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Abstract: Symbiotic microalgal–bacterial biofilms can be very attractive for potato wastewater
treatment. Microalgae remove nitrogen and phosphorus and simultaneously produce the oxygen that
is required for the aerobic, heterotrophic degradation of organic pollutants. In this study, symbiotic
microalgal–bacterial biofilms were grown in flow cells with ammonium and phosphate, and with
acetate as a simulated biodegradable organic pollutant. The symbiotic biofilms removed acetate
without an external oxygen or carbon dioxide supply, but ammonium and phosphate could not be
completely removed. The biofilm was shown to have a considerable heterotrophic denitrification
capacity. The symbiotic relationship between microalgae and aerobic heterotrophs was proven by
subsequently removing light and acetate. In both cases, this resulted in the cessation of the symbiosis
and in increasing effluent concentrations of both acetate and the nutrients ammonium and phosphate.
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1. Introduction

In wastewater treatment, the degradation of organic pollutants through heterotrophic
microorganisms necessitates energy-intensive aeration for oxygen supply. However, the
possibility of in situ oxygen production by microalgal species holds the potential to revolu-
tionize the treatment process. This innovation could prove vital in the treatment of diverse
wastewaters, including municipal, industrial, agro-industrial, and livestock effluents, driv-
ing more sustainable practices and even addressing the removal of toxic minerals [1].
Microalgal systems offer a multi-faceted solution by not only treating wastewater but
also yielding oxygen and valuable bio-based ingredients for various applications. The
efficient growth of microalgae in wastewater can significantly decrease production costs by
capitalizing on the symbiotic relationship between wastewater and nutrient-rich microal-
gae. Moreover, incorporating microalgae-mediated CO2 bio-mitigation into wastewater
treatment infrastructures presents an economical and eco-friendly approach [2,3].

In this context, microalgal ponds have emerged as a promising platform where mi-
croalgae and bacteria collaborate symbiotically [4,5]. Bacteria enhance microalgal growth
by producing auxins [6], and the reciprocal exchange of oxygen and carbon dioxide be-
tween microalgae and bacteria further amplifies the efficacy of the process [5,7]. Microalgal
ponds effectively remove nitrogen and phosphorus via microbial growth and nitrification–
denitrification processes [6,8–10].

One challenge lies in efficiently separating the microalgal–bacterial biomass from the
treated wastewater. Innovations like the development of symbiotic microalgal–bacterial
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biofilms offer a natural solution [11,12]. These biofilms enable the creation of a distinct
boundary between the biomass and treated wastewater (Figure 1), thus facilitating the
treatment process [13,14]. The potential of symbiotic microalgal–bacterial biofilms has been
demonstrated in applications such as swine slurry treatment, where remarkable removal
efficiencies of nitrogen, phosphorus, and chemical oxygen demand were achieved without
an external oxygen supply [15–18].
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To be a comprehensive wastewater treatment solution, symbiotic biofilms must target
both organic pollutants and essential nutrients. By harnessing stoichiometric equations
for microalgal growth and organic pollutant degradation, it is possible to design biofilms
that thrive on wastewater with minimal external oxygen or CO2 inputs. Such biofilms hold
the potential to not only treat wastewater effectively but also remove residual nutrients,
ensuring a comprehensive and sustainable treatment process [13,18–20].

This study focuses on establishing symbiotic microalgal–bacterial biofilms capable of
efficiently consuming acetate, nitrogen, and phosphorus without an external oxygen sup-
ply in potato wastewater (PWW). Through rigorous monitoring and experimentation, this
study investigates the viability of these biofilms and their potential contribution to PWW
treatment efficiency. Moreover, the exploration of microalgal–bacterial interactions provides
valuable insights into enhancing the sustainable management of wastewater resources.
In general, PWW typically carries 350 mg of biodegradable COD/L, 50 mg of NH4-N/L,
and 10 mg of PO4

