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Abstract: In this paper, the vibration control of the multivariable model of rotor bearing systems
is considered for investigation. Some simply structured controllers that can suppress vibrational
disturbances are tested for their robustness via the H∞ optimality criteria. Initially, intelligent
optimisation techniques are used to minimize the H∞ mixed-sensitivity norm of the Linear Fractional
Transformation (LFT) of the simple two-term PI controllers acting on the rotor system models. This
results in some controllers that can suppress the vibration but with a slow oscillatory response. After
this, an appropriate interpretation of the Bode plot singular values of the combined sensitivity and
control effort matrix is used to explain the performance shortcomings of this controller. Moreover, the
existing simply structured controllers in the literature exhibiting a faster performance are examined
by using singular value plots. It is shown that when the maximum singular value of the control
effort matrix drops below the 0 db line, the performance will be boosted. Finally, the H∞ controllers
are designed by using the robust control toolbox in MATLAB. This resulted in rapid disturbance
rejection, with the vibration amplitude diminishing to zero after 0.3 s due to double-step disturbances.
However, these controllers in the frequency domain have an order of eight and may not be realizable
to be implemented in practice. It is concluded that examining the Bode plot of the maximum
singular value of the control effort matrix is a useful tool for evaluating performance in the frequency
domain. However, designing robust controllers by toolboxes in the time domain can lead to superb
performance with higher-order controllers.
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1. Introduction

Active vibration control in rotors has been a well-known field of research during the
last five decades. Due to the uncertainty of external disturbances, robust controllers seem
to be suitable candidates for vibration suppression in rotors. However, the research on this
subject, particularly for rotor vibration, is limited.

Early investigations considering H∞ control for short rotors showed the existence of
a controller in the frequency domain [1,2]. They have been used to control vibrations via
Active Magnetic Bearings (AMBs). The experimental verification of such robust controllers
has been conducted [3], and recently, effectiveness of the controllers for short rotors has
been demonstrated [4].

Apart from experimental attempts, a theoretical investigation of optimal controllers
and robust-type vibration suppressors via AMBs has been performed for short rotors that
are assumed rigid [5,6]. For short and flexible rotors, optimal controllers have also been
studied [7]. However, the multivariable model requirement for rotor vibration control
(even for rigid short rotors) is studied and demonstrated in [8].

For the vibration control of flexible and long rotors, an experimental and theoretical
analysis is carried out in [9], and the multivariable nature of controllers is emphasized
in [10]. Moreover, it has been shown that there exist controllers that suppress vibrations
at resonance [11].

Acoustics 2024, 6, 134–156. https://doi.org/10.3390/acoustics6010008 https://www.mdpi.com/journal/acoustics

https://doi.org/10.3390/acoustics6010008
https://doi.org/10.3390/acoustics6010008
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/acoustics
https://www.mdpi.com
https://doi.org/10.3390/acoustics6010008
https://www.mdpi.com/journal/acoustics
https://www.mdpi.com/article/10.3390/acoustics6010008?type=check_update&version=1


Acoustics 2024, 6 135

Recently vibration suppression in long flexible rotors was studied, in which the
existence of realizable controllers subject to any kind of disturbance was investigated
and commented upon [12]. However, the comparative performance of robust vibration
controllers in both the time and frequency domain for long and flexible rotors has not been
carried out yet.

In this paper, the long flexible rotor system that is described in [12] is considered for
investigation. The H∞ optimality criteria was selected for the purposes of comparison.
Therefore, the H∞ control problem is initially formulated. Thereafter, a mixed-sensitivity
H∞ criterion, which is an appropriate method for the investigation of disturbance rejection
in vibration control problems, is described.

An iterative algorithm is introduced, enabling robust controllers, which can also be
H∞ optimal, to be determined. It is shown that for the rotor system model, the resulting
controller can be realizable with a low order. However, satisfying the H∞ optimality
condition does not guarantee an appropriate system response when operating under
severe disturbances.

Moreover, via a singular value analysis, it is concluded that the singular values for
the sensitivity matrix are not the only factors to be considered for performance evaluation.
Further reduction in the H∞ norm for the KS matrix is required to decrease the control
effort and avoid high amplitude oscillations. Finally, an appropriate system response is
achievable, but it requires a high-order multivariable controller. The transfer function
matrix of such a controller in the frequency domain and its complexity and feasibility are
discussed and commented upon.

