.9. Let H be a Hopf algebra with bijective antipode and (Hi)0≤i≤n

be a decreasing Hopf algebra filtration of H with Hn = {0}. Let V ∈ H
HYD, and for

all i ≥ 0 let F iV = HiV . Then

δ(F iV ) ⊆
∑
k≥0

Hk ⊗F i−kV

for all i ≥ 0, and (F iV )i≥0 is a decreasing filtration of the braided vector space V .

Proof. It is clear that F0V = V and F i+1V = Hi+1V ⊆ HiV = F iV for all i ≥ 0.
Moreover, FnV = HnV = {0}.

We now prove the claim about δ(F iV ) for all i ≥ 0. Let i ≥ 0, v ∈ V and
h ∈ Hi. Then

δ(hv) = h(1)v(−1)S(h(3))⊗ h(2)v(0)

∈
∑

j+k+l=i

HjH0S(Hl)⊗HkV ⊆
∑
k≥0

Hi−k ⊗HkV

since (Hi)0≤i≤n is a decreasing Hopf algebra filtration of H and since F iV = HiV .
Finally, for all i, j ≥ 0 we obtain that

c(F iV ⊗F jV ) ⊆
∑
k≥0

HkF jV ⊗F i−kV =
∑
k≥0

F j+kV ⊗F i−kV,

and hence (F iV )i≥0 is a decreasing filtration of V . □

Corollary 4.10. Let H be a Hopf algebra with bijective antipode, and let J ⊆ H
be a nilpotent Hopf ideal and Hi = J i for all i ≥ 0. Let V ∈ H

HYD.

(1) The family (J i)i≥0 is a decreasing Hopf algebra filtration of H of finite
length.

(2) The family (J iV )i≥0 is a decreasing filtration of the braided vector space V .
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(3) Let

Hgr =
⊕
i≥0

Hi/Hi+1.

Then Hgr is an N0-graded Hopf algebra.
(4) The H-action and the H-coaction on V induce an Hgr-action and an Hgr-

coaction on

V gr =
⊕
i≥0

J iV/J i+1V.

With them, V gr is an N0-graded Yetter–Drinfeld module over Hgr.

Proof. (1) The defining properties of a decreasing Hopf algebra filtration follow
from the fact that J is a Hopf ideal of H. The finite length property follows from
the nilpotency of J .

(2) Apply Proposition 4.9 with Hi = J i for all i ≥ 0.
(3) This is mainly due to (1). The claim can be proven by standard arguments.

(4) The H-action and H-coaction on V ∈ H
HYD are filtered morphisms. This

implies the claim. □

Remark 4.11. The family (J i)i≥0 is also known as the J-adic topology of H, and
the corresponding family (J iV )i≥0 as the J-adic topology of V .

Proposition 4.12. Let k be a field of characteristic p > 0. Let G be a group
and V be an absolutely irreducible Yetter–Drinfeld module over kG of dimension p.
Assume that

X = {x ∈ G : Vx ̸= 0}
generates G. Let φ : Aff(p, α) → X be a rack isomorphism with α ∈ Z/pZ \ {0, 1}.
Let g0 = φ(0), γ = φ(0)φ(1)−1, 0 ̸= v0 ∈ Vg0 , and λ ∈ k be such that g0v0 = λv0.

(1) The ideal J ⊆ kG generated by γ − 1 is a nilpotent Hopf ideal of kG.
(2) The J-adic filtration (J i)i≥0 of kG defines a filtration (J iV )i≥0 of the

braided vector space V .
(3) For each 0 ≤ j ≤ p − 1, V gr(j) is spanned linearly by (γ − 1)jv0. The

structure maps of the Yetter–Drinfeld module V gr are determined by

g0(γ − 1)jv0 = λαj(γ − 1)jv0,

δ((γ − 1)jv0) =

j∑
i=0

(
j

i

)
(1− α)i(γ − 1)ig0 ⊗ (γ − 1)j−iv0

for all 0 ≤ j ≤ p− 1.

