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Abstract

Symbolic dynamics is effective for the classification of orbital types and their complexity in
one dimensional maps. In this paper, techniques of symbolic dynamics are used to analyze the
chaotic dynamical properties of a two-parameter family of piecewise smooth unimodal maps
with one break point. Boundary crisis and interior crisis are described via the kneading se-
quences, while for the period-3 window, a subshift of finite type is constructed. In addition,
based on the symbolic model, the topological entropy of the map is computed, and the exis-
tence of chaotic sets of Smale horseshoe type is also proved.

Keywords: Piecewise smooth map, symbolic dynamics, crises, topological entropy, Smale
horseshoe.

1. Introduction

Nonsmooth phenomena appear naturally in many systems, such as electrical circuits with
switches [1], mechanical systems with impact [2], economic business cycles theory [3], and
other natural and man-made systems [5, 6]. Piecewise smooth systems exhibit many dynami-
cal properties that are different from those of smooth systems [7]. The main reason for this is
the existence of the so-called switching manifolds, i.e., the existence of several borders in the
phase space. The invariant sets of the systems may collide with the switching manifolds, result-
ing in the occurrence of border-collision bifurcations and the specific topological structure of
attractors [8]. Avrutin and Schanz [9] studied border-collision period-doubling bifurcation sce-
nario, which are composed of a sequence of pairs of border-collision and pitchfork bifurcations.
Gardini et al. [10] proved that the border-collision bifurcation leads to an attracting 2-cycle in
the piecewise smooth Matsuyama map and that the cycle loses stability through the subcritical
flip bifurcations. Tramontana et al. [11] analytically calculated the border-collision bifurcation
curves in a discontinuous growth model, and completely explained the abundant bifurcation
structure in the system.
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Symbolic dynamics and topological horseshoe theory play an important role to prove the
existence of chaotic invariant sets. see e.g. [12–17]. The subshift of finite type is an important
branch of symbolic dynamical systems, which has been widely studied. It is generally divided
into two directions. One focuses on the theoretical research of subshift of finite type [18–21],
mainly including nonwandering sets, recurrence, chaos, topological transitivity, and mixing.
The other is studying the dynamics of concrete nonlinear systems by subshift of finite type,
such as Lozi maps [22], certain quadratic maps [23], and NMR-laser [24].

Sushko et al. [25] considered the following piecewise smooth map with a break point [25],
and described the structure of the periodicity regions of the 2D bifurcation diagram:

xn → f (xn) =

®
fL (xn) = rxn, 0 ≤ xn < 1− r

a
,

fR (xn) = axn (1− xn) , 1− r
a
≤ xn ≤ 1.

(1)

The map (1) consists of a linear map and a Logistic map with a break point is 1− r
a
, where

r and a are real parameters. In this work, we will study the chaotic dynamics of (1) by using
symbolic dynamics.

The remaining of this paper is organized as follows. Some definitions and theorems used
in this paper are briefly recalled in Section 2. The crisis phenomena and the two-dimensional
bifurcation diagram are discussed in Section 3. In Section 4, the subshift of finite type of the
system is constructed in a periodic-3 window. In Section 5, the topological entropy of the
system is computed based on the symbolic dynamics. It is proved that the topological entropy
is positive so there exist chaotic sets of Smale horseshoe type in the system. At last, some
conclusions are given in Section 6.

2. Preliminaries

In this Section, we briefly recall the basic definitions and results that will be used in what
follows. See [26, 27] for details.

Definition 2.1. Let A = (aij) be a n × n matrix. If aij = 0 or 1 for all i, j;
∑n

i=1 aij ≥ 1 for
all i and

∑n
j=1 aij ≥ 1 for all j, then A is called a transition matrix.

Definition 2.2. Let

Σ(n) = {s = (s0s1 · · · si · · · ) | si ∈ {1, 2, . . . , n}} . (2)

We define a metric as

d(x, y) =
∞∑
i=0

|xi − yi|
ni

, x, y ∈ Σ(n). (3)

Σ(n) is called the one side symbolic space with n symbols.