2. Open-Loop Transfer Function Matrix Estimation

A rotor can be idealized as n + 1 of the distributed parameter shafts. Those shafts are
connected via n lumped parameter disks. The overall assembly is mounted on bearings
and is shown in Figure 1.
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The vibration of the mth lumped disk in the vertical y direction, which results from the
vertical excitation force at the lth lumped element, can be computed using the flexibility
matrix as follows:
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The vibration of the mth lumped disk in the vertical y direction, which results from the
vertical excitation force at the lth lumped element, can be computed using the flexibility
matrix as follows:

G′lm(jω) = Λrs(jω)︸ ︷︷ ︸
r=4m−3,s=4l−2

(1)

where G′lm(jω) in (1) is the frequency response function, in which the corresponding
flexibility matrix is as follows:

n
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The matrices K in the flexibility matrix are defined by the following:[
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where the T matrices in (2) are as follows:
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The parameter Γ = s

√
L0C0 with L0 = ρ A and C0 = 1/EI where A is the cross-

sectional area, E is the modulus of elasticity, and I is the moment of inertia of the cross
section in bending.



Acoustics 2024, 6 137

The matrices D in (1) are defined by the following:

Di
ll =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = Di
rr Di

lr =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


Di

rl =


0 Jt s 0 Ω Jp s

m s2 0 0 0
0 −Ω Jp s 0 Jt s
0 0 m s2 0


Jp and Jt are the polar and transverse moments of inertia of the lumped disc. In the

above equations, s is the Laplace variable, m is the mass of each lumped element, Ω is the
rotational speed of the shaft, and ρ is the density of the shaft material. L is the length of
each distributed element.

The matrices B are defined by the following:

Bi
ll =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 = Bi
rr Bi

lr =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


Bi

rl =


0 0 0 0

Kyy + s Cyy 0 Kyz + s Cyz 0
0 0 0 0

Kzy + s Czy 0 Kzz + s Czz 0


The above partitioned flexibility matrix is described in [12] based on the dynamic

stiffness matrix method (DSMM), in which each of the sub-matrices is described in [12].
Frequency response data can be obtained from each transfer function, so that a vector

of the frequency response data, as a function of ω, could be written as follows.

G′pp(jω) = xpp + j ypp (3)

G′pq(jω) = xpq + j ypq (4)

xpq and ypq in (3) and (4) are the real and imaginary parts of the transfer function G’.
From the multivariable frequency response matrix in Equations (3) and (4), estimates

of the transfer functions can be obtained in the following form [12]:

G′ij(s) ∼= Gij(s) =

m
∑

k=1
aksk

n
∑

k=1
bksk

m ≤ n (5)

The schematic diagram of the closed-loop vibration control system for the rotor system
is shown in Figure 2:

In the above open-loop system, the transfer function matrix is as follows:[
y1(s)
y2(s)

]
=

[
G11(s) G12(s)
G21(s) G22(s)

] [
u1(s)
u2(s)

]
(6)

In (6), y1(s) and y2(s) are the transformed functions of the measured vibration am-
plitude via sensors 1 and 2, and u1(s) and u2(s) are the transformed functions of control
forces applied via the actuators 1 and 2.
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Figure 2. Closed-loop control rotor-bearing system with sensors and actuators.

The individual transfer functions in (6) were estimated via [12]

G11(s) =
0.146s3 + 15.76s2 + 3229.1s + 511750

s3 + 213.06s2 + 13904s + 2574700
(7)

G22(s) =
−0.038s2 + 3.47s + 840.04

s2 + 6.78s + 12435
(8)

and

G21(s) =
0.103s2 + 1.92s + 2576.7

s2 + 6.303s + 12501
(9)

G12(s) =
−0.049s2 − 5.39s + 832.7

s2 + 6.91s + 12617
(10)

The input control effort vector is u(s), and the measurement variable vector is y(s).
The controller designated by the matrix K(s) should be designed to apply the control force
u(s) to the rotor system G(s) via the actuators. In the terminology of robust control that will
be described in Section 4, the G(s) is a part of the plant that is designated by the matrix P(s).

3. Formulation of the H∞ Control Problem

In the early eighties, investigations aimed at reducing closed-loop control system sen-
sitivity were undertaken. Initially, a sensitivity reduction analysis for MIMO systems was
formulated by Zames [13] as an optimisation problem. He employed a functional analysis
and used transformations, matrix norms, and approximate inverses in his procedures.