Proof. The isomorphism φ exists by Corollary 2.5. For all i ∈ Z/pZ let gi = φ(i).
(1) It is clear that J is a Hopf ideal. By Lemma 2.3(1),

gi(γ − 1) = (γα − 1)gi ∈ (γ − 1)kG,(4.3)

and hence G(γ − 1) ⊆ (γ − 1)kG. Similarly, (γ − 1)G ⊆ kG(γ − 1), and hence

J = kG(γ − 1) = (γ − 1)kG.(4.4)

Moreover, (γ − 1)p = γp − 1 = 0. Therefore J is nilpotent.
(2) follows from Corollary 4.10.
(3) Let 0 ≤ j ≤ p − 1. By definition, (γ − 1)jv0 ∈ JjV . Moreover, since

V = kGv0, Equation (4.4) implies that JjV = kG(γ − 1)jv0.
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By Equation (4.3),

g0(γ − 1) + J2 = (γα − 1)g0 + J2 = (γ − 1)

α−1∑
i=0

γig0 + J2 = α(γ − 1)g0 + J2.

Since g0v0 = λv0, it follows by induction on j that

g0(γ − 1)jv0 + Jj+1V = αjλ(γ − 1)jv0 + Jj+1V.

For all 1 ≤ i ≤ p− 1,

gi = gig
−1
0 g0 = g0g

−1
p−ig0 = γp−ig0.

Hence

gi(γ − 1)jv0 = γp−ig0(γ − 1)jv0

∈ kγp−i(γ − 1)jv0 + Jj+1V ⊆ k(γ − 1)jv0 + Jj+1V.

Therefore

JjV = k(γ − 1)jv0 + Jj+1V.

The proof of the formula for δ((γ−1)jv0) follows similarly by induction on j. □

Theorem 4.13. Let p be a prime number and assume that char(k) = p. Let
V be an absolutely irreducible Yetter–Drinfeld module over a group G such that
dimV = p and the support of V generates G. Then B(V ) is finite-dimensional if
and only if p ∈ {3, 5, 7} and V is isomorphic to one of the Yetter–Drinfeld modules
of Examples 1.1, 1.2, 1.3, 1.4, 1.5.

Proof. Let X be the support of V . By Corollary 2.5, X ∼= Aff(p, α) for some
α ∈ Z/pZ \ {0, 1}, dimVx = 1 for all x ∈ X, and there exist a scalar λ ∈ k× and a
basis (vx)x∈X of V such that

xvy = λvx▷y, δ(vy) = y ⊗ vy

for all x, y ∈ X.
Assume first that

(p, α, λ) ∈ {(3, 2,−1), (5, 2,−1), (5, 3,−1), (7, 3,−1), (7, 5,−1)}.

Then B(V ) is one of the Nichols algebras of Examples 1.1, 1.2, 1.3, 1.4, 1.5 and
therefore it is finite-dimensional.

Assume now that

(p, α, λ) ̸∈ {(3, 2,−1), (5, 2,−1), (5, 3,−1), (7, 3,−1), (7, 5,−1)}.

By assumption, char(k) = p. Let (JjV )j≥0 be the J-adic filtration of V in Propo-
sition 4.12 and let V gr be the associated graded Yetter–Drinfeld module. Then by
functoriality, the filtration induces a filtration of B(V ). By Proposition 4.8, grB(V )
is a pre-Nichols algebra of B(V gr). It suffices to prove that dimB(V gr) = ∞.

By Proposition 4.12(3), there exist g0 ∈ X and 0 ̸= v0 ∈ Vg0 such that the
elements yj = (γ − 1)jv0 with 0 ≤ j ≤ p − 1 form a basis of V gr. Moreover, the
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Yetter–Drinfeld structure of V gr in Proposition 4.12(3) implies that

cgr(ym ⊗ yn) = (ym)(−1)yn ⊗ (ym)(0)

=

m∑
i=0

(
m

i

)
(1− α)i(γ − 1)ig0yn ⊗ ym−i

=

m∑
i=0

(
m

i

)
(1− α)iλαnyn+i ⊗ ym−i

for all 0 ≤ m,n ≤ p − 1. Let W be the braided vector space in Equation (4.1)
corresponding to the parameters a = α and b = λ. By (4.2) and the above formula
for cgr, the linear map

