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INTRODUCTION

The trace methods were introduced in [3] as an effective way of studying the algebraic K-theory
of suitable rings, by mapping it to more computable invariants which are typically constructed
from the topological Hochschild homology spectrum THH and its cyclic action. One particularly
successful invariant is the topological cyclic homology TC defined from suitably derived fixed
points of the cyclic structure of THH. If one tries to extend these methods to the algebraic K-
theory of forms or to cobordisms of forms (i.e. Grothendieck-Witt and L-theory, respectively),
one discovers the real topological Hochschild homology THR, a dihedral refinement of THH and
the real topological cyclic homology TCR.

The real topological Hochschild homology THR(A) of a ring (or ring spectrum) with anti-
involution A has been introduced in unpublished notes of Hesselholt and Madsen. It is an
O(2)-equivariant spectrum whose underlying S'-spectrum is THH(A), and where the subgroup
Z/2 of O(2) generated by a reflection acts via a combination of a reflection of the circle and the
anti-involution of A. The Z /2-equivariant homotopy type of THR(A) has been studied extensively:
In [20], it has been computed for spherical group rings in terms of free loop spaces. In [10], we
studied some of its fundamental structural properties and we computed it for F, and Z. In [21], it
has been related to equivariant factorisation homology and calculated for equivariant Thom spec-
tra. In [14], the Hopf algebroid structure on the homotopy groups of THR(F,) is described and
used to give an independent proof of the Segal conjecture for the group of order 2. A key feature
which makes these calculations accessible is the description of THR(A) as a derived tensor prod-
uct, and in particular of its Z /2-geometric fixed-points spectrum as the derived tensor product of
module spectra

THR(A)??/? ~ A%$7/2 @ , A$7/2,

where A acts on A%2/2 on the left and on the right by the ‘Frobenius actions’, described informally,
respectively, by the formulasa - x = axw(a)and x - a = w(a)xa, and w is the anti-involution of A.

The real topological cyclic homology TCR(A; p), for a prime number p, is a Z/2-equivariant
spectrum introduced in [20], whose underlying spectrum is the p-typical topological cyclic homol-
ogy TC(A; p). Its construction is analogous to the classical definition of TC(A; p) of [3], by taking
the homotopy limit over certain maps

R,F: THR(A)“»™*' —s THR(A) "
in the category of Z/2-spectra, thus involving the equivariant structure of THR with respect to

the finite dihedral subgroups D ,» of O(2) and the Weyl actions of Z/2 = D ,» /C ,» on THR(A) P".
Alternatively, Quigley and Shah give in [28] a construction of TCR for bounded below spectra as
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an equaliser analogous to Nikolaus and Scholze’s definition of TC of [27]. The goal of this paper
is to describe the geometric fixed points TCR(A; p)#7/2 in terms of derived smash products in the
same spirit of the formula for THR (A)#%/2 above, and use this description to carry out calculations
in some fundamental examples.

A ring spectrum with anti-involution A is canonically a left and a right module over the Hill-
Hopkins-Ravenel norm (see [19]) of its underlying spectrum, by means of maps

N Pay@a— A A®(N“?4)— A

described informally, respectively, by sending a ® b ® x and x ® a ® b to axw(b) and w(a)xb.
By taking 7 /2-geometric fixed points, these give the left and right Frobenius A-module structure
on A#7/2 mentioned above. By applying the monoidal functor Necz, we also obtain a left and a right
NeCZA-module structure on N, S 2(A%7/2), Here, we are making the point of distinguishing between
the subgroups Z/2 and C, of O(2), generated, respectively, by a reflection and the rotation of

order 2.

Theorem A. Let A be a ring s pectrum with anti-involution, and suppose that the underlying spec-
trum and the Z /2-fixed points of A are bounded below. Then, for every odd prime p, there is a natural
equivalence of spectra

TCR(4; p)??/? ~ THR(A)??/? ~ A%?/2 @ , AP?/2,

For the prime 2, there is a natural equivalence with the homotopy equaliser
c f
TCR(A;2)4’Z/2 ~ eq( (A Ry NEZ(A‘f’Z/Z))Cz :rgAth/z Q. A%Z/2 )

where f forgets the fixed points and r maps to the C,-geometric fixed points, followed by the respective
identifications of A ® 44 (AY/? ® A¥”/?) and (A ®, c, , NE2(A$Z/2))8C: with A$2/2 @ , A$Z/2.

We prove this Theorem in §2.1 for odd primes, and in §2.2 for the prime 2. Our proof pro-
ceeds by identifying the Z /2-geometric fixed points of THR(A)“?" inductively over n > 0, together
with the structure maps R, F : THR(A)CP"+1 — THR(A)‘?". The key ingredient is a result of [25]
which gives a certain pushout decomposition of the universal space of the family of reflections of
0O(2). We suspect that our theorem could also be proved starting from the description of TCR for
bounded below spectra given in [28] using the same technique. Our proof of Theorem A is given
more generally for bounded-below real p-cyclotomic spectra, see Theorem 2.14.

We use the formula of Theorem A to compute the geometric fixed points of TCR in some
fundamental examples, starting with spherical group rings. Every topological monoid M with
anti-involution w : M°P — M has an underlying Z/2-equivariant homotopy type. The genuine
Z /2-equivariant suspension spectrum S[M] := Z?°M of the latter gets canonically the structure
of a ring spectrum with anti-involution. The monoid M acts on its fixed-points subspace M%/2 by
m - x = mxw(m) and x - m = w(m)xm, and the corresponding two-sided bar construction admits
a ‘Frobenius endomorphism’

¥ B(M?/?,M,M*/?) — B(M?*/?, M, M*/?)
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defined simplicially by ¥ (x, my, ..., m,,y) = (x,my, ..., m,, ym,, ... m;xw(m,) ...w(m,)y). It also
has an involution which reverses the order of the factors of the bar construction and applies w to
each component. The following is analogous to the classical description of TC of spherical group
rings of [3] and [27, Theorem IV.3.6].

Theorem B. Let M be a well-pointed topological monoid with anti-involution. Then, there is a
pullback square

TCR(S[M];2)#7 /> ——————— S BM?Z /2, M, M?/?),,¢,

J{ J(trf
-2y

SOB(MZ /2, M, M2 %) — " 3op(MZ 12, M, M2 /),
where the right vertical map is the transfer. In particular, for M ==, there is an equivalence
TCR(S;2)%?/% ~ s @ RP™,
where RPZ, is the homotopy fibre of the transfer trf : ZPRP*® =Sy, — S.

Let us point out that the pullback square of Theorem B does not require any 2-completion.
In particular, the calculation of TCR(S;2)#?/2 of Theorem B confirms the expected equivari-
ant homotopy type of TCR(S; 2), which appeared in unpublished work of Hegenhaven [20]. We
prove this theorem in Section §3.1, and we calculate this pullback in §3.2 in the case where M
is a discrete group with various assumptions on the involution and the 2-torsion. In particu-
lar, we determine it fully for M = Z with the minus involution and with the trivial involution,
and for M = C,. In Corollary 3.4 for every pointed Z/2-space X, we consider the special case of
the equivariant loop space M = Q°X = Map, (S, X), where S? is the sign representation sphere,
and Z/2 acts on the loop space by conjugation. We use Theorem B to describe the cofibre of an
assembly map

=2(X%/?) ® (S @ RP®) — TCR(S[Q7X];2)%7/2

in terms of the cofibre of the diagonal A : X%/2 — X%/2 x, X?/2, where the homotopy pullback
is along the fixed-points inclusions. In particular, if the involution on X is trivial, these cofibres
vanish and we obtain a splitting

TCR(S[Q°X];2)%"/? = 22X ® (S ® RP™)).

This calculation shows that TCR(S[Q°X];2)$7/2 is equivalent to Weiss and Williams’ hyper-
quadratic L-theory of the pointed space X, which satisfies the same decomposition by [33,
Theorem 4.3, Corollary 4.4].

There is, in fact, a deeper relationship between TCR and L-theory, especially in view of
the following result, which we explain in more details at the end of the introduction. Given
a discrete commutative ring A, and we write TCR(A;2) for the TCR spectrum of the Z/2-
equivariant Eilenberg-MacLane commutative ring spectrum of A equipped with the trivial
involution.
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Theorem C. Let k a perfect field of characteristic 2, and Z the ring of integers. There are equivalences
of spectra

TCR(k; 2)$2/? ~ @(ZZ”_IHk/(x + x| x € k) @ =2"HF,),

n=0

TCR(Z;2)**/* ~ @ (Z*""'HF, ® *"HZ /8 & T*"* ' HF,).

n=0

In the case of perfect fields, we are, in fact, able to calculate the full Z/2-equivariant homotopy
type of TCR(k; 2): In §4.2, we use the description of TRR (k; 2)#Z/2 from Theorem 2.7 to show that
TRR(k;?2) is the Eilenberg-MacLane spectrum of the constant Mackey functor on the ring of 2-
typical Witt vectors W(k;2), where F corresponds to its Frobenius. In particular, in Theorem 4.9,
we show that 77, THR (k; 2)P2" is isomorphic to the (n + 1)-truncated 2-typical Witt vectors of k
(this is true for all commutative rings at odd primes by [11, Theorem C], but it fails in general at
the prime 2, see Remark 4.10). We are then able to conclude the following.

Theorem D. For every perfect field k of characteristic 2, there is an equivalence of Z /2-equivariant
spectra

TCR(k;2) ~ HZ, @ X 'Hcoker(1 — F),

where F . W(k;2) — W(k;?2) is the 2-typical Witt vector Frobenius and the underline denotes the
constant Mackey functor.

A similar decomposition holds for odd primes by a much easier argument, see Proposition 4.2.
Finally, we prove a flat base-change result for TCR#%/2, showing thatif f : A — B is a flat map
of discrete commutative rings such that the geometric fixed points of B are base-changed along
f from those of A, then TCR(B; 2)?%/2 is ‘almost’ base-changed from TCR(A;2)%%/2, up to some
care with the different module structures on HA%%/2 (see Corollary 5.1 for the precise statement).
This allows us to extend the calculations above as follows.

Theorem E. For every perfect F,-algebra A, there is an equivalence of spectra

TCR(4;2)*#/% = @ (22" H(coker(id +(-)*))) & (Z*"H(ker(id +(-)%))),

n=0

where (=)*: A — A is the Frobenius of A. For every ring B with no 2-torsion and perfect modulo 2
reduction, TCR(B; 2)#7/2 is a wedge of Eilenberg-MacLane spectra with homotopy groups

B/(x + x*| x € B) n=41—-1

ker (pr+pr?: B/{4(x + x?)|x € BY > B/2) n =4l
7, TCR(B; 2)**/? = (P pr: B/AK ) )= B/2)

ker (id +(=)*: B/2 — B/2) n=4l+1

0 n=4l+2

foralll > 0, and zero forn < —2.
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Real TC and L-theory

The relationship between TC and L-theory was originally observed by Weiss and Williams and
studied by Weiss and Rognes. They were investigating whether, under certain conditions on a
ring spectrum with anti-involution A, the quadratic L-theory L9(A) is equivalent to the Z/2-Tate
construction of the fibre of the trace map K(A) - TC(A) after 2-completion. Nikolaus then for-
mulated an uncompleted version of this statement, conjecturing that TCR(A;2)#Z/2 should be
equivalent to the genuine normal L-theory of A, defined as the cofibre

L"(A) := cof(LI(A) — L(Mod%,Q,))

of the canonical symmetrisation map. Here, Mod¢ is the co-category of compact A-modules,
and Q4 : (Mod%)°P — Sp is a certain Poincaré structure in the sense of Lurie’s formalism of
L-theory, which is defined using the Frobenius module structure of A%Z/2 (see [8, 3.2.6 and
3.2.10] for the details). A proof of this conjecture will appear in work of Harpaz, Nikolaus and
Shah [15].

By construction, L(Mod%, @ ,) is the symmetric L-theory spectrum L5(A) if A is Borel-complete,
that is, if the canonical map A%#7/2 — A!Z/2 is an equivalence. One can then see that Nikolaus’
conjecture implies the original conjecture of Weiss and Williams, provided the fibre of the trace
map becomes Borel-complete after 2-completion.

In the case of spherical group rings, L"(S[Q°X]) is the hyperquadratic L-theory of [33] by [6,
Corollary 4.6.1], and as mentioned above, it is equivalent to TCR(S[Q°X; 2)#Z/2 by [33, Theorem
4.3, Corollary 4.4] and Corollary 3.4. The normal L-theory L"(k) is also well understood if k is
a perfect field of characteristic 2, for example, by work of Kato and Ranicki, and its homotopy
groups agree with the ones of the geometric fixed points of TCR of Theorem C (see Remark 4.6
for more details on the description of these L-groups). Finally, L"(Z) is calculated by Taylor
and Williams in [32] (see also [16, Corollary 3.9 and 6.2]) and agrees with our calculation of
TCR(Z;2)#%/2 of Theorem C. We are not aware of a flat base-change type of result analogous
to Corollary 5.11 for these normal L-spectra, nor if they have been computed for all the rings of
Theorem E.

1 | PRELIMINARIES
1.1 | Equivariant spectra

Let G be a compact Lie group. In this paper, we will be interested in the case where G is the
orthogonal group O(2), or one of its subgroups. We write Sp® for the stable model category of
orthogonal spectra with an action of G, equipped with the flat model structure of [31]. This is a
model for the homotopy theory of genuine G-spectra. We recall that the weak equivalences are
the zr_-isomorphism, where 7_ is the equivariant homotopy groups Mackey functor.

We denote by ® the derived smash product of G-spectra and of modules in G-spectra, which
can be obtained by applying the smash product to a flat replacement of the orthogonal G-spectra
(i.e. to a cofibrant replacement in the flat model structure). We also denote by ® the tensor of a
pointed G-space Z and a G-spectrum X:

Z®X :=(E¥2)QX.
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For every closed subgroup H < G, we denote the genuine fixed points (which is the strict fixed
points of a fibrant replacement) and the geometric fixed-points functors, respectively, by

(S ()P sp® — spMelih,

where W;(H) = Ng(H)/H is the Weyl group of H in G. We recall that the geometric fixed-points
functor can be defined from the genuine fixed-points functor as

X = (E@H) X)),

where (2 H) is the family of subgroups of N;(H) which do not contain H, the N;(H)-space E(2
H) is its universal space and Eﬁ) is the pointed N;(H)-space defined as the cofibre of the map
(E( H)), — S°which collapses E(? H) to the non-basepoint of S°. This induces a fibre sequence
of W (H)-spectra

(E@ H)), @ X)) — X — xH

called the isotropy separation sequence.

We will be particularly interested in the case where G = O(2) and H = C,, is the cyclic subgroup
of O(2) of rotations of order p, for some prime p. Then, for any O(2)-spectrum X, we have a fibre
sequence of O(2)/C ,-spectra

(E@C), ®X) P — X — Xx%%,

and hence, for any n > 0, there is a fibre sequence of O(2)/C pn+1-spectra
(BR Cp)p @ X) 7 — Xt — (x0) /%,

By choosing the reflection over the real coordinate axis, we can identify O(2) with the semi-direct
product Z/2 X S'. Here, the nontrivial element 7 of Z/2 corresponds to the latter reflection. In
particular, one has the dihedral subgroups D, = Z/2X Cpn < Z/2X S 1 = G. If we restrict the
family (2 C)) to the dihedral group D .41 for n > 0, then it becomes the family R consisting of the
trivial group and of those subgroups generated by the reflections in D .+1. Hence, by restricting
to Dpyni1 /C,, we get a fibre sequence of D n+1 /Cp-spectra

(ER, @ X)» — X — X%Cp,
and by taking fixed points a fibre sequence of Dpn+1 /Cpni1 = Z /2-spectra
(ER+ ® X)Cer—l N chn+1 N (X¢Cp )Cer—l /Cp‘ (1)
We will abuse notation and always write R for the family of reflections in D »+1, for different p and
n. Although these families are different, their classifying spaces ER are always modelled by the
restriction to the appropriate dihedral group of the O(2)-space defined by the unit sphere S(C*).