Thereafter, this area of research was developed by introducing the robust control theory
and H∞ optimal control to design controllers. By defining new transformations, further
algorithms were developed, simplifying the design procedures. General control configurations
can be investigated by H∞ methods, described by the block diagram in Figure 3:

The input disturbance vector is denoted by d(s), the output error and control signal
vector is z(s), the input control effort vector is u(s), and the measurement variable vector is
y(s). The controller model is designated by the matrix K(s) and the plant by the matrix
P(s). This general control configuration can be expressed by the following:[

z
y

]
= P(s)

[
d
u

]
=

[
P11(s) P12(s)
P21(s) P22(s)

]
(11)
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The plant P(s) consists of four sub-matrices, which satisfy the following relations:

z = P11u + P12d (12)

y = P21u + P22d (13)

The controller applies the control effort based on the measured variables, such that

u = K(s) y (14)

Upon eliminating u and y from Equations (12)–(14), the following relationship is obtained:

z = Fl(P, K) d (15)

where
Fl(P, K) = P11 + P12K(I− P22K)−1P21 (16)

In Equations (15) and (16), Fl(P, K) is known as the lower Linear Fractional Transfor-
mation (LFT), described by Glover [14], which determines the system output z, follow-
ing disturbances.

A sensible representation for the disturbance vector d(s) can be obtained by using the
second norm of the signal d(t) as follows (see, for example, Desoer and Vidyasagar [15]):

‖d(t)‖2 =

√
n

∑
i=1

∫ ∞

0
|di(τ)|2dτ (17)

where n is number of inputs and outputs. Similarly, for the output vector z(s), the second
norm of z(t) would be as follows:

‖z(t)‖2 =

√√√√ 2n

∑
i=1

∫ ∞

0
|zi(τ)|2dτ (18)

where 2n is used when there are two output channels, and where, in some cases, there may
be more than 2n outputs. However, the question of interest is “If we know how large the
input disturbances are, how large are the outputs going to be ?” Doyle et al. [16].
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The answer is that an upper bound for the output can be determined. This upper
bound can be expressed by using the H∞ norm via the following relationship:

max
d(t) 6=0

(
‖z(t)‖2
‖d(t)‖2

)
= ‖Fl(P, K)‖∞ (19)

where the symbol ‖ ‖∞ is used for the H∞ norm, which can be computed from the following:

‖Fl(P, K)‖∞ = sup
ω

σ(Fl(P(jω), K(jω))) (20)

The symbol σ indicates the maximum singular value of the matrix Fl(P, K) at each
frequency ω, remembering that (17) and (18) are valid for any two signals, which can be
related by a transfer function matrix. The proof for SISO systems is given in Doyle et al. [16]
and for MIMO systems in Zhou et al. [17]. Therefore, the H∞ control problem can be
summarised by the following statement from Skogestad et al. [18].

Find all stabilising controllers K, such that

‖Fl(P, K)‖∞ ≤ γ (21)

γ in (21) is a parameter that is chosen via weighting functions.

4. Mixed-Sensitivity H∞ Control

This form of a control strategy was employed for disturbance rejection purposes by
Yue and Postlethwaite [19] for a helicopter control system. The minimum effort control
method herein, which can be converted into a mixed-sensitivity H∞ form, enabling H∞
optimality, is to be confirmed. The control system configuration is shown in Figure 4,
describing how disturbance rejection can be achieved.
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The output Is a combination of z1(s), which is the weighted error of the system, and
z2(s), which is the weighted control effort, where

z =
[
zT

1 zT
2
]T (22)
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Because the set point vector is null, the error vector v(s) and measured variable vector
y(s) are equal, with opposite signs. The z vector can be computed from the following:

z1(s) = W1(s) v(s) (23)

z2(s) = W2(s) u(s) (24)

By defining the sensitivity matrix of the system as follows:

S(s) = [I + G(s)K(s) ]−1 (25)

It can be shown that (23) and (24) may be rewritten as follows:

z1(s) = W1(s) S(s) d(s) (26)

z2(s) = W2(s) K(s)S(s) d(s) (27)

Then the sub-matrices of the plant P(s) can be computed from the following relations
O is empty matrix:

P11(s) =
[

W1(s)
O

]
P12(s) =

[
W1(s)G(s)
−W2(s)

]
P22 = −G(s) P21 = −I (28)

The partitioned matrix relationship is as follows:z1
z2
y

 =

[
P11(s) P12(s)
P21(s) P22(s)

] [
d
u

]
(29)

Upon the substitution of (28) into (16), if the LFT of the system can be computed as

Fl(P, K) =

[
W1S

W2K S

]
(30)

then relation (19) in this case would be as follows:

max
d(t) 6=0

(
‖z(t)‖2
‖d(t)‖2

)
=

∥∥∥∥[ W1(s)S(s)
W2(s)K(s) S(s)

]∥∥∥∥
∞

(31)

Therefore, if a stabilising controller K is selected for the system which satisfies the relation∥∥∥∥[ W1S
W2K S