V gr → W, ym 7→ βm,

is an isomorphism of braided vector spaces. Thus dimB(V gr) = ∞ by Lemma 4.2,
and the proof is completed. □

5. Proof of Theorem 1.6

Let X denote the support of V . By Corollary 2.5, X ∼= Aff(p, α) for p = dim(V )
and some α ∈ Z/pZ \ {0, 1}, dimVx = 1 for all x ∈ X, and there is a scalar λ ∈ k×
and a family (vx)x∈X of vectors vx ∈ Vx, such that

xvy = λvx▷y

for all x, y ∈ X.
If λ is not a root of 1, or λ = 1, then for all x ∈ X, B(Vx) is infinite-dimensional

(see e.g. [33, Example 1.9.6]), and hence B(V ) is infinite-dimensional.
Assume that λ is a root of 1 and λ ̸= 1. Let R = Z[λ] ⊆ k. Let VR be the (free)

R-submodule of V generated by the vectors vx with x ∈ X. Then VR is an R-order
of the braided vector space V . Let m be a maximal ideal of R containing p. Then
char(R/m) = p.

Assume first that λ ̸= −1 in R/m or

(p, α) /∈ {(3, 2), (5, 2), (5, 3), (7, 3), (7, 5)}.

Then B(VR,m) is infinite-dimensional by Theorem 4.13. Hence B(V ) is infinite-
dimensional by Lemma 3.5.

Assume now that λ = −1 in R/m and

(p, α) ∈ {(3, 2), (5, 2), (5, 3), (7, 3), (7, 5)}.

If λ = −1 in R, then λ = −1 in k and hence V is one of the Examples 1.1–1.5.
In this case, B(V ) is finite-dimensional. Otherwise, assume that λ ̸= −1 in R.
Then the order of λ in k is 2pk for some k ≥ 1. Moreover, since |α| is the order
of the conjugation action, gcd(|α|, p) = 1. In particular, gcd(2pk, |α|) ∈ {1, 2}.
Then B(V ) is infinite-dimensional by Theorem 3.7, and the proof of the theorem is
completed.

Remark 5.1. Theorem 1.6 is not valid if V is assumed to be irreducible but not
absolutely irreducible. Indeed, let k = R and let V = Vg be a 2-dimensional Yetter–
Drinfeld module over G = Z, where g is a generator of the group Z. Assume that
g2 + g+1 acts by 0 on V . Then C⊗R V is a braided vector space of diagonal type,
and dimB(V ) = 9.
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6. An example

In this section, we work out explicitly our results in the case of 3-dimensional
Yetter–Drinfeld modules.

Let k be a field of characteristic zero. Let

G = ⟨s1, s2 : s21 = s22, s1s2s1 = s2s1s2⟩.
Then G is a central extension of the symmetric group S3. Let X be the conjugacy
class of s1 in G, that is, X = {s1, s2, s1s2s−1

1 }. Let λ ∈ k× be a root of 1, and let
V be the Yetter–Drinfeld module over kG with basis {vx : x ∈ X} and

xvy = λvxyx−1 , x, y ∈ X.

If λ = −1, then B(V ) is finite-dimensional, see Example 1.1.
Note that X = suppV and that the map

φ : Aff(3,−1) → X, 0 7→ s1, 1 7→ s2, 2 7→ s1s2s
−1
1 ,

is a rack isomorphism. By Lemma 2.3, γ = φ(0)φ(1)−1 generates the derived
subgroup of G, and has order 3.

For the following, let R = Z[λ] and let VR be the R-submodule of V generated
by {vx : x ∈ X}. Take a maximal ideal m of R containing 3, and define

VR,m = R/m⊗R VR.

