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Abstract: A novel fast terminal sliding mode controller is proposed in this work for high-
performance trajectory tracking at the nanometer scales. It combines a recursive integer-order
non-singular high-order sliding manifold and a fractional-order fast fixed-time reaching law
to ensure globally fast convergence, and adopts a time-delay-estimation based disturbance
estimator deeming the designed controller robust to parameter uncertainty. The stability of
the designed controller is verified through the Lyapunov framework, where the full analyses
of convergence region and settling time are also presented. The tracking performance is
experimentally verified on a piezo-stack-driven nano-positioning platform.
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1. INTRODUCTION

In recent years, piezoelectric nanopositioners have been
widely used in some micro/nanoscale high-tech systems,
such as atomic force microscopy, nanolithography, mi-
croinjection systems, due to its good mechanical robust-
ness, good repeatability, high resolution, and simple de-
sign. The performance of piezoelectric platforms is further
improved With the progress of control technology. The
positioning performance is usually limited by inherent hys-
teresis, creep, lowly-damped resonant mode, and parame-
ter uncertainty. The key disadvantage of these techniques
is the inevitable errors in modeling and parameter iden-
tification. Therefore, these techniques are often combined
with feedback control to provide adequate performance.
Sliding mode control (SMC) is a popular nonlinear control
approach that has recently gained much attention due
to its effectiveness and robustness to disturbances. See
Feng et al. (2020). The core concept of SMC is to make
the system state slide on a specially designed manifold
to guarantee a predetermined dynamic performance. The
traditional linear SMC method can only guarantee the
asymptotic stability of the closed-loop system. See Liu
et al. (2015). SMC based on nonlinear sliding surface is
also known as terminal sliding mode control (TSMC).
The finite-time stability of the terminal sliding mode can
significantly improve the speed of the nano-positioning
system. However, for the TSMC scheme, the convergence
time is highly dependent on the initial conditions. In order
to solve this problem, people also propose a fixed time
method, that is, the settling time of the stable system is
fixed and independent of the initial state of the system.
See Ning et al. (2017). To date, these advances have not

been applied to nanopositioning systems to explore the
performance improvements they can afford.
Fractional calculus has recently become very attractive in
several engineering applications. It has also been proved
that the fractional integral sliding surface is equivalent
to a low-pass filter on the signum function, and thus can
eliminate the high-frequency component. See Shirkavand
and Pourgholi (2018). Fractional-order (FO) control sys-
tems can provide more adjustable degrees of freedom than
their integer-order (IO) counterparts. The work of Kang
et al. (2020) also shows the advantages of FO controller
over IO design. It is worth noting that the fusion of
fractional calculus and fixed-time sliding mode control
may be an effective way to improve the performance of
some engineering systems. However, to the best of the
authors’ knowledge, there are no reports on the applica-
tion of fractional-order fixed-time sliding mode control to
piezoelectric actuated high-precision positioning systems.
Since fixed convergence time is more attractive than finite
time in practice, the fractional calculus-based fixed-time
sliding mode control method is still a difficult problem to
be explored in piezo-driven positioning systems, which is
the main motivation of this paper.
The main focus of this paper is to solve the fixed-time
high-precision tracking problem of high-order nonlinear
systems based on high-order sliding mode and fractional
calculus. We propose a robust high-order sliding mode
control method based on a recursive high-order sliding
manifold, aiming to improve the positioning performance
of piezoelectric platforms. The controller combines recur-
sive high-order sliding manifold, fractional fast fixed-time
arrival method and time delay estimation (TDE) method.
The main contributions of this work are as follows.
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1. INTRODUCTION