3−-P/L. By employing stoichiometric equations for microalgal growth
and aerobic degradation of organic pollutants, it is feasible that a microalgal–bacterial
biofilm has the potential to thrive within this wastewater while effectively breaking down
all the organic compounds without the need for external O2 or CO2 supplementation. In
conclusion, the adoption of symbiotic microalgal–bacterial biofilms represent a transfor-
mative step towards more sustainable and efficient wastewater treatment. By harnessing
the inherent capabilities of microalgae and bacteria, this innovative approach promises to
address both organic pollutants and essential nutrients, contributing to a cleaner and more
environmentally friendly future.

2. Materials and Methods
2.1. Experimental Setup

The experimental setup was composed of a dual-component system: a flow cell for
synthetic wastewater inflow and a recycle vessel for effluent outflow, as depicted in Figure 2.
Within the flow cell, a 1 mm PVC plastic sheet (0.018 m2) provided a substrate for the
symbiotic biofilm, allowing a liquid layer of 2 cm to flow over it. Sensors positioned at the
inflow and outflow of the flow cell continuously monitored the pH and dissolved oxygen
(O2) concentration using InPro 6050/120 sensors from Mettler Toledo, Switzerland. The
inflow pH was precisely maintained at 7.2 through controlled delivery of either acetate or a
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blend of acetate and acetic acid (as detailed later). To maintain a consistent temperature of
23 ◦C, a water-jacketed glass tube facilitated the recycling of synthetic wastewater.
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Figure 2. Schematic representation of the experiment setup.

To ensure constant illumination, fluorescent lamps (MASTER PL-L Polar 36W/840/4P,
Philips, Amsterdam, The Netherlands) radiated light at an intensity as specified in Table 1.
The chosen light intensities were determined based on the requirement to foster sufficient
microalgal growth for the desired O2 production level. In Experiment 1, a light intensity of
610 µmol/m2/s (inflow 3.4 mL/min) was employed, while Experiments 2, 3, and 4 adopted
a light intensity of 340 µmol/m2/s (inflow 3 mL/min). The light intensity was meticulously
gauged using a 2π PAR quantum sensor (SA190, LI-COR Biosciences, Lincoln, NE, USA)
situated at the biofilm surface level.

Table 1. Experimental parameters and conditions.

Experiment Influent I
(mL/min)

Influent II
(mL/min)

N in Synthetic
Wastewater

(mg/L)

N Loading
Rate (g/m2/d) HRT (h) Extra HCO3−

Light
Intensity

(µmol/m2/s)

1 2.7 0.7 50 14 2.6 - 615

2 1.6 0.4 50 8 4.5 - 340

3 1.6 0.4 50 8 4.5 X 340

4 1.6 0.4 50 8 4.5 X 340

A series of succinct short-term assessments was conducted during the phase of stable
acetate, nitrogen (N), and phosphorus (P) effluent concentrations. The details of these
tests are outlined in Table 2. Test A encompassed the deactivation of the light supply.
Experiment 4 incorporated air bubbling (Test B) to avert potential bacterial oxygen limita-
tions. Test B necessitated replacing the water-jacketed tube of the setup with an aerated
water-jacketed vessel. Test C focused on denitrification during Experiment 4, involving
a third instance of light deactivation following the transition from NH4

+ to NO3
− as the

nitrogen source. Test D encompassed halting the acetate flow (influent II). This test was
consistently conducted across all experiments, and in Experiments 2–4, the acetate flow
was substituted with an equal flow of demineralized water.
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Table 2. Settings of the four tests for symbiosis in the biofilm.

Test Light Acetate Air N Source Experiment

A X X - Ammonium 1, 2, 3, 4

B X X X Ammonium 4

C X X - Nitrate 4

D X X - Ammonium 1, 2, 3, 4
Note: Xstands for on and X stands for off.