In what follows we will always consider homotopy limits and homotopy colimits of spaces and
spectra and will just refer to them as limits and colimits.
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1.2 | Ring spectra with anti-involution and real topological
Hochschild homology

We give a short recollection of the construction and main properties of the dihedral structure on
topological Hochschild homology, mainly from [3] and [10].

We recall that a ring spectrum with anti-involution is an orthogonal ring spectrum A equipped
with a morphism of orthogonal ring spectraw : A°? — A such that w? = id. We endow A with the
genuine Z /2-equivariant homotopy type defined by w. More precisely, a morphism of ring spectra
f: A — Bcommuting with the involutions w is an equivalence if it is a genuine Z/2-equivariant
equivalence in the category Sp?/2 of orthogonal Z /2-spectra (see [10, Al] for a model structure
on their category). Ring spectra with anti-involution are equivalent to E_-algebras in equivariant
spectra, see [10, Remark 2.3], and presumably also to E;-rings with genuine anti-involution as
defined in [8, Example 3.2.9] (at least a ring spectrum with anti-involution defines an E;-ring
with genuine anti-involution, see [8, Example 3.2.10]).

The cyclic nerve of A in the category of orthogonal spectra inherits a levelwise involution, which
acts on A @ A®" by applying in each factor w, fixes the first tensor factor and reverses the order
of the remaining n factors. This involution, together with the levelwise C,, ; -actions which rotate
the tensor factors, defines a dihedral spectrum in the sense of [13, S 1.5, Example 5] and [23] that
we denote by N% A. Its geometric realisation

THR(A) := [INYA| = |[n] » A®"H]|

is then an orthogonal spectrum with O(2)-action ([13, Theorem 5.3] and [23, Proposition 3.10]),
which we regard as a genuine O(2)-equivariant spectrum.

In [10], we studied the Z /2-equivariant homotopy type of THR(A), where Z/2 is the subgroup
of O(2) generated by the reflection over the x-axis. In particular, we provided an equivalence of
Z/2-spectra

THR(A) ~ B(A,N°/?

e

AA)=A ®Nz/2A A

(under the standing assumption that A is flat) where ®yz/2, denotes the derived smash prod-

uct in the category of modules over the Hill-Hopkins-Ravenel norm construction NeZ /24 of the
underlying ring spectrum A of [19]. The norm acts on A, respectively, on the left and on the right

by

A A®2
NPa@a=a® 22 493 L0 e by

A A®?
AQN A= a9 2L po3 LB, ye3 Ky

where 7 : A®? — A®? is the symmetry isomorphism and u is the multiplication map of A. Here,
B(A,NeZ / 2A,A) is the two-sided bar construction of these actions, which computes the derived

smash product. We then deduced an equivalence of spectra

THR(A)??/? ~ B(A%?/2, A, A%7/?) = A%712 @ , A®?/2,
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A on A, using the diag-

where A acts on A%7/2 via the geometric fixed points of the actions of N, eZ
onal equivalence (NeZ/ 2A)‘*SZ/ 2 ~ A. We refer to these actions as the Frobenius module structures
of A%Z/2,

The present paper will focus on the equivariant homotopy type of THR(A) with respect to the
finite dihedral subgroups of O(2). We now give a recollection of materials on dihedral objects
and simplicial subdivisions, which we use to model the equivariant homotopy type of THR(A)
with respect to the finite dihedral subgroups simplicially. We recall that a dihedral orthogonal
spectrum is a simplicial orthogonal spectrum X, : A°? — Sp whose n-simplices X, are equipped
with an action of the dihedral group D,,; = Z/2 X C, ., which is suitably compatible with the
simplicial structure [13, Proposition 3.4]. The geometric realisation of X, has an induced action
of 0(2) = /2 X S* by [13, Theorem 5.3]. The action of the reflection generating Z/2 on |X.| is
induced by the maps

X @A 2% x gan
n + n ’

where w is the action of the generator of Z /2 < D, ; on the n-simplices, and w,, sends (¢, ..., t,) €
A" to (t,, ..., ty) [13, Lemma 5.6(ii)]. The description of the cyclic action is more involved, and it
requires simplicial subdivision.

Letsd, : A°? — A°P be the functor which sends the finite totally ordered set [n] = {0, 1, ..., n} to
the r-foldjoin [n] * [n] % --- % [n], defined as the set [r — 1] X [n] with the total order (a, i) < (b, j)
ifeither a < borifa = b and i < j. Given a dihedral spectrum X, : A°? — Sp, we let

sd, X, :=X,osd,

be the r-fold subdivision of X. Let g, be the generator of C,,; and w the generator of Z/2. The
action of g:‘nfr_l on the n-simplices (sd, X.),, = X,,,,,_; defines a simplicial action of C, onsd, X,,
and there is a C,-equivariant isomorphism

|sd, X.| = |X.|

induced by the maps

n n id®o, rn+r—1
(sd, X)n A =X, 1 ® A+ — X1 ® A+ s

where &, sends t € A" to (t,t,...,t)/r € A"+~ [3, §1]. This isomorphism is, moreover, Z/2-
equivariant, where the action of Z /2 on the left-hand side is defined from the maps w ® w,, above
as for | X, |. Let us finally make this Z/2-action simplicial.

Let sd, : A°? — A°P be the functor that sends [n] to [n] * [n]°P, where [n]°P is the set
{0,1,...,n} with the canonical order reversed. Let Y, : A°”? — Sp be a simplicial orthogonal
spectrum with involutions w,, on Y, for every n > 0, such that for every 0 : [n] — [m]

6%ow,, = w,o(6°P)".

For example, Y, could be a dihedral object X, where w,, acts by the action of the generator of
Z/2asasubgroupofD,_;,orY, =sd, X, where w, acts as the generator of Z/2 as a subgroup of
Dy (41)- The geometric realisation of Y, hasa Z /2-action defined as above from the maps w, ® w,.
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We now let
sd, Y, :=Y,osd,

be the corresponding subdivision. The action of w,,,; on the n-simplices (sd, Y.), =Y, .1
defines a simplicial Z/2-action on sd, Y,. There is an isomorphism

Isd, Y.| = |Y.|

induced by the maps

id ®3, -
(Sde Y)n ® A" = Y2n+1 ® A:L_ EE— Y2n+1 ® A:_n+r 1’

where §, sends t € A" to (t,w,(t))/2 € A***!, and this isomorphism is clearly Z/2-equivariant.
Combining these subdivisions, we obtain a D,-equivariant isomorphism

|sd, sd, X,| = |X.|
for every dihedral orthogonal spectrum X, and, in particular, an isomorphism
|sd, sd, N¥A| =~ THR(A)
of genuine orthogonal D,-spectra for every r > 1.

Remark1.1. By the latest isomorphism, it follows that THR sends equivalences of ring spectra with
anti-involution to equivalences of genuine D,-spectra, for every r > 1. Indeed, the n-simplices of
sd, sd, N9 A are the orthogonal spectrum

(sd,sd, N A), = (N A), (31 1)pr1 = AT,

where C, acts cyclically on r and the generator of Z/2 acts as described above (and we recall
that the tensor product indicates the smash product of a flat replacement). This indexed smash
product sends an equivalence of orthogonal spectra to a genuine D,-equivalence by [5, Theorem
3.2.16] (see also [19, Proposition B.209]), and thus, its realisation is also a genuine D,-equivalence
(since sd, sd, N% A is a good simplicial spectrum by the argument of [10, Lemma 2.14]).

The equivalence THR(A)??/2 ~ A%7/2® , A??/2 above is, in fact, induced by the z/2-
equivariant isomorphism THR(A) = |sd, N dig|. We can now refine this equivalence to an
equivariant equivalence with respect to the action of the Weyl group. The normaliser of Z /2 inside
of O(2)is Z/2 x C,, where C, is generated by the rotation of order 2, and therefore the Weyl group
of Z/2 inside of O(2) is isomorphic to C,. In particular, THR(A)#?/2 is a genuine C,-spectrum,
that we now describe in terms of derived smash products.

Lemma 1.2. There is an equivalence of C,-spectra

THR(AY"/? = BA, N AN (AP /) = A® e, (N2 (AP7/2),

(N$24)
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where A is regarded as a C,-spectrum via the isomorphism Z /2 = C,, the norm Nec 2A acts on A by
the right action defined above and on Nec2 (A%2/2) by applying the monoidal functor N ec 2 to the left
Frobenius action of A on A%%/2,

Proof. The equivalence of genuine D, = C, X Z/2-equivariant spectra THR(A) = | sd, sd, N4 A|
defined above gives rise to an equivalence of C,-spectra

THR(A)??/? = | sd, sd, N¥A|#7/2 = |[n] > A$7/2 @ A2+ @ A%7/2|
C C C C
= |[n] » A® (N,2A)®" ® N,2(A%?/?)| = B(A,N,?A, N, (A%?/?))

—A® (NS2(A%7/2y),

(Ng24)
where C, acts on the third term by reversing the order of the smash products, and the isomorphism
rearranges the factors by pairing the factors which are swapped. O

1.3 | Real cyclotomic spectra and real topological cyclic homology

We now review the definitions of the main objects of study of the paper. These are completely
analogous to the classical definitions surrounding topological cyclic homology of [3], and are car-
ried out by carefully lifting all the constructions to the category of Z/2-equivariant spectra. These
constructions were laid out in [20] using Bokstedt’s model for real topological Hochschild homol-
ogy, and we recast them here for the model of THR above. The two approaches are equivalent by
the comparison results of [10] and [9].

Definition 1.3. Let p be a prime. A real p-cyclotomic spectrum is an O(2)-spectrum T € Sp°®
equipped with a map of O(2)-spectra

~

% — T,

where O(2) acts on the left-hand side by restriction along the root isomorphism O(2) — 0(2)/C),
and which is a D ,.-equivalence for all n > 0.

The prime example of a real p-cyclotomic spectrum (for all prime p) is the real topological
Hochschild homology spectrum THR(A) of a ring-spectrum with anti-involution A. The cyclo-
tomic structure maps are, in fact, isomorphisms, defined on the dihedral bar construction from
the diagonal isomorphisms

A = (A®P)?Cp

(see, for example [2], or [9, §5], and we remind that this is an isomorphism since A is assumed
to be flat). In particular, they induce a S*/C p-equivalence and a Z/2-equivalence on realisations,
and thus, an O(2)-equivalence (see [11, §3.3]). For every real p-cyclotomic spectrum T, the isotropy
separation sequence (1) defines fibre sequences of Z/2-spectra

(ER+ ® T)Cpn+1 - Tcpn+1 N (T¢Cp)cpn+1 /Cp ~ Tcpn
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for every n > 0, and the composite of the right-hand arrow and the equivalence is denoted by
R: TS — TC" Since the cyclotomic structure map is O(2)-equivariant, using appropriate root
isomorphisms, we see that R is O(2)-equivariant.

Definition 1.4. Let T be a real p-cyclotomic spectrum. For every integer n > 0, we let
TRR"(T; p) be the Z/2-spectrum

TRR"™(T; p) : = T",

where Z/2 is identified with the subgroup of O(2)/C ,» generated by the reflection of the x-axes,
and

TRR(T; p) : = lim ( L TRR™(T; p) = TRR™(T; p) — ... — TRRI(T; p) = T>.
If A is a ring spectrum with anti-involution, we write
TRR"1(A; p) := TRR™Y(THR(A); p)  and TRR(A4; p) := TRR(THR(A); p).
The inclusion of subgroups C:-1 < Cpn defines a map F: TRR"*(T; p) = TRR™(T; p),

which is equivariant for the Weyl actions and thus, in particular, Z/2-equivariant. It also
commutes with the map R since R is O(2)-equivariant and therefore induces a map of Z /2-spectra

F: TRR(T; p) —> TRR(T; p)
by passing to the limit, whose underlying map is the Frobenius of [3].

Definition 1.5. Let T be a real p-cyclotomic spectrum. The real topological cyclic homology of
T is the Z /2-spectrum defined as the equaliser

TCR(T; p) = eq < TRR(T; p) i:;; TRR(T; p) ) .

If A is a ring spectrum with anti-involution, we let the real topological cyclic homology of A be
the Z /2-spectrum

TCR(A; p) = eq( TRR(A; p) —— TRR(A; p) ).
F
As in the classical definition of TC, since R and F commute one can alternatively define
F F F F
TFR(T; p) : = lim < — TRR""(T; p) = TRR'((T; p) — ... — TRRY(T; p) = T>
and

TCR(T; p) = eq( TFR(T; p) —— TER(T; p) ).
R

The underlying spectrum of TCR(T;p) is by construction the topological cyclic homol-
ogy spectrum TC(T;p) of [3] (see also [9, Theorem 1.3]). The focus of the paper is to
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understand the Z/2-equivariant homotopy type of TCR(T; p), and, in particular, its geometric
fixed-points spectrum.

2 | THE GEOMETRIC FIXED POINTS OF TCR

The aim of this section is to give a simple formula for the Z /2-geometric fixed points of TCR(A; p),
when A and its Z/2-fixed points are bounded below. This object turns out to be interesting only
for the prime p = 2, but we will start with the easier case of odd primes.

2.1 | The odd primary case

In the odd primary case, the geometric fixed points of TRR admit a very simple description, as
they split as a product.

Theorem 2.1. For any odd prime p, real p-cyclotomic spectrum T and n > 1, there is a natural
equivalence

n
TRR(T; p)$?/? ~ @ T%%/2,
i=1

underwhich the maps F,R : TRR"™(T; p)$%/2 — TRR™(T; p)*%/2, respectively, project off the first
and the (n + 1)-st summand.

Before diving into the proof, we observe that if T = THR(A) is the real topological Hochschild

homology of a ring spectrum with anti-involution A, we have an explicit description of the
geometric fixed points

THR(A)?7/? ~ A%2/2 @ , A%?/2,

In particular, if A is the Eilenberg-MacLane ring spectrum of a discrete ring with anti-involution
and % € A, then we have that THR(A)¢Z/ 2 = 0, and we obtain the following.

Corollary 2.2. If A is a discrete ring with anti-involution and % € A, then
TRR™(A; p)*?/? ~ TRR(A4; p)*?/? ~ TCR(A; p)??/*> = 0

for every odd prime p.

The crucial combinatorial ingredient that makes the odd-primary case so simple compared to
the prime 2 is that for p odd, any two reflections in D,,» are conjugate, and the Weyl group of a
reflection is trivial. Applying [25, Corollary 2.8] to the trivial family {1} C R, one gets a pushout
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square of Z /2-spaces

Dy Xz EZ [2—— EDpn

L

D,./Z/2——ER.

This pushout is the main ingredient for establishing the following result, of which Theorem 2.1 is
an immediate consequence.

Proposition 2.3. Let T be a real p-cyclotomic spectrum with p odd. Then, for every n > 1, the
square

TRR"™(T; p)#?/2 —=— TRR™(T; p)* 7 /2
| I
TRR™(T; p)?2/2 — & TRR"(T; p)#Z/2
is a pullback whose horizontal fibres are equivalent to T#2/2. Here, we interpret TRR(T; p) = 0.
Proof. Let us start by identifying the fibre of the map R. For any group G and G-space E, we write E

for the cofibre of the based map E, — S° which takes E to the non-basepoint of S°. By definition,
the geometric fixed points of the map R fits into the commutative square

TRR™(T; p)?7/> — TRR'(T; p)*7/2 = ((T#Cr) )22/

|

(T® E’-‘Dpﬂ)cpn )¢Z/2 (T® ﬁ)C,,n )¢Z/2

where the left vertical map and the bottom horizontal map are induced by the canonical maps
SO — ﬁpn — ER. The left vertical map is an equivalence since its fibre is

(T ® EDy )7 )##/2 = (T @ ED )7 @ EZ]2)*/ = (T ® (€*'EZ/2 NED s ) 7)/2,

wheree: D,n = D, /Cpn = Z/2is the quotient map, and €*EZ /2 A ED N isa contractible D -
space.