Definition 2.3. The shift map σ : Σ(n) → Σ(n) is defined as follows

σ (s0s1s2 · · · si · · · ) = (s1s2 · · · si · · · ) . (4)

It is easy to verify that σ is a continuous surjection.
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Definition 2.4. Suppose that An×n is a transition matrix.

ΣA =
{
s = (s0s1 · · · sj · · · ) ∈ Σ(n) | asi,si+1

= 1,∀i ≥ 0
}

(5)

is a subset of
∑

(n). Then the subsystem (ΣA, σA) of (Σ(n), σ) is called the subshift of finite
type induced by An×n, where σA = σ | ΣA.

Theorem 2.1. ([28, 29] Mañé) Let N be a compact interval of the real line or the circle and
let f : N → N be a (piecewise) C2 map. Let U be a neighbourhood of the set C(f) of critical
points of f . Then
(1) All periodic orbits of f contained in N\U of sufficiently large period are hyperbolic and

repelling.
(2) If all periodic orbits of f which are contained in N\U are hyperbolic, then there exists

C > 0 and λ > 1 such that

|Dfn(x)| ≥ Cλn. (6)

Whenever f i(x) ∈ N\ (U ∪B0(f)) for all 0 ≤ i ≤ n − 1, where B0(f) is the union of the
immediate basins of the periodic attractors of f .

3. Crises

The concept of crises in dynamical systems was introduced by Grebogi, Ott, and Yorke in
Refs. [30, 31], which were used to describe the phenomenon of sudden qualitative changes of
attractor structure caused by collisions between chaotic attractors and unstable orbits. In this
Section, we use symbolic sequence to analyze the crisis of the map (1). The map has a unique
critical point c = 1 − r/a, such that f is monotonically increasing in the interval [0, c) and
monotonically decreasing in the interval (c, 1].

Definition 3.1. For x ∈ I , its itinerary under f is an infinite symbolic sequence S(x) =
(s0s1 · · · ), where

sj =

 L, f j(x) < c,
C, f j(x) = c,
R, f j(x) > c.

(7)

Definition 3.2. The kneading sequence K(f) of f is the itinerary of f(c), i.e., K(f) = S(f(c)).

Firstly, we calculate the critical parameter value for the boundary crisis. Since f satisfies
piecewise monotonicity, the inverse functions of f has two branches:®

f−1
L (y) = y

r
,

f−1
R (y) =

1+
√

1−4y/a

2
.

(8)
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When K(f) = RL∞, we have ß
θ = f−1

L (θ),
f(c) = f−1

R ◦ f−1
L (θ),

(9)

that is {
θ = θ

r
,

a = r2

r−(1+
√

1−4θ/a)/2
. (10)

To solve θ and a from (10), we consider the following iteration equation{
θn+1 =

θn
r
,

an+1 =
r2

r−
(
1+
√

1−4θn/an
)
/2
. (11)

Fixing the parameter value r = 1.835 and choosing appropriate initial values a0 and θ0, the
iteration sequence a0, a1, a2, . . . quickly converges to 4.0326047 . . ., which corresponds to the
kneading sequence K(f) = RL∞. This implies that the chaotic orbit collides with the unstable
fixed point x = 0 with symbol sequence L∞, resulting in the sudden disappearance of the
chaotic orbit, that is, a boundary crisis occurs. In fact, the kneading sequence RL∞ can be
regarded as a homoclinic orbit of the unstable fixed point x = 0, as shown in Figure 1(b).

 

(a)
 

(b)
Figure 1: (a) The bifurcation diagram of map (1). (b) A homoclinic orbit of the unstable fixed point x = 0.

There is a period-3 window in Figure 1(a), and its partial enlargement is shown in Figure
2(a). When the kneading sequence K(f) = RLL(RLR)∞, the three chaotic bands collide with
the unstable period-3 orbit with symbolic sequence (RLR)∞, which leads the three chaotic
bands suddenly change and merge into a whole chaotic band. Thus, an interior crisis occurs,
and its critical parameter values 3.6808107 . . . can be obtained through an iteration procedure
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(a)
 

(b)
Figure 2: (a) The partial enlargement of Figure 1(a). (b) The orbit corresponds to the symbolic sequence
RLL(RLR)∞.

as above. However, when the parameter value exceeds the critical value of the interior crisis,
most of the points of the chaotic orbit remain concentrated in the region where the original three
chaotic bands were located.