2.2. Microalgal Biofilm Cultivation
Cultivation of Chlorella vulgaris BEA 0753B (C. vulgaris)

C. vulgaris (BEA 0753B), procured from the Culture Collection of Algae and Protozoa
(The Spanish Bank of Algae—BEA), served as the microalgal strain for the study. Cultivation
involved utilizing four PVC sheets (0.018 m2) placed within 250 mL Erlenmeyer flasks
containing 100 mL of synthetic wastewater effluent.

The cultivation process unfolded in a controlled environment. The Erlenmeyer flasks
were housed within an Innova 44 growth chamber (New Brunswick Scientific, Edison, NJ,
USA), maintained at a temperature of 25 ◦C and subjected to orbital shaking at 100 rpm.
Continuous illumination at 40 µmol photons/m2/s was achieved through fluorescent
lamps. Additionally, a 2% CO2 concentration was upheld in the gas phase. The culture was
refreshed bi-weekly, involving the replacement of the synthetic wastewater effluent and the
removal of the majority of microalgal biomass from the plastic sheet to facilitate re-growth
and ensure culture viability.

A day before the commencement of the experiment, the flow cell’s plastic sheet under-
went sandpaper scratching and was subsequently coated with the cultivated microalgal
biofilm, remaining immersed in synthetic wastewater for a minimum of 12 h. Approx-
imately two hours prior to the experiment’s initiation, approximately 20 mL of settled
bacterial sludge was introduced onto the plastic sheet. For Experiments 1 and 2, this sludge
originated from an aerobic membrane bioreactor operated at the Catalga Biotech S.L. labora-
tory (Vidreres, Spain). Notably, the bacteria used were acclimated to the specific cultivation
conditions. In Experiment 4, the bacterial sludge was sourced from the aeration tank at
Catalga Biotech, Spain, where nitrification occurred. For experimental consistency and
reproducibility, a synthetic wastewater was utilized in place of real potato tuber wastew-
ater. The synthetic wastewater, referred to as influent I, was composed to mimic potato
wastewater. It contained N and P concentrations of 50 mg NO3

− N/L and 10 mg PO4
3−

P/L, as well as other essential nutrients. The composition included NH4Cl, trace elements,
vitamins, and additional nutrients based on Wright’s cryptophyte medium [21]. Notably,
Experiments 3 and 4 incorporated 1.05 g/L NaHCO3 (10 mmol/L). The introduction of
acetate, representative of biodegradable organic pollutants in typical potato wastewater,
occurred at a concentration of 350 mg COD/L (323 mg acetate/L).

To ensure proper pH control, influent IIA and IIB were introduced separately to coun-
teract pH fluctuations resulting from microbial growth. The N source was switched from
NH4

+ to NO3
− in Experiment 4, necessitating additional acetate inclusion to support deni-

trification. The adjustment aimed to ensure an adequate acetate supply for denitrification.

2.3. Analytical Procedures

Sampling from both influent and effluent flows during operation was carried out, with
samples subsequently passed through a 0.45 µm filter (Millex-LCR, Merck Millipore, Jaffrey,
NH, USA) for filtration. Colorimetric cuvette tests (LCK303, Hach Lange, Düsseldorf, Ger-
many) were employed to analyse NH4

+-N concentrations. Ion chromatography (Compact
IC 761 with a conductivity detector, Metrohm, Herisau, Switzerland) was utilized for the
analysis of acetate, NO3

−-N, and PO4
3−-P concentrations [22].

To evaluate the yields of acetate, nitrate (NO3
−-N), and phosphate (PO4

3−-P) obtained
under different operation conditions, ionic chromatography with a conductivity detector
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was used. An anion-exchange column was used for the nitrate and phosphate analyses and
a cation-exchange column for the acetate analysis. As a mobile phase, carbonate or bicar-
bonate were used as eluants for the nitrate and phosphate analyses and a cationic eluant
for acetate. The flow rate was between 0.5 and 2.0 mL/min. The injection volume, between
5 and 100 µL, was adjusted according to the sensitivity and the analyte concentration. A
Metrohm conductivity detector (Switzerland) was configured according to Compact IC 761.
Prepared calibration standards with known analyte concentration were used for calibration.
QC checks using blanks and standards were implemented for quality control.