By mapping the pushout square (2) with additional disjoint base points to the pushout of
Dyn X775 8% = Dpyn X7/, S° = S° (where D X, — denotes the induction) and taking cofibres,
we get a pushout of pointed D ,.-spaces

Dy Xz EZ [2—— ED,,

| |

¥ ———— > ER.
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The fibre of R is therefore given by the spectrum
(T ® (Dyn X7, EZ]2))7")¥7/? = (T ® €EZ]2) ® (Dpn X5/, EZ]2))"
> (D K2 (T ® (EZJ2 NEZ]2)""
~ (D X/, (T ® EZ[2)""

~ (T ® EZ/2)*/?
~ T97/2,

By restricting the map ED,» — ER to Dn-1, we recover the map ED -1 — ER. Using this and
that the Frobenius map F : TRR""(T; p) - TRR"(T; p) is induced by the subgroup inclusion
Cpn-1 C Cpn, under the equivalences above the map between the horizontal fibres identifies with
the map

Dpn X7/, (T Q@ Ez/2))"" — Dpn X7/, (T ® EZ[2))"»!

induced by the subgroup inclusion D .1 C Dp». By applying the double coset formula on the
source and target, this map corresponds to the identity of T#7/2, showing that the Frobenius on
horizontal fibres is an equivalence. [l

We want to conclude the section with a similar splitting for TRR(T’; p)#%/2, by commuting geo-
metric fixed points with an infinite limit. This can be done by means of the following well-known
result originally observed by Adams (see, for example [1, Section I11.15.2]), and we sketch an argu-
ment for completeness. We say that a G-spectrum is bounded below if all of its fixed points are
bounded below, and in case G is infinite, we also require that there is a uniform bound over all
the closed subgroups of G.

Lemma 2.4. Let .. X, - X, ; - ..X, - X = X, be a tower of uniformly bounded below G-
spectra, where G is finite. Then (lim,, Xn)¢G ~lim, (X n)¢G.

Proof. Since equivariant homotopy groups commute with infinite products, it suffices to show
that EG ® lim,, X,, ~ lim,(EG ® X,,). This reduces to showing that

EG® [[x, = [[EC & X,,).
n n

For a fixed homotopy group only the finite skeleta of EG matter since the X, ; are uniformly
bounded below, and using that EG is of finite type, the statement reduces to showing that S ® —
and G, ® — commute with infinite products. The first is obvious and the second follows from the
Wirthmiiller isomorphism. [

Corollary 2.5. Let T be a bounded below real p-cyclotomic spectrum, with p odd. Then there are
natural equivalences

TRR(T; p)**/? = [[T##/* and  TCR(T; p)?*/? = T#%/2,
i=1
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Proof. The first equivalence follows from Lemma 2.4 and Theorem 2.1, since the tower defin-
ing TRR(T; p) is uniformly bounded below since the spectra TC" and TP»" are by assumption
bounded below with a uniform bound over n. For the second equivalence, we observe that by the
same results, the Frobenius of TRR(T; p)#%/2 is equivalent to the map

o8] (o]
. $2/2 $2/2
F: -IllT —>-|1|T ,
1= 1=

which projects off the first component. The equaliser of F and the identity is thus T$%/2 mapping
diagonally to the infinite product. O

2.2 | The prime 2
221 | The geometric fixed points of TRR

In this section, we give a formula for TRR"(T;2)?%/2 for any bounded below real 2-cyclotomic
spectrum T. As mentioned earlier, the subgroups structure of the dihedral groups D,. is more
involved than the one of D, for odd p, and this makes our formula for TRR" (T} 2)$2/2 more
interesting. The idea of the proof is again to compute TRR"(T;2)?%/2 inductively, by finding a
suitable replacement for the square of Proposition 2.3.

Recall that we have chosen the reflection along the x-axis 7 inside D,» = Z/2 X C,n, Where
7 /2 is the subgroup generated by 7. If we denote by o,, = e*7/" the generator of C,», then o,,7 is
a reflection which is not conjugate to . The normaliser and Weyl group of Z/2 inside D, /Cyn-1
are identified as follows:

NDzn/Canl (Z/Z) = Z/Z X Czn/Czn—l = Z/Z X Cz, WDzn/C2n71 (Z/Z) = Czn /C2n—1 = Cz,

where C,./C,n-1 is generated by the image of o, which we denote again by o,,. In particular,
when n = 1, we have W), (Z/2) = C, which is generated by the rotation of degree 7. The group
C,n /Cyn1 acts on the spectrum TRR™(T; 2)#7/2, for all n > 1 and any real 2-cyclotomic spectrum
T.

In the case n = 1, we are interested in two maps

FoTOEC L (TLEC LTI and  f i (T9E/BC — 7922

analogous to the restriction and the Frobenius. The map r is induced by the canonical map from
the fixed points to the geometric fixed points, followed by the equivalence given by the cyclotomic
structure of T, and f is the canonical map induced by the subgroup inclusion 1 C C,.

Example 2.6. Suppose that T = THR(A) is the real topological Hochschild homology spectrum
of a ring spectrum with anti-involution A. Under the equivalence

THR(AYZ? ~ A ® (N2 (A%2/2))

(N$2a)
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of Lemma 1.2, the identification (T$7/2)#C2 ~ T%%/2 coming from the cyclotomic structure
corresponds to the equivalence

¢C,
(A ® (NGCZ(A¢Z/2))) ~ A¢Z/2 ®A A¢Z/2 ~ A ®(A®A) (A¢Z/2 ®A¢Z/2),

(N2 A)

where the first equivalence is the monoidality of the geometric fixed points combined with the
diagonal isomorphism (N eCZA)‘?SC2 =~ A, and the second is the general canonical equivalence X ® 4
Y = AQg4 (X ®Y) for, respectively, right and left A-modules X and Y, where X is regarded as
a left A-module via the anti-involution.

The maps f and r are related to F and R respectively, in the following manner. Let ¢ be the map

¢: TRR(T;2)??/? = (T2 @ EZ/2)?/? ~ (T @ €*EZ]2)°>*?/? - (T @ E( 7/2)) >**/?

= (%1%,

where € : C, X Z/2 — Z/2 is the projection, and the arrow is induced by including families of
subgroups, by noticing that E*L’?Z\/} = Eﬁ,??;} as universal spaces of subgroups of C, X Z/2. The
naturality of the canonical map from fixed points to geometric fixed points gives canonical homo-
topies roc ~ R and foc ~ F. In particular, for every n > 1, the iterated Frobenius map factors
as

n—1
F"': TRR™\(T;2)97/2 T TRRA(T; 207/ - (192/2)C2 L, 7922,

Finally, we recall from Section 1.3 that the maps R and F commute since R is O(2)-equivariant.

Theorem 2.7. For every real 2-cyclotomic spectrum T and n > 1, the square

TRR"+1(T; P22 I SN TRR"(T;2)$% /2

cF"lch"la,,Hl l(F”‘],crlF”‘lcrn)

(T$Z/2)C2 5 (T#Z/2)C: 0" 1¢72/2 5 T$2/2

is a pullback of spectra, where the square commutes by the homotopies RF = FR, 6,R = Ro,,;
and roc ~ R. The Weyl action of c,,; on TRR"*(T :2)%2/2 is given inductively by the strictly
commutative diagram

TRR"(T;2)?%/2 —— T92/2 X T$Z2/2 +— (T$Z/2)Co x (T#2/2)C

J/Un l(al Xo1)T l‘r

TRRT;2)$Z/2 s T#Z/2x 79712 (T$Z/2)Co 5 (T$Z/2)C:
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where T is the flip action. The Frobenius F: TRR"™*(T;2)%%Z/2 - TRR™(T;2)%%/2 is induced
inductively on pullbacks by

TRRM(T;2)2/2 — s T#Z/2x T$Z/2 ( (THZ/2)C: x (T$Z/2)Co

lF J((id Xo)A)VO lAvO

TRR"(T;2)$2 /2 T$Z/2 5 T$Z/2 (T$Z/2)C2 x (T$Z/2)C:

for all n > 2, where the left-hand square commutes since 0,F = F. For n = 1, the Frobenius is the
composite

F: (T¢Z/2)C2r><g . (T$2/2)C2 iojl_) (T$7/2)C2 i, T9Z/2,
1
where X, , denotes the fibre product over T9%/2 along the maps r and o,r.

Remark 2.8. By inductively unravelling the formula of Theorem 2.7, we obtain an equivalence
TRRn+1(T; 2)¢Z/2

~ (T¢)C2r><f (T¢)C2rxf X (TH)C: Ko (T¢)C2fxolr X (T¢)C2fxalr (T2,

n n

for all n > 1, where we wrote T := T%Z/2 for short and all the products denote fibre products
over T?, subscripts indicating along which maps we are taking the pullbacks. We can then fur-
ther unravel the structure maps. The restriction map R: TRR"*!(T;2)#%Z/2 — TRR(T;2)$2/2
corresponds to projecting away the outer two factors for n > 2, and for n = 1 to the composite

R: (T2, %, (T9) 225 (19 L 79,
The Weyl action o,,; : TRR™!(T;2)#?/2 - TRR"™(T;2)#?/? is induced by the map which
reverses the order of the product factors.
The Frobenius F : TRR™(T;2)$Z/2 - TRR"(T;2)$Z/2 is slightly more delicate to describe.
For n = 1, we have already mentioned the description. For n > 2, it is induced by the map defined
schematically on the product by

(X s v s X35 X0y X5 X15 Xy e 5 X)) P> (X oo s X3y X0y X5y X35 wee s X_yp)s

interpreted as follows. In order to map into the pullback TRR"(T; 2)%2/2 we need to exhibit
homotopies y_; : r(x_;) ~ f(x_;j;1) and y;: or(x_;) ~ f(x_;41) for i=n,...,3, as well as a
homotopy 7, : r(x_,) ~ o,r(x_,). The identifications y_; are already present in the pullback
TRR"™(T; 2)?%/2, and y, is the composite
. 91V—i
viiour(x_) ~ oy f(x i) ~ f(x_ip),

where the second is the canonical homotopy provided by the equivariance of f with respect to the
Weyl action. Similarly, y,, is given by

Yo i r(x_0) 'R f(x_y) ~ o1 f(ey) 5 oy,

where y_, is the identification present in TRR"*1(T; 2)$%/2,
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The rest of the section will be devoted to the proof of Theorem 2.7. Our proof relies on a pushout
relating ED,, and ER which we now deduce from [25, Corollary 2.8].

Recall that 7 and o,, are the respective generators of Z/2 and C,. inside D,x = Z/2 X Cyn, and
that 0,7 is a reflection which is not conjugate to . We let H,, be the subgroup generated by o, 7.
We denote the respective normalisers and Weyl groups inside D, by

N(Z/2)=7/2XC,, W(Z/2)=C,, N(H,) ={l,0,7,0>" ,02" *'z}, W(H,)=C,.
We observe that N(H,,) is abstractly isomorphic to Z/2 x C, but one has to be careful with this
identification, since Z/2 and H,, represent different conjugacy classes. By [25, Corollary 2.8], there
is a pushout of D,.-spaces

D2n XN(Z /2) EN(Z /2) H D2n XN(Hn) EN(Hn) E— ED2n

| L.

Dyr Xn(z j2) EW(Z /2) 11 Dyn Xneu,) EW(H,) —— ER.

We observe that the classifying spaces that show up in [25, Corollary 2.8] at the lower left corner are
indeed equivalent to EW (H,,) and EW(Z/2). This pushout square leads to the following analogue
of Proposition 2.3.

Proposition 2.9. For every n > 2, the Frobenius induces a commutative diagram

1 R
(T*2 Pz 12y ® T,y —— TRR™(T32)P%/2 —— TRR™(T;2)#%/2

0] | I

R —
(T2 1)z 12 ® (T )y, ) — TRR'(T;2)97/2 —— TRR"7(T;2)#2 /2,

where the rows are fibre sequences, and o, : (T#7/ nwz /2) = (T¢H"’1)hW(Hn_1) is induced by the
generator o, € C,yn which conjugates Z /2 to H,_; in Dyn.

z/2 H, H,_
Remark 2.10. We note that the spectra (T#7/ Dhw(z/2)> (T¢ Jhw (s, and (1% Dnwn,_,) are
all equivalent. This is because H,,_; and Z/2 become conjugated in D,., and consequently, H,,
and H,_, are conjugated in D,n+1. It is, however, important to point out that H,_; and Z/2
are not conjugated in D,.-1, and this plays a role while identifying the map F on the fibres
of R.

Proof of 2.9. Let us start by calculating the fibres of the horizontal maps. The pushout square (3)
induces a pushout square of pointed D,.-spaces

Dy Xz 2 EN(Z /2) V Dy Xy ) EN(H,) — ED,,

| [

Dzn D<N(Z /2) EW(Z /2) \' Dzn D<N(H,,) EW(Hn) —_— ER.
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The map R is, just as in the proof of Proposition 2.3, given by the map
R: TRR"™NT;2)%?/% ~ (T ® ED,n) " )#?/? — (T @ ER) " )$?/? ~ TRR(T; 2)%7/?

induced by the right vertical map of square (4) (this part of 2.3 does not use that p is odd). Since
square (4) is a pushout, the cofibre of R is equivalent to

(T ® Dyn Xn(z/2) SE(Z/2))“" )2 @ (T ® Dy XNH,) SE(H, ) >)#4/2,

where E(Z/2) and E(H,) are pointed N(Z/2) and N(H,)-spaces which fixed points
S% only at z/2 and H,, respectively, and have contractible fixed points at all other
subgroups. Let us now identify the first summand, the identification of the second
one being similar. By the projection formula and untwisting the action on T, we see
that

(((T ® Dy Kz /2) ZE(Z/2)) 7 )W2/? o (Dyn X2y (T @ (€°EZ]2 NZE(Z/2)))P>"

~(TQ® (E*E% A EE(Z/Z»)N(Z/Z),

wheree: N(Z/2) = C, X Z/2 — Z/2is the projection. Now we observe that since (s*ffﬂ)z/ 2=
SO and E(z/2) has fixed points S° at Z/2 and contractible otherwise, we have that
5*15:272 ANE{(Z/2) ~ E(Z/2), and therefore, that the first summand of the fibre of R is
equivalent to

(T ® E(z/2))N“/?.

The other summand is identified similarly. Now the N(Z/2)-space E(Z/2) is equiva-
lent to E@\Z72)Aﬂ*EW(Z/2)+, where (2 Z/2) is the family of subgroups of N(Z/2)
not containing Z/2 and 7w: N(Z/2) -> W(Z/2) is the projection, again by observ-
ing that this smash product also has fixed points S° at Z/2 and contractible at all
other subgroups (using Elmendorf’s theorem [12]). By definition of the geometric fixed
points with respect to a normal subgroup, we get that one summand of the fibre of R
is

(T ® E(z/2)N?/? = (T ® (E(R Z/2) A m*EW(Z/2) )N/

~ (I ® (B Z/2) AT"EW(Z/2),))"/)V />

~ (T2 @ EW(2/2) )V /2 = (T**/2)301 /2
where the last equivalence uses the Adams isomorphism.
Let us now identify the map F on the fibres of R. As we have just seen R : TRR"*1(T;2)$7/2 -

TRR"(T;2)#7/2 is equivalent to the appropriate fixed points of the map T ® ED,. — T ® ER. For
simplicity, let us denote the summands of its fibre by

A, ®B, :=(T ® Dy KN(Z/Z)E(Z/Z))EB(T ® Dyn I><N(Hn)E(Hn)).
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Since ED,» and ED,.-1 are equivalent as D,n.—1-spaces, the diagram of Proposition 2.9 is then
equivalent to the outer diagram of

(AS")$2/2 @ (BS" P2/ — 5 (T @ ED, ) )¢ 212 — X (T @ ER)C» )#2/2

| I |

(Agzn—l )qs z/2 g (Bgzn—l )q& z/2 s (T ® ETZH)Czn—] )qb z/p2__ R (T® E’\ﬁ)czn—l )¢ z/2

j 4 |

(AS)97 12 @y (BS" Y9712 @0 —— (T ® EDpy ) ) 2/2 — Ry (T @ ER)Cr1 )92 /2,

where the maps F are the restriction maps on fixed points, and the vertical arrows are induced
by the inclusion Dyn-1 C D,.. Let us analyse the bottom left vertical equivalence. The summand

Con—1 . . . . .
(B,”"")$?/% is contractible, since there is a single double coset D,.-1\D,» /N(H,,), and therefore,
Con—
(B, )% 2 (Dyn My, (T ® E(H,))P»" = (T @ E(H,)) =0,

where we used that N(H, ) N D,»-1 = C, and that E(H,,) is trivial when restricted to C,. The first
equivalence follows from the projection formula as in the identification of the summands of the
fibre of R above. This shows that F is trivial on the second summand of the fibres. Let us now apply

the double coset formula to the first summand (AS”H )#Z/2_This time there are two double cosets
D,n1\Dyn/N(Z/2) = {1,0,}, where o, is the generator of C,., with N(Z/2) N D,n1 = N(Z/2)
and o, conjugating Z/2 and H,,_,. We therefore find that

(A2 o (D Ky ) (T ® E(Z/2)))Pr" = (T @ E(Z/2)N?/?) @ (T ® E(H,,_, )N -1,

and F : (A%" V$Z/2 (ASZ'“1 )$Z/2 corresponds to (1,0,,). O

The previous proposition holds as stated only for n > 2. The correct analogue for n = 1 is the
following.

