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Abstract

Gastrointestinal helminth parasites undergo part of their life cycle outside their

host, such that developmental stages interact with the soil and dung fauna.

These interactions are capable of affecting parasite transmission on pastures yet

are generally ignored in current models, empirical studies and practical man-

agement. Dominant methods of parasite control, which rely on anthelmintic

medications for livestock, are becoming increasingly ineffective due to the emer-

gence of drug-resistant parasite populations. Furthermore, consumer and regu-

latory pressure on decreased chemical use in agriculture and the consequential

disruption of biological processes in the dung through nontarget effects exacer-

bates issues with anthelmintic reliance. This presents a need for the application

and enhancement of nature-based solutions and biocontrol methods. However,

successfully harnessing these options relies on advanced understanding of the

ecological system and interacting effects among biotic factors and with imma-

ture parasite stages. Here, we develop a framework linking three key groups of

dung and soil fauna—fungi, earthworms, and dung beetles—with each other

and developmental stages of helminths parasitic in farmed cattle, sheep, and

goats in temperate grazing systems. We populate this framework from existing

published studies and highlight the interplay between faunal groups and

documented ecological outcomes. Of 1756 papers addressing abiotic drivers of

populations of these organisms and helminth parasites, only 112 considered

interactions between taxa and 36 presented data on interactions between more

than two taxonomic groups. Results suggest that fungi reduce parasite abun-

dance and earthworms may enhance fungal communities, while competition

between dung taxa may reduce their individual effect on parasite transmission.

Dung beetles were found to impact fungal populations and parasite transmis-

sion variably, possibly tied to the prevailing climate within a specific ecological

context. By exploring combinations of biotic factors, we consider how interactions

between species may be fundamental to the ecological consequences of biocontrol

strategies and nontarget impacts of anthelmintics on dung and soil fauna and how
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pasture management alterations to promote invertebrates might help limit parasite

transmission. With further development and parameterization the framework

could be applied quantitatively to guide, prioritize, and interpret hypothesis-

driven experiments and integrate biotic factors into established models of para-

site transmission dynamics.
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INTRODUCTION

Parasitic helminths have critically important negative
impacts on animal productivity and health in grazing
livestock systems. For the past 50 years or more, chemical
control (anthelmintic medications) has been the principal
means of regulating these parasites; however, inherent
genetic diversity plus strong selection pressures are lead-
ing to evolved resistance to current chemical control
measures, resulting in widespread ineffectual control
(Rose Vineer et al., 2020). Simultaneously, other pres-
sures are contributing to a change in priorities for agri-
cultural management, including consumer demand for
chemical-free production lines and concerns around the
environmental impact of chemicals and the maintenance
of carbon storage (Blanckenhorn et al., 2013; Dignac
et al., 2017; Goodenough et al., 2019; Verdú et al., 2015;
Wall & Strong, 1987). This development demonstrates
the need to consider and understand other options for
limiting parasite populations. While a lot is known about
the effects of abiotic factors, especially climate and
weather (Charlier et al., 2020; van Dijk & Morgan, 2012),
when it comes to helminth epidemiology, far less is
understood about the biotic factors that impact parasite
transmission. These factors are fundamental to parasite
transmission dynamics within a wide array of contexts for
both farmed and wild ruminants (Nichols et al., 2017),
whereby modulation of the environment by other organ-
isms can alter transmission risk, including of drug-resistant
strains (Brown et al., 2022). Importantly, though species
may differ between agricultural and natural landscapes,
the universal mechanisms of action undertaken by faunal
communities remain similar (Hoeffner et al., 2021), indi-
cating that understanding faunal interactions with para-
sites may have broad application. This may be particularly
pertinent within the context of future sustainable agricul-
tural solutions, as global change and altered farm manage-
ment strategies shift the environmental context of the free-
living life cycle stages of parasites (Cable et al., 2017). A
synthetic framework that encapsulates current knowledge,
while highlighting unknowns, could direct the inclusion
of community ecology in our understanding of livestock

parasite life cycles, with the aim of considering and
enhancing parasite management through manipulation of
the natural environment. Gastrointestinal helminths are
ripe for this approach, not only because their management
is rapidly proving unsustainable due to drug resistance
and environmental concerns, but also because their free-
living stages are closely associated with dung and soil and
open to many biotic interactions that are known but
poorly characterized and could provide a pathway to alter-
native control strategies.

Parasitic helminth life cycles comprise several free-
living stages, each of which provides opportunities for
different biotic interactions to develop. For most gastroin-
testinal nematodes (GINs), for instance, especially the
trichostrongylids that dominate in grazing ruminants and
strongyles in equids, eggs are excreted in the feces where
they hatch and begin their first two larval stages (L1 and
L2) by feeding on bacteria within the feces and molting
their cuticle between each stage (Zajac, 2006). These
dung-based larval stages could therefore be impacted by
other organisms that feed on, live in, or utilize livestock
dung for their own life cycles (Bacher et al., 2018;
Holter, 1979; Pecenka & Lundgren, 2018). The third lar-
val stage (L3) of GINs is the infective stage that migrates
from the feces with a limited supply of energy to herbage,
where it must be consumed by a suitable host in order
for transmission to occur and the life cycle to continue.
Organisms that are localized to or transiently visit the
dung, soil, and/or herbaceous vegetation could therefore
impact L3 parasite availability through consumption,
hindering, or enhancing movement or exposing the lar-
vae to more or less favorable conditions (Xie et al., 2020;
Yang et al., 2020). If consumed by the host, GINs then
undergo various within-host stages before producing eggs
to be excreted in the feces. A large proportion of the GIN
life cycle occurs outside of the host, where it is exposed to
other soil fauna within the grassland ecosystem, which
may be capable of influencing the parasite population.
Trichostrongylid lungworms with a direct life cycle such
as Dictyocaulus spp. have a very similar life cycle to GIN
in the free-living stages. Eggs of other helminths, including
liver and rumen fluke (e.g., Fasciola and Calicophoron
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spp.), tapeworms (e.g., Moniezia spp.), and some GINs
(Nematodirus spp.), do not hatch in the dung but rely on
dung degradation to reach the soil, where they develop
further. This review considers only the dung and soil
compartments and not the subsequent complex life
cycle stages of flukes, tapeworms, and protstrongylid
lungworms, which involve invertebrate intermediate
hosts and, hence, a multitude of additional biotic interac-
tions. Furthermore, grazing by ruminants or other organ-
isms can adjust the microclimate to which developmental
stages of helminths are exposed (Khadijah et al., 2013),
but this is also not considered further.

As resistance to many anthelmintic drugs becomes
more prevalent, farmers are increasingly seeking alterna-
tive control methods for parasite management, such as rota-
tional grazing, alternative forages and pasture management
practices like mixed grazing (Bambou et al., 2021; Grace
et al., 2019; Kumar et al., 2013; Velde et al., 2018), and bio-
logical control (Szewc et al., 2021). Underpinning the effec-
tiveness and usage of many of these alternative strategies,
however, are the fundamental biotic and abiotic interac-
tions that occur on pasture. Unexplored biotic interactions
could lead to unexpected effects on parasite transmission,
explain variation in the success of control strategies in dif-
ferent environments, and modify outcomes from biocontrol
or bioaugmentation using species known to prey on hel-
minths. Studies on the biological control of GINs using
nematophagous fungi or other organisms have typically
focused on single species or combinations of closely
related species administered in controlled conditions
(Szewc et al., 2021), without considering ecological inter-
actions with species already present in the grazing
system.