The bifurcation diagram with respect to the parameters r and a are shown in Figure 3(a).
The color bar is located on the right and different colors in the color bar represent different
periods of the system (1). As the value of parameters r and a increase, complex dynamical
behaviors occur.

(a) (b)

Figure 3: (a) The bifurcation diagram in (r, a)-plane, with an enlargement in (b).
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4. Symbolic dynamics

In this Section, we use the finite type subshift symbolic dynamics to analyze the chaotic
motion of the map f(x). We choose the parameters r = 1.835, a = 3.67 to demonstrate our
construction process. For such parameter values, the system has period three orbits, and hence
exhibits chaos of Li-Yorke type [32]. We prove the chaos of Smale horseshoes type in this
Section.

The map f has two periodic-3 orbits and they are given approximately by

Γs = (a1, a2, a3) = (0.279845, 0.513531, 0.916828),

Γu = (b1, b2, b3) = (0.291678, 0.535230, 0.912945).

Since (f 3)
′
(ai) ≈ 0.557, (f 3)

′
(bi) ≈ 1.438(i = 1, 2, 3), we obtain that Γs is stable and Γu is

unstable.

 

Figure 4: The interval coverage relation of map f(x), where the solid red lines and dashed blue lines denote the
graphical iteration, respectively.

The covering relation of interval of f is shown in Figure 4, where b2 = 0.535230 and
b̄2 = 0.497518 are the two preimages of b3. b1 = 0.271127 and b̃1 = 0.838258 are the two
preimages of b̄2. The preimage of b1 in the interval [1/2, 1] is b3 = 0.919671.

Let
I0 =

[
0, b̄1

]
, I1 =

[
b1, b̄2

]
, I2 = [b2, b3] , I3 =

[
b̄3, 1

]
,

A1 =
(
b̄1, b1

)
, A2 =

(
b̄2, b2

)
, A3 =

(
b3, b̄3

)
.

Note that f maps A1 and A3 monotonically onto A2 and A1, respectively, but f has a critical
point that belongs to A2 so f is not monotonic in this interval. Since, however, the maximum
value of f is 0.9175, it follows that f (A2) is contained in A3. Then we have

f (I0) = I0 ∪ A1 ∪ I1, f (I1) = I2, f (I2) = I1 ∪ A2 ∪ I2,
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f (A1) = A2, f (A2) ⊂ A3, f (A3) = A1.

Taking I1, I2 as the vertices and the covering relationship as the edges, the directed graph is
given in Figure 5.

Figure 5: The directed graph.

The transition matrix corresponding to Figure 5 is

A =

Å
0 1
1 1

ã
.

Theorem 4.1. Except 0, ai, bi(i = 1, 2, 3) and the periodic points lie in I1 ∪ I2, the map f has
no other periodic points.

Proof. Because A1 ∪A2 ∪A3 is the stable set of the periodic orbit Γs, there is no other periodic
points in A1 ∪ A2 ∪ A3. For x ∈ I1 ∪ I2, either its forward orbit γ+(x) ∈ I1 ∪ I2 or its ω-limit
set ω(x) = Γs. For the second case, x is not a periodic point. If x ∈ I0\{0}, then there exists
n > 0 such that fn(x) ∈ A1 ∪ I1. Thus, f l(x) /∈ I0\{0} for l ≥ n, and so x is not a periodic
point. If x ∈ I3, then f(x) ∈ I0, so x is again not a periodic point.

Theorem 4.2. Λ = {x | fn(x) ∈ I1 ∪ I2,∀n ≥ 0} is a hyperbolic invariant set of f , i.e., there
exists C > 0 and λ > 1 such that |Dfn(x)| ≥ Cλn for all x ∈ Λ.

Proof. Denoted by c the critical point of f(x). Then I = [f 2(c), f(c)] is an invariant interval
of f(x). We can see that Λ does not contain Γs and the critical point. Thus, Λ is a hyperbolic
invariant set of f by Theorem 2.1.