Proposition 2.11. The map c induces id @0 of horizontal fibres in the following diagram:

R
(T2 )z 1y ® T,y — TRRA(T52)#7/2 —=— 1972 /2

] {

(T¢Z/2)hW(Z/2) - (T¥Z/e L Tz

Proof. The top horizontal fibre sequence is from 2.9, and the bottom one is immediate from the
isotropy separation sequence of the C,-spectrum T#7/2 and the definition of r.
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In order to describe F on the fibre, we observe that there is a commutative diagram of pointed
D,>-spaces

€EZ[2~¢EZ[2NED,, ——¢*EZ J2AER

| §

E2Z/2) E(2 Dy),

where ¢: Dy, = C, X Z/2 — Z/2 is the projection, (2 Z/2) and (2 D,.) are the families of sub-
groups of D,> which do note contain Z/2 and D,., respectively, and the arrows in the diagram are
induced by the inclusions of families. By Elmendorf’s theorem [12], the induced map on horizontal
cofibres is the projection

idvo: SE(z/2) v SE(H,) — SE(Z/2),

where we have used the identifications of Proposition 2.9. By the calculations of Proposition 2.9,
by smashing the square above with T and taking C, X Z/2-fixed points, we obtain the diagram of
the statement. O

The identification of the Weyl action follows immediately from the proof of Proposition 2.9:

Lemma 2.12. For any n > 1, the Weyl action on fibres is described by the diagram

R
(T2 )z 2y ® (T ) —— TRR™(T52)P7/2 —— TRR™(T;2)#7/2 .

-1
< 0 Tn+1 ) Ont1 Tp
Oy 0

R
(T* 22z 12y ® (T g,y —— TRR"!(T;2)$7/2 —— TRR™(T;2)*% /%

Proof. As seen in the proof of Proposition 2.9, the fibre of R consists of two summands

(AC2n >¢Z/2 ® (Bczn )4’2/2’

n+1 n+1

where A, 1= (T ® Dyni1t Xn(z/2) E(Z/2)) and B, = (T ® Dyns1s Xy

Z/2 . . n $z/2 .
/ vanishes. The first summand (Agil) / decomposes into the wedge of two summands

according to the double cosets Dy:\D,n+1 /N(Z/2) = {1,0,,,}, and the action of o, ; permutes
these two summands. L

) E(H,,,,)). and

n+l

Proof of Theorem 2.7. By iterating Proposition 2.9 and Proposition 2.11, the map F"*~! induces an
equivalence between the first summands of the horizontal fibres of the diagram of Theorem 2.7.
Similarly, by Lemma 2.12, the maps F" 1o, ; and F" 1o, induce an equivalence between the
second summands of the horizontal fibres.

Let us now identify the Frobenius F : TRR"™(T;2)$%/2 — TRR™(T;2)?%/2 for n > 1. The
identification for n =1 follows from the pullback description and the canonical homotopy
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cof ~ F.Forn > 2, we consider the following diagram whose front and back faces are pullbacks:

TRR"™(T;2)$2/2 R TRR'(T;2)$Z/?

s T~

(" cF"lg,,)  TRR"(T;2)$Z/? R TRR"N(T;2)¢Z/2
( , 0.) ‘/(Fn_lagan_lcn)
cF"*,cF"*g,
(THZ12)C2 % (THZ/2)C rXonr T$Z/2 5 T$Z /2 F2,0,F" 2, )
(id Xa,)AVO
AVO
(TqﬁZ/Z)CZ X (T¢Z/2)C2 - T¢Z/2 X T¢Z/2.

This diagram is a homotopy commutative cube, since its front and back faces and its arrows are
equivalent to those of the outer part of the strictly commutative diagram

(TCZn )¢ Z/2 ¢ (T® E\R")Czn )¢Z /2
\ \
1 i) (TCr1)$Z/2 ¢ s (T ® E‘Té)cgn—l Y Z/2
s i (F"1,0,F" " 0,11)
(F"%F"?a,)
((TC2)¢ z /2)><2 Pxo2¢ (T ® ﬁ)cz)qbz /2)><2 (F"2,0,F"2g,)
AVO0
(TCyp2 2y X (T @ ER)C)# 2122
cXc
cXce
(@97 /)6y PR (@ @ BRIy
AVO0
(T#2/2)C2y%2 Pt (T @ ER)PZ/2)C:y2,

where the maps ¢ are induced by the canonical map S° — ER. This identifies the Frobenius map.
The Weyl action can be identified with a similar argument. O

2.2.2 | The geometric fixed points of TFR and TCR
In this section, we use Theorem 2.7 to identify the Z/2-geometric fixed points of TCR(T;2) for

every bounded-below real 2-cyclotomic spectrum T.
It turns out that it is simpler to describe the endomorphism R on the limit

F F F F
TFR(T; p) :=lim < — TRR"H(T;p) — TRR"(T; p) — ... — TRR(T; p) = T>
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taken over the Frobenius, rather than describing the Frobenius on TRR(T'; 2). For simplicity, we
will again write T% for T#7/2,

Theorem 2.13. Let T be a bounded below real 2-cyclotomic spectrum. Then, TFR(T;2)$%/2 is
equivalent to the homotopy inverse limit

TFR(T; 2%/ = Hm((T9) 2, % (19)%, 1 - X (T9)2)

n

along the maps proj; : (T#)2, %, (T9)2, %, -+, X, (T#)2 = (T9)2, % (T)2, X %, (T9),

n+l1 n
which project away the last factor, that is, given by (X, X,, ..., X, 11) = (X, ..., X,,). Under this iden-

tification, the endomorphism R : TFR(T;2)%%/2 — TFR(T;2)#%/2 corresponds to the map induced
on limits by the projection

proj; (T¢)Czr><f (T¢)C2rxf X (THC2 - (T¢)C2rxf (T¢)C2rxf e X (T%) 2

n+1 n
off the first factor (X1, X5, ..., X, 11) P (g5 ey Xpi)-

Proof. Let us first observe that since T is bounded-below, by Lemma 2.4, TFR(T; 2)¢Z/ 2 is
equivalent to the homotopy inverse limit of

i — 5 (TRRY(T;2))$2/2 — £ ... S (TRRY(T;2))$2/2 —E 5 (TRRN(T;2))#2/2 .
For convenience, we introduce the notation:

A, = (T¢)C2rxf (T¢)C2r><f e X (T%)C2 Ko (T¢)C2fxalr X (T¢)szxalr (T2

n n

and

Bn - (qu))czrxf (T¢)C2rxf ves r)(f (T¢)C2 .

n

Projecting onto the first n factors gives maps A, — B,,. These maps commute with the Frobenius
F on A, and the projection proj; on B, by the description of F in Remark 2.8, thus defining a
morphism of towers. We will now show that this morphism is a pro-equivalence and thus induces
an equivalence on homotopy inverse limits. Hence, by Theorem 2.7 and Remark 2.8, we obtain
the description of TFR(T; 2)%%/2.

Let us define a homotopy pro-inverse B,,; — A,,, for n > 2, by the map induced by

(1, X9, ey Xy Xy 1) = (X0, X5 e, Xy Xy eon s X, Xp).

The identifications between the components in the pullback A, are defined exactly as in
Remark 2.8 for the Frobenius, in particular,

rx, = X, 2 01fX,1 ~orx,,
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where the middle homotopy is the canonical one and the last path is just o, applied to the first
homotopy. That this map is indeed a pro-inverse [4, Section III-§2], follows immediately from the
description of F in Remark 2.8.

Let us now identify R on TFR(T; 2)?%/2. By the description of the map R in Remark 2.8, we see
that for any n > 1, the diagram

proj
An+1 ? Bn+1

proj

A, — B,

commutes. Since the horizontal maps are entries of a pro-equivalence, passing to limits along F
gives the desired result. O

Finally, we are ready to prove the main result of this section.

Theorem 2.14. Let T be a bounded-below real 2-cyclotomic spectrum. Then, there is a natural
equivalence

f
TCR(T;2)?2/2 ~ eq| (T*Z/2)C: ' T2/

r

Proof. Recall that TCR(T;2)%%/2 is equivalent to the equaliser

id
TCR(T;2)?%/? ~ eq < TFR(T;2)%%/2 ’ TFR(T; 2)$Z /2 > .
R

Now consider the commutative diagram

proj proj proj
= (T, X (T, X (T2, X (T2 —3 (T2, X (THC2, X (T — (T, X f (T9)C

proj; | | proj, proj, | | proj, proj | | proj,
1 I 1

proj
(T#)C2, X (T#)C2, g (T —=

Proj; —[> (T¢)C2rxf (T¢)C2 —l> (T¢)C2.

By Theorem 2.13, if we pass to the inverse limits horizontally and then take the equaliser we get
TCR(T; 2)?%/2. Equivalently, we can take equalisers in each degree vertically and then pass to the
inverse limit. In general, given maps a,b : X — Y, the equaliser of the projections

proj,

XoXp XaXp o qXp X T X Xp X Xp o o Xp X
proj,
n+1 n
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off the first and last component (and where all the products denote fibre products over Y), is
equivalent to the equaliser of a and b. Thus, each vertical equaliser above is equivalent to

f
eq (TgbZ/Z)Cz — T$Z/2

r

and the induced maps are equivalences. O

3 | TCR OF SPHERICAL MONOID RINGS

We apply the formulas of the previous section to calculate the geometric fixed points of the real
topological cyclic homology of spherical monoid rings, and, in particular, for the sphere spectrum.
In §3.1, we give the general formula and analyse a certain assembly map, and in §3.2, we carry out
some calculations for discrete groups.

3.1 | TCR of spherical monoid rings and assembly

Let M be a topological monoid with anti-involution, that is, a map of monoids w: M°? - M
such that w? = id (for example M is a group and w is inversion). The Z/2-equivariant suspension
spectrum of the underlying Z /2-equivariant space

is then a ring spectrum with anti-involution, where the multiplication is inherited from the mul-
tiplication of M. We recall that, since S is the monoidal unit of the tensor product of spectra, there
is an equivalence of O(2)-spectra

THR(S[M]) ~ 2B M,

where BYM is the dihedral bar construct of the monoid M with respect to the product of spaces
(see [10, Proposition 5.12]). Thus, from Corollary 2.5, we immediately obtain that for every odd
prime p

TCR(S[M]; p)**/? ~ THR(S[M])??/? ~ 2 (BYM)*/? =~ 2 B(M*/?, M, M*/?),

where the two-sided bar construction is for the left and right actions of M on its fixed-points
subspace MZ/2 defined, respectively, by m - x = mxw(m) and x - m = w(m)xm. The right-hand
isomorphism is the space-level analogue of the equivalence which describes THR(A)#%/2 as a
derived tensor product from [10], reviewed in §1.2. It is the composite

BYM)Y*/? = |sd, NUM|?/? = |(sd, N“M)?/?| = B(M?/?, M, M*/?)

of the isomorphism with the realisation of the subdivision of §1.2, the canonical isomorphism
commuting fixed points and geometric realisations and the simplicial isomorphism that sends
an n-simplex (x,my, ..., m,,y,w(m,),...,w(m,)) of (sd, N¥M)?/2, with x,y € M%/2, to the
n-simplex (x, my, ..., m,,,y) of the two-sided bar construction.
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For the prime 2, the situation is more delicate, as the description of TCR of Theorem 2.14 now
involves the action of the Weyl group C, on

THR(S[M])??/? = 22 BM?/?, M, M*/?).

This involution arises from the simplicial C,-action on the simplicial object (sd, sd, N4M)Z/2,
as in Lemma 1.2, which is given levelwise by the rotation of order 2 of the product components.
The levelwise isomorphism (M>**"+4)2/2 >~ MZ/2 x M*2n+1 x MZ/2 described above determines
a simplicial C,-equivariant isomorphism

(sd, sd, N“M)?/? = sd, N(M?/%, M, M?/?),

where the action of C, on the right-hand side reverses levelwise the order of the product factors
and applies w on the M-factors. There are therefore isomorphisms

BM?/2, M, M?/?)¢2 = |(sd, N(M?/?, M, M?/?)®2| = B(M?/?, M, M?/?),

where the second one sends a fixed point (x, my, ..., m,, m, .1, wim,), ..., w(m,), x), with m, ., =
w(m, 1), to(x, my,...,m,, m, ;). This isomorphism corresponds to the residual cyclotomic struc-
ture on the Z /2-geometric fixed points of THR(S[M]) (cf. Example 2.6). Under this identification,
the fixed-points inclusion corresponds to the endomorphism ¥ of B(M?/2, M, M?/?) given in
simplicial degree n by

P(x,my,...,m,,y) = (x,my,...,m,, ywim,) .. wim; ) xmy ... m,y),
that is to say that there is a homotopy commutative diagram

B(MZ/Z,M,MZ/z)CZ ¢ = B(MZ/Z,M,MZ/Z)

T )

B(MZ/2,M,M?*/?),

where the diagonal map is the fixed-points inclusion. This follows readily from the commutative
diagram

BMZ /2, M,M?/%)% «=— |(sd, N(M? 2, M, M? /)| «—=— B(M? /2, M, M?/?)

J |

B(MZ/2, M,MZ%/?) «—=— |(sd, N(MZ/2, M, M% /2)|,

where the vertical arrows are the inclusions of the fixed points, by observing that the bottom
horizontal map is homotopic to the realisation of the ‘last vertex map’ (defined by iterating the last
face map of N(M?/2, M, M?/2)), and that the composite of the top right horizontal map followed
by the inclusion of fixed points and the last vertex map is by definition .

Example 3.1. The typical example of a monoid with anti-involution is the signed loop space

M = Q°X :=Map,(S°,X),
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where X is a pointed Z/2-space, S° is the sign representation sphere and Z/2 acts on the loop
space by conjugation. In this case, the dihedral bar construction is equivalent to the free loop
space

BUQX ~ A°X 1= Map(5°, X)

again with the conjugation action of Z/2 (see [10, Remark 5.13]). Let us spell out the map 3 under
this identification. By passing to the upper half-circle, the Z /2-fixed points of A°X can be identi-
fied with those paths in X which start and end at a fixed point, or in other words the homotopy
pullback

(AO'X)Z/Z zXZ/Z XX XZ/Z

of the fixed-points inclusion along itself. Since the C,-action on A°X is given by the 180° degrees
rotation followed by the involution of X pointwise, the residual C,-action on X%/2 xy X7/2
flips the direction of the path and applies the involution of X pointwise. Hence, there is an
isomorphism

(XZ/Z XX XZ/Z)CZ gxz/Z XX XZ/Z,

which restricts a C,-fixed path y : [0,1] — X to [0, 1/2]. Under this identification, the fixed-points
inclusion corresponds to the map

which sends a path y to the concatenation y x w(y), where ¥ is the inverse path. This is some sort
of squaring operation reminiscent of the Frobenius.

We are finally able to describe the geometric fixed points of TCR(S[M]; 2) (notice the analogy
with [3] and [27, Theorem IV.3.6]):

Theorem 3.2. Let M be a well-pointed topological monoid with anti-involution. Then there is a
pullback square

TCR(S[M];2)#%2/? — 5 S B(MZ/2, M,M?%/?),,c,

| :

IXB(MZ/2, M, M%/?) s EPB(M%/2, M, M%/?),

where the right vertical map is the transfer from orbits to fixed points, followed by the forgetful map
to the underlying spectrum. In particular, for M ==, there is an equivalence

TCR(S; 2)%?/? ~'s @ RP™,

where RP?, is the fibre of the transfer trf : ZPRP® =S, — S.