Abiotic factors, including temperature and moisture,
are known to strongly affect helminth development, for
example through GIN larval hatching times, migration,
and survival (Pandey et al., 1989; Young et al., 1980). Tem-
perature and rainfall are also known to have effects on
earthworms, fungi, and dung beetles (Fern�andez et al., 1999;
Singh et al., 2016; Vessby, 2001), which are themselves
also linked to GIN transmission success (Fern�andez
et al., 1999; Grønvold, 1987; Leathwick et al., 2011;
Sands & Wall, 2017; Waghorn et al., 2002). Further to
this, changes in rainfall patterns and increased mean
global temperatures due to climate change may provide
conditions that are favorable to one species over another
(Bellard et al., 2012; Singh et al., 2019; Tocco et al., 2021).
Consequently, the change in climate could exert direct
impacts upon each species within an ecosystem in combi-
nation with indirect impacts through the alteration of
competition, other interspecies dynamics, or resource
availability (Singh et al., 2021; Thieltges et al., 2008;
Tocco et al., 2021). However, biotic and abiotic factors

are not traditionally considered together when designing
biocontrol or pasture management strategies to limit
GINs or other helminths, an omission that may limit
their effectiveness. Understanding how the interlinking
biotic and abiotic factors combine to affect parasite trans-
mission is fundamental if sustainable management strat-
egies are to be established in the future. Here we aim to
produce a schematic framework based upon the current
literature that considers the functional impacts of differ-
ent soil fauna on parasite transmission within grassland
systems, focusing on temperate grasslands grazed by
domestic ruminants. This focus is intended to limit the
work to a coherent and manageable subset of livestock
and parasite species and dung-breeding fauna, as well as
interactions with climate, but it could be repeated for
other biomes including tropical pastures. The schematic
aims to exemplify how one might incorporate community
ecology into parasite transmission, to consider the role
that dung and grassland ecosystems may have in facilitat-
ing or constraining environmental parasite stages, and to
underpin rigorous exploration of nature-based solutions
for sustainable parasite management.

A CONCEPTUAL FRAMEWORK FOR
ECOLOGICAL INTERACTIONS
WITH ENVIRONMENTAL PARASITE
STAGES

A conceptual framework that considers the environmental
stages of the typical life cycle of GINs, as well as stages of
other helminths in the dung and soil and their interaction
with three major groups of soil fauna, is presented in
Figure 1. These three groups are selected for consideration
due to their ecological association with dung and soil as
consumers, transporters, or inhabitants, as well as for their
potential role in biocontrol and nature-based solutions for
parasite transmission. The framework considers faunal
interactions at different stages of the parasite life cycle,
each of which are localized to different compartments of
the environment. Crucially, each component of the sche-
matic should not be viewed in isolation but instead pre-
sents a dynamic ecosystem where one biotic factor can
influence another within and across compartments.

Information on soil fauna interaction effects with
parasite life cycle stages was collected using a systematic
literature review (Box 1) and is summarized below. Inter-
actions between each group and parasites are considered
first, followed by interactions between these groups
themselves and system interactions, then the effects of
climate and weather on them. Throughout, the emphasis
is on processes that could impact parasite transmission,
including but not limited to predation within the dung,
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altering the biophysical environment of the dung in ways
that affect parasite development and survival, moving
dung into soil, and facilitating migration of infective par-
asite stages from dung onto herbage.

Literature evaluation to explore parasite
interactions with different taxa

Literature searches were undertaken to evaluate current
knowledge on different combinations of organisms within
the temperate grassland system. Searches were constructed
by aggregating search terms and subsequently screening
returned papers to ensure that interactions could be deta-
iled and quantified from the investigation, the paper was a
primary source of literature, and the interaction could be
interpreted if it was part of a larger interaction network
(Box 1). Searches were nested and progressively more
complex, starting at interactions between two taxonomic
groups and increasing to four groups (Figures 2 and 3).
Abiotic factors, including temperature and moisture, were
then combined into the same search criteria to elucidate

what is known about how the same interactions transpire
under varying conditions and considering a changing
climate (Figures 2 and 3). Papers from the searches were
read at the title, abstract, and then full paper level, with
progression to the subsequent levels accepted if they were
a source of primary data and appropriately considered the
relevant interactions. This search found that no returned
papers effectively investigated the interaction between
three or more soil fauna groups with respect to the abiotic
factors (Figure 4). This suggests that ecological networks
associated with GIN parasite life cycles, when considered
as a whole system, are seldom explored despite individual
interaction effects being known.

Interactions between parasites and
different taxa

Fungi and parasites

Fungi that feed on nematodes occur naturally in the envi-
ronment and rapidly colonize dung pats (Hay et al., 1997;

F I GURE 1 Schematic diagram depicting influence of key soil fauna on parasite transmission. Compartments are detailed with relevant

life cycle stages of the parasite. Black arrows indicate the progression through the environmental stages of the gastrointestinal nematode life

cycle. Three key soil fauna groups are considered in the schematic: earthworms, dung beetles, and fungi. White arrows indicate movements

between environmental compartments with associated organisms detailed within white box. Curved white arrows describe movement

within compartment, with corresponding organisms contained within. Red arrows indicate a negative impact on the vital rates of that stage

of the parasite life cycle, with the soil fauna that causes this impact labeled. Some active unassisted movement of gastrointestinal nematode

(GIN) L3 between the dung, soil subsurface, and herbage does occur (Rose et al., 2015), but this figure considers the deeper soil layers. L1

and L2 refer to GIN specifically; eggs include GIN and other helminths.
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Kelly et al., 2009; Su et al., 2007). The most important pro-
cess is increased mortality of preinfective and infective par-
asite stages, which is observed as a reduced proportion of
eggs surviving and developing successfully to the infective
stage. Of the taxonomic groups considered in this review,
these nematophagous fungi show most potential for biocon-
trol due to their often strong negative impacts on parasitic
nematode development success and the ability to augment
fungal populations in dung by feeding fungal spores to ani-
mals. While this promise has been realized in the form of
commercial feed supplements, the level of impact on para-
sites varies widely. Most trials have measured parasitic lar-
val yield as a function of fungal augmentation without
explicitly considering additional factors such as existing
fungal communities and other features of the dung envi-
ronment, which could be important to outcomes.

Fungus–parasite interactions occur readily within the
natural environment, and trophic interactions have been
categorized into four major groups based on the method of
fungal predation on nematode communities: (1) ovicidal
fungi, (2) endoparasitic fungi, (3) nematode-trapping fungi,
and (4) toxin-producing fungi (Jiang et al., 2017; Nordbring-
Hertz et al., 2011; Zhang et al., 2020). Due to the abundance
and diversity of nematophagous fungi within terrestrial eco-
systems, many fungal species have been exploited as a
method of biocontrol against agriculturally relevant parasite
populations (Ahmed et al., 2014; Arroyo et al., 2016; Eysker
et al., 2006; Paraud et al., 2005; Szewc et al., 2021; Zhang
et al., 2020). This method of biocontrol relies on the aug-
mentation and enhancement of naturally occurring pro-
cesses within the grassland ecosystem, with the intention of
supporting and benefitting livestock managers.