]∥∥∥∥
∞
= γ (32)

then the output of the system z is bounded by following inequality:

‖z(t)‖2 ≤ γ‖d(t)‖2 (33)

It is common practice to select the appropriate weighting matrices W1 and W2 for the
error and control effort vectors. These matrices are diagonal as follows:

W1(s) = diag(w1(s), . . . , wi(s), . . . wn(s)) (34)

W2(s) = diag
(
w′1(s), . . . , w′i(s), . . . w′n(s)

)
(35)

The shape of wi(s) in (34)–(35) depends on the frequency range of interest. In Sko-
gestad et al. [18], wi(s) functions are recommended for process control applications. The
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weighting function w′i(s) for the control effort can usually be formulated in order to achieve
an appropriate minimum.

Moreover, both the low and high frequency singular value characteristics are of in-
terest in machine vibration problems. The singular values of the sensitivity matrix at low
frequencies are required for the assessment of step-response transients, while the high
frequency values give information on noise attenuation. However, for a significant distur-
bance rejection at a steady state, the sensitivity weighting function could be represented by
the following:

wi(s) = γi
s + Mi
s + 1

Mi � 1 (36)

The weighting function w′i(s) should have small gains at a low frequency, bounding
the sensitivity matrix so that

w′i(s) = α
s + ε

s + 1
ε� 1 (37)

The forms in (37) and (36) are also recommended by Postlethwaite in [19]. In order
to achieve a lower control effort, w′i(s) should approach unity. The functions wi(s)

−1 and
w′i(s)

−1 represent upper bounds for the sensitivity and control effort, respectively.
Similarly, both the upper and lower bounds of the sensitivity matrix should be consid-

ered to evaluate the effectiveness of the controller. This requires the determination of the
maximum and minimum singular values of the sensitivity matrix in (25). The ratio of the
output to disturbance, according to [13], is limited to the following:

σ(S) <
‖y(t)‖2
‖d(t)‖2

< σ(S) (38)

The symbols σ and σ denote the maximum and minimum singular values of S over
the entire frequency range. A controller exhibits robustness to model perturbations if the
lower and upper bound in (38) are close together. A criterion for the closeness of σ and σ
can be defined by the condition number, which is as follows:

κ =
σ(S)
σ(S)

(39)

When the condition number κ is large, the plant is ill conditioned, which means that
the sensitivity variations as a result of model perturbations are significant [17]. Therefore,
attempts to make κ ≈ 1 are important, as is minimising σ. This statement is not always
true [18]. We will show, for example, that by using a PI controller to achieve disturbance
rejection, κ decreases, but this has an adverse effect on the transient responses.

A further condition number, which could be assigned for a particular frequency range,
can be defined as follows:

κ(S(jω)) =
σ(S(jω))

σ(S(jω))
(40)

Assuming that the controller has produced satisfactory transient and steady-state
simulation results, if κ is decreased, the system exhibits robustness to model perturbations,
thereby enhancing performance.

5. Computation of the H∞ Optimal PI Controller

PI controllers always provide full disturbance rejection when they face step distur-
bances. This cannot be interpreted as robustness. However, we can adjust the PI parameters
such that the mixed-sensitivity H∞ norm can be minimised. We are interested to know if,
by this adjustment, the system response can be improved and robustness can be achieved.

In this section, we will determine the PI parameters such that the H∞ norm of the
mixed-sensitivity problem is minimised. Herein, we introduce an iterative algorithm,
based on the Hooke and Jeeves pattern search method. The H∞ norm of W1S, W2KS is
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considered as an objective function in the optimisation procedure, which could be denoted
by the following:

∆ =

∥∥∥∥[ W1S
W2K S

]∥∥∥∥
∞

(41)

The iterations continue until the norm ∆ in (41) is minimised, enabling the condition
∆ < 1 to be achieved. In order to conserve stability, the following constraint is imposed:

|I + G(s)K(s)| =

z
∏
i=1

(s + αi)

p
∏
i=1

(s + βi)

sup(−αi) < 0 (42)

The flow chart of the pattern searches for finding the gain and integral rate, which
results in a minimum H∞ norm, is shown in Figure 5. The main subroutine of the search is
known as an exploration step about a base point, which, if successful, is followed by pattern
moves. The details of the exploration procedures for finding the lower norm are described
by the flow chart in Figure 6. The bottom left block in Figure 6 indicates that if the variable
xi+1 = ki+1,i+1 is explored (bottom right block), then the next variable xi+2 = ki+2,i+2 (if
any) should be explored. Otherwise (or), if the previous xi = ki,i is kept, then the variable
xi+1 = ki+1,i+1 should be explored. The exploration step ends when all the variables are
explored. Therefore, any exploration step in the Hooke and Jeeves optimisation method
is deterministic.