Lemma 4.1. If s0s1 · · · sn−1 · · · is an allowable symbolic sequence of f , then
⋂∞

j=0 f
−j

(
Isj

)
is

a single-point set.

Proof. Let s0s1 · · · sn−1 be an allowable string of symbols with length n. By the interval cover-
age relation of map f(x), we have

Is0 → Is1 → · · · → Isn−1 ,

and so Is0 ∩ f−1 (Is1) ∩ · · · ∩ f−(n−1)
(
Isn−1

)
is nonempty.

We can show that Is0 ∩ f−1 (Is1) ∩ · · · ∩ f−(n−1)
(
Isn−1

)
is a single closed interval by the

monotonicity of f on I1 and I2. To this end, assume that Is1 ∩ f−1 (Is2)∩ · · · ∩ f−(n−2)
(
Isn−1

)
be the single closed interval in Is1 . If s1 = 1, then

f−1
Ä
Is1 ∩ f−1 (Is2) ∩ · · · ∩ f−(n−2)

(
Isn−1

)ä
= f−1 (Is1) ∩ f−2 (Is2) ∩ · · · ∩ f−(n−1)

(
Isn−1

)
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has two closed intervals, one in I0, and the other in I2. If s1 = 2, then there are also two closed
intervals, one in I1, and the other in I2. Therefore, Is0 ∩ f−1 (Is1) ∩ · · · ∩ f−(n−1)

(
Isn−1

)
is a

single closed interval in Is0 .
For x, y ∈

⋂∞
j=0 f

−j
(
Isj

)
(x < y), due to the monotonicity of f on the intervals I1 and I2,

we have f q([x, y]) ⊂ Isq for any q > 0, so [x, y] ⊂ Λ. However, by Theorem 4.2 we have

|fn(x)− fn(y)| = |(fn)′(ξ)||x− y| ≥ Cλn|x− y|, (ξ ∈ [x, y]).

When n is sufficiently large, this contradicts due to the fact that the distance between {fn(x)}
and {fn(y)} is bounded. Therefore,

⋂∞
j=0 f

−j
(
Isj

)
is a single point set.

Remark 4.1. If s0s1 · · · sn−1 is not an allowable string of ΣA, then

Is0 ∩ f−1 (Is1) ∩ · · · ∩ f−(n−1)
(
Isn−1

)
is an empty set. In fact, if s0s1 · · · sn−1 is not an allowable string, then there exists p(0 ≤ p ≤
n−2) such that sp = sp+1 = 1. Assume that Is0 ∩f−1 (Is1)∩· · ·∩f−(n−1)

(
Isn−1

)
is not empty,

then there exists x such that fp(x), fp+1(x) ∈ I1. This leads to a contradiction.

Remark 4.2. If s0s1 · · · sn−1 and s′0s
′
1 · · · s′n−1 are two different allowable strings in ΣA. then

Is0 ∩ f−1 (Is1) ∩ · · · ∩ f−(n−1)
(
Isn−1

)
and Is′0 ∩ f−1

(
Is′1

)
∩ · · · ∩ f−(n−1)

Ä
Is′n−1

ä
are disjoint.

Assume that this does not hold. Let p(0 ≤ p ≤ n− 1) be the smallest integer number such that
sp ̸= s′p. Then there exists x such that fp(x) ∈ Isp , Is′p , this leads to a contraction.

Theorem 4.3. f : Λ → Λ topologically conjugates to σ :
∑

A →
∑

A, where

A =

Å
0 1
1 1

ã
.

Proof. Let h : Λ → ΣA, h(x) = (s0s1 · · · sj · · · ) ,
(
f j(x) ∈ Isj

)
. We prove next that h is a

homeomorphism from Λ to ΣA and satisfies h ◦ f = σA ◦ h.
By Lemma 4.1, Remark 4.1 and Remark 4.2, h is a bijection. To prove that h is a continuous

map, we choose x ∈ Λ and assume that h(x) = (s0s1 · · · sj · · · ) . For any ε > 0, take n
sufficiently large such that 1/2n < ε. Since f is continuous, there exists δ > 0 such that
f i (Oδ(x)) ⊂ Isi(0 ≤ i ≤ n), where Oδ(x) = {y ∈ I∥y−x |< δ}. Thus, for any y ∈ Oδ(x)∩Λ
we have

d(h(x), h(y)) <
1

2n
< ε.