Theorem 3.7 implies that if the order of λ is divisible by at least two prime
factors (in particular, if the order of λ is 2 ·3r for some r ≥ 1), then dimB(V ) = ∞.
The proof of Theorem 3.7 follows the following steps:

(1) identify a 3-dimensional Yetter–Drinfeld module W of primitive elements
in an associated graded Hopf algebra of R/m⊗RB(VR), spanned by powers
of the generators of VR,m;

(2) use the classification of Nichols algebras of semisimple Yetter–Drinfeld mod-
ules to observe that B(VR,m ⊕W ) is infinite-dimensional;

(3) use Lemma 3.5 to conclude that B(V ) is infinite-dimensional.

Assume now that the order of λ in R is different from 2 · 3r for all r ≥ 0, that
is, λ1⊗R R/m ̸= −1. Then B(VR,m) is infinite-dimensional by Theorem 4.13. (For
the proof of this theorem one uses the filtration of V induced by the powers of the
radical of the derived subgroup of G and the classification of Nichols algebras of
diagonal type in prime characteristic.) Consequently, B(V ) is infinite-dimensional
by Lemma 3.5.

7. Appendix: On filtrations of braided vector spaces

In this appendix, we determine some consequences of the existence of filtrations
of certain braided vector spaces. We prepare the claims with a lemma.

Lemma 7.1. Let V be a finite-dimensional vector space together with a direct sum
decomposition V = V (1)⊕ V (2)⊕ · · · ⊕ V (l) and a flag

V = F0V ⊇ F1V ⊇ · · · ⊇ FmV = {0}
of subspaces with l,m ≥ 1. Let n = dimV , and for all 1 ≤ i ≤ n let

f(i) = max{k ≥ 0 : i ≤ dimFkV }.
Then there exist bases (xi)1≤i≤n and (bi)1≤i≤n of V , and an upper triangular matrix
S = (sij) ∈ kn×n with diagonal entries 1, satisfying all of the following properties:
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(1) For each 1 ≤ i ≤ n there exists 1 ≤ g(i) ≤ l such that xi ∈ V (g(i)).
(2) For each 0 ≤ k ≤ m− 1, the vectors bi with 1 ≤ i ≤ dimFkV form a basis

of FkV .
(3) For all 1 ≤ i ≤ n,

bi = xi +
∑
j>i

sijxj = xi +
∑

j:f(j)<f(i)
g(j)̸=g(i)

sijxj .

Proof. The claim and the proof are a variation of the LU decomposition of an
invertible square matrix.

Let X = (xi)1≤i≤n and B = (bi)1≤i≤n be bases of V satisfying (1) and (2),
respectively. Let S = (sij) ∈ kn×n be such that bi =

∑n
j=1 sijxj for all 1 ≤ i ≤ n.

Clearly, S is invertible. We are going to modify X and B step by step such that
properties (1) and (2) of the lemma are preserved and S approaches the desired
form in (3).

Step 1. We may assume that S is an upper triangular matrix with 1’s on the diag-
onal, and sij ̸= 0 with i < j implies that f(j) < f(i). Indeed, the first dimFm−1V
rows of S are linearly independent. Thus there exist dimFm−1V columns of S
such that the corresponding square submatrix has full rank. By permuting the
basis vectors of X , we may assume that these are the first dimFm−1V columns.
After applying appropriate row transformations of S (change of vectors bi in B
with f(i) = m − 1) we may assume that sij = δij (Kronecker’s delta) for all
1 ≤ i, j ≤ dimFm−1V .

With the remaining rows of S we proceed by induction. Regarding vectors
bi ∈ B with f(i) = t for some t, we first add to them appropriate vectors in
F t+1V in order to achieve that sij = 0 for all j with f(j) > f(i). Then we
choose dimF tV − dimF t+1V vectors from X such that the corresponding square
submatrix of S (with rows i such that f(i) = t) has full rank, and permute them
to the columns j with f(j) = t. After suitable row transformations in S (change of
vectors bi in B with f(i) = t) we may assume that sij = δij (Kronecker’s delta) for
all 1 ≤ i, j ≤ dimF tV with f(j) ≥ f(i). We then proceed similarly with the rows
i with f(i) = t− 1.