An iteration procedure is also included in the robust control toolbox [20] in MATLAB,
based on the parameter γ in (36), which is known as the γ iteration. The main difference
between the present approach and that of MATLAB is that in the latter, there is no choice in
selecting the order controller structure. However, the required performance of the controller
could be imposed by the weighting functions in (36) and (37). If a solution exists, then the
program determines the specifications for the H∞ controller. The final γ value, obtained via
the iterations, determines whether or not the desired sensitivity limit has been achieved.

For the following weighting matrices

W1(s) =

0.4
(

s+10
s+1

)
0

0 0.4
(

s+10
s+1

) (43)

W2(s) =

0.5
(

s+0.01
s+10

)
0

0 0.5
(

s+0.01
s+10

) (44)

a controller matrix consisting of PI diagonal elements was calculated using the Hooke and
Jeeves search method. Table 1 shows the search results including the initial PI parameters,
the number of iterations, and the final resulting PI parameters, which are used to obtain
the minimum rejection time when a step disturbance is imposed on the rotor system.

Table 1. Searching for a PI controller which results in the minimum H∞ norm.

Initial Values of
kP

11,kP
22,kI

11,kI
22

Final Values of
kP

11,kP
22,kI

11,kI
22

Number of
Iterations

Minimum Value of
H∞ Norm

kP
11 = 1, kP

22 = 1
kI

11 = 4,
kI

22 = 4

kP
11 = 2.1, kP

22 = 2.1
kI

11 = 22.1
kI

11 = 22.1
N = 85

∥∥∥∥[ W1S
W2K S

]∥∥∥∥
∞
= 0.995
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The resulting pre-compensator, which can achieve stability, together with the lowest
possible norm, can be expressed as follows:

K(s) =

(2.1 + 22.1
s

)
0

0
(

2.1 + 22.1
s

) (45)

The maximum and minimum singular values of the (W1S, W2KS) matrix are shown
in Figure 7, which shows that the upper and lower bounds are fairly close together. Both of
the curves are below the 0 db line, as required.

In Figure 8, the Bode plot for the sensitivity matrix of the H∞ optimal PI controller
is shown, and this appears to be very satisfactory. The singular values are below 0 db for
all frequencies, which is a significant achievement. Moreover, the condition number is
very low because the maximum and minimum curves are very close together. This low
condition number is not a result of optimisation. In fact, because the PI controller exhibits
robustness, a low condition number is always associated with it.

Although it seems that the above PI controller satisfies the H∞ optimality condition,
the simulation results show unsatisfactory responses, as indicated in Figure 9. Regardless
of minimising the cost function in (41), there are significant oscillations in the responses
following double-step disturbances. The rejection time is also high, which is a sign of poor
relative stability. This occurs because of the closed-loop pole and zero locations, which
cannot be identified via the H∞ optimality criteria.
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It should be remembered that the PI controller in [12], with following form

K(s) =

(0.1 + 14
s

)
0

0
(

0.1 + 14
s

) (46)

exhibits more appropriate responses as shown in [12] but fails the H∞ optimality test herein,
with the resulting cost function of the following:∥∥∥∥[ W1S

W2K S

]∥∥∥∥
∞
= 1.385 (47)

The Bode plot of the singular values of the cost function is shown in Figure 10, where
σ reaches 2.7 db and seems to indicate failure but as shown in [12] it works properly.
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6. Performance Evaluation of the Minimum-Effort Controller

According to [12], the minimum-effort controller K can be expressed by the following:

K(s) = k(s) 〉.〈h (48)

In (48), the symbol >.< represents the outer products of k(s) and h. The k(s) consists
of two simple time-delay filters given by (49), and h is the gain vector given by (50). This
makes the controller K(s) strictly proper, i.e.,

k1(s) =
5.2 K

T s + 1
k2(s) =

5.3 K
T s + 1

(49)

h1 = 0.01 h2 = 0.0106 (50)
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In (49), K = −1627 and T = 17.11. K and T are found by optimisation techniques,
according to the flow charts in Figures 5 and 6. By considering the weights in (43) and (44),
the maximum and minimum singular values of the (W1S, W2KS) for the minimum-effort
controller are drawn in the Bode plot of Figure 11. It is shown that at frequencies over
5 rad/s, the maximum and minimum singular values drop below the 0 db line.

Acoustics 2024, 6, FOR PEER REVIEW  18 
 

 

 

Figure 11. The Bode plot of maximum and minimum singular values of the ),( 21 KSWSW  
mixed-sensitivity matrix for the minimum-effort controller. 