BOX 1 Systematic review search criteria. Papers were retrieved from Web of Science. Search
strings for each factor are shown under the appropriate factor heading. General terms remained
consistent within every search conducted, with reviews excluded from searches. Specific terms were
combined to search selectively. Papers were selected if they were a primary piece of literature, data
on the interaction could be disentangled if part of a larger investigation, and the paper detailed or
quantified the interaction.

General:
Life stage terms:
(Migration OR survival OR development OR transmission OR decomposition)
Community terms:
(Ecolog* OR interact* OR free-living stage* OR herb* OR soil* OR grass* OR enviro* OR dung OR fecal* OR
faece* OR feces)
Environment terms:
(Livestock* OR Cattle* OR cow* OR Sheep OR ruminant* OR goat OR horse OR bovine OR equine OR ovine
OR pasture OR feces* OR dung* OR faece* OR fecal*)

Specific:
Parasite terms:
(Ostertagia OR Cooperia OR Teladorsagia OR Trichostrongyl* OR Haemonchus OR Dictyocaulus OR trematod*
OR Nematodirus OR Fasciola OR Moneizia OR parasit* OR gastrointestinal OR GIN OR fluke OR lungworm
OR strongy*)
Fungi terms:
(Fung* OR Duddingtonia OR Beauvaria OR nematoph* OR Monacrospor* OR Harprospor* OR Pilobolus OR
Arthrobot* OR Clonostach* OR Pochonia* OR Mucor*)
Earthworm terms:
(earthworm* OR earthworm cast OR Aporrectodea OR Allolobophora OR Lumbricus OR Eisenia)
Dung beetle terms:
(Dung beetle* OR dung-beetle* OR dweller* OR tunneller* OR Geotrupid* OR Scarab* OR Melinopt* OR
Onthophag* OR Aphodiin* OR Aphodius OR Acrossus OR Geotrupes* OR Cercyon* OR Megasternum* OR
Sphaeridium* OR Histeridae OR Philonthus*)
Driver terms:
(Climate change OR Climate* OR global warming OR temperature* OR moisture OR humidi* OR pH OR abiotic)
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Ovicidal fungi are one of the fungal groups that have
been explored less with respect to animal parasitic nema-
todes. Arroyo et al. (2017) examined the interaction

between the ovicidal fungus Mucor circinelloides and the
trematode rumen fluke Calicophoron daubneyi, applying
fungal spores to the trematode within petri dishes, within

Parasites Fungi Earthworms Dung beetles Drivers
Parasites 11,766 81

(412)
6

(35)
6

(127)
1111

Fungi 2259 13
(51)

3
(31)

423

Earthworms 542 3
(33)

88

Dung beetles 768 134

No. papers investigating two-species
combinations with general terms

a)                         (n = 689)

b)

F I GURE 2 Schematic diagram displaying selection of eligible papers from systematic review. Number of total papers investigating the

general terms and two-species combinations (a). The table considers the number of papers investigating each combination, with the total

number of accepted papers that explore the interaction on the top line, followed by the number initially returned in the bracket below (b).

The driver column shows the number of papers initially returned for each soil fauna group with the abiotic driver terms included (Box 1).

F I GURE 3 Schematic diagram detailing number of papers that investigate combinations of three or more taxonomic groups using

general terms (Box 1). The diagram displays the total number of papers returned for each three or four species combination searches,

alongside the general terms, in parentheses. The number of papers that investigate those interactions are above, that is, the figure not in

parentheses.
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the feces, and within aqueous test tube environments.
They found a significant reduction in the percentage of
successfully embryonated rumen fluke eggs compared to
the control across all tested environments (Arroyo et al.,
2017). Hern�andez et al. (2017) showed that ovicidal fungi
can adhere to and penetrate the eggs and permanently
damage the inner embryo. Some studies have considered
the versatility of ovicidal fungi in damaging a wide variety
of helminth species (Araújo & Salcedo, 1995; Braga
et al., 2007), although those with other feeding styles have
been developed further for application in biocontrol.

Endoparasitic fungi live by feeding on nematodes fol-
lowing adhesion to the nematode cuticle or ingestion of
spores by the nematode (Balyoi et al., 2011). Most
research into this trophic guild has used the fungal spe-
cies Clonostachys rosea, due to its voracious and diverse

consumption of nematode species (Rodríguez-Martínez
et al., 2018). Variable levels of reduction in nematode
viability have been reported (Ahmed et al., 2014; Silva,
Braga, Mendoza-de-Gives, Mill�an-Orozco, et al., 2015;
Silva et al., 2017), both through the addition of fungi to
dung containing parasitic nematodes and feeding of
spores to infected animals, subsequently hatching
within the dung. This effect is localized to early larval
stages, as nematode egg output remained unaffected in
infected animals fed fungal spores, while culture of
infected feces yielded lower numbers of nematode lar-
vae (Ahmed et al., 2014). Endoparasitic fungi, particularly
Harprosporium leptospira, alongside nematode-trapping
fungi, can rapidly naturally colonize dung pats following
deposition, with 83% and 58% of dung pats containing
nematophagous fungi after 3 days in February and

Parasites

+

Fungi

2
(20-4-2)

Parasites

+

Earthworms

0
(12-1-1)

Parasites

+

Dung 

beetles

1
(3-1-1)

Fungi

+

Dung 

beetles

0
(9-0-0)

Fungi

+

Earthworms

0
(54-0-0)

Earthworms

+

Dung 

beetles

0
(10-0-0)

Parasites

+

Fungi

+

Earthworms

0
(10-0-0)

Parasites

+

Fungi

+

Dung 

beetles

0
(2-0-0)

Fungi

+

Earthworms

+

Dung 

beetles

0
(2-0-0)

Parasites

+

Earthworms

+

Dung 

beetles

0
(1-0-0)

Parasites

+

Fungi

+

Earthworms

+

Dung 

beetles

0
(1-0-0)

Driver terms applied

2 

Species

3 

Species

4 

Species

F I GURE 4 Schematic diagram detailing number of papers that investigate combinations of at least two species with general and driver

terms. The diagram displays the number of papers returned for each two, three, or four species combination searches, alongside the general

terms and driver terms. The number of papers returned in the search is given in parentheses, and the number that specifically investigate

the interactions is above, that is, not in parentheses.

ECOLOGICAL APPLICATIONS 7 of 22

 19395582, 2024, 3, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2956 by U

niversity O
f A

berdeen, W
iley O

nline L
ibrary on [02/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



April, respectively, in a plot trial in New Zealand
(Hay et al., 1997).