Proof. From the identification of THR(S[M]) with the dihedral bar construction of M, we obtain
an equivalence of C,-spectra

THR(S[M])??/? ~ (2 BYUM)??/? = 22 B(M*/%, M, M*/?).
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By the tom-Dieck splitting (see, for example [30, Section 6]), the isotropy separation sequence
EXBM“?, M, M*/?), 0 — (EXBM?/2, M, M*/?))%> — (P B(M*/?, M, M*/?))?C>
canonically splits, giving equivalences
(THR(S[M])?#/%)< ~ (2 BM*/?, M, M*/?))"
~ (Z2(BM??, M, M*/?))?2 @ 2P B(M*/2, M,M*/?),.
~ SR(B(M*/?, M, M*/*)2) @ 22 B(M*/?, M,M*/?),,.
= $CB(M?/2, M, M*/?) @ 2 B(M*/*, M, M*/?),. .

The map r is by definition the projection map of the isotropy separation sequence, followed with
the cyclotomic structure which corresponds to the last two equivalences. Thus, r identifies with
the projection

(1,0) : =°B(M%/?,M,M?/?) @ s°B(M?/?, M, M?/?), . — =°BM?*/*,M,M?/?)
+ + hC, +

onto the first summand. The map f is by definition the restriction map to the underlying spec-
trum. Under the tom-Dieck splitting, this is the suspension of the fixed-points inclusion on the
first summand, and the transfer on the second. Since, after applying the cyclotomic structure on
the first summand, the fixed-points inclusion agrees with 3, we obtain that f is given by

@, tef) : ZPB(M?/2, M, M*/?) @ £ B(M*/?, M,M*/?),. — £°B(M*/?, M, M*/?),

where trf is the transfer map.

It follows that the equaliser of r and f is computed by the pullback above, and it is equivalent
to TCR(S[M]; 2)?%/2 by Theorem 2.1.

If M =x, the bottom horizontal map of the pullback square is zero, and the pullback splits as
the fibre of trf and S. Ol

Remark 3.3. The explicit identification of the maps r, f of the proof of Theorem 3.2, in fact, gives
a description of the full TR-tower of S[M]. Indeed, one can see by direct calculation that for every
2 £ n < o0, there is an equivalence of spectra

2n—-2
TRR"(S[M];2)%/2 = 2B(M*/2, M, M*/*) x [ =BM*/%, M, M*/?),c.,
j=1

and the maps R, F : TRR"(S[M];2)$?/2 - TRR"(S[M];2)?%/? are given, respectively, by the
projection

R(a,X_ppy ey X1, X, w005 %) = (@, X_ppy1s oo s X1 X5 wee s Xy 1)
and by

Fa,X_,, s X_1, X155 X)) = (@) + trf(x_1), Xy e s Xy X gy oo, X))
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Let us now turn our attention to the case where G is a group-like topological monoid with
involution, that is a topological monoid with involution G such that 7,G is a group. In this case,
the canonical map

G — Q°B°G

is an equivalence (see [26]), where B?G is the subdivision of BG with the simplicial involution
that sends (g;, ..., 9241) t0 (W(g2,41) ---» w(gy)). The fixed-points space of X = B?G is then the
one-sided bar construction

(B°G)*/* ~ B(G*"%,G)

of G acting on its fixed-points set by x - ¢ = w(g)xg. We will therefore phrase the next results in
terms of signed loop spaces G = Q°X, where X is any pointed Z/2-space. We also note that the
fixed-points subspace of G = QX is the fibre of the inclusion

GZ/2 = (QUX)Z/Z — fib(XZ/Z - X),

where a € QX acts on a path y from the base-point to a fixed point by concatenation y - a =
w(a) x y.

Corollary 3.4. For every well-pointed Z /2-space X, there is a fibre sequence

E2X*?) @ (S ® RP™) 2 TCR(S[Q°X];2)%4/? = Q,

id-zPy trf
where Q is the pullback of Z°C — Iec <I—Zi°Chcz and C the cofibre of the diagonal
Az X712 5 X712 % X712,
If the involution of X is trivial, Q is zero and there is a natural equivalence

TCR(S[Q7X];2)%7/% = (ZPX) ® (S & RP%)).

Proof. The diagonal A: X%/2 — X7/2 x, X%/ is clearly equivariant for the Weyl C,-action on
the pullback and the trivial action on X?/2. It therefore induces a commutative diagram

id -z
SR(XZ /2 0y XP/2) oy (X7 X7 1) M seo(x7 2 X7,
AT AT AT
0 0 ) t 9
Z5 (XZ /2) T (XZ /2) v T (XZ /z)hcz’

where the bottom left map is zero since ¥ is the identity on constant paths. Example 3.1, and
the limit of the top row is TCR(S[Q°X]; 2)%Z/2 by Theorem 3.2 and Example 3.1 the limit of the
bottom row is (Z2°X 71 @ (S ® RP>). By taking cofibres vertically, we obtain the fibre sequence
of the statement.

If the involution on X is trivial, the diagonal map A : X — X Xy X is an equivalence and thus
Q is trivial. O

If the involution of X is not trivial, the cofibre Q need not be zero, as illustrated in the following
example.
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Example 3.5. Suppose that X is a pointed space, and let us consider the pointed free Z/2-space
X =X AEZ/2 +- Since its fixed points are contractible, the fixed points of G = Q7X b are

GZ/Z — (Qﬂxb)Z/Z ~ QX,
since this is the space of paths from the base-point to a fixed point of X?. In this case,
B(G%/%,G,G%/*) ~ B(QX, QX, QX) ~ QX,

and the map ¢ : QX — QX sends aloop y to y x ¥ and it is therefore null. By Theorem 3.2, there
is a pullback

TCR(S[Q°X?];2)#7 /2 — (ST Q°X)yc,

id -0,

20X 20X,

where C, acts on Q°X by the loop inversion. There is therefore a splitting
TCR(S[Q°X°];2)%%/% ~ S @ RP™, @ E®QX)yc,-
In this case, the map A of Corollary 3.4 is easily seen to split, and the homotopy orbits summand
corresponds to the summand Q.
3.2 | TCR of spherical group rings for some discrete groups

Let us now consider a discrete group G with anti-involution. The map A of Corollary 3.4
corresponds to the simplicial map

B(G*/?,G) — B(G*/%,G,G*/?),

which sends (x, g;, ..., g) t0 (X, g1, eee» G 9, * - 97 X w(g, . g7 1)). This follows from identify-

ing
B(G”/?,G) xp; B(G?/?,G)
with B(G%/2,G,G%/?) via the map
(X g1y eves Go Vs Pps v s ) (3, gl,...,gn,h;1 ...hl_ly_lw(h;1 ...hl_l)).
Example 3.6. Suppose that the involution of G is inversion w = (—=)~!: G°? — G. Then, the
fixed-points space of G consists of the set of elements of order 2. If G has no 2-torsion, we are in

the situation of Corollary 3.4 where GZ/2 = 1 and (B°G)?/? ~ BG, and

TCR(S[G]; 2)**/% ~ (2¥BG) ® (S ® RP™).
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For example, let us consider the spherical Laurent polynomial ring S[¢,t~!] : = S[Z], where the
involution acts by inversion in Z, that is, swaps ¢ and t~1. Then,

TCR(S[t, t1];2)%7/% = (2°S") ® (S & RP™)).

Now suppose that G is a discrete group with a general anti-involution w: G°°? — G. The
bar construction B(GZ/ 2 G,G%/ 2) is the nerve of a groupoid, and therefore, after a choice of
representatives for its isomorphism classes, it decomposes as

B(GZ/Z,G, Gz/z) o~ H BAut(x,y)’
[x,y1E(GZ/2XGZ/2) |~

where the equivalence relation identifies (w(g)xg,y) with (x, gyw(g)), and the automorphism
group of (x, y) € GZ/2 x G%/? is the subgroup Aut(x,y) = {g € G|| w(g)xg = x gyw(g) = y}. Let
us now determine the map 3 and the Weyl action, so that all the ingredients of Theorem 3.2 are
in place.

Lemma 3.7. The maps ¥ and the action of the generator T of the Weyl group (as a homotopy coherent
action) are given, under the decomposition of B(GZ/ 2 G,G%/ 2) above, respectively, by the maps

P(x,¥19) = (x,yxyl,9)  and =[x, y],9) = ([y, x], w(g™H).

In particular, the homotopy orbits of B(GZ/2, G, GZ/2) for the Weyl action can be computed using this
strict action of 7.

Proof. The description of ¢ is immediate from the formula before Example 3.1. The description
of the action of the generator follows from the well-known fact that if G is a groupoid with strict
duality, that is, a functor w : G°? — G such that w? = id, then the Z/2-actions on BG defined,
respectively, by the levelwise duality together with inverting the order of the simplex coordinates,
as in §1.2, and the one defined by the endofunctor

)

C—— P 5 g,

are homotopy coherently equivalent. We were not able to track down a proof, so we include an
argument for the reader’s convenience. After applying the subdivision functor sd, from §1.2 to the
nerve of G, the two actions are, respectively, equivalent to the simplicial actions defined levelwise
on sd, NG by w and wo(—)"!. The subdivided nerve sd, NG is isomorphic to the nerve of the
twisted arrow category of G, and the two actions correspond, respectively, to the ones induced by
the (covariant) endofunctors w and wo(—)~!, defined on the objects of the twisted arrow category,
respectively, by

wx Sy = W) -2 ww)  and w7 = W) L wy)).
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Let us regard these actions as functors Z/2 — Gpd to the category of groupoids, where both send
the unique object of Z/2 to the twisted arrow category of G. Then the diagram

w(g)
wy) — w(x)
w(g) w(g)

w(x) Y& w(y)

exhibits the 2-cells of a pseudo-natural isomorphism on the identity transformation between
the functors Z/2 — Gpd. Thus, the two actions on the geometric realisations are homotopy
coherently equivalent. O

With these formulas at hand, one should in principle be able to determine the pullback of Theo-
rem 3.2, as its maps consist of products of diagonals and transfers Z°RP*® — S. The combinatorics
of which components are hit by the diagonals are complicated in this generality, but we compute
them fully in the following special cases.

Example 3.8. Suppose that the order-2 elements of G are included in the centre of G, and that the
involution on G is inversion. This is exactly the situation where the action of G on GZ/2 is trivial.
It follows that G?/? = G, consists of the elements of order 2, and

B(G,,G,Gy) = [] BG.
G,XG,

The map 3 sends the component (x, y) to the component is (x, x) via the identity of BG, and the
involution freely permutes the components indexed by pairs (x,y) with x # y, and is trivial on
the components (x, x). There is therefore a splitting

TCR(S[G];2)%*/? = ((Z3G,) ® P) ® £TBG,

where P is the pullback
P (Gy)y @ TPRP™
l lid@trf
(A/C), ®S ————(G,), ®S,

where A C G, X G, is the complement of the diagonal with the involution that flips the factors,
and q is the sum of the maps that send the component [x # y], respectively, to the components x
and y.

For example, for G = Z with the minus involution, we recover the calculation for S[t,t~!] of
the example above, since in this case G, = 1. On the other hand, for G = C,, the map q is the
diagonal, and P is the pullback of the transfer Z°RP* — S along itself, and

TCR(S[C,]; 2)%%/? = ((Z2C,) ® (EXRP™ X5 Z°RP™)) ® Z°BC,.

Here, we also see that TCR(S[C, |; 2)#%/2 splits off an RP, ® 2 BC,-summand, since the pull-
back of the two transfers splits as RP®, @ ZRP>, but this splitting is, however, non-canonical.
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Notice that P depends only on the order-2 elements of G, so, in fact, for every even integer n > 2
TCR(S[C, 1;2)%*/% = ((Z2C,) ® (EPRP™ x5 T°RP®)) ® T2°BC,,
where again the involution on C,, is inversion.
Example 3.9. Now suppose that G is abelian and endowed with the trivial involution. Then
G7/? = G with left and right G-actions g - x := 2g + x. The components of the two-sided bar
construction are described by a bijection

(GxG)/ ~=GxG/2,

which sends [x, y] to (x + y, [y]). Under this equivalence, the C,-action sends (x, z) to (x, [x] + z),
and ¢ to

»(x,z) = 2x, [x] + 2).

The C,-fixed-points set of G X G /2 is therefore the set of pairs of the form (2¢, x), and G X G /2
decomposes C,-equivariantly as

GxG/2=2(2GxG/2)U(((G\2G)xG/2)/C,) X C,.
If we assume additionally that G has no 2-torsion, then the fundamental groups of the two-sided
bar construction vanish since the corresponding groupoid has only trivial automorphisms. The

pullback diagram describing TCR(S[G]; 2)#Z/2 then takes the form

TCR(S[G];2)?#/* ———— (26 X G/2); ® ZYRP®) & ((G\ 2G) X G/2)/C1),. ® S

l Jincl ® trf A
id-z3y

(GXxG/2),®S (GxG/2),®S,

where A sends the component of an orbit [ g, x] with g ¢ 2G diagonally to the components (g, x)
and (g, [g] + x).

Let us now identify this pullback under the additional assumption that G does not have ele-
ments infinitely divisible by 2, that is, for any 0 # g € G, there exists n € N such that g = 2"x
does not have a solution. This, in particular, implies that G is torsion-free (but not vice versa,
take, for example G = Q). Under this assumption, we can easily compute the cofibre of id —Z%.
Indeed, from the commutative diagram

(26XG/2), ®S ——" L (26%G/2),®S

GXG/2), ®S —— [ (GxG/2), ®S

J |

(G\26G)xG/2),®S-=+((G\26)xG/2), ®S,
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we see that the lower horizontal map induced on cofibres is an equivalence. Hence, the cofibre of
id =X’ is equivalent to the cofibre of its restriction

d-Z3P: (26xG/2), ®S - (2GXG/2), ®S.

Since (0, z) = (0, z), we see that the zeromap 0: (G/2), ® S — (G/2), ® S splits off from the
given map, and hence, the cofibre contains the summand (G/2), ® (S @ S!). Let us now compute
the cofibre of

d-2P9: (2G\0)xXG/2), ®S = (2G\0)XG/2), ®S.

By the non-divisibility condition, this morphism induces an injection on homotopy groups. The
morphism ¥ maps the summand indexed by (g, x) identically to the summand indexed by (2g, x)
since g € 2G. By inspecting the cokernel of the difference on homotopy groups, all (2" g, x) sum-
mands get identified with the (g, x) summand for n > 0, g € 2G \ 4G and x € G/2. Hence, we
see that the cofibre is ((2G \ 4G) X G/2), ® S. All in all we get a cofibre sequence

(GXG/2), ®S 25 (GXG/2), ®S —+ (26 \46)X G/2), ®S) ® (G/2), ® (S® SH)),

where ¢ includes (0 X (G/2)), ® S into (G/2), ® S, sends the (2"h X G/2), ® S-summand via
the identity to the summand (2h X G/2), ® S for any h € G\ 2G and n > 1 and sends the
summand ((G \ 2G) X G/2), ® S) to (G \ 4G) X G/2), ® S) via (¢, x) — (29, g + X).

From the pullback square above, we find that TCR(S[G]; 2)¢%/2 is the fibre of the map

$o(incl @ trf @A) :(2G X G/2), @ ZTRP®) D ((G\2G) xG/2)/C,), ®S —
((2G\46)xG/2), ®S) ® ((G/2), ®(S®SH),
which is given by the wedge
(G/2); ®(S®RPX) ® P,
where P is the pullback

P (2G\ 0) X G/2), ® T RP™

| |

(((G\26)%xG/2)/C1), ®S —— (((2G\4G)xG/2), ®S).