The singular values of the sensitivity matrix are shown in the Bode plot of Figure 12, 
from which disturbance rejection, when using the minimum-effort controller, can be ex-
plained. Figure 12 indicates that the maximum singular value is bounded by the 0 db line, 
while the minimum singular value, at lower frequencies, drops to –33 db. 

This minimum singular value explains why such excellent step responses were 
achieved in [12]. Therefore, any attempt to bring the maximum singular value below the 
0 db line does not contribute to the performance of the controller. 

Another excellent property is that both the maximum and minimum singular values 
converge at the line 0 db for the frequencies of interest, and this explains why the attenu-
ation filter in the minimum-effort controller suppresses the oscillations significantly, with 
the lowest possible control effort. 

The performance of the minimum-effort controller can also be confirmed via the sin-
gular values of the control effort matrix KS without any weight. In Figure 13, the maxi-
mum singular values of KS, for three types of controllers, are drawn for the purposes of 
comparison. It is seen that the maximum singular value of the minimum-effort controller 
indicated by the solid line is always below the curves for the PI controller of [12], and the 
H∞ optimal PI controller. Moreover, by using the minimum-effort controller, the control 
effort matrix KS becomes singular, enabling the minimum singular value to be zero, sca-
lar, or −∞ db and hence cannot be drawn for comparison purposes. Therefore, the lower 
bound of the control effort matrix KS for minimum-effort controller is always lower than 
any other type of controller that can be implemented. 
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The singular values of the sensitivity matrix are shown in the Bode plot of Figure 12,
from which disturbance rejection, when using the minimum-effort controller, can be ex-
plained. Figure 12 indicates that the maximum singular value is bounded by the 0 db line,
while the minimum singular value, at lower frequencies, drops to –33 db.

This minimum singular value explains why such excellent step responses were
achieved in [12]. Therefore, any attempt to bring the maximum singular value below
the 0 db line does not contribute to the performance of the controller.

Another excellent property is that both the maximum and minimum singular values
converge at the line 0 db for the frequencies of interest, and this explains why the attenuation
filter in the minimum-effort controller suppresses the oscillations significantly, with the
lowest possible control effort.

The performance of the minimum-effort controller can also be confirmed via the
singular values of the control effort matrix KS without any weight. In Figure 13, the
maximum singular values of KS, for three types of controllers, are drawn for the purposes
of comparison. It is seen that the maximum singular value of the minimum-effort controller
indicated by the solid line is always below the curves for the PI controller of [12], and the
H∞ optimal PI controller. Moreover, by using the minimum-effort controller, the control
effort matrix KS becomes singular, enabling the minimum singular value to be zero, scalar,
or −∞ db and hence cannot be drawn for comparison purposes. Therefore, the lower
bound of the control effort matrix KS for minimum-effort controller is always lower than
any other type of controller that can be implemented.
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7. Design by Robust Control Toolbox

The MATLAB toolbox for robust control [20] is based on γ iterations and operates on
the state-space time domain, where γ is the coefficient of the weighting function in (36).
The significant difference with our approach is that the parameters of the controller are
fixed for each γ and can be obtained from the state-space realisation of the plant, i.e., P(s),
which is defined by Figure 3.

The theoretical framework for the development of the toolbox initiated by
Doyle et al. [21], who derived a formula for a family of H∞ controllers for a given plant
P(s), can be described by a minimal state-space realisation, in four blocks, as follows:

P(s) =

A B1 B2
C1 D11 D12
C2 D21 D22

 (51)

The Doyle formulas [21] were based on several assumptions, the most significant being

D22 = 0 (52)

Equation (52) does not include the general case. Later, Safonov et al. [22] derived
new sets of formulas for the case D22 6= 0 with new assumptions, from which the robust
control toolbox [20] in MATLAB was developed. The algorithm results in an observer-based
controller, generally with a higher degree than the open-loop-system G(s) model. The
lowest possible degree of the controller is equal to the plant degree P(s), which obviously
depends on both of G(s) and W(s).

This toolbox can also be employed for H∞ mixed-sensitivity problems. Therefore, the
results obtained would form a good comparison. For this purpose, we consider the same
weighting matrix in (43) so that

W1(s) =

[
0.4
(

s+10
s+1

)
0

0 0.4
(

s+10
s+1

)]

and, to obtain a low-order, controller

W2(s) =

[
0.005 0

0 0.005

]
(53)

The following procedures have been employed in our design using the robust con-
trol toolbox:

I. Start with a γ value (21) and convert all the weighting matrices (53) to a state-space
form [23].

II. Convert the open-loop system G(s) (7)–(10) to a state-space form [23].
III. Assemble G(s) and W(s) to obtain the plant, i.e., P(s) (Figure 4 and (28) and (29)),

augmented in state-space form [23].
IV. The conditions of the existence of an H∞ optimal controller will be checked by the

program, and if all the tests are passed, the state-space realisation of the controller will
be produced by the program [20].