In recent years, piezoelectric nanopositioners have been
widely used in some micro/nanoscale high-tech systems,
such as atomic force microscopy, nanolithography, mi-
croinjection systems, due to its good mechanical robust-
ness, good repeatability, high resolution, and simple de-
sign. The performance of piezoelectric platforms is further
improved With the progress of control technology. The
positioning performance is usually limited by inherent hys-
teresis, creep, lowly-damped resonant mode, and parame-
ter uncertainty. The key disadvantage of these techniques
is the inevitable errors in modeling and parameter iden-
tification. Therefore, these techniques are often combined
with feedback control to provide adequate performance.
Sliding mode control (SMC) is a popular nonlinear control
approach that has recently gained much attention due
to its effectiveness and robustness to disturbances. See
Feng et al. (2020). The core concept of SMC is to make
the system state slide on a specially designed manifold
to guarantee a predetermined dynamic performance. The
traditional linear SMC method can only guarantee the
asymptotic stability of the closed-loop system. See Liu
et al. (2015). SMC based on nonlinear sliding surface is
also known as terminal sliding mode control (TSMC).
The finite-time stability of the terminal sliding mode can
significantly improve the speed of the nano-positioning
system. However, for the TSMC scheme, the convergence
time is highly dependent on the initial conditions. In order
to solve this problem, people also propose a fixed time
method, that is, the settling time of the stable system is
fixed and independent of the initial state of the system.
See Ning et al. (2017). To date, these advances have not

been applied to nanopositioning systems to explore the
performance improvements they can afford.
Fractional calculus has recently become very attractive in
several engineering applications. It has also been proved
that the fractional integral sliding surface is equivalent
to a low-pass filter on the signum function, and thus can
eliminate the high-frequency component. See Shirkavand
and Pourgholi (2018). Fractional-order (FO) control sys-
tems can provide more adjustable degrees of freedom than
their integer-order (IO) counterparts. The work of Kang
et al. (2020) also shows the advantages of FO controller
over IO design. It is worth noting that the fusion of
fractional calculus and fixed-time sliding mode control
may be an effective way to improve the performance of
some engineering systems. However, to the best of the
authors’ knowledge, there are no reports on the applica-
tion of fractional-order fixed-time sliding mode control to
piezoelectric actuated high-precision positioning systems.
Since fixed convergence time is more attractive than finite
time in practice, the fractional calculus-based fixed-time
sliding mode control method is still a difficult problem to
be explored in piezo-driven positioning systems, which is
the main motivation of this paper.
The main focus of this paper is to solve the fixed-time
high-precision tracking problem of high-order nonlinear
systems based on high-order sliding mode and fractional
calculus. We propose a robust high-order sliding mode
control method based on a recursive high-order sliding
manifold, aiming to improve the positioning performance
of piezoelectric platforms. The controller combines recur-
sive high-order sliding manifold, fractional fast fixed-time
arrival method and time delay estimation (TDE) method.
The main contributions of this work are as follows.
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over IO design. It is worth noting that the fusion of
fractional calculus and fixed-time sliding mode control
may be an effective way to improve the performance of
some engineering systems. However, to the best of the
authors’ knowledge, there are no reports on the applica-
tion of fractional-order fixed-time sliding mode control to
piezoelectric actuated high-precision positioning systems.
Since fixed convergence time is more attractive than finite
time in practice, the fractional calculus-based fixed-time
sliding mode control method is still a difficult problem to
be explored in piezo-driven positioning systems, which is
the main motivation of this paper.
The main focus of this paper is to solve the fixed-time
high-precision tracking problem of high-order nonlinear
systems based on high-order sliding mode and fractional
calculus. We propose a robust high-order sliding mode
control method based on a recursive high-order sliding
manifold, aiming to improve the positioning performance
of piezoelectric platforms. The controller combines recur-
sive high-order sliding manifold, fractional fast fixed-time
arrival method and time delay estimation (TDE) method.
The main contributions of this work are as follows.
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(1) A new practical robust fractional-order terminal slid-
ing mode control method is synthesized by combining
a recursive high-order sliding manifold, a modified
fractional-order fast fixed-time reaching law and a
TDE disturbance estimation methodology.

(2) The stability of the proposed controller are theoreti-
cally proved via Lyapunov theory.

(3) The excellent performances of the proposed controller
in terms of high tracking accuracy, fast convergence,
non-singularity, chattering-free have been verified by
comparing with 4 benchmark controllers.