By using that any non-zero element ¢ € G can be uniquely written as 2"y, where n is a non-
negative integer and y € G \ 2G, we can write P as

P~ (((G\26)xG/2)/Cy), ® (N; @ ZPRP) Xs (N, @ TFRP™)).
We note that (N, ® ZPRP®) X (N, ® ZRP*)) is non-canonically equivalent to

RP™ & EJ:’_°IRPOo (&%) ZfIRP"" (&) ZfRPm D ...
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To summarise, for every abelian G with trivial involution, no 2-torsion and no elements infinitely
divisible by 2

TCR(S[G];2)%%/% = ((G/2), ® (S ® RP™)

® (G \ 20) X G/2)/Cy), ® (N, ® TZRP®) X5 (N, ® ZXRP®)).

In particular, the group G = Z with the trivial involution gives rise to the spherical Laurent
polynomials S[t,t~!] := S[Z] with the involution which acts trivially on the generators, and

TCR(S[t, 7' ];2)%7/% ~ ((Z/2), ® (S® RP)) & (Z, ® (N, ® ZTRP) Xs (N, ® ZPRP™)))

where we took the liberty of enumerating the summands non-canonically.

4 | TCR OF PERFECT FIELDS

In [18], Hesselholt and Madsen identified the p-typical topological cyclic homology spectrum
TC(k; p) of a perfect field k of characteristic p as the sum

TC(k; p) ~ HZ,, @ ' H coker(1 — F),

where F : W(k; p) - W(k; p) is the Frobenius homomorphism of the ring W(k; p) of p-typical
Witt vectors. Their calculation relies on the fact that the ring 7z, THR(A)?" is isomorphic to the
ring W, 1(A; p) of (n + 1)-truncated p-typical Witt vectors, which holds for every commutative
ring A (see [18, Theorem F]). The situation for 7, THR(A)"»" is not completely analogous, and
requires particular care.

We start by recalling from [10, Corollary 5.2] that, for every commutative ring with involution
A, there is an isomorphism of rings

7o(THR(A)?/?) = AZ2 @\ A% 1= (A7? @ A?/*) /(1@ ad — aa ® 1),

where A%/2 is the subring of invariants of A, and the quotient is by the ideal generated by the
elements of the form 1 ® aa — aa ® 1 for some a € A (hereweusethata+a=(a+1)(a+1)—
aa — 1 to simplify the second relation of [10, 5.2], so that, in particular, 2b ® 1 = 1 ® 2b in the
quotient AZ/2 ®y AZ/2, if b € AZ/2). The restriction map 7, (THR(A)?/2) — 7, THR(A) then
corresponds to the multiplication map

AZ/2 ®y AZ/? L)Az/z — A,

where the second map is the inclusion. For perfect fields, the map u induces an isomorphism
AZ12 @y A?/? =~ AZ/2 and the same is true in the following cases:

Remark 4.1.

(1 Let us start by noticing that for ever y additive generator a @ b € A /2 Ry A /2, we have
y g g N
that

2u(a®b)®1=2ab)®1=a®2b=2(a®b),
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(ii)
(iii)
(iv)

\

(vi)

and therefore, all the elements of the kernel of u are 2-torsion (where the second equality
follows from the fact that 2b ® 1 — 1 ® 2b belongs to the ideal defining the quotient A7/? ®
AZ/2 as remarked above). Thus, 4 is an isomorphism when A is 2-torsion free, for example,
for fields of odd characteristic.

There is a section for u: AZ/?2 @y AZ/?> - AZ/2, which sends a to a ® 1. Therefore, y is
always surjective, and it is an isomorphism if and only if this section is itself surjective.

If the multiplication map A%/ ® AZ/2 - AZ/?is anisomorphism, for example, for A = Z/n
for any integer n, then so is u.

If the involution of A is trivial and the modulo 2 reduction of A is semi-perfect (i.e. the mod
2 Frobenius is surjective), then every element a € A can be written as a = ¢? + 2d for some
c,d € A. Then, we can write a generator of A @y A as

a®b=(*+2d)®b=1® (c* +2d)b =1® ab,

which shows that the section A - A @y A is surjective. This example covers the case of
perfect fields of characteristic 2.

If the involution of A is not trivial, a similar argument shows that the section A%/2 —
AZI2 @ AZ/? is surjective if every element a € AZ/2 can be written as a = cc + d + d for
some c,d € A, or in other words if the composite

N
A — A?1? 5 AZ/? [ tran
is surjective, where N(a) = aa and tran(a) = a + a.
Suppose that there exists an element e € A with the property that e + w(e) = 1, for example,
if 2 € A is a unit. By Frobenius reciprocity, this is equivalent to the surjectivity of tran: A —
A?/? since any element x € A%/? can be written as

x =1-x = tran(e) - x = tran(eres(x))

(explicitly, x = ex + w(ex)). Thus, this condition is equivalent to the vanishing of HA%7/2,
By the previous item, u is an isomorphism.

An example where the multiplication map is not an isomorphism is provided by the group ring
Z[C,] with the trivial involution, where

Z[C,1*% @y ZIC,1%/* = Z[C,] @ (2/2)®>

is not isomorphic to Z[C,]%/? (see [10, Section 5.2]).

If the multiplication u : A%/?2 ®y A%/?> - AZ/2 is an isomorphism, it follows from [10, The-
orem 5.1] that the Z/2-Mackey functor 7z, THR(A) is the fixed-points Mackey functor of the
ring with involution A. On the other hand, if the prime p odd, we show in [11, Theorem 3.7]
that 7, THR(A)P»" is also a ring of Witt vectors, and combining these results, we obtain a ring
isomorphism

o THR(A) " = W, (A7 @y AZ/?; p) = W,,1(A; ),

for every odd prime p and commutative ring A satisfying any of the assumptions of Remark 4.1.
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In the next section, we use this last isomorphism to determine TCR of perfect fields of odd
characteristic. In the subsequent ones, we examine the relationship between 7, THR(A)P>* and
the Witt vectors for the prime 2, and determine TCR of perfect fields of characteristic 2.

4.1 | TCR of perfect fields of odd characteristic

Let p be an odd prime, and A a commutative ring with involution. We let W(A; p) denote the ring
of p-typical Witt vectors of A. By Remark 4.1 and [11, Theorem D], there is an isomorphism of
Z /2-Mackey Functors

7, TRR(A; p) = W(A; p),

between the components of TRR(A; p) and the fixed-points Mackey functor of W(A; p) with
the involution induced functorially by the involution of A. In particular, ﬂf/ 2 TRR(A; p) =
W(A; p)?/* = W(AZ/2; p), where the latter holds since the Z/2 action is given coordinate-wise
and fixed points commute with products.

Proposition 4.2. Let p be an odd prime, and k a perfect field of characteristic p with involution.
Then there are equivalences of genuine Z /2-spectra

TRR(k; p) ~ HM
and
TCR(k; p) ~ HZ,, @ £~ 'Hcoker(1 — F),
where F : W(k; p) - W(k; p) is the Witt vector Frobenius.

Proof. The Oth Postnikov section provides a map of Z /2-equivariant spectra
TRR(k; p) — HW(k; p).

This map is an equivalence on underlying spectra by [18, Theorem 5.5], and it is therefore suffi-
cient to prove that it is an equivalence on geometric fixed points. The spectrum TRR(k; p)?/? has
the structure of a ring spectrum. Moreover, there is an isomorphism 7,(TRR (k; P22y = W(k; p)
and therefore 2 = tran(1) is a unit in 77,(TRR (k; p)?/?), see [11, Corollary 3.14]. Since the transfers
vanish in the geometric fixed points, we have that 2 is both a unit and zero in 7,(TRR (k; p)¢z/ 2),
and therefore, 7,(TRR(k; p)#2/2) is the zero ring. Since TRR(k; p)#Z/2 is a ring spectrum, its
homotopy groups are a module over the zero ring, and therefore, it must be contractible.

According to Definition 1.5 and the previous paragraph, the Z/2-spectrum TCR(k;p) is
equivalent to the equaliser of Z/2-spectra

eq < HW (ks p) = HW(k; p) ) .

The kernel ofid —F : W(k; p) — W(k; p) is equal to W(F ,; p) which is isomorphic to Z,,, and this
completes the proof. O
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4.2 | TCR of perfect fields of characteristic 2

The calculation of TCR(k;2) for a perfect field of characteristic 2 is more involved than the odd
primary case. This is because the geometric fixed-points spectrum of TRR(k; 2) is not trivial, and
thus, we cannot directly apply the argument of Proposition 4.2. The first step is to understand the
geometric fixed points of TRR"(k;2), using the formula of Theorem 2.7.

421 | The geometric fixed points of TRR" for perfect fields of characteristic 2

Let us fix a perfect field k of characteristic 2, and let us compute additively TRR"(k; 2)¢Z/ 2,
TRR(k; 2)¢Z/ Zand TCR(k; 2)¢Z/ 2 using Theorem 2.7. We let k denote the constant Mackey functor
of k.

By splitting H E‘f’z/ 2 using the Frobenius Hk-module structure, we obtain a decomposition

HK?*/? ~ @D 5" Hk.

n=0

This uses that k is perfect and hence k considered as a k-module via the Frobenius is again a
1-dimensional k-vector space. This induces a decomposition of the corresponding THR spectrum,
which we analyse in greater generality in the following situation. Let A be a ring spectrum with
anti-involution, and suppose that, as an A-module, A%Z/2 with its Frobenius module structure
splits as a sum of A-modules

A2 o Q3 H (7, AP/,

n=0

for some A-module structure on H(nnA¢Z/ 2). Then, by expressing THR(A)?%/2 as a tensor
product, we immediately obtain an equivalence of spectra

THR(A)¢Z/2 ~ A¢Z/2 ®A A¢Z/2 ~ @ En+mH(7TnA¢Z/2) ®A H(ﬂmA¢Z/2)

(n,m)
n,m>=0

In the following lemma, we further identify the C,-structure induced by the Weyl group action
and the maps required for calculating TRR and TCR of Theorem 2.7.

Lemma 4.3. Let A be a ring spectrum with anti-involution with a splitting of A-modules

A2 ~ @ 2 H(r, A1),

n=0

Then, there is an equivalence of C,-spectra

THR(A)**/? = @ TP A®,c, , Ny *(H(m, A" /)&

n=0

P =", ® H(,A%/?) ®, H(m,A*/2)).

(n,m)
on<m
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In particular, the C,-fixed-points spectrum decomposes as

(THR(A)*/)% = @PEPA @, ¢, , No*(H(m, A )0
n=0
@ =H(w,A%/) @, H(w,, AP /2.
(n,m)

on<m

Under these decompositions, the map r identifies with the map which kills the (n, m)-summands,
and on the n-summand is given by the composite

(AR e, Ne*(H(my AP/ ) = (FPA®c, | No*(H(m, AP/ )
~ (Z"AY @ 4 H(m,A%7/%) ~ (@D =" H(x,,A%7/%) ® 4 H(7, A /%))
m=0

~ @ 2" H(n,, A7) @ 4 H(m, A1)

m=0

of the canonical map, the monoidality of the geometric fixed points combined with the diagonal
equivalence, and a further application of the splitting of A$Z/2,
The map f identifies with the composite

C2
res, < DA
DA NOHE AN 0 @ " H(r,A%/?) @ 4 H(x, A2 ——
n>0 ¢ (n,m)
osn<m

P A @ugu H(m, A1) @ Hm, AN P TH(n,A%/?) ®, H(n,A*/?)
n=0 (n,m)
osn,m,n#m

~ @ ="H(w,A*/?) @, H(r,, A1),

(n,m)
on,m

where res.ec2 is the forgetful map, and A maps the summand (n, m) diagonally into the sum of the
summands (n, m) and (m, n).

Proof. By using inductively that for A-modules X and Y, there is an equivalence of N, eC 2 A-modules
NZ(X@®Y) = N 2(X) @ N (V) @ ((C); ®X ® Y),
we find that the C,-norm of A%7/2 decomposes as an Nec *A-module as

N (A%7/%) = @SN (H(m, A7) & @) ="(C,), ® (H(m,A%"/?) @ H(x,, A%7/?)).

n>0 (n,m)
osn<m

By tensoring with A over N ©2A and applying the formula of Lemma 1.2, we obtain the first

e
equivalence of the lemma.
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Let us now identify r. Recall that by Example 2.6, the map r is the composite

A® (NS(AP))C2 - (A @ (NS2(APZ/2))PC2 ~ A$212 @, AS7)2

(NS2A) (NS24)
of the canonical map and the monoidal structure of the geometric fixed points combined with the
diagonal equivalence. The first map corresponds with the first map of the description of r in the
lemma, by naturality with respect to maps of C,-spectra and because the geometric fixed points
vanish on the induced summands. Thus, we need to show that the outer diagram

C. ~ C
(A @y (N (APZ NI = (D), ZPA @ Ni“(H(m, A2 12

: :

C o C
APC @ yer gyie, (N (AP 2P0 —=— @), ZAPE @ e gy, (N (H (mr, AP 12)))PC

] 4

A¢Z/2 ®a A¢Z/2 = @nzo 1 APC: . H(n.nAqbZ/Z)

commutes, where the horizontal arrows are induced by the splitting of A?“2, the vertical arrows
in the first row by the monoidality of geometric fixed points and the vertical arrows in the second
row by the diagonal. The top square commutes by naturality of the monoidal structure of the
geometric fixed points. For the lower square, we observe that its nth component is obtained by
tensoring the square of A-modules

(NG (APZ/2))9C = (NG (Z"H(m, A7 12)))$C

s s

A¥Z/2 = E”H(nnAM/z),

where the horizontal arrows are induced by the nth component of the splitting of A?C2, and the

top row is regarded as a map of A-modules via the diagonal 6 : A 5 (N f 2 A)?C2, This commutes
by naturality of &.

The description of f is immediate by naturality of the forgetful map from the fixed points to the
underlying spectrum, and the fact that for induced spectra, this map is the diagonal inclusion. []

Lemma 4.4. There is an equivalence of genuine C,-equivariant spectra

THR(k)**/> ~ @ =*Hk® @) ="*"C,, ® Hk,

n=0 (n,m)
osn<m

where p is the regular representation of C,. In particular, there is an equivalence of spectra

(THR(k)??/%)C> ~ P P zvane @ =Hk).

n=0 0<j<n (n,m)
osn<m
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Proof. Recall that the geometric fixed points of Hk decompose as

HK*/? ~ @D ="Hk.

n=0

The description of THR(k; 2)#%/2 therefore follows from Lemma 4.3, and the equivalence
= c
Hk — Hk ® ¢, (NG *(HK)

given by tensoring with the unit of the norm of Hk.

Now let us identify the fixed points. Notice that Z"°Hk is a module over Hk, and therefore,
its fixed-points spectrum is a wedge of Eilenberg-MacLane spectra. Moreover, a straightforward
calculation in Bredon homology shows that

7 2(S"PHK) = H *(S";k) = k
when n <i < 2n,and ﬂiCZ(Z”PHE) = 0 otherwise. O

In the following proposition, the summands are arranged exactly as in Lemma 4.4. In particular,
the summands indexed on (n, m) with n < m in the source come from the induced summands.
Similarly, the summands indexed on (n, m) with n # m in the target correspond to the induced
summands.

c
Proposition 4.5. For any perfect field k of characteristic 2, the maps r, f : (THR(k)¢Z/ H o
THR(k)**/? induce on 7, the maps

rf: P - @ k

(n,m) (n,m)
n,m=>0,n+m=x n,m=>0,n+m=x

where r kills the (n, m)-summands with n < m and maps the (n, m)-summands with m < n to
the (n, m)-summand via the inverse Frobenius of k, and f kills the (n, m)-summands with m < n,

includes the summand (n, n) and embeds diagonally the (n, m)-summands with n < m into the sum
of the summands (n, m) and (m, n).

Proof. The map r vanishes on the summands (n, m) with n < m by Lemma 4.3. The identification
of r on the other summands follows from observing that the canonical map

7 (S"HE) - 7 (EPHK)Y) = 7, (Z"(HEO) = 7, (@D ="' HEk)

[>0

induces the inverse Frobenius of k in degrees n << 2n (cf. with [27, Example IV.1.2]).
Similarly, f is the diagonal on the summands (n,m) with n < m by Lemma 4.3. The
identification on the other summands follows from the fact that the restriction map

resc? 1 HSA(S™; k) — H,(S2";k)

e

is the identity only in degree %= 2n, and zero otherwise. O
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Remark 4.6. From Proposition 4.5 and Theorem 2.14, we obtain that

F, ¥=21>0
7, TCR(k;2)%7/2 =3k /(x + x*| x € k) %=21—13> -1
0 *< —2.