2.4. Photosynthesis Inhibition and ROS Test

The biofilm biomass of Experiment 3 was subjected to incubation with acetate, gen-
erating microalgal suspensions with varying acetate concentrations: 0, 23, 123, 223, and
323 mg/L (as NaC2H3O2 · 3H2O) at an optical density of 0.2 at 680 nm. Following a 15 min
period of darkness, the quantum yield was measured through the Aqua Pen C AP100’s LC1
program (PSI, Drásov, Czech Republic) [19]. The release of hydrogen peroxide (H2O2) into
the water was used to assess reactive oxygen species (ROS) content. Hydrogen peroxide
concentration in aqueous solution was determined using a colorimetric method employing
phenolphthalein as an indicator [20].

2.5. Biomass Separation and Characterization

Microalgae monitoring was conducted under a light microscope throughout the
experiment. To segregate microalgae and bacteria based on density, the biomass of
Experiment 3 underwent initial centrifugation at a low force of 1000× g (Allegra X-12R,
Beckman Coulter, Brea, CA, USA). This separation aimed to distinguish microalgae from
the suspension. Subsequent centrifugation of the supernatant occurred at 3273× g to differ-
entiate the bacteria from the liquid. However, both microalgae and bacterial clusters settled
after the initial centrifugation. In response, a solution containing 9 mmol EG-TA/g dry
weight was formulated to dissolve extracellular polymeric substances, which held bacteria
and microalgae together in clusters. The solution pH was adjusted to 10.2 using sodium
hydroxide, followed by centrifugation as described earlier.

3. Results
3.1. Biofilm Growth

The biofilm structure exhibited a relatively loose arrangement, necessitating weekly
cleaning of the flow cell to prevent suspended growth. Visual observations of the harvested
biofilm indicated that cohesive white clumps of biofilm persisted even after harvesting
(Figure 3). Microscopic analysis revealed these clumps to be primarily composed of bacteria,
likely bound together by extracellular polymeric substances (EPSs). Predominantly present
in the biofilm were green microalgae from the genus Chlorella. A close inspection of the
biofilm unveiled seasonal variations in species composition and dominance, including
fluctuations involving cyanobacteria and a diatom, notably Pseudoanabaena sp. and biofilm.
Moreover, the biofilm exhibited diverse phototrophic species, coexisting with the presence
of numerous mosquito larvae. These dynamic interactions among species occasionally
resulted in changes in the biofilm colouration. Single-cell microalgae and bacteria could
typically be differentiated through centrifugation due to their differing weights. However,
the clumps formed by microalgae and bacteria in these experiments posed difficulties in
separation. To address this, the biomass from Experiment 3 underwent treatment with ethy-
lene glycol-bis (β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid (EGTA)—a chelating agent
that eliminates calcium, an essential EPS component [23]. This treatment improved separa-
tion, indicating that EPSs likely played a role in holding bacterial clumps together. Despite
these efforts, the measured bacterial fraction remained higher than the 11% recorded.



Phycology 2023, 3 464

Phycology 2023, 3, FOR PEER REVIEW 6 
 

 

bacterial clumps together. Despite these efforts, the measured bacterial fraction remained 
higher than the 11% recorded. 

 

 
Figure 3. Micrographs of microalgal–bacterial interactions (Chlorella vulgaris biomass; top) and the 
symbiotic microalgal–bacterial biofilm (bottom). 