Step 2. We may assume additionally that sij = 0 whenever 1 ≤ i < j ≤ n,
f(j) < f(i), and g(j) = g(i). Indeed, let i0 be the smallest integer such that there
exists j with f(j) < f(i0) and g(j) = g(i0). Then replace xi0 by

xi0 +
∑

j:f(j)<f(i0)
g(j)=g(i0)

si0jxj .

After this transformation, the matrix S does not change in rows > i0, and the basis
vectors bi with i ≤ i0 will satisfy the required property in (3). Thus, by induction
on the rows of S, we may complete the construction of X and B with the claimed
properties. □

Proposition 7.2. Let G be a group and V ∈ kG
kGYD. Assume that dimV < ∞, V

is irreducible, and G is generated by the support of V . Let (F iV )i≥0 be a decreasing
filtration of the braided vector space V with F1V ̸= {0}. Then hF iV ⊆ F iV for
all h ∈ G and i ≥ 0. Moreover, there exists a normal subgroup N ̸= {1} of G such
that N ⊆ [G,G] and

(g − 1)F iV ⊆ F i+1V
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for all g ∈ N and i ≥ 0.

Proof. Let n = dimV and let X = (xi)1≤i≤n and B = (bi)1≤i≤n be bases of V as in
Lemma 7.1 with respect to the direct sum decomposition of V as a kG-comodule and
the flag of subspaces corresponding to the filtration (FkV )k≥0. For all 1 ≤ i ≤ n
let

f(i) = max{k ≥ 0 : i ≤ dimFkV }
as in Lemma 7.1. Then for each k ≥ 0, the vectors

(bi)f(i)≥k

form a basis of FkV . For all 1 ≤ i ≤ n let gi ∈ G such that xi ∈ Vgi . Let
S = (sij)1≤i,j≤n be the upper triangular matrix from Lemma 7.1. We note that

(S1) sij = 0 for all i, j with i ̸= j and f(i) = f(j), and
(S2) sij = 0 for all i, j with i < j and g(i) = g(j).

Let now (tij)1≤j≤n be the upper triangular matrix with 1’s on the diagonal such
that

xi = bi +
∑
j>i

tijbj

for all 1 ≤ i ≤ n. Then

sij + tij +
∑

i<k<j

siktkj = 0(7.1)

for all i, j with i < j. Moreover, (S1) implies that

(T1) tij = 0 for all i, j with i < j and f(i) = f(j).

One obtains for all 1 ≤ i, j ≤ n that

c(bi ⊗ bj) = c
((

xi +
∑
k>i

sikxk

)
⊗ bj

)
= gibj ⊗

(
bi +

∑
k>i

tikbk

)
+
∑
k>i

sikgkbj ⊗
(
bk +

∑
l>k

tklbl

)
= gibj ⊗ bi +

∑
k>i

tikgibj ⊗ bk +
∑
k>i

sikgkbj ⊗ bk +
∑

k>l>i

siltlkglbj ⊗ bk.

We can slightly reformulate the last term by inserting and subtracting additional
terms. We obtain that

c(bi ⊗ bj) = gibj ⊗ bi +
∑
k>i

(tik + sik)gibj ⊗ bk +
∑
k>i

sik(gkbj − gibj)⊗ bk

+
∑

k>l>i

siltlk(glbj − gibj)⊗ bk +
∑

k>l>i

siltlkgibj ⊗ bk.

Then Equation (7.1) gives the formula

(7.2)

c(bi ⊗ bj) = gibj ⊗ bi +
∑
k>i

sik(gkbj − gibj)⊗ bk

+
∑

k>l>i

siltlk(glbj − gibj)⊗ bk.

Recall that for all m ≥ 0, the vectors (bα)f(α)≥m form a basis of FmV . Hence
for all m ≥ 0, the vectors bα ⊗ bβ with f(α) + f(β) ≥ m form a basis of the vector
space

∑
k+l≥m FkV ⊗F lV .
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Now take 1 ≤ i, j ≤ n. Then bi ⊗ bj ∈ Ff(i)V ⊗ Ff(j)V . Let m = f(i) + f(j).
Since (FkV )k≥0 is a decreasing filtration of the braided vector space V , we conclude
that c(bi ⊗ bj) is a linear combination of the tensors bα ⊗ bβ with f(α)+ f(β) ≥ m.