V. When even one of the tests is failed, a new γ value is selected for the next trial.
VI. Finally, convert the state-space form to obtain a transfer function matrix description of

the resulting successful controller [23].

The conversion from state space to transfer function for multivariable systems herein
is performed by the MFD toolbox in MATLAB [23]. If γ for this controller is too low, then
the expected sensitivity function cannot be obtained by the controller and the performance
would not be satisfactory.

A starting value of γ = 0.4, to satisfy the weighting function in (43), was selected.
The first iteration was successful; therefore, all four controllers have been evaluated from
this unique weighting matrix. The resulting eight-order controllers are described by the



Acoustics 2024, 6 152

simulation block diagram in Figure 14, in which the coefficients of the controllers are
as follows:

K11(s) =

9
∑

i=1
n11is9−i

9
∑

i=1
dis9−i

K12(s) =

9
∑

i=1
n12is9−i

9
∑

i=1
dis9−i

(54)

K21(s) =

9
∑

i=1
n21is9−i

9
∑

i=1
dis9−i

K22(s) =

9
∑

i=1
n22is9−i

9
∑

i=1
dis9−i

(55)

d1 = 1, d2 = 340080, d3 = 3304× 105, d4 = 88649× 106, d5 = 10726× 109

d6 = 10669× 1011, d7 = 71224× 1012, d8 = 13929× 1013, d9 = 69122× 1012

n111 = 93440, n112 = 15902× 106, n113 = 69416× 108, n114 = 10391× 1011, n115 = 10348× 1013

n116 = 10057× 1015, n117 = 15931× 1016, n118 = 74338× 1016, n119 = 59402× 1016

n211 = −31360, n212 = −22071× 106, n213 = −79095× 108, n214 = −10297× 1011, n215 = −10989× 1013

n216 = −88284× 1014, n217 = −10268× 1016, n218 = −26206× 1016, n219 = −16809× 1016

n221 = 65920, n222 = 18683× 106, n223 = 68687× 108, n224 = 93408× 1010, n225 = 10108× 1013

n226 = 83294× 1014, n227 = 15567× 1016, n228 = 89339× 1016, n229 = 74595× 1016

n121 = −24320, n122 = −13376× 106, n123 = −59716× 108, n124 = −92938× 1010, n125 = −95017× 1012

n126 = −92388× 1014, n127 = −20862× 1016, n128 = −13662× 1017, n129 = −11668× 1017

The response of the system to unity double-step disturbances is shown in Figure 15,
indicating a very low rejection compared with all other type of controllers, i.e., after a 0.3 sec
full rejection has been obtained. The initial request for the sensitivity function imposed
by W1(s) can in fact be satisfied by a 75% rejection, but full rejection was obtained. This
controller is not practically realisable because of its higher order and because of the high
gains required. There is also a maximum direct controller input–output transmission of
a gain of 93,440, which would amplify the input signal noise, inhibiting effective system
control. It should be noted that in Figures 9 and 15, the response is per unit step, i.e., and it
depends on the unit of the amplitude of the step disturbance.

As explained by Figure 8, the PI controller can reduce the singular values to 0 db, but
there is an unacceptable price to be paid for this in terms of the transient responses. This
penalty cannot be avoided by the H∞ optimal controller. The poor performance of the H∞
optimal PI controller can be explained via Figure 13, in which the maximum singular value
of the control effort matrix is greater than the other two and is above the zero db line at all
frequencies. The outcome is evident from the undesirable poor response in Figure 9 with
excessive oscillations.

Therefore, the shape of the sensitivity matrix’s singular values should not be misinter-
preted, even if several H∞ norms have been minimised. A more accurate evaluation can be
obtained by interpreting the singular value curves of the combined sensitivity and control
effort matrix via a Bode plot, as in the case of the minimum-effort controller. In the final
analysis, the controller must provide appropriate response characteristics in order to fulfil
the dynamic and steady-state performance specifications, in addition to satisfying the H∞
optimality condition.