Indeed, by 4.5, the map r — f is an isomorphism in 7, when restricted and corestricted to the
summands with n # m. It is therefore an isomorphism in odd degrees, and its long exact sequence
decomposes into exact sequences

0— 7y TCR(k; 22 > @ &k -, P k- m TCRK:2)P/% >0

(n,m) (n,m)
n,m=0,n+m=21 n,m>0,n+m=21

for every I > 0. Again, by Proposition 4.5, the kernel of r — f is the kernel of id —\/E k- k.
Since k is a field, this is F,. Similarly, the cokernel of r — f is the cokernel of id —\/E, which
since k is perfect it is also the cokernel of id +(—)?.

We also remark that these groups agree with the homotopy groups of the cofibre L"(k) of the
canonical map

Li(k) — L(Mod‘”,QZs)

induced by the symmetrisation map from the quadratic to the genuine Poincaré structure, as
defined in [6-8]. Indeed, the even homotopy groups of L9(k) are the Witt groups of quadratic
forms over k, and since k is a field, the odd groups vanish [29, Proposition 22.7]. The map above
is an isomorphism in degrees lass than or equal to —3 and surjective in degree —2 by [7, Theo-
rem 5], and therefore, the cofibre L"(k) is (—1)-connected. In degrees greater or equal to —1, the
homotopy groups of the target are the symmetric Witt groups of k in even degrees and zero in odd
degrees, by [7, Corollary 1.3.5]. The map is the symmetrisation map from quadratic to symmet-
ric Witt groups, which is zero since k has characteristic 2. Thus, the homotopy groups of L"(k)
are the symmetric Witt groups of k in even non-negative degrees, and the quadratic ones in odd
non-negative degrees. The (—1)st homotopy group of L"(k) is the kernel of the symmetrisation
map, and therefore again the quadratic Witt group. The quadratic and symmetric Witt groups of
a perfect field of characteristic 2 are, respectively, k/(x + x| x € k) and F,, see, for example, [22,
Theorem (1)].

In order to understand the full equivariant homotopy type of TCR(k; 2) will need to calculate
the homotopy groups of TRR(k; 2)%Z/2,

Theorem 4.7. Let k be a perfect field of characteristic 2. For any | > 1, there is an isomorphism

7 TRR'(27 2 Pk

(n,m)
n,m=>0,n+m=:x

The maps R, F : TRR* (k; 2)¢Z/ 2, TRR!(k; 2)¢Z/ * and the Weyl action are described on homo-
topy groups as follows. The map R kills the (n, m)-summands with n # m and is the inverse Frobenius
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of k on the summands (n,n). The map F kills the (n, m)-summands with m < n, is the identity of k
on the summands (n, n) and embeds the (n, m)-summands with n < m diagonally into the sum of
the (n, m) and (m, n)-summands. The Weyl action of o; swaps the (n, m)-summand and the (m, n)-
summand for all n,m > 0. In particular, the homotopy groups and the maps are all independent

of L.

Proof. We prove the theorem by induction on [, using the pullbacks of Theorem 2.7. For
n = 1, the pullback of Theorem 2.7 implies that TRR?(k; 2)¢Z/ % is equivalent to the pullback
(T?)C2x 74 (T)C2 (since the right vertical map is the diagonal for n = 1 in Theorem 2.7). Consider
the Mayer-Vietoris sequence associated to (T%)2 Xr¢ (T#)C2:

0 r—oqr 0
2 2, TRR2(k; 2)7/% — ¢ P e Po— P k..
(n,m) (n,m) (n,m)
nm=20,n+m=% n,m=0,n+m=sx n,m=20,n+m=x

where r is determined in Proposition 4.5. Since r —o;r is clearly surjective on each
homotopy group, the Mayer-Vietoris sequence decomposes into short exact sequences and

ﬂ*TRRZ(k;Z)M/ ? is the kernel of r — o,r. This kernel consists of the pairs of finite sequences
(x,y) indexed on the pairs of non-negative integers (n, m), such that

0 =r(X)(nm) = ©@1FODm) = FWomn) = \Vmn), forn<m,
VXnm) = r(X)mm) = (@1 O omy = rOonny =0, forn>m,
\/x(n,n) = r(x)(n,n) = (O'lr(y))(n,n) = r(y)(n,n) = \/y(n,n)s

where \/E denotes the inverse of the Frobenius (—)?: k — k. These are the pairs (x,y)
where X, ,) =0 and Y, ,,) =0 for n>m, and X, ,) = Y(n,n)» Which gives the description
of the homotopy groups of TRR?(k;2)#?/2. The maps R,F : TRR?(k;2)$?/2 — THR(k;2)?%/?
are described in Theorem 2.7 and send such a pair (x,y) to r(x) and f(x), respec-
tively, and are therefore the maps of Theorem 4.7. The Weyl action flips x and y by
Theorem 2.7.

Now let ! > 2 and suppose inductively that the decomposition holds for 7, TRR"(k; 2)¢Z/ *forall
h < land that the maps R, F : TRR"(k; %% L TRR"(k; 2)**/* and o}, are given in homotopy
groups by the formulas of 4.7. We will show that the same holds for 7, TRR*!(k; 2)¢Z/ ? and the
maps R, F : TRR1+1(k;2)¢Z/ > L TRR!(k; 2)¢Z/ ? and 0141- The Mayer-Vietoris sequence of the
pullback square of Theorem 2.7 is then (we recall o, F = F, and that n,m > 0)

la
TR 12" (P ve (@ me(@ N (D ve @ b.

(n,m) (n,m) (n,m) (n,m) (n,m)
n+m=sx n+m=s n+m=sx n+m=sx n+m=sx

:L.a

By the inductive assumption, the iterated map F'~! is, in fact, equal to a single map F. The right
horizontal map then sends a triple (x, y, z) of finite sequences indexed on the pairs of integers
n,m > 0 to the pair of sequences
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VX)) — Zimp)s N >m

(r(x) — F(Z))(n,m) =19 "Z(n,m)> n<m
A /x(n,n) — Z(n,n)’ n=m
_Z(n,m)9 n>m

(Glr(y) - Fo-l(z))(n,m) = \/y(m,n) - Z(m,n)’ n<m

VYwn) ~ 2nn) N=M.

This map is clearly surjective for all %, and therefore, n*TRRl+1(k;2)¢Z/ 2 is isomorphic to its
kernel. This consists of those triples (x, y, z) such that x,, ;) = Y( ) = 0forn > mandz, ,,, =0,
for n # m, and \/x(T = \/m = Z(n,n)» Which is isomorphic to the direct sum on all pairs of
natural numbers by setting wy,, ,,;y = Y(m.n) for n > m, and w, .y = Xy, for n < m, and w, ,,) =
X(n,n)- Let us now describe R and F under these isomorphisms. By Theorem 2.7, the map R sends
(x,y,z) to z, and therefore, under the isomorphism above,

R(w) 0, n#Em
w =
(n,m) /—w(n,n)’ n=m.

Again by Theorem 2.7, the map F sends (x,y, z) to (x, x, F(z)). Thus, under the identification
above,

X(m,n) = w(m,n), n>m

F(U))(n,m) = x(n,m) = U.)(n’m), n<m

X(n’n) = LU(n,n), n=m.

Finally, the Weyl action o;,; sends (x,y,z) to (¥, x,0,(z)), and under the isomorphism above,
O'l+1(w)(n,m) = Wim,n)- O

Corollary 4.8. Let k be a perfect field of characteristic 2. There is a natural isomorphism

k ifxiseven
7, TRR(k; 2)%7/% = J ,
0 otherwise,

and the Frobenius endomorphism F : TRR(k; 2)4’2/ 2, TRR(k; 2)¢Z/ 2 is the Frobenius of k on
homotopy groups.

Proof. By Theorem 4.7, the map R on homotopy groups is the map

D k- P «
(n,m) (n,m)
n+m=:x n+m=:x
(where n, m > 0) which is the inverse Frobenius on the summands (n, n), and zero everywhere
else. Itis an idempotent up to isomorphism, and therefore, it satisfies the Mittag-Leffler condition.

It follows that

-NPZ/2 ~ 1 Ll NPZ/2 ~ 1 ~
7. TRR(k: 2)?/? 2 lim 7, TRR'(k: 2)*/* 2 lim P k=P

(n,m) 2n=%
n+m=s
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where the last isomorphism is induced by the projection onto the first component of the limit and
onto the summand 2n =% when =* is even, and it is zero otherwise. After composing with the shift
automorphism of the limit, R becomes by definition the identity, and F the Frobenius of k.  []

4.2.2 | The components of TRR and the ring of Witt vectors of perfect fields

As we will show in Remark 4.10 below, the ring 7, THR(A)P2" is not necessarily the ring of Witt
vectors of 7, THR(A)?/2, not even when the latter is isomorphic to A. However, this is still the
case for perfect fields, as we show now.

Theorem 4.9. Let k be a perfect field of characteristic 2, equipped with the trivial involution. Then,
for every n > 0, the restriction map

Dsn n n A .
C; : o THR (k)P — 7 THH(k)“" = W, (k;2)

res
is an isomorphism, and the Verschiebung, Frobenius, and restriction maps of the Witt vectors
correspond, respectively, to trangz” s resgz'1 ,and R.

on—1 on—1
Proof. Let us start with a commutative ring with involution A, and follow the strategy of [18] and
[11] of analysing the long exact sequence induced on homotopy groups by the fibre sequence

ER, ®C2n THR(A) — THR(A)C2" N THR(A)CZ'“l ]
The components of the fixed points of the fibre are then calculated by the colimit

o(ER ;. ®c,, THR(A))"/* = colim 7z, THR(A),

where Oy, is the full subcategory of the orbit category of D, generated by the reflections and
the trivial group (this follows, for example from the fact that ER is the colimit over Oy of the
functor that takes D,./H to the discrete space D,./H, see, for example [24, Lemma 2.2]). The
crucial difference between 2 and the odd primes is that for the prime 2, the category O has two
components, generated by the distinct conjugacy classes of the reflections r and o7, where o is
the generator of the cyclic group C,.. Therefore, the colimit above is isomorphic to the pushout
of abelian groups

7o(ER ;. ®c,, THR(A))*/* = colim 7, THR(4) & (7, THR(A)*/?)c, @4 (m, THR(A)*/?)c,

along the transfer maps tranez/ 2o A (7 THR(A)Z/ 2)c., where the coinvariants are taken
2

with respect to the action of the Weyl group C,. Under this identification, the transfer map to
7y THR(A)P2" is the transfer tranlz)jr; on the first summand, and o, ; trangj'; on the second sum-
mand, where o, ; is the action of the generator of the Weyl group. The corresponding long exact
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sequence on homotopy groups is then

la
Don Don
tran_?, +0,,, tran_?

(77 THR(A)” /)¢, @ 4 (7o THR(A)? /)¢, —= "% 7o THR(A)P — 77 THR(A)P

|

0.

Let us now compute the boundary map of this sequence in the case where k is a perfect field of
characteristic 2 with the trivial involution. Since k is a field of characteristic 2, the isomorphism
of [10, Corollary 5.2] is

7o THR(K)?/? = k ®4 k,
where S C k is the subfield of squares. Moreover, since k is perfect, the restriction map
7, THR(k)?/? = k @4 k —> k = 7, THH(k),

which is induced by the multiplication map of k, is an isomorphism. Since this map is an isomor-
phism and is Weyl equivariant, and the action of the Weyl group on k is trivial, the Weyl action
on the source must also be trivial. The transfer map

res

752
k = 7y THH(K) —= & 7, THR (k)% /> —"%

>~

is multiplication by 2 by the double-coset formula, and therefore, zero. Thus, the long exact
sequence above becomes

n
/2

n

D.
72 +0p4q tran;,

& D.
ranZ

2k Dk 7o THR (k)P= _r 7o THR (k)P 0.

Now suppose inductively that the restriction map res : 7, THR(k) 2! — 7, THR(k)“2*! is an
isomorphism, and identify the target with W, (k; 2) by the isomorphism of [18, Theorem F]. Under
this isomorphism, the maps R, V and F on 7, of the cyclic fixed points of THH correspond to the
homonymous operators on the Witt vectors by [18, Theorem 3.3]. Thus, the restriction map defines
a commutative diagram with exact rows

on

n D.
2 +0u41 tran %)

D,
tran,, /2

—2 sk bk s 1o THR (k)P _r 7o THR (k)P 0

J(l,l) J{res zlres

k W1 (k3 2) —=—— W, (k;2) ———— 0,

where the right vertical map is an isomorphism. It is therefore sufficient to show that the image of
0 is equal to the kernel of (1,1), which is the diagonal A C k @ k. Since the connecting homomor-
phism of the bottom sequence is zero (see [18, Proposition 3.3]), we know at least that the image of
disincluded in A, and that the middle restriction map res is surjective. In order to understand the
image of 9, we map the sequence above to the corresponding sequence on geometric fixed points
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of Proposition 2.9. Since k is perfect, this last sequence is determined by Theorem 4.7, giving a
diagram with exact rows

Dyn
z/2

n

72 FOns1 tran

trz D
I‘an

o — m THR(K)P 25 k@ k 7y THR(kK)P» 25 71, THR(K)P-1 — 0

L) | |

...—§>k@k kak Z k k 0.

| =

The second vertical map is the identity because it is induced by the sum of two copies of the
canonical map 7, THR(k)?/? — m, THR(k)#?/2, which is the canonical projection k ®g k —
(k/2) ® (k/2) where k acts on k/2 via the Frobenius, which under our chosen identifications
of source and target with k is the identity. Since the map below d must be an isomorphism, the
image of J is isomorphic to the image of the vertical map ¢. The isotropy separation sequence for
the Z/2-spectrum THR(A) 2! gives a long exact sequence

Dyp—1
tran,.?
2n—1

711 THR(k)P 5 71, (THR (k)G B 212 — (o THR(k)“>")7 j —— 7o THR(k)P>.

By the inductive assumption, the Z/2-action on 7, THR(k)“2*! is trivial (since res is surjective)
and the transfer tran?zz:ll
whose kernel is k. It 2follows that the cokernel of ¢, and therefore that of 9, is isomorphic to k.
Thus, if k is finite, the image of d must have as many elements as k does, and therefore, since it is
included in A, it must be equal to it. This concludes the proof in the case where k is finite.

Let us point out that 0 is generally not k-linear, and therefore, we cannot conclude that its
image is the diagonal if k is infinite. In this case, we only know that (k @ k)/Imd and k are
isomorphic as abelian groups. We do, however, know that the image of d is A for the finite field
F,, and the naturality of  with respect to the morphism of fields F, — k shows that at least (1,1)
must belong to Im 8. Since R : THR(k)P>" — THR(k)P>*- is a map of ring spectra, d is a map of
7, THR (k)P2" -modules. Moreover, the isomorphism

identifies with the multiplication by 2 map on the Witt vectors W, (k; 2),

mo(ER ;. ®c,,, THR(K))*/* = c%ljamgo THR(k) = 7, THR(k)?/?> @, 7, THR(k)*/> 2 k @ k

is an isomorphism of 77, THR (k)P2" -modules, where 77, THR(k)P>" acts on each 7}' THR(k) via
the restriction map, and the transfers are linear over these restrictions by the Frobenius reciprocity
formula of the D,.-Mackey functor 7, THR(k). In particular, 7, THR(k)"2" acts diagonally on
k & k, via the restriction map resljz” : o THR(k)P2* — 7, THH(k) = k. This map factors as

n—2

D, Tes c F
o THR(k)"?" — 7wy THR(k)"* =2 W,_,(k;2) — k,
where the first map is surjective by the argument above. Since k is of characteristic 2, the iterated

Frobenius is given by

-2 on—2
F'"“(ay,...,a,_1) = aj

(see, for example [17, Lemma 1.8]), which is surjective since k is perfect. Thus, given any x € k, we
can choose an element z of 77, THR(k)P2" which maps to x by the restriction resfzn . Then, since
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the image of 9 is a submodule of k @ k containing (1,1), we have that (x,x) = z - (1,1) is also in
the image of 4, and thus, Imd = A.