This proves the continuity of h.
Λ is a compact set, h is a continuous bijection and ΣA is a Hausdorff space, so h is a

homeomorphism.
Finally, for x ∈ Λ, let s = h(x) and t = h(f(x)), according to f j(x) ∈ Isj and f j(f(x)) =

f j+1(x) ∈ Isj+1
, we obtain tj = sj+1, i.e., h ◦ f = σA ◦ h.
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5. Topological entropy and chaotic invariant sets

The topological entropy is a non-negative topological invariant, which can be used to mea-
sure complexity of dynamical systems. In this Section we shall use the subshift of finite type
constructed in the last Section to compute the topological entropy of the map f . First, we briefly
recall the definition of topological entropy given by Bowen [33].

Let (X, d) be a metric space. A subset F ⊂ X is called a (n, ε)−spanned set if for any
x ∈ X there exists y ∈ F such that

d
(
gi(x), gi(y)

)
≤ ε, i = 0, 1, · · · , n− 1.

A subset E ⊂ X is called a (n, ε)−separated set if for any x, y ∈ E(x ̸= y) there exists i with
0 ≤ i < n such that

d
(
gi(x), gi(y)

)
> ε.

Denote by rn(ε, g) the minimal (n, ε)−spanned set of g and sn(ε, g) the maximal (n, ε)−
separated set of g. Let

r(ε, g) = lim
n→∞

1

n
log rn(ε, g),

s(ε, g) = lim
n→∞

1

n
log sn(ε, g).

The topological entropy of g is defined as

h(g) = lim
ε→0

r(ε, g) = lim
ε→0

s(ε, g).

The following lemma gives a method to compute the topological entropy of f | Λ.

Lemma 5.1. [26] Let σ be the shift map on symbolic space Σ(n) and X a closed invariant
subset of Σ(n). Denote by ωn the number of words of length n in X , i.e.,

wn = # {(s0, . . . sn−1) : sj = xj for 0 ≤ j < n for some x ∈ X} .

Then

h(σ | X) = lim
n→∞

sup
log (wn)

n
.

Let σA : ΣA → ΣA be a subshift of finite type associated with the transition matrix A. Then

h (σA) = log ρ(A),

where ρ(A) is the spectral radius of A.

Lemma 5.2. [34] Let J be a compact interval and φ : J → J a continuous map. If φ has
topological entropy h(φ) > 0 then, for any λ with 0 < λ < h(φ) and any N > 0, there exist
pairwise disjoint closed intervals J1, . . . , Jp and an integer n > N such that (1/n) log p > λ
and

J1 ∪ . . . ∪ Jp ⊆ int φn (Ji) (i = 1, . . . , p).
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Corollary 5.1. The map f has chaotic invariant sets of Smale horseshoe type.

Proof. Since the characteristic equation of the transition matrix A is

|λE − A| = λ2 − λ− 1 = 0.

The spectral radius of A is λ1 =
1+

√
5

2
. By Lemma 5.1, the topological entropy of f : Λ → Λ is

h(f | Λ) = h (σA) = log ρ(A) = log

Ç
1 +

√
5

2

å
.

Since the topological entropy of f is positive, it follows from Lemma 5.2 that f has chaotic sets
of Smale horseshoe type.

6. Conclusions

In this paper, we discuss the chaotic dynamics of the unimodal piecewise smooth map by
the techniques of symbolic dynamics. It is shown that the types of the crisis can be determined
by the kneading sequences. In the period-3 window, it is proved that the topological entropy
of the system is positive by constructing a subshift of finite type, this implies that there exist
chaotic sets of horseshoe type in such parameter region. Though the proof is made for a concrete
piecewise smooth map, many of the arguments can be applied to other unimodal maps.
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