2. MODEL OF THE PLATFORM

Before designing the controller, the model of one axis of a
piezoelectric platform must be established.
Firstly, the linear dynamics of the platform is modeled as:

y(n)(t) +
n−1∑
k=0

aky
(k)(t) =

m∑
k=0

bku
(k)(t) (1)

where, u(t) is the input voltage with respect to time t;
y(t) is the output displacement; u(k)(t) and y(k)(t) are
respectively the kth derivatives; m and n are the orders
of the model, and m < n; ak and bk are the coefficients of
the model. In order to acquire the coefficients and orders
of the above model, the dynamics is identified in advance.
It is worth noting that the order n in (1) is set to 10, which
means the controlled platform is a high-order plant.
Secondly, the inherent hysteresis nonlinearity of the piezo-
electric platform is modeled by a hysteresis model. Due
to the simplicity and feasibility, the Bouc-Wen model in
Wang et al. (2012) is adopted and expressed as:

{
H(t) = du− h

ḣ = α1u̇− α2|u̇|h− α3u̇|h|
(2)

where, H(t) is an immeasurable hysteresis output; d is a
constant; h is an intermediate variable whose derivative is
ḣ; α1, α2 and α3 are 3 shape-related parameters for the
hysteresis loop.
Finally, with all the other uncertainties considered as a
lumped disturbance, the full dynamics of the controlled
plant is formulated as:

y(n)(t) +

n−1∑
k=0

aky
(k)(t) +H(t) + ∆(t) =

m∑
k=0

bku
(k)(t) (3)

where, ∆(t) is the uncertain displacement caused by the
lumped disturbance including all the un-modeled dynam-
ics and other disturbances.

3. CONTROLLER SYNTHESIS

In this section, a robust fractional-order fast terminal
sliding mode control scheme with fixed-time convergence
law is proposed for controlling the above-mentioned plat-
form. The aim of the control is to accurately track a
desired trajectory under unknown disturbances. The main

challenge of combining higher-order sliding mode surfaces,
fractional order reaching law, and TDE estimation lies in
how to synthesize the control system to make full use of
their respective advantages to achieve the desired control
performance. The block diagram of the control system is
shown in Fig. 1. It should be noted that in this work the
fractional order term is approximated by the Oustaloup
refined filter method. See Xue et al. (2006). And, the
notation D−α and Dα respectively indicate the Reimann-
Liouville fractional integration and derivative with the
interval from t0 to t.

3.1 Mathematical foundations

Lemma 1:Monje et al. (2010). Fractional-order differen-
tiation is linear; if A, B are constants, then

0D
α
t [Af(t) +Bg(t)] = A0D

α
t f(t) +B0D

α
t g(t) (4)

0D
α
t [−f(t)] = −0D

α
t f(t) (5)

Lemma 2: Kilbas et al. (2006). For µ > 0, v > 0, the FO
calculus of function f(t) = (t− a)v is

aD
−µ
t f(t) =

(t− a)v+µ

Γ(µ)
B(µ, v + 1) (6)

where B(µ, v) is the beta function, and Γ(µ) is the gamma
function.

3.2 Inverse model of hysteresis

In the hysteresis compensation scheme, the inverse hys-
teresis based on Bouc-Wen model is employed, which is
similar to the method proposed in the work of Rako-
tondrabe (2010). The main idea is that the hysteresis
compensation scheme in series of inverse model and Bouc-
Wen model can linearize the hysteresis nonlinearity of
the system. The specific process is as follows. (i) The
Bouc-Wen hysteresis model is identified by a differential
evolution algorithm to get the corresponding parameters
in formula (2). See Wang et al. (2015). (ii) The output of
the inverse hysteresis model can be designed as 1

d (u+ h).
As this is a very mature scheme, interested readers can
consult the work of Rakotondrabe (2010) for more details.

3.3 TDE disturbance estimation

After the hysteresis compensation, the full dynamical
model is approximated by:

y(n)(t) +

n−1∑
k=0

aky
(k)(t) + ∆(t) =

m∑
k=0

bku
(k)(t) (7)

As the term ∆(t) is complicated and can not be easily
obtained, in this work it is estimated with the time-delayed
method. See Wang et al. (2020). The estimation value of
disturbance ∆(t) can be defined as follows:

∆̂(t) � ∆(t− T ) =
∑m

k=0 bku
(k)(t− T )− y(n)(t− T )

−
∑n−1

k=0 aky
(k)(t− T )

(8)
where, T is the sampling interval and then (7) becomes:

Fig. 1. The proposed overall control scheme

y(n)(t) +

n−1∑
k=0

aky
(k)(t) + ∆̂(t) + ∆̃(t) =

m∑
k=0

bku
(k)(t) (9)

where, ∆̃(t) is the estimation error which is defined as:

∆̃(t) = ∆(t)− ∆̂(t) (10)
Usually, according to the characteristics of the actual
piezoelectric motion system, we can suppose the estima-
tion error ∆̃(t) is bounded and its upper bound is ∆̃.