Nematode-trapping fungi are the best documented
fungal group with regard to their interactions with ani-
mal parasitic nematode populations, with Duddingtonia
flagrans the main model species and candidate for bio-
control (Buzatti et al., 2015; Chauhan et al., 2005; Healey
et al., 2018; Mendoza-de-Gives et al., 2018; Terrill
et al., 2004). The presence of this species results in popu-
lation reductions in a diverse array of animal parasitic
nematodes, infecting many different host species (Bilotto
et al., 2018; Buzatti et al., 2015; Pérez et al., 2017; Terrill
et al., 2004; Terry, 2013; Zegbi et al., 2021), although
effects are inconsistent (e.g., Faessler et al., 2007). As a
method of biocontrol, D. flagrans is typically adminis-
tered orally as fungal spores (Aguilar et al., 2008; Braga
et al., 2020; Fausto et al., 2021), with the spores passing
into the feces and augmenting the density of fungi
in dung. Other nematode-trapping fungi, such as
Arthrobotrys oligaspora, also reduce nematode populations
(Wang, Meng, et al., 2014) and can be administered orally
(Cai et al., 2017). Interestingly, nematophagous behaviors
among fungi may be enhanced by larger ecological net-
works involving bacteria that can be found within dung,
which facilitate a lifestyle switch for some species, such as
A. oligospora, from a saprophytic to a nematode-trapping
form (Ulzurrun & Hsueh, 2018; Wang, Li, et al., 2014).

Interactions between different nematode-trapping fungi
have been investigated, with mixed effects reported.
Waghorn et al. (2002) found the greatest reduction of par-
asitic nematode larval abundance in dung was achieved
by combined fungal treatments, which is supported by
other studies (Silveira et al., 2017; Vilela et al., 2012,
2013). Some combinations of fungi, however, have been
reported to result in an antagonistic rather than synergistic
effect in the reduction of animal parasitic nematodes. Com-
bined usage of C. rosea and D. flagrans decreased predation
against Haemonchus contortus larvae from 88.9% to 91.5%,
respectively, when applied individually, and to 74.5% when
combined (Silva, Braga, Mendoza-de-Gives, Uriostegui,
et al., 2015), which may be a consequence of spore produc-
tion antagonism between competing fungi (Silva,
Braga, Mendoza-de-Gives, Mill�an-Orozco, et al., 2015).
Arthrobotrys robusta was found to produce higher nem-
atode fecal egg counts in heifers when added to feed,
compared to when D. flagrans or Monacrosporium
thaumasium were used individually or together (Luns
et al., 2018). Variable effects against different parasite
species could explain some of the apparent inconsistencies
between studies (Paraud et al., 2006). Some fungi are
known to produce toxins that can be detrimental to nema-
tode communities, including animal parasitic nematodes
(Kwock et al., 1992; Soares et al., 2018; Zarrin et al., 2015),

although this group has not yet been developed for use in
biocontrol.

Apart from nematophagous effects, fungi can facilitate
parasite transmission by aiding movement of infective
stages from the dung onto pasture. The fruiting bodies of
Pilobolus spp., for example, mechanically assist the disper-
sion of infective larvae of the trichostrongylid lungworm
Dictyocaulus viviparus (McCarthy et al., 2022). This action
has not yet been investigated, however, in relation to the
presence of other naturally occurring or biocontrol fungi
or anthelmintic use, nor have the ecological conditions
favoring Pilobolus growth been determined.

Nematophagous fungi therefore clearly have negative
effects on helminth free-living stages in the dung com-
partment. Effects, however, occur against a background
of diverse natural fungal communities, and it is recom-
mended that this be taken into account in future studies.
Complementary methods of action between fungi that
utilize different mechanisms of nematode predation have
only been recently explored (Vieira et al., 2019, 2020),
where it was shown that combined use of Arthrobotrys clad-
odes (nematode-trapping) and Pochonia chlamydosporia
(ovicidal) resulted in reduced eggs per gram in fecal pats
and greater bovine weight gain than the control or when
either was used in isolation. It is also important to evalu-
ate how fungal communities may be influenced by fac-
tors to improve nematophagous activity, such as the
density of animal parasitic nematodes and other organ-
isms in dung. Further research is needed on parasite spe-
cies preferences and antagonistic or synergistic actions to
fully elucidate how the nematophagous community func-
tions within grassland ecosystems under natural and aug-
mented conditions. Outcomes are also likely to vary with
the presence, abundance, and species composition of
other nematodes present in dung, including saprophytic,
predatory, and plant-parasitic species.

Earthworms and parasites

Mortality of parasite stages in dung might be increased as
a result of ingestion by earthworms, but the more impor-
tant process is removal of dung from the soil surface to
deeper layers by some earthworm species. This makes it
harder for motile and nonmotile parasites to find their
way back to the surface to continue their life cycle. Posi-
tive effects on transmission potential are possible through
dispersal by earthworms that void egesta on the soil sur-
face and through protection of parasites from adverse
environmental conditions through ingestion and translo-
cation into soil. Observed outcomes vary widely, and
applications of bioaugmentation with earthworms for
parasite control at farm scale are lacking.
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Earthworms are a diverse group of the soil macro
fauna that serve important roles in recycling nutrients,
improving hydraulic conductivity and facilitating the
assimilation of organic matter by other soil organisms
(Bhadauria & Saxena, 2010; Marinissen & Ruiter, 1993;
Scheu, 1987; Wen et al., 2020). Considering their large
biomass, they are dominant organisms within the soil
compartment (Lavelle & Spain, 2002; Medina-Sauza
et al., 2019) and aggregate underneath dung pats (Bacher
et al., 2018, 2020). These localized “hotspots” provide
increased opportunity for interactions between earth-
worms and animal parasitic nematode communities that
are present within the dung compartment.

While earthworms feed upon the dung in which para-
sitic nematodes are undergoing a portion of their life cycle
(Bacher et al., 2018; Knight et al., 1992), the net effect is
highly uncertain (d’Alexis et al., 2009; Grønvold, 1979,
1987; Molavi et al., 2020; Waghorn et al., 2002; Zazouli
et al., 2021). Consumption of dung by earthworms has
been suggested to result in direct mortality of nematodes
during passage through the gut (d’Alexis et al., 2009;
Demetrio et al., 2019; Grønvold, 1987; Ray, 2018; Svendsen
et al., 2003; Waghorn et al., 2002), while the impacts of
dung translocation are also likely to be negative by moving
surviving nematodes deeper within the soil compartment.
Given differences in diet and behavior, interactions
between earthworms and parasitic helminths must be con-
sidered on a guild and species basis.