3.2. Removal of Acetate, NO3−, and PO43− 
Experiment 1 yielded a biofilm with microalgae and bacteria, but the concentrations 

of acetate, NH4+-N, and PO43−-P in the effluent exceeded the anticipated values (Table 3), 
possibly due to the high light intensity causing photoinhibition. In Experiment 2, to miti-
gate this, the loading rates were reduced from 80 g acetate/m2/d, 14 g N/m2/d, and 2.7 g 
P/m2/d to 50 g acetate/m2/d, 8 g N/m2/d, and 1.6 g P/m2/d. Correspondingly, light intensity 
was lowered to 340 µmol/m2/s, resembling the average light intensity in Spain from late 
spring to early autumn. Despite these changes, acetate and PO43−-P effluent concentrations 
remained elevated.  

Table 3. The concentrations of ammonium and phosphate in the influent, the calculated effluent 
concentrations, and the average measured effluent concentrations of NH4+-N, PO43—P, and acetate 
in potato tuber waste. 

NH4+-N (mg/L) PO43−-P (mg/L) Acetate (mg/L) 
Influent 50 10 323 
Effluent (calculated)  27 5.7 0 
Experiment 1 Effluent 43 7.4 179 
Experiment 2 Effluent 30 7.9 166 
Experiment 3 Effluent 30 5.7 39 

Experiment 3 explored the potential inhibition of the microalgal biomass by acetate 
at varying concentrations. The photochemical yield of photosystem II (PSII) was meas-
ured, and the results indicated that acetate did not inhibit photosynthesis within the tested 
concentrations (Figure 4). This ruled out acetate inhibition as the cause of the high effluent 
acetate levels in Experiments 1 and 2. 

Figure 3. Micrographs of microalgal–bacterial interactions (Chlorella vulgaris biomass; top) and the
symbiotic microalgal–bacterial biofilm (bottom).

3.2. Removal of Acetate, NO3
−, and PO4

3−

Experiment 1 yielded a biofilm with microalgae and bacteria, but the concentrations
of acetate, NH4

+-N, and PO4
3−-P in the effluent exceeded the anticipated values (Table 3),

possibly due to the high light intensity causing photoinhibition. In Experiment 2, to mitigate
this, the loading rates were reduced from 80 g acetate/m2/d, 14 g N/m2/d, and 2.7 g
P/m2/d to 50 g acetate/m2/d, 8 g N/m2/d, and 1.6 g P/m2/d. Correspondingly, light
intensity was lowered to 340 µmol/m2/s, resembling the average light intensity in Spain
from late spring to early autumn. Despite these changes, acetate and PO4

3−-P effluent
concentrations remained elevated.

Table 3. The concentrations of ammonium and phosphate in the influent, the calculated effluent
concentrations, and the average measured effluent concentrations of NH4

+-N, PO4
3−-P, and acetate

in potato tuber waste.

NH4
+-N (mg/L) PO43−-P (mg/L) Acetate (mg/L)

Influent 50 10 323

Effluent (calculated) 27 5.7 0

Experiment 1 Effluent 43 7.4 179

Experiment 2 Effluent 30 7.9 166

Experiment 3 Effluent 30 5.7 39

Experiment 3 explored the potential inhibition of the microalgal biomass by acetate at
varying concentrations. The photochemical yield of photosystem II (PSII) was measured,
and the results indicated that acetate did not inhibit photosynthesis within the tested
concentrations (Figure 4). This ruled out acetate inhibition as the cause of the high effluent
acetate levels in Experiments 1 and 2.
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The biofilm in Experiment 3 was supplemented with bicarbonate (HCO3
−) to counter

potential CO2 limitations, after which, acetate and NH4
+-N concentrations rapidly de-

creased. The gradual reduction of HCO3
− from day 16 to day 29 did not significantly

impact acetate, NH4
+-N, and PO4

3−-P effluent concentrations. These concentrations re-
mained comparable to the calculated values (Table 3)

Experiment 4 assessed the additional N removal through nitrification and denitrifi-
cation. Despite inoculation with nitrifying sludge, NH4

+-N and NO3
−-N concentrations

remained relatively stable. On day 18, the N source was switched from NH4
+ to NO3

−,
and the results demonstrated a significant N reduction along with acetate and PO4

3−-P
decreases (Figure 5).
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3.3. Symbiosis and ROS Test

Throughout all the experiments, the tests affirmed the symbiotic growth of microalgae
and bacteria in the biofilm, with released hydrogen peroxide (H2O2) serving as an ROS
indicator in the effluent.