It can be suggested that H∞ controllers are computational, and their performance is
justified by simulation only (i.e., mathematically). In reference [10], experimental results
also show that, practically, there is no vibration suppression by H∞ controllers.
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s  +213.06s  +13904s+25747003 2

g11

Sum 9

Sum 8

Sum 7

Sum 6

Sum 13

Sum 12

Sum 11

Sum 10

Step  r1

Step  r

S tep  2

Step  1

Figure 14. The simulation block diagram of the H∞ optimal controller computed from the robust controller toolbox.
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8. Insights into Motivations and Methods in This Paper

The motivation for this theoretical article is a comparison of the performances of robust
controllers that are designed both in the time and frequency domain. Such a comparison,
particularly for the vibration control of long rotors, does not exist in the literature. This
comparison is rigorous since the long rotor system requires multivariable models with a
very high interaction index for their representation. Therefore, the level of rigorousness is
high, therefore it requires a theoretical investigation.

It is shown that the time-domain controller design, by using the robust control toolbox,
theoretically can work very well, and the settling time of the response reduces substan-
tially when compared with controllers designed in the frequency domain based on the
optimisation methods.

While the controllers found via the frequency-domain design can be simply structured,
the H∞ controllers designed by the toolbox (i.e., time domain) exhibit a high order indeed,
such that realisability is questionable. The higher order of the time-domain designed H∞
controllers are unavoidable, since they are observer-based controllers in the state space (big
picture). The following table summarises the motivation.

Apart from Table 2, the performance of the solutions can be measured by the γ values
in (21) in Table 3 for the three types of controllers discussed in this article.

It should be remembered that in reference [10], the rotor model is based on the mass,
stiffness, and damping matrices of a rotor system. Such lumped models are easily convert-
ible to a state-space model, but they are not accurate enough to represent a long rotor.

In this article, the model is obtained from a connection of the distributed parameter
shafts to the lumped parameter disks and bearings and a multivariable transfer function
matrix is accurately estimated for such a hybrid system. Therefore, by using the approach
in this paper, apart from the accuracy of the model, it is also possible to compare the
performance of controllers that are designed both in the time and frequency domain based
on transfer function matrices. Such a comparison is the main purpose of this paper.
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Table 2. Comparison of the time- and frequency-domain H∞ controllers.

Controller Type Response Settling Time
in Sec Advantages Disadvantages

H∞ controller designed by robust
control toolbox (time domain—state

space)
0.2 s (see Figure 15) Rapid response and

rich performance
High-order observer-based
controller (see (54) and (55))

H∞ controller designed but with
optimisation techniques (frequency

domain—transfer function)
4 s (see Figure 9) Simply structured controller

(see (45) and (46))
Slow response and
poor performance

Table 3. Controller performance measured by the γ value.

Controller Type H∞ Controller—PI Type
in (45)

H∞ Controller—Minimum
Effort Type in (49)

H∞ Controller Time
Domain—State Space

Observer Based on (54)

performance measured by γ
∥∥∥∥[ W1S

W2K S

]∥∥∥∥
∞
= 0.995

∥∥∥∥[ W1S
W2K S

]∥∥∥∥
∞
= 0.5

∥∥∥∥[ W1S
W2K S

]∥∥∥∥
∞
= 0.4

The dynamic stiffness K, D, and B partitioned matrices and their details in (1) and
(2) express the dynamic model in this paper. They are represented in the s domain and
include all the dynamic parameters of shafts, disks, and bearings. This builds Equation
(1a), from which a transfer function matrix can be estimated. Therefore, the dynamic model
is embedded in the elements’ transfer function matrix (5).

9. Conclusions

In this paper, the performance of two control strategies for disturbance rejection are
evaluated by the H∞ optimality criteria. It has been shown that a PI controller can be
computed with the lowest possible H∞ mixed-sensitivity norm and appropriate sensitivity
matrix singular values. The resulting H∞ optimal PI controller enables full disturbance
rejection with a slow oscillatory response. Thereafter, it can be concluded that the resulting
poor transient responses may not be identified by the H∞ optimisation procedure.

An appropriate interpretation of the Bode plot singular values of the combined sensi-
tivity and control effort matrix can be used to explain the performance shortcomings of this
controller. Moreover, the performance of the minimum-effort controller, derived in [12],
is confirmed via a singular value analysis. It is demonstrated that the attenuation filter
enables the maximum singular value of the sensitivity matrix to be bounded by the 0 db
line, while the maximum singular value of the control effort matrix drops below the 0 db
line. This indicates that a minimum-control-effort vibration suppression, together with
noise attenuation, has been achieved.

Finally, the H∞ controller computed by the robust control toolbox in MATLAB results
in rapid disturbance rejection, with the vibration amplitude diminishing to zero after 0.3 s.
However, it would be very difficult to realise this eighth order controller in practice.
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