Earthworms can be divided into three major guilds
based on their ecological niche occupation and behavior
(Sims & Gerard, 1999). Epigeic species are soil-surface
earthworms that live outside of the mineral substrata,
endogeic species are soil-dwelling species that build hor-
izontal burrows, and anecic species are vertical, deep
burrowing species. Differences in guild or species abun-
dance may help to explain differences in the observed
effects of earthworm–parasite interactions. Thus, L3
larvae of the GINs, H. contortus, and Trichostrongylus
colubriformis were reported to be reduced by 29% and
33%, respectively, by D’Alexis et al. (2009) and
Teladorsagia circumcincta by 63% by Waghorn et al.
(2002) by the augmentation of earthworm populations.
The introduction of four anecic earthworms per plot, of
the species Aporrectodea longa, in addition to providing a
more diverse earthworm community may have increased
dung consumption and, therefore, translocation of nema-
tode communities (Schon et al., 2019), resulting in the
reported higher GIN reduction for Waghorn et al. (2002)
compared to d’Alexis et al. (2009), who used one repre-
sentative epigeic and one representative endogeic species.
Furthermore, some earthworm species are known to
deposit ingested material as casts at the soil surface,
which may help explain the only reported positive

interaction between earthworms and GINs (Grønvold,
1979). Grønvold (1979) used two plastic tubs, approxi-
mately 224 cm3, to construct an earthworm treatment
group containing 27 earthworms and a control group that
contained no earthworms. A 500-g dung pat was placed
in the center of each container, and after 50 days there
was a 15-fold increase in GIN L3 recovered from the soil
under the earthworm treatment group compared to the
control. It was concluded from this experiment that
the earthworms used within the experiment deposited
most of their egesta at the soil surface, and this transloca-
tion might have increased larval availability at the soil
surface. While the study does not detail environmental
conditions, this positive effect could be related to earth-
worms protecting GINs from harsh external factors, as
the study was conducted in the middle of the summer.
Translocation of parasites into the soil compartment may
therefore result in a positive or negative effect on transmis-
sion potential depending on environmental conditions.
Many parasites can actively migrate between the soil and
herbage compartments (Amaradasa & Manage, 2010; Rose
& Small, 1985), although with a limited energy reserve in
the case of GIN L3 larvae (Van Dijk & Morgan, 2011), and
so successful larval migration to the herbage with suffi-
cient energy to complete the GIN lifecycle may only be
possible from limited soil depths. Consequently, the depth
of dung burial may be important when considering inter-
actions with different guilds and species of earthworm, as
well as effects on the viability of GIN L3 that successfully
return to the surface through active migration. Because
GIN larvae can mature quickly under the right conditions
and migrate actively from the dung pat, while dung burial
by earthworms can take several weeks, their effect on
dung could come after the critical period for the parasite
life cycle; this will depend on the season and weather
conditions.

Interactions between earthworms and parasites have
also been investigated in relation to manure application
and the vermicomposting process, with mixed reports.
Earthworm, Eisenia fetida, presence was reported to
reduce the abundance of unspeciated parasite eggs fol-
lowing the vermicomposting process (Molavi et al., 2020),
while other studies found no significant effect (Zazouli
et al., 2021).

On balance, the presence of earthworms appears to
reduce the number of parasites reaching pasture as a
result of dung burial and consumption, although effects
vary. Specifically, the direction and size of effects of
earthworms on helminths may be dependent on guild
and species (Grønvold, 1979; Hoeffner et al., 2022;
Waghorn et al., 2002). Consquences of agricultural prac-
tices and potentially bioaugmentation on earthworm
populations and helminth transmission should take
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account of these differences, with anecic species most
likely to produce a negative effect, especially when envi-
ronmental conditions favor active migration of nematode
larvae from dung. Future research to explore guild- and
species-level effects of earthworms upon GIN transmis-
sion is needed before solid recommendations can be
given to managers or effect sizes incorporated accurately
into transmission models.

Dung beetles and parasites

Beetle species that use animal feces as a food source for
their offspring can move the dung into the soil, while the
feeding activity of the larval stages alters the structure
and composition of the dung and could assist or inhibit
the development and survival of parasite stages found
there. On balance, experimental evidence suggests that
dung beetles tend to reduce the availability of parasites,
specifically GIN larvae, on pasture, but effects are vari-
able. Scaling this effect to farm level via bioaugmentation
and using it to reduce reliance on other control tools such
as anthelmintic treatment has not been tested.

The title of dung beetle is indicative of this organism’s
importance in the decomposition, assimilation, and inter-
action with dung and, by extension, the free-living stages
of the animal parasitic nematode community. Dung bee-
tles are one of the most representative taxonomic groups
of insects associated with agricultural farmland and exhibit
a wide array of life history strategies that provide critical
ecosystem services to soil and dung communities (Arellano
et al., 2023; Hanski & Cambefort, 1991). Consequential to
their ubiquity and function, dung beetles have high poten-
tial for the modification of parasite transmission through
their activity in dung degradation and movement. Dung
beetle diversity and abundance are often controlled
by climatic conditions and ecological niche availability
(G�omez et al., 2020); however, their common effects on
various animal parasitic helminths through dung burial are
well documented (Bryan, 1973; Chirico et al., 2003; Huerta
et al., 2013; Martinez et al., 2018; Ryan et al., 2011).

Dung burial may negatively impact animal parasite
populations by increasing necessary migratory distances
to return to the soil surface and onto grass, with the effect
size dependent on the depth of brood burial (Bertone
et al., 2006; Gregory et al., 2015). The presence of dung
beetles often results in a significant reduction in infective
parasite larval populations on the surrounding herbage
(Bryan, 1973; Chirico et al., 2003; Forgie et al., 2018;
Sands & Wall, 2017; Waterhouse, 1974), although there
appears to be a temporal component to this impact. Some
literature has suggested or demonstrated a “time-bomb”
effect whereby an initial decrease of infective larval

abundance on surrounding herbage is noticed due to the
burial of dung and larvae. This is then followed by an
eventual increase due to larval migration to the soil sur-
face, which could be beneficial to larval communities
that may otherwise be exposed to adverse conditions
(Chirico et al., 2003; Coldham, 2011; Sands & Wall,
2017), although this effect is not always supported in the
literature (Forgie et al., 2018). In contrast to the “time-
bomb” effect, it has been hypothesized that aeration of
the dung by beetles may counteract potential unfavorable
anaerobic conditions within the dung pat, aiding parasite
development (Sands & Wall, 2017). This idea has been
developed to suggest that the positive effects of dung beetles
on infective larval abundance may be exclusive to a temper-
ate climate, as aeration of dung pats in tropical climates
could exacerbate desiccation (Mfitilodze & Hutchinson,
1988). These contrary effects are nonexclusive, with the
net outcome on parasite transmission depending on the
environmental conditions. While the exact mechanisms
of interaction between dung beetles and nematode com-
munities have yet to be fully elucidated, it does appear
that translocation effects outweigh dung aeration, at least
in temperate conditions, such that dung beetle presence
generally causes a decrease in the total number of animal
parasitic nematodes reaching the herbage.

Consumption of dung may also lead to the destruc-
tion of parasite larvae directly; however, dung beetle food
preference and maximal particle size of ingestion vary
from species to species (Grønvold et al., 1992; Holter
et al., 2002). The size of ingested material that has been
suggested as possible for dung beetles in the current liter-
ature ranges between 5 and 130 μm, with the majority of
temperate grassland dung beetle species consuming the
smaller particle sizes (Holter et al., 2002; Holter & Scholtz,
2007). Given that the size of strongyle eggs are typically
around 90 μm in length and 40 μm in width (Bucki
et al., 2023; Cuomo et al., 2012; Harvey et al., 2019), it is
unlikely that consumption by temperate grassland dung
beetle species has a large impact on parasite transmission.