3.4. Darkness and Symbiosis

Tests conducted during Experiment 4 examined the biofilm responses in darkness.
Test A, shown in Figure 6, revealed that effluent concentrations increased upon turning off
the light, aligning with halted symbiotic growth.
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The experiment demonstrated the importance of microbial activity in maintaining
effluent concentrations. Test B in Experiment 4 involved turning off the light while introduc-
ing air bubbling to maintain aerobic bacteria activity (Figure 7). This approach minimized
nutrient uptake by bacteria, hinting at a predominant microalgal role in nutrient removal.
In Test C of Experiment 4, the light was turned off after switching from NH4

+ to NO3
− as

the N source, evidencing bacterial denitrification (Figure 8).
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3.5. Acetate Depletion and Symbiosis

Test D in Experiment 4 investigated acetate depletion by stopping its addition. The
biofilm exhibited sustained microalgal activity, possibly supported by excess CO2 pro-
duction. This led to further growth, suggesting that acetate-independent CO2 sustenance
promoted microalgal activity even without acetate addition (Figure 9).
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4. Discussion

The findings of this study showcase the successful cultivation of a symbiotic microalgal–
bacterial biofilm without the need for external oxygen and carbon dioxide supply. However,
the establishment of the symbiotic relationship necessitated the addition of bicarbonate
(HCO3

−) during the biofilm start-up phase. Moreover, fluorescence measurements of chloro-
phyll indicated that microalgal growth remained unhampered by acetate concentrations of
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up to 323 mg/L. This value is slightly above the concentration of 295 mg/L but below the
inhibitory range exceeding 400 mg/L, as reported in previous studies [12,24].

The symbiotic biofilm displayed removal efficiencies of 3.2 g NH4
+-N/m2/d, 0.41 g

PO4
3−-P/m2/d, and 43 g COD/m2/d, surpassing the removal rates of 1.0 g NO3

−-N/m2/d
and 0.13 g PO4

3−-P/m2/d achieved in a previous flow cell-based microalgal biofilm
study [25]. It is important to note that the comparison of these removal rates might not be
entirely straightforward, given the varying objectives of the studies. While the previous
study aimed for extremely low effluent nutrient concentrations, the current study did not
achieve such low levels. The effective elimination of acetate was observed, although the
symbiotic biofilm could not completely remove all NH4

+ and PO4
3−. The insufficiency of

light and CO2 hindered microalgal uptake of these residual nutrients. As such, if symbiotic
biofilms are considered for wastewater treatment, additional nutrient removal methods
might be required. Such augmentation could be achieved through increased microalgal
growth via enhanced light and CO2 supplementation. The light intensity used in this study
was akin to the average light intensity of 30 mol/m2/d found in Spain during late spring
to early autumn [26], indicating that tropical climates might be more conducive for such
symbiotic biofilm systems.

Enhanced nitrogen (N) removal can be accomplished through nitrification and denitri-
fication. Previous studies have suggested the feasibility of nitrification and denitrification
within biofilms in pond systems [9,25] and photobioreactors [27]. However, the symbiotic
system may lack the necessary oxygen surplus [25]. Alternatively, additional phosphorus
(P) removal can be achieved through calcium or magnesium phosphate precipitation due
to the pH elevation within the biofilm [28]. Our study on symbiotic microalgal–bacterial
biofilms complement the findings from the acetate-focussed study by offering a practi-
cal application of biofilm technology for wastewater treatment, while the Raunkjer et al.
study contributes to our understanding of how biofilms respond to changing conditions.
Together, we can emphasize the potential of biofilm-based systems in addressing various
challenges in wastewater treatment and highlight the need for further research in this
dynamic field [29].