3.4 Sliding mode based controller design

The control design begins with the design of a recursive
high-order sliding manifold which is then followed by a
new fractional-order fast fixed-time reaching law.
Define position tracking error:

e = y − yd (11)

where y is the real output, and yd is the command.
Then, we have all the derivatives of the tracking error

e(i) = y(i) − y
(i)
d , (i = 1, 2, . . . n) (12)

Let

s0 = e, ṡ0 = ė, · · · , s
(n)
0 = e(n) (13)

A recursive high-order fast terminal sliding manifold is
defined as follows:




s1 = s0 + αs
p0/q0
0 + βṡ0

s2 = s1 + αs
p1/q1
1 + βṡ1

s3 = s2 + αs
p2/q2
2 + βṡ2

...
sj = sj−1 + αs

pj−1/qj−1

j−1 + βṡj−1

sn−1 = sn−2 + αs
pn−2/qn−2

n−2 + βṡn−2

(14)

where α, β ∈ R+ ; pj , qj are all positive and odd, j =
1, 2, · · · , n− 1 ; n− 1 <

pj−1

qj−1
< n. It should be noted that

n ≥ 2 means pj−1

qj−1
> 1. This can ensure we don’t have

zero denominators in the derivation calculations and thus
guarantee the non-singularity property. Here, we have the
definition: sp/q � |s|p/qsign(s). From formula (14) we can
get:

s
(2)
n−2 = s

(2)
n−3 + α

d2

dt2
s
pn−3/qn−3

n−3 + βs
(3)
n−3 (15)

s
(3)
n−3 = s

(3)
n−4 + α

d3

dt3
s
pn−4/qn−4

n−4 + βs
(4)
n−4 (16)

Then, by taking the derivative of the sn−1 by recursive
steps according to formula (14), we can get:

ṡn−1 = ṡn−2 + α d
dts

pn−2/qn−2

n−2 + βs
(2)
n−2

= ṡn−2 + βs
(2)
n−3 + β2s

(3)
n−4 + α d

dts
pn−2/qn−2

n−2

+αβ d2

dt2 s
pn−3/qn−3

n−3 + αβ2 d3

dt3S
pn−4/qn−4

n−4 + β3s
(4)
n−4

= βn−1s
(n)
0 +

∑n−2
k=0 β

ks
(k+1)
n−k−2+∑n−2

k=0 αβ
k dk+1

dtk+1 s
pn−k−2/qn−k−2

n−k−2

(17)
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where α, β ∈ R+ ; pj , qj are all positive and odd, j =
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pj−1
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< n. It should be noted that
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> 1. This can ensure we don’t have

zero denominators in the derivation calculations and thus
guarantee the non-singularity property. Here, we have the
definition: sp/q � |s|p/qsign(s). From formula (14) we can
get:

s
(2)
n−2 = s

(2)
n−3 + α

d2

dt2
s
pn−3/qn−3

n−3 + βs
(3)
n−3 (15)

s
(3)
n−3 = s

(3)
n−4 + α

d3

dt3
s
pn−4/qn−4

n−4 + βs
(4)
n−4 (16)

Then, by taking the derivative of the sn−1 by recursive
steps according to formula (14), we can get:

ṡn−1 = ṡn−2 + α d
dts

pn−2/qn−2

n−2 + βs
(2)
n−2

= ṡn−2 + βs
(2)
n−3 + β2s

(3)
n−4 + α d

dts
pn−2/qn−2

n−2

+αβ d2

dt2 s
pn−3/qn−3

n−3 + αβ2 d3

dt3S
pn−4/qn−4

n−4 + β3s
(4)
n−4

= βn−1s
(n)
0 +

∑n−2
k=0 β

ks
(k+1)
n−k−2+∑n−2

k=0 αβ
k dk+1

dtk+1 s
pn−k−2/qn−k−2

n−k−2

(17)
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The following fractional-order fast fixed-time reaching law
is proposed due to the satisfactory performance:

ṡn−1 =
1

βn−1

[
−
(
ϕ1D

−µ1s
⌣

λ
n−1 + ϕ2D

−µ2s
λ3
λ4
n−1

)]
(18)

where D−µ1 and D−µ2 are the abbreviated forms of 0D
−µ1
sn−1

and 0D
−µ2
sn−1

, they are the fractional order operators with
the orders 0 < µ1 < 1 and 0 < µ2 < 1/2 those are both
the ratio of a positive even to a positive odd number and
⌣

λ satisfies the following equation:

⌣

λ =
1

2
+

λ1

2λ2
+

(
λ1

2λ2
− 1

2

)
sign(|sn−1| − 1) (19)

then we have

s
⌣

λ
n−1 =

{
s
λ1/λ2

n−1 |sn−1| > 1
sn−1 |sn−1| < 1

(20)

Note that λi (i = 1, 2, 3, 4) are all positive and odd
numbers, and λ1/λ2 > 1, 0 < λ3/λ4 < 1/2. Obviously,
⌣

λ ≥ 1.
Then, we define an intermediate variable:

Vc =

m∑
k=0

bku
(k)(t) (21)

And, the controlled plant (9) can be rewritten as

y(n)(t) +

n−1∑
k=0

aky
(k)(t) + ∆̂(t) + ∆̃(t) = V (t) (22)

Thus, we proposed the following virtual control law:

Vc =
1

βn−1

[
−
(
ϕ2D

−µsλ̄n−1 + ϕ3D
−µ2S

λ1/λ4

n−1

)

−
∑n−2

k=0 β
ks

(k+1)
n−k−2 +

∑n−2
k=0 αβ

k dk+1

dtk+1 s
pn−k−2/qn−k−2

n−k−2

]

+y
(n)
d +

∑n−1
k=0 aky

(k)(t) + ∆̂(t)
(23)

Combing (8) and the above control law (23), we can get a
robust virtual control law as follows:

Vc =
1

βn−1

[
−
(
ϕ2D

−µSλ
n−1 + ϕ3D

−µ2S
λ3/λ4

n−1

)

−
∑n−2

k=0 β
kS

(k+1)
n−k−2 −

∑n−2
k=0 αβ

k dk+1

dtk+1S
pn−k−2/qn−k−2

n−k−2

]

+y
(n)
d +

∑n−1
k=0 aky

(k)(t) +
∑m

k=0 bku
(k)(t− T )

−y(n)(t− T )−
∑n−1

k=0 aky
(k)(t− T )

(24)
After the virtual control law Vc is got, we can obtain
u(t) from (21). Obviously, Vc is filtered by a filter trans-
fer function 1

bmsm+bm−1sm−1+···+b1s+b0
. Thus, the ultimate

real control law u(t) can be yielded by:

u = Vc
1

bmsm + bm−1sm−1 + · · ·+ b1s+ b0
(25)

The proposed control scheme (25) is illustrated in Fig.1.
Theorem For controlled plant (7) with tracking error
satisfying expression (11), if sliding manifold is designed
as (14), the reaching surface is designed as (18), and the
robust control law (25) can make the control system stable.
The system states sn−1 will convergence from initial state
to a small region σ within a fixed settling time Treach.

where σ =

{
sn−1 : |sn−1| ≤

(
βn−1 ¯̃∆

ϕ2
Γ(λ3/λ4+1)

Γ(µ2+λ3/λ4+1)

) 1
λ3/λ4+µ2

}
,

and Treach < 1

ϕ′
1

(
⌣

λ+µ1−1

) + 1
ϕ′

2(1−λ3/λ4−µ2)
.