Based on current evidence, it is reasonable to suggest
that enhanced dung beetle activity will tend to decrease
the availability of parasites, specifically GIN infective
larvae, on temperate grassland. Caveats apply, however,
including variable effects and weather dependency, and
these should factor into consideration of programs to use
dung beetles for sustainable agricultural solutions. Under
certain conditions, dung beetles could enhance transmis-
sion, such as burial when enviornmental conditions are
detrimental to development and survival. Given that
dung beetle burial is typically between 10 and 20 cm
for common temperate grassland species (Snell-Rood
et al., 2016), this would be an achievable distance for
gastrointestinal nematodes to migrate back to the soil

10 of 22 BOUGHTON ET AL.

 19395582, 2024, 3, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/eap.2956 by U

niversity O
f A

berdeen, W
iley O

nline L
ibrary on [02/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



surface (Fincher & Stewart, 1979). Sequestration of parasite
stages within dung for later appearance on pasture might
itself be beneficial to their control, for example, buying
time for parasite evasion by livestock through rotational
grazing or acting as a source of refugia for drug-
susceptible genotypes (Hodgkinson et al., 2019). Studies
on effects at the farm and landscape levels are needed to
properly assess the potential for dung beetle augmenta-
tion as a nature-based or biocontrol intervention, as well
as the consequences of nontarget effects of anthelmintics
on them (de Souza & Guimarães, 2022; Jacobs & Scholtz,
2015; Manning et al., 2018). Furthermore, farm-level
studies that explore the abundance, succession, and lon-
gevity of dung beetle augmentation may also be impor-
tant, to consider the feasbility of increasing dung beetle
populations. This would help to consider the implications
of resource competition, the maintenance of an effective
dung beetle population for parasite control, and the
implications across a farming season that experiences a
multitude of different climatic conditions. On current evi-
dence, it is reasonable to suggest that encouraging a
healthy dung beetle population is likely to ameliorate
rather than worsen parasite management on temperate
pastures, but there is no solid basis to predict the size or
consistency of this effect or its ability to replace other
management tools such as anthelmintics.

Nonparasite biotic interactions

While the focus of this review is interactions between
parasites and biotic factors, interactions between free-
living taxa could indirectly affect parasites by modifying the
abundance and activity of organisms directly impacting
the life cycle, while bioaugmentation could have nontar-
get effects on soil communities. A thorough review of
such second-order interactions is beyond the scope of this
paper but some examples are given below.

Fungi and earthworms

Fungus–earthworm interactions cover an array of direct
and indirect mechanisms including arbuscular mycorrhi-
zal fungi (AMF), so fungus–plant interactions (Paudel
et al., 2016; Wang et al., 2021; Zaller et al., 2011), and the
breakdown of organic matter and consequences for soil
fertility (Aira et al., 2008; G�omez-Brand�on et al., 2011;
Haitoa et al., 2018; Wu et al., 2017). Earthworm–fungus
interactions are generally positive (G�omez-Brand�on
et al., 2012), with the composting activity of epigeic earth-
worms increasing fungal mass (Aira et al., 2006, 2008;
Chauhan, 2014; G�omez-Brand�on et al., 2011; Haitoa

et al., 2018; Lazcano et al., 2008; Sharma et al., 2017;
Srivastava et al., 2011; Wu et al., 2017) and earthworms
grazing on fungi (Cooke, 1983; Moody et al., 1995), poten-
tially increasing growth (Kaushik et al., 2012). While
digestion of ingested fungal spores has been noted
(Schönholzer et al., 1999), egested material has also
been reported to leave fungi unaffected (G�omez-
Brand�on et al., 2011; Pedersen & Hendriksen, 1993),
and earthworms could therefore assist fungal dispersal.
Differences in the transit of different fungal species
through the earthworm gut have been reported
(Curry & Schmidt, 2007; Tiunov & Scheu, 2000a, 2000b),
but the effects of earthworms on the persistence and dis-
persal of fungal species used in the biocontrol of livestock
helminths are not reported. Earthworm casting was
greater in plots with feces treated with D. flagrans, how-
ever (Yeates et al., 2007), suggesting that bioaugmentation
could affect earthworm activity, with unknown future
effects. Application of D. flagrans does not appear to nega-
tively affect earthworms through internal or external
mycosis (Grønvold et al., 2000).

Fungi and dung beetles

Few studies report interactions between fungi and dung
beetles (Figure 2). Dung beetles have been shown to both
increase and decrease fungal growth in residual dung
pats and brood balls (Lussenhop et al., 1980; Ykoyama
et al., 1991), perhaps due to increased aeration coupled
with desiccation. Dung beetles have been reported to feed
on fungi (Halffter & Halffter, 2009; Holter et al., 2009)
and to affect fungal communities (Lussenhop et al., 1980;
Ykoyama et al., 1991). Regarding the nontarget effects of
nematophagous fungi, D. flagrans did not impact the
development of the dung beetle species Aphodius constans
even at high concentrations (Paraud et al., 2007).

Earthworms and dung beetles

Earthworm–dung beetle interactions are characterized by
a mixture of resource competition, whereby the presence
of each group limits the net removal of dung by the other
(O’Hea et al., 2010; Rosenlew & Roslin, 2008), and facili-
tation by succession, in which early colonization of dung
by dung beetles attracts earthworms (Bacher et al., 2018;
Gittings et al., 1994; Holter, 1979). Spring–summer peaks
in dung beetle activity in temperate areas and decreased
earthworm activity in dry summer conditions (Bayley
et al., 2010; McDaniel et al., 2013; Storey & Storey, 2010;
Tilikj & Novo, 2022) likely separate the relative impor-
tance of these groups by season. When modeling impacts
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of dung removal into soil on helminth transmission, it
would seem pertinent to modify removal rates to account
for this interaction especially in spring and autumn.

System-level interactions

Interactions between three or more of the biotic factors
(taxonomic groups) considered here were rare, with only
one paper detailing interactions in a primary study
(Waghorn et al., 2002). That study aimed to explore how
combinations of fungi, earthworms, and dung beetles
impacted parasitic GIN L3 recovery from surrounding
herbage, through a factorial experimental design at two
different time points. When considering species in isola-
tion, they found that earthworms reduced the total num-
ber of larvae recovered; dung burial, to simulate tunneling
dung beetle activity, increased total larval recovery; and
fungi had differential effects on total larvae recovery based
on fungal species, fungal combinations, and the time point
explored. When system-level interactions were explored;
however, they found that the negative effect of earth-
worms on total larval recovery was nullified when the
dung was buried to a depth of 5 cm by hand. They also
found that fungal presence reduced the positive effect that
dung burial had on larval recovery (Waghorn et al., 2002).