Then Equation (7.2) and (S1) imply that gibj ∈ Ff(j)V , and since G is generated
by the elements gk with 1 ≤ k ≤ n, we conclude that

(C1) for all k ≥ 0, FkV is a kG-submodule of V .

It also follows from the previous paragraph that

(S3) there exist i < j with sij ̸= 0.

Ideed, if sij = 0 for all i < j, then bi ∈ Vgi for all 1 ≤ i ≤ n. In particular, F iV is a
kG-subcomodule for all i, and hence a Yetter–Drinfeld submodule because of (C1).
However, this contradicts the irreducibility of V and the fact that F1V ̸= {0}.

Now let d = min{f(i)−f(j) : i < j, sij ̸= 0}. Then, by (T1) and Equation (7.1),
it follows that

(T2) tij = 0 for all i < j with f(i)− f(j) < d.

Now the assumptions on c and Equation (7.2) imply that

sik(gkbj − gibj) ∈ Ff(j)+d for all i < k with f(i)− f(k) = d.

Using (S2) and (S3), it follows that

(C2) there exist i < j such that sij ̸= 0, gi ̸= gj , and g−1
i gjv− v ∈ F l+1V for all

l ≥ 0 and v ∈ F lV .

Since g−1
i gj ∈ [G,G] for all 1 ≤ i < j ≤ n, (C2) implies that the normal subgroup N

of G generated by g−1
i gj in (C2) satisfies the properties required in the proposition.

This completes the proof. □

Corollary 7.3. Let G be a finite group generated by a conjugacy class X. Assume
that the derived subgroup [G,G] is simple non-abelian. Let V ∈ kG

kGYD be irreducible
with support X. Then V does not admit a non-trivial decreasing filtration.

Proof. Assume that V admits a non-trivial decreasing filtration. By Proposi-
tion 7.2, there exists a non-trivial normal subgroup N of G such that N ⊆ [G,G]
and

(g − 1)F iV ⊆ F i+1V(7.3)

for all g ∈ N and i ≥ 0. Then N = [G,G] since [G,G] is simple. Since [G,G] is
non-abelian, there exists 1 ̸= g ∈ [G,G] of order m which is coprime to char(k). In
particular, char(k) = p > 0. Then (g− 1)p

k

= gp
k − 1 for all k ≥ 1, and gp

k

= g for
k the order of p in U(Z/mZ). Thus Equation (7.3) implies that (g− 1)v = 0 for all
v ∈ V . The set of all h ∈ [G,G] acting trivially on V is a normal subgroup of G
and has then to coincide with [G,G]. Thus the action of G on V factors through
the abelian group G/[G,G], and hence |X| = 1, a contradiction to the assumptions
on G. □

We conclude the paper with some questions.
Following a question of Andruskiewitsch, we remark that with our techniques

the Gelfand–Kirillov dimension of the Nichols algebras in Theorem 1.6 can not yet
be determined. The main reason for this is that, at the moment, no sufficiently
strong results are available on the Gelfand–Kirillov dimension of Nichols algebras
of diagonal type in positive characteristic.
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Question 7.4. Is it possible to determine the precise Hilbert series and the Gelfand–
Kirillov dimension of the Nichols algebra of a Yetter–Drinfeld module as in Corol-
lary 2.5?

A basis for the Nichols algebra of Example 1.1 can be obtained by a straight-
forward calculation using the Diamond Lemma. However, computer calculations
are needed to obtain bases for the algebras of the other examples mentioned in the
introduction.

Question 7.5. Is it possible to construct without computer calculations a basis for
each of the Nichols algebras in Examples 1.2–1.5?
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bras over finite simple groups of Lie type IV. Unipotent classes in Chevalley and Steinberg

groups. Algebr. Represent. Theory, 23(3):621–655, 2020.
[9] N. Andruskiewitsch, G. Carnovale, and G. A. Garćıa. Finite-dimensional pointed Hopf alge-
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