Substituting (8) into (22), we can get
y(n)(t) +

∑n−1
k=0 aky

(k)(t) +
∑m

k=0 bku
(k)(t− T )

−y(n)(t− T )−
∑n−1

k=0 aky
(k)(t− T ) + ∆̃(t) = V (t)

(26)

Then, combing the virtual control law (24) and the above
controller plant (26), we can get

1
βn−1

[
−
(
ϕ1D

−µ1Sλ̄
n−1 + ϕ2D

−µ2S
λ3/λ4

n−1

)

−
∑n−2

k=0 β
kS

(k+1)
n−k−2 −

∑n−2
k=0 αβ

k dk+1

dtk+1S
pn−k−2/qn−k−2

n−k−2

]

= y(n)(t)− y
(n)
d + ∆̃(t) = e(n)(t) + ∆̃(t) = s

(n)
0 (t) + ∆̃(t)

(27)
From (17), we have

s
(n)
0 = 1

βn−1

[
ṡn−1 −

∑n−2
k=0 β

ks
(k+1)
n−k−2

−
∑n−2

k=0 αβ
k dk+1

dtk+1 s
pn−k−2/qn−k−2

n−k−2

] (28)

Substituting formula (28) into formula (27) , we get

ṡn−1 = −
(
ϕ1D

−µ1s
⌣

λ
n−1 + ϕ2D

−µ2s
λ3/λ4

n−1

)
− βn−1∆̃

(29)
A Lyapunov candidate V = |sn−1| is selected and then

V̇ = ṡn−1 sign (sn−1)

=

[
−
(
ϕ1D

−µ1s
⌣

λ
n−1 + ϕ2D

−µ2s
λ3/λ4

n−1

)

−βn−1∆̃
]
sign (sn−1)

(30)

Obviously, when sn−1 > 0 we can get

V̇ = −ϕ1D
−µ1s

⌣

λ
n−1 − ϕ2D

−µ2s
λ3/λ4

n−1 − βn−1∆̃

= −ϕ1D
−µ1 |sn−1|

⌣

λ − ϕ2D
−µ2 |sn−1|λ3/λ4 − βn−1∆̃

(31)
When sn−1 < 0, we can get according to Lemma 1:

V̇ = −ϕ1D
−µ1 |sn−1|

⌣

λ − ϕ2D
−µ2 |sn−1|λ3/λ4 + βn−1∆̃

(32)

In addition, as ±βn−1∆̃ < βn−1∆̃, we can get

V̇ < −ϕ1D
−µ1 |sn−1|

⌣

λ − ϕ2D
−µ2 |sn−1|λ3/λ4 + βn−1∆̃

(33)
According to Lemma 2, we have

0D
−µ1

| sn−1 ||sn−1|
⌣

λ=B(µ1,
⌣

λ + 1)

Γ (µ1)
|sn−1|

⌣

λ +µ1 (34)

0D
−µ2

| sn−1
|sn−1|λ3/λ4=B(µ2, λ3/λ4 + 1)

Γ (µ2)
|sn−1|λ3/λ4+µ2

(35)

For simplicity, 0D|sn−1|
−µ1 |sn−1|

⌣

λ and 0D|sn−1|
−µ2 |sn−1|λ3/λ4

will be abbreviated as D−µ1 |sn−1|
⌣

λ and D−µ2 |sn−1|λ3/λ4

respectively. Then, according to the expression of beta
function, equations (34) and (35) can be re-written as

D−µ1 |sn−1|
⌣

λ = Γ(
⌣

λ + 1)

Γ(µ1 +
⌣

λ + 1)
|sn−1|

⌣

λ +µ1 (36)

D−µ2 |sn−1|λ3/λ4= Γ(λ3/λ4 + 1)

Γ(µ2 + λ3/λ4 + 1)
|sn−1|λ3/λ4+µ2

(37)
Note that the value of gamma function is positive because
the parameters meet the conditions

⌣

λ ≥ 1, 0 < λ3/λ4 <
1/2, 0 < µ1 < 1 , 0 < µ2 < 1/2.
Substituting (36) and (37) into (33), we can have

V̇ < −ϕ1
Γ(

⌣

λ + 1)

Γ(µ1 +
⌣

λ + 1)
|sn−1|

⌣

λ +µ1

−ϕ2
Γ (λ3/λ4 + 1)

Γ (µ2 + λ3/λ4 + 1)
|sn−1|λ3/λ4+µ2

+
βn−1 ¯̃∆

|sn−1|λ3/λ4+µ2
|sn−1|λ3/λ4+µ2

(38)

Then we define two new variables ϕ′
1 and ϕ′

2

ϕ′
1 = ϕ1

Γ(
⌣

λ + 1)

Γ(µ1 +
⌣

λ + 1)
(39)

ϕ′
2 = ϕ2

Γ (λ3/λ4 + 1)