Given the solitary study considering these complex
interactions in the field, there is minimal research to con-
sider how these interactions may occur within different
locations or climates or with different species. Neverthe-
less, the results obtained by Waghorn et al. (2002) lead
to a number of interesting questions that should be tested
in future experiments to help elucidate the impacts of
multispecies interactions on parasite free-living stages.
Interaction outcomes of free-living parasite stages and
faunal groups may be determined temporally. Faunal
groups that interact with the dung first may have a larger
influence on the outcome or direction of the effect on
parasite free-living stages compared to faunal groups that
interact later in succession. It was found that earthworm
activity was largely nullified upon dung burial (Waghorn
et al., 2002), which could indicate that the succession of
arrival and activity could influence the impact of other
faunal groups. Therefore, faunal groups that exhibit an
impact first may have a greater influence on GIN trans-
mission than faunal groups that arrive later within suc-
cession. It is also important to consider that there may be
a hierarchal ladder of effects, and constructing this for-
mally could help determine the outcome of species inter-
actions upon parasite transmission. The presence of some
species may dominate the net effect of interactions with
parasites, potentially linking the presence or absence
of certain species with transmission outcomes. This

could be particularly useful when considering parasite
management strategies, as environmental surveys to
understand what species are present could help to deter-
mine what nature-based methods may be most suitable
to combat parasite transmission. Despite the importance
of multispecies interactions on parasite transmission,
there is currently a void of literature that considers this
effectively, which is surprising given the increase in sup-
port for future biocontrol and sustainable agricultural
practices, which may rely on these fundamental ecologi-
cal interactions for successful and effective application.
Considering that the environmental stages in gastroin-
testinal parasites are subject to a wide array of grassland
organisms, and their interactions with these faunal
groups may be responsible for part of their development
and survival, future research on these biotic interactions
should be encouraged (Table 1).

Influence of climate and abiotic factors on
biotic interactions

Abiotic conditions are well known to influence the envi-
ronmental stages of gastrointestinal parasites and could
also influence the biotic interactions described above.
Increased time within the dung pat as a result of slower
development at cool temperatures, for example, may
expose the stages to prolonged activity from biotic factors
within the dung, which themselves may also have differ-
ent responses according to prevailing climate and weather.
The impact that abiotic factors, principally temperature
and moisture, have on relevant faunal groups is therefore
an additional factor in system behavior.

Increasing temperature tends to accelerate parasite
development outside the host, while moisture is needed
for development within the dung and free water from
rainfall for migration out of dung onto herbage (Ciordia &
Bizzell, 1963; Jehan & Gupta, 1974; Morgan & Van
Dijk, 2012; O’Connor et al., 2007, 2008; Pandey et al., 1989;
Wang et al., 2022).

Nematode-trapping fungal activity has also been
reported to increase with temperature, up to a threshold,
with larval abundance taking over from temperature as the
key limiting factor at higher temperatures (Buske et al.,
2013; Fern�andez et al., 1999; Paraud et al., 2006). Increased
stochastic variation in temperature (García-Carreras &
Reuman, 2013) has been shown to increase nematode-
trapping efficacy for D. flagrans compared to constant
temperatures (Fern�andez et al., 1999) and alters nema-
tode species preferences by fungi (Paraud et al., 2006),
consistent across a changing climate. Humidity favors
fungal survival, but nematode trapping increases in dry
conditions (Faedo et al., 2002; Liu et al., 2009). High
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rainfall could also drive the breakup of dung and passive
dispersal of parasite larvae from dung, reducing local lar-
val abundance and, hence, the action of nematophagous
fungi whose trapping activity is triggered by parasitic lar-
val abundance (Buske et al., 2013). Earthworm feeding is
reduced at temperatures below 10�C, and the develop-
ment of immature earthworms and cocoon production
halts completely above 40�C (Edwards & Bohlen, 1996).
Reduced activity and abundance with increasing tem-
perature is related to reduced soil moisture (Eisenhauer
et al., 2014), which at extreme levels leads to aestivation
or diapause (Bayley et al., 2010; Díaz Cosín et al., 2006;
Holmstrup, 2001; Wever et al., 2001), while moderate
increases in temperature may enhance earthworm activ-
ity, provided soil water content is sufficient (Eriksen-
Hamel & Whalen, 2005; Perreault & Whalen, 2006).
Moisture is beneficial to earthworm communities, with
higher burrowing activity often associated with wetter
soils (Wen et al., 2020) and anecic earthworms them-
selves decreasing soil water content loss (Ma et al., 2020).
For a discussion of how climate change might affect
earthworms, see Singh et al. (2019).

Dung beetles appear to be less sensitive to tempera-
ture than fungi and earthworms, with large species able
to self-regulate temperature (G�omez et al., 2020; Mena,
2001; Verdú et al., 2006). Temperature has been shown to

affect dung burial and decomposition in the presence of
dung beetles, but reported effects varied widely (Gotcha
et al., 2022; Holley & Andrew, 2018; Wu et al., 2011), per-
haps due to species differences (Gotcha et al., 2020,
2021). Heavy rainfall accelerates the physical dispersal of
dung and could reduce the relative importance of dung
movement through beetle activity and, thus, their
impacts on parasite larvae (Sands & Wall, 2017). Unlike
earthworms, dung beetles do not thrive in wet soils
(Osberg et al., 1994; Sowig, 1995), and moist conditions
may therefore also reduce the effect of dung beetles on
dung pats and parasite transmission (Waghorn
et al., 2002).

The effect of dung burial on parasites is likely to
depend on abiotic conditions. Thus, dry conditions at the
soil surface act against larval migration from the dung
and onto herbage, and dung desiccation would trap and
eventually kill parasite stages (Stromberg, 1997): Burial
at this stage would therefore enhance survival in the
protected, moist brood ball (Sowig, 1995). When condi-
tions are conducive to parasite survival and migration
onto pasture, on the other hand, burial would present an
additional barrier to successful movement onto herbage.
Increased dung beetle activity may also increase the per-
foration of the pat and enhance tunnel formation, with
aeration initially favoring parasite development but

TAB L E 1 Summary of interactions between parasites and biotic factors.

Interaction Positive mechanism Negative mechanism Key references
Stage of schematic

influenced

Parasites and ovicidal fungi None identified Impaired development Arroyo et al. (2017) Egg

Parasites and hematophagous fungi None identified Nemtode-trapping,
hyphal capture

Waghorn et al. (2002),
Fausto et al. (2021)

L3

Parasites and endoparasitic fungi None identified Fungi penetrate
nematode cuticle

Ahmed et al. (2014),
Rodríguez-Martínez
et al. (2018)

L1, L2, L3

Parasites and toxin-producing fungi None identified Fungi produce
nematotoxic
enzymatic
secretions

Zarrin et al. (2015),
Soares et al. (2018)

L3

Parasites and earthworms Translocation Consumption,
Translocation

Grønvold (1979),
Waghorn et al.
(2002),
d’Alexis et al. (2009)

Egg, L1, L2, L3

Parasites and dung beetles Improved aeration,
favorable
development
conditions (time/
temperature
dependent)

Translocation,
enhanced
unfavorable
conditions (time/
temperature
dependent)

Sands and Wall (2017),
Forgie et al. (2018)

Egg, L1, L2, L3

Note: Collated information on the binary interactions between parasites and biotic factors that may influence transmission. Mechanism of actions are stated for
either positive or negative interactions, with select key references provided. Interactions are considered against life cycle stage and can be read alongside the

schematic, Figure 1, to visualize how each factor may influence parasite transmission.
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subsequently increasing the rate of desiccation (Penttilä
et al., 2013). These contrary effects might explain the
inconsistent results of field experiments and observations
that seek to determine the effects of dung fauna on para-
sitic larval availability, as described above.