Although the biofilm of Experiment 4 was introduced to nitrifying sludge, no nitrifica-
tion was detected, which could be attributed to low biofilm O2 concentrations, as evidenced
by the 0% dissolved O2 content of the effluent. Nitrification dependency on O2 levels in
the bulk phase, as seen in microalgal pond biofilms [5,6], could explain the absence of
measurable nitrification. Furthermore, the short 1-day inoculation process and the 19-day
growth period might have led to inadequate nitrifier colonization. Prior research used a
three-week inoculation period to establish a mixed microalgal and nitrifying culture [27].
Nonetheless, the presence of nitrifying populations within microalgal–bacterial biofilms
submerged in microalgal ponds [4,30] suggests that nitrification within symbiotic biofilms
is achievable.

In Experiment 4, transitioning from NH4
+ to NO3

− as the nitrogen source demon-
strated the denitrification capacity of the biofilm. This shift led to substantial NO3

− removal
from the wastewater. The prominence of denitrification over microalgal assimilation is
indicated by the preference of NH4

+ over NO3
− as a nitrogen source [11]. The swift NO3

−

reduction implies the presence of denitrifiers in biofilm niches with low O2 concentrations.
This transition suggests that denitrifiers within the biofilm could switch from O2 to NO3

−

as an electron acceptor upon NO3
− introduction [10,31]. The COD consumption of 5.9 g

COD/g NO3
−-N upon light deactivation is consistent with expectations for heterotrophic

denitrification. It is worth noting that effective bacterial denitrification in biofilms has
historically faced challenges due to limited bulk liquid–biomass contact surface area, a
critical factor for treatment effectiveness, especially in comparison to suspended growth
systems [18].

For the practical implementation of symbiotic biofilms in wastewater treatment, sev-
eral factors need consideration. Firstly, biodegradable particles entrapped in the biofilm
may be hydrolysed and removed, potentially necessitating a pre- or post-treatment step.
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Pre-treatment could result in a lower COD supply and subsequently lower heterotroph
CO2 production. Consequently, additional CO2 would need supplementation to sustain
microalgal growth. Secondly, since microalgae remain photosynthetically inactive during
the night, symbiotic biofilms could be used to complement wastewater treatment. Lastly,
while microalgal biomasses offer potential benefits, separating microalgae from bacteria
remains a challenge. Thus, finding appropriate applications for the mixed biomass is vital.
The biomass might serve as fertilizer if devoid of heavy metals or recalcitrant compounds.
Alternatively, the biomass could become feedstock for biogas production via anaerobic
digestion, but would require post-treatment for autotrophic N and P removal.

5. Conclusions

This study conclusively demonstrates the feasibility of cultivating a symbiotic microalgal–
bacterial biofilm capable of effectively removing acetate, ammonium, and phosphate from
potato wastewater. Impressive removal rates of 3.2 g NH4

+-N/m2/d, 0.41 g PO4
3−-P/m2/d,

and 43 g COD/m2/d were achieved. The establishment of the symbiotic relationship between
microalgae and bacteria was achieved by introducing additional HCO3

− during the experi-
ment’s outset. Remarkably, a subsequent external supply of oxygen or carbon dioxide was
unnecessary. The symbiotic nature of the bacteria and microalgae within the biofilm was
substantiated by the temporary cessation of light or acetate supply. Moreover, the present
findings imply that nitrogen removal could potentially be expanded by enhancing light and
CO2 availability and/or utilizing nitrification and denitrification processes. The swift estab-
lishment of denitrifying bacteria within the symbiotic biofilm highlights its potential for future
applications. In essence, this research underscores the viability of symbiotic biofilms as a
proficient mechanism for wastewater treatment.
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