Γ (µ2 + λ3/λ4 + 1)
− βn−1 ¯̃∆

|sn−1|λ3/λ4+µ2
(40)

By substituting (39) and (40) into (38), we can get

V̇ < −ϕ′
1|sn−1|

⌣

λ +µ1 − ϕ′
2|sn−1|λ3/λ4+µ2 (41)

Obviously, we can get V̇ < 0 if ϕ′
1 > 0 and ϕ′

2 > 0. In fact,
ϕ′
1 is always positive according to (39) and the range of

the value of the parameters. In addition, the 1st term in
(40) can be a very big positive and the 2nd term is a very

small positive number. Then ϕ′
2 > 0 holds if appropriate

parameters are chosen. Thus, V̇ < 0 can be obtained. So,
the system stability is proved.

4. EXPERIMENTAL RESULTS

To demonstrate the performance benefits furnished by the
proposed controller, a battery of comparative experiments
were performed and, the results are presented here.
In order to compare the tracking performance, the percent
maximum (MAX) and root-mean-squared (RMS) error
indicators are employed for quantitative evaluation. Tri-
angular waves of 25 Hz and 50 Hz were chosen in the
experiments. The positioning performance of the proposed
controller was compared with three suitably designed con-
trollers that have emerged as benchmark schemes over
the years. The first control scheme is a common PID
type with the transfer function CPID = 1.5 + 6500

s +
0.0005s tuned with the high-order model. The second
control scheme is a damping and tracking controller. See
Moon et al. (2017). The Positive Position Feedback (PPF)
damping controller is combined with an integral action
and its transfer function is CPPF = 6.320×107

s2+11740s+4.855×107

and the corresponding integral gain KI = 1494. The
third control scheme is a fully tuned conventional linear
high-order sliding mode control (LSMC) scheme in the
work of Levant (2003), employed to achieve a relatively
fair contrast and modified with equivalent and switching
actions to deal with this high-order plant. The designed

sliding mode surface is in the form of
9∑

i=0

cie
(i), and the

switching action is 2s + 0.05sign(s). The comparison of
the trajectory tracking performance is shown in Fig. 2.
Obviously, the MAX and RMS errors of the proposed
controller are significantly reduced compared with PPF+I,
PID, and LSMC controller.

5. CONCLUSIONS

A new robust fractional-order fast terminal sliding model
control approach with high-order sliding model dynamics
is proposed for a piezoelectric-actuated precision position-
ing platform. With the well-established accurate model of
the controlled plant, the controller is synthesized with the
aid of Inverse model of hysteresis, TDE disturbance estima-
tion, and Sliding mode based control design. The recursive
high-order sliding manifold and fractional-order fast fixed-
time reaching law can guarantee a faster response and
fixed convergence time while avoiding potential singularity
and chattering problems. The stability of the proposed
scheme has been proved via the Lyapunov framework.
The excellent performances of the proposed controller have
been verified in terms of high tracking accuracy, fast con-
vergence, non-singularity.
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third control scheme is a fully tuned conventional linear
high-order sliding mode control (LSMC) scheme in the
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actions to deal with this high-order plant. The designed
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switching action is 2s + 0.05sign(s). The comparison of
the trajectory tracking performance is shown in Fig. 2.
Obviously, the MAX and RMS errors of the proposed
controller are significantly reduced compared with PPF+I,
PID, and LSMC controller.
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A new robust fractional-order fast terminal sliding model
control approach with high-order sliding model dynamics
is proposed for a piezoelectric-actuated precision position-
ing platform. With the well-established accurate model of
the controlled plant, the controller is synthesized with the
aid of Inverse model of hysteresis, TDE disturbance estima-
tion, and Sliding mode based control design. The recursive
high-order sliding manifold and fractional-order fast fixed-
time reaching law can guarantee a faster response and
fixed convergence time while avoiding potential singularity
and chattering problems. The stability of the proposed
scheme has been proved via the Lyapunov framework.
The excellent performances of the proposed controller have
been verified in terms of high tracking accuracy, fast con-
vergence, non-singularity.
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Fig. 2. Closed-loop performance for tracking 25 Hz and 50 Hz triangular references (A-1, B-1). The errors are shown in
(A-2, B-2). These plots are offset adequately to show clearly.
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