A changing climate may alter the importance of differ-
ent interactions within the schematic framework through
unequal effects upon individual taxa and processes. The
effects of different climatic events and weather patterns are
hard to predict but can be considered using the schematic
and carried forward in extensions of parasite transmission
models aiming to evaluate the effects of climate and climate
change on infection patterns (Verschave et al., 2016; Wang
et al., 2022), which explicitly consider the additional effects
of biotic interactions and their potential to contribute to
successful strategies for animal health on future farms.

Key gaps and future work

Harnessing the biological interactions described here has
the potential to support parasite management. Biocontrol
is becoming increasingly important for future effective,
sustainable agricultural practices and would be useful as
a tool to manage livestock parasites given the rise
in anthelmintic-resistant parasite populations, consumer
demand for chemical-free animal production lines, and
societal pressure for nature-based solutions. Changes in
agricultural practices motivated by factors other than par-
asite control, including increased carbon sequestration,
also have the potential to affect parasite transmission
through these biotic interactions. This review details the
many mechanisms and interactions to which the free-
living stages of helminth parasites, mainly gastrointesti-
nal nematodes parasites of ruminants, are exposed.
We also consider how abiotic factors, specifically climate,
may influence these interactions. The aim is to highlight
different avenues for integrated interventions in the hope
of enhancing future nature-based solutions for parasite
management, as well as defining a framework for these
interactions to assist the identification of important
knowledge gaps and helping researchers to set focused
studies in the wider ecological context.

A major gap in the literature concerns ecological
interactions in the dung and soil, which could affect out-
comes of biocontrol or bioaugmentation. Among the taxa
reviewed, fungi are most advanced as a biocontrol option,
with nematophagous fungal spores already available in
some countries as a feed supplement, augmenting fungal
populations in dung and, hence, their negative effects on
parasites. Outcomes, however, have typically been evalu-
ated while ignoring biotic interactions that are universal
in real farm environments. Interactions between ovicidal

and nematophagous fungi can have synergistic negative
impacts on nematode larvae, increasing overall predation
when compared to either fungus group individually
(Vieira et al., 2019). On the other hand, fungi that utilize
a similar mechanism to target identical life stages, such
as different species of nematode-trapping fungi, may
compete with one another for resources and have nega-
tive impacts on the other (Ayupe et al., 2016). Dung bee-
tle larval size has been shown to be negatively impacted
by earthworm presence (Xie et al., 2020) due to the inges-
tion of beetle brood matter and resource competition.
Conversely, parasitic nematode larval reduction by earth-
worm activity has been shown to be eliminated if dung is
buried to simulate the activity of some dung beetle spe-
cies (Waghorn et al., 2002). Earthworm and dung beetle
interactions may therefore be ecotype- and species-
specific, varying based on burial depth, dung movement
quantities, and abundance of each group, as well as the
time course of dung burial by each group and how it
relates to parasite development. Earthworms and dung
beetles also play important roles in the dispersal of
nematophagous fungi that may aid in the capture of par-
asitic L3 (Edwards, 2004). Environmental stages of GIN
transmission are therefore subjected to interactions with
complex ecological networks, which may vary spatiotem-
porally and geospatially along with the ecological com-
munities. These have barely been investigated despite
their obvious potential to affect the success, magnitude,
and sustainability of interventions that seek to increase
populations of beneficial parasite-reducing taxa.

The influence of climate and weather on the impacts
of fungi, beetles, and earthworms on parasites has been
noted in individual studies but not explored systematically
or carried forward to predict outcomes and provide advice
on optimizing applications. Abiotic factors shape ecological
communities and, upon changing, may also alter the eco-
logical networks present (Kanianska et al., 2016; Slabbert
et al., 2022), which may influence impacts on parasite
stages. Abiotic factors may also play a role in modifying
the effects of these organisms on parasite transmission,
such as enhanced rainfall removing the impact that dung
beetles have on parasitic L3 recovery (Sands &
Wall, 2017). The importance of abiotic factors therefore
may be crucially important to the outcomes of nature-
based solutions and biocontrol. Faster parasite develop-
ment at higher temperatures gives less time for processes
within the dung to impact populations, especially for this,
like GINs that are able to migrate actively out of dung fol-
lowing development. Seasonality in activity could also
influence outcomes on farms but is rarely considered in
experimental work, which tends either to focus on peak
periods of activity or provide nonseasonal artificial
arenas: Alignment of dung removal with parasite
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development periods could greatly alter the magnitude of
impacts on parasite epidemiology. Development of these
lines of thinking is currently speculative given the lack of
evidence. More experiments are needed that manipulate cli-
matic factors directly in combination with bioaugmentation,
as opposed to only describing variable outcomes under
different weather conditions.

While repeating experiments across a wider range of
conditions will be useful, much could be gained by focusing
on process, for example, dung removal or larval killing and
quantifying how that process affects parasites under differ-
ent conditions. Bioaugmentation or mesocosm experiments
could then determine effect sizes for the process at hand.
Together, improved information on these processes and the
parameters that shape them under different circumstances
could be used to predict the effects of altered invertebrate
diversity and abundance on parasite epidemiology under
new and future conditions and guide hypotheses to reduce
key uncertainties. Combining this information with
knowledge of parasite population dynamics, specifically
by incorporating the soil compartment and processes
driven by biotic interactions (Figure 1) into existing
modeling frameworks (e.g., Rose et al., 2015), seems an
obvious way forward.

The range of helminths evaluated in past studies is
broad, but with a strong bias toward GIN, whose free-
living stages are motile and more susceptible to some
biotic influences, for example, nematode trapping, than
to others, for example, by escaping from burial. Other
helminths, present in feces and soil as immotile eggs, will
respond differently. Since farmers must deal with a mul-
titude of parasite species on livestock farms, differential
effects on them could alter the parasitological landscape
and management priorities. An attempt to systematically
define the parasite life cycle and life history characteris-
tics that influence impacts of different potential biocon-
trol agents (or the processes they engender) would help
to predict the situations in which control is more or less
likely to succeed and help optimize ultimate application.

Perhaps the biggest limitation of past work on the
effects of biotic interactions is scale. Many experiments
have been conducted at laboratory, mesocosm, and field
plot scales, but almost none at whole-farm or landscape
scale. Larger studies are admittedly not easy to conduct,
but without them it is impossible to translate effect sizes
of reduced parasite availability, for example, to expected
impacts on parasite transmission at herd level. This is
perhaps particularly so for highly mobile taxa such as
dung beetles, for which the benefits of bioaugmentation
might also be difficult to sustain. Given that the applica-
tion of biological solutions is likely to take place along-
side and integrated with continued anthelmintic use on
most farms, nontarget effects of anthelmintics such as

on dung beetles should also be measured at the farm
scale and strategies devised to avoid them.

In conclusion, biotic interactions affect parasite
development and availability in temperate livestock pas-
tures, and fungi, dung beetles, and earthworms show
promise as tools for sustainable parasite management
using biocontrol or bioaugmentation. The existing litera-
ture provides strong proof of principle at the experimen-
tal level but much less so at farm scales. Further research
is needed to rectify this and to better understand the
biotic and abiotic interactions that shape ecological com-
munities and their effects on parasite transmission. A
more rigorous definition of processes and the estimation
of effect sizes could be usefully integrated with models
of parasite population dynamics to scope and refine
applications and define hypotheses and priorities for
future work.
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