The identification of the Witt vectors operators V, F and R follows from the commutative
diagrams

D D
tran, 2" res?2"

7o THR (k)P ——2~" 71 THR (k)P 770 THR (k)P —— ="y 7. THR (k)P
0 0 0
EJ/I‘ES EJI‘ES glres EJIES
tran?L1 res$2:71
7o THR (k)2 ———— 7, THR (k)< 7y THR(K)C» ——2 7z THR (k)G
0 0 0

7o THR (k)P —2 5 77, THR (k)P

glres Elres

7o THR (k) —= 5 71, THR(k)C»,
and the fact that the maps of the bottom row correspond, respectively, to V, F and R by [18, The-
orem F]. Note that to show that the first diagram commutes, one needs to use the double-coset

formula and the fact that the quotient Dyn-1\D,n /C,u is trivial. O

Remark 4.10. The restriction map of Theorem 4.9 is not generally an isomorphism. For example,
for the ring of integers, there is a map of short exact sequences

0——Z@,Z ——— 1y THR(Z)"- S SN 7, THR(Z)2/? —— 0

L T

0 z W, (Z;2) z 0,

where Z @, Z is the pushout of the transfer 2: Z — Z along itself, which is isomorphic to Z x
Z /2, and the left-hand map is the identity on each summand. Thus, the middle restriction is not
an isomorphism, and moreover, 7, THR(Z)P2 has 2-torsion.

The top row of the diagram comes from the long exact sequence on homotopy groups for the
map R of the proof of Theorem 4.9, upon showing that its connective homomorphism 9 is in this
case zero. To see this, we map the sequence to the analogous sequence for F, via the canonical
quotient map Z — F,, and obtain a commutative diagram with exact rows

1 THR(Z)? /2 —2 7 @®,7 —— n, THR(Z)”> —~— 7, THR(Z)?/2 ——— 0

| | | |

7, THR(F)Z”? — 2 s, @®F, — s W,(F,;2) F, 0,

where the second vertical map from the left is induced by the projection on each summand. Thus,
if we can show that the left vertical map is zero, we will have that the upper 0 maps into the kernel
of the projection Z &, Z - F, @ F,, which is the subgroup of elements [2n, 2k] in Z &, Z, and
isomorphic to Z. The group ; THR(Z)?/? is, however, isomorphic to Z/2 by [10, Proposition
5.22], and therefore, d is 0.
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We still need to verify that the left vertical map is zero. We look at its effect on the isotropy
separation sequences for the Z/2-spectrum THR, and obtain a diagram

7, THR(Z)2/2 —%_ 7, THR(Z)?Z/2 7—2 7
| L |
7, THR(F,)Z /2 — % 7, THR(F,)? 2/ F,— " F,

The map 7, THR(Z)#?/? — 7, THR(F,)#?/? is equal to 0 by the calculation in the proof of [10,
Theorem 5.20]. In the bottom row, the lower left map 5 is injective. This follows by the last part of
the proof of [10, Theorem 5.15], where this map is explicitly identified. Hence, we conclude that
the left vertical map is zero.

One can, in fact, show that the connecting homomorphism is zero also for the larger dihedral
groups, by calculating the first part of the long exact sequence for R on geometric fixed points
using the calculations of Section 5.1. One then obtains short exact sequences

0— 7®,Z —— n, THR(Z)P» — 2 7, THR(Z)?» ————0
for every n > 1. We will address this in future work.

Proposition 4.11. Let k be a perfect field of characteristic 2. The tower of abelian groups

-+ — 7, THR(k)P2" 2o THR (k)P g THR (k)*/?
1 1 1
satisfies the Mittag-Leffler condition, and therefore, there is an isomorphism of rings

7o TRR(k; 2)7/? = W (k;2).

Proof. We need to analyse the images in 7, of the composite maps R/. Let (2 C,;) be the family of
subgroups of D,n+; that do not contain C,; (it is the family R when j = 1). By taking the D,u+; /C5;-
fixed points of the isotropy separation sequence for the subgroup C,; C D+, We obtain a fibre
sequence of spectra

(THR(K) ® E(2 Cy)),)"2") —> THR(k) 2"+ — (THR (k)?“2/ )P/,
and after identifying the third term with THR(k)P2" using the real cyclotomic structure, we obtain
a fibre sequence
RJ
(THR(k) ® E(? C,;), )P+ —s THR(k)P2/ —s THR(k)P2".
The group of components of the fibre can be calculated as the colimit

To(THR(K) ® E(? C,)), )Pt = colim 7, THR(k),
@€,
where (9(,2_5c2j) is the full subcategory of the orbit category of D,.+; spanned by the subgroups in
(2 C,)). Under this identification, the left map of the fibre sequence is induced on the colimit by

Doy Donsi
the transfer maps tran,*" : 7!l THR(k) — 7,*""/ THR(k)for H € Ozc, ;- The category Ozc )
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is equivalent to the category

21 z/2 z/2 z/2 z/2
O ) ) () ()
Z /2 D, D, D, Dy
Dyn+j-1 D,ntj-2 D,n+j-3 Dy
N O Q 0
Djn+j C e C2 \ C4 \Cg \CZJI
Z]2 D, D, \ D,;- D,j-1.
. U U U U
z/2 z/2 z/2 z/2

Since the dihedral actions extend to an action of O(2), the cyclic groups C,u-i < D,n—i act trivially
on 7, THR(A)“2 and one can replace the dihedral groups of automorphisms of the middle row
by the groups Z/2 = D,n+j-i /Cyn+j-i. Thus, this is the colimit over a product category, and it is
isomorphic to

tran tran

(colim ( 7y THR (k)P ¢— THR(k)> == 7, THR(K)P> )z o

Since the restriction map for the inclusion C,;-1 C D,;-:1 is an isomorphism, the Weyl actions on
T, THR(I{)DZJ'—1 are trivial, and by the previous calculation, this is

o(THR(k) ® E(3 Cy) )P+ xcolim ( W;(k; 2) ¢~ W(k; 2) = W;(k; 2) )
= W(k:2) © (W, (k: 2)/2).
The last isomorphism sends the class of (x,y) to (x +y,[y]). We then obtain a long exact
sequence

. —— 71 THR(k)P#* —X s 7 THR(K)P? —— 2 W(k; 2) @ W (k3 2)/2 — 2

(V"+1.0) R
Wit (k;2) ——— Wy (k;2) —— 0

where the map V"*! comes from the identification of the Verschiebung with the transfer of
Theorem 4.9.

We need to show that after a sufficiently large value of j, the image of R/ is constant, that is,
that the projection map

7, THR(k)">* / Im R/*! — 7, THR(k)P?" / Im R/
is an isomorphism. By exactness, the target of this map is isomorphic to

7 THR(K)"?" /Im R/ = 7r; THR(k)"?" / ker 8 = Im d = ker(V"*',0) = W;(k; 2)/2,
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and similarly for the source. Thus, the images stabilise if and only if the map
R Wiy (k;2)/2 — W(k;2)/2

is an isomorphism, which is the case since k is perfect as both sides identify with k and R with
the identity. Cl

4.2.3 | TCR of perfect fields of characteristic 2
We now combine the results of the previous two sections to prove the following theorem.

Theorem 4.12. For any perfect field k of characteristic 2, there is an equivalence of Z /2-equivariant
ring spectra

TRR(k;2) ~ HW(k;2),

where W (k; 2) is the constant Green functor of the abelian group with trivial involution W (k;2).

Proof. By Theorem 4.9 and Proposition 4.11, we understand the Mackey functor of components of
TRR(k; 2). Let TRR(k;2) —» HW(k;2) be the zeroth Postnikov section. The diagram

TRR(k;2) —— HW(k;2)

L

THR(k;2) — Hk

commutes, where the right vertical map is induced by the projection W(k;2) — k which induces
an isomorphism W(k;2)/2 = k.

The map TRR(k;2) —» HW(k;2) is an underlying equivalence by [18, Theorem 4.5]. Hence,
it suffices to show that it is an equivalence after applying the geometric fixed points. By the
calculation of Theorem 4.7 (and, in particular, using the formula for R), we see that the map
TRR(k; 2)4’2/ 2, THR(k;Z)M/ 2 induces injections on homotopy groups. Hence, it suffices to
show that after applying the geometric fixed points, the lower horizontal map induces an injec-
tion on the image of the left vertical map. Indeed, this will imply that the upper horizontal map
induces an injection on the homotopy groups of the geometric fixed points, and since these are
either 0 or 1 dimensional k-vector spaces (the target has homotopy groups W(k;2)/2 = k in even
non-negative degrees), it must also be surjective. The lower map is, on geometric fixed points, the
multiplication map

HEM/Z Ok HE¢Z/2 N HE¢Z/2.
By [10, Proposition 5.19], the induced map on homotopy groups
k[wy, w,] —> k[v],
where |w;| =1, |w,| = 1 and |v| = 1, sends both w; and w, to v. This implies that its restriction

k[w,w, ] — k[v]
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is injective, and by the description of R of Theorem 4.7, k[w,w,] is exactly the image of the left
vertical map on homotopy groups after applying geometric fixed points. O

Corollary 4.13. For any perfect field k of characteristic 2, one has an equivalence of genuine 7 /2-
spectra

TCR(k;2) ~ HZ, ® X 'Hcoker(1 — F),

where F . W(k;2) — W(k;2) is the Witt vector Frobenius.

Proof. 1t follows from Theorem 4.9 that F : TRR(k;2) — TRR(k;2) corresponds to the Witt vec-
tor Frobenius HF : HW (k;2) — HW/(k;2) under the equivalence of Theorem 4.12. It is an easy
exercise in Witt vectors to see that ker(1 — F) = W(F,; 2) = Z,. Hence, we get

7, TCR(k;2) = 7,
and
7_, TCR(k;2) = coker(1 — F),

and all the other homotopy Mackey functors of TCR(k;2) vanish. Since coker(1 — F) is a Z,-
module coming from a Z,-module, its homological dimension over the Green functor Z, is less
than or equal to 1. The universal coefficient theorem in the category of modules over the Green
functor Z, now implies that, in fact, TCR(k;2) splits as claimed (in case k = [F, this is obvious
since F = id). O

5 | TCR OF THE INTEGERS AND PERFECT RINGS

In this section, we will calculate the homotopy type of TCR(A;2)%%/2 where A is either a perfect
[F,-algebra or 2-torsion free ring with a perfect mod 2 reduction (for example the Witt vectors of
a perfect F,-algebra). We will first calculate TCR(Z; 2)#7/2 and then deduce TCR(A;2)%%/2 by a
base-change formula from F, and Z.

5.1 | The geometric fixed points of TCR(Z;?2)

Let us denote by NA := Nec *HA the C,-equivariant norm of the Eilenberg-MacLane ring spec-

trum of a commutative ring A. We regard HZ (the C,-equivariant Eilenberg-MacLane spectrum

for the constant Mackey functor Z) as an NZ-module via the multiplication map NZ — HZ.

We then consider Hz#%/2 as an HZ-module via the induced map on geometric fixed points
~ (NZ)#2/? - Hz%?/2, and obtain a splitting of HZ-modules

Hz%** ~ D 2" HF,.

n=0
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Again using the description of THR(Z)#%/2 as the derived smash product of Lemma 1.2 and the
splitting above just as in Lemma 4.4, we obtain an equivalence of genuine C,-spectra

THR(2)**/* ~ @ " (NF,) @y, HD) & @ Z"™(C,), ® (HF, ® HF,) Qpsguz HZ).

n=0 (n,m)
ogn<m

In order to apply Theorem 2.14 to compute TCR(Z; 2)$%/2, we need to understand the genuine
C,-fixed points of this spectrum. By the Wirthmiiller isomorphism, the genuine C,-fixed-point
spectrum of the induced summands are

(Z2m(C,), ® (HF, ® HF,) ®p ez HZ))? ~ 2™ (HF, ® HF,) ®psgn2 HZ)

~ 22n+2mHﬂ:2 @ 22n+2m+1H[F2.

The genuine fixed points of the terms Z2"°((NF,) ® vy, HZ) are more laborious, and require some
preliminary lemmas.

Lemma 5.1. Let R be a ring spectrum, and f : A — B a map of R-modules. Then, the total cofibre
of the square of NR-modules

a2
ndS* (A @ A) — 18D 114% (A @ B)
| e
NA NB
Nf

is naturally equivalent to the norm N(cof(f)) of the cofibre of f. Here, Indg2 is left adjoint to the
forgetful functor from NR-modules in C,-spectra to R ® R-modules in spectra, and the vertical maps
are adjoint, respectively, to the identity of A® A and to f ® B.

Proof. When R = S, this follows readily from [19, A.43(1), B.97] in the special case where G = C,.
We believe that their argument generalises to a general base ring spectrum R, but in the special
case of C,, we can give the following, simpler argument. Let us work in the category of orthogonal
spectra, and suppose without loss of generality that the underlying orthogonal spectra of R, A and
B are flat cofibrant, that f : A — B is a cofibration of orthogonal R-module spectra. In this case,
the cofibre of f is equivalent to the strict cofibre C of f, and the diagram of the lemma is equivalent
to the (strictly commutative) diagram of orthogonal C,-spectra

(ARA) DA A) 2D, (4@ B)®(A®B)
AR A B® B,

fef

where the C,-action on the bottom row switches the two smash factors (see our working definition
of the norm in §1.2), and on the top row, it switches the two summands. The left vertical map is the
identity on the first summand and the C,-action of the norm on the second, and the right vertical
map is f ® B on the first summand and f ® B followed by the C,-action of the norm of B on
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the second. The projection 7 : B — C onto the strict cofibre of f induces a map of NR-modules
T ®nm: B®B — CQ® C, which is (strictly) trivial when restricted respectively to the top-right
and bottom-left corner of the square. It therefore induces a map of NR-modules from the total
cofibre of the square to the norm C ® C of C. Let us show that this map is an equivalence on
underlying spectra and on geometric fixed points.

On underlying spectra, the square above is equivalent to the square

(ARA) DA A) 28, 4 9B ® B A)
I |
ARA »B@® B

fef

by applying the flip isomorphism to the second summands of the top row. Since we are pushing out
the coproduct of two maps along the fold map, a standard argument shows that the total cofibre
of this square is equivalent to the total cofibre of the commutative square of spectra

AA— ¥ i®B

f®AJ( Jf@B

_
BA Y B®B

and the map from the total cofibre to C ® C is again induced by 7 ® 7. This map is clearly an
equivalence of spectra (for example by computing the cofibres horizontally, and then vertically).

Let us now verify the claim on geometric fixed points. By applying geometric fixed points to the
square of NR-spectra above, we find the square of spectra

0 0

| J

(A® AP W (B ® B)?“,

whose total cofibre is the cofibre of (f ® f)#C2. Since (f ® f)?C: is naturally equivalent to f,
(r ® m)?C2 is an equivalence. 0

Lemma 5.2. There is a fibre sequence of C,-spectra
H(2,0)
H(Z & 7/2,w) —— HZ — (NF,) Qy, HZ,
where the left-hand spectrum is the Eilenberg MacLane spectrum of the abelian group 7 & Z /2 with
involution w(a, x) = (a, [a] + x), and the projection is induced by tensoring with the norm of the
unit map Ny : NZ — NF,. In particular, the homotopy Mackey functors of the cofibre are

T (NF) @y, HD) = (Z /2, _'Z/4),

where the restriction is the canonical projection and the transfer is injective, 7, (NF,) Q7 HZ) =
Z /2 which is the constant Mackey functor of Z /2, and the other homotopy groups vanish.
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Proof. By Lemma 5.1, there is an equivalence of NZ-modules between the total cofibre of the
square of NZ-modules

ndS(H 7 ®2)

ndS*(HZ ®H 7) nd*(HZ ®H 7)
i?il zml
NZ Nz
N(2)

and N(Z/2), induced by the projection map Z — Z /2. By applying the functor (—) @y, HZ to
this square, we obtain the square of C,-spectra

Ind,?
md(H27) —2 P 1nd%(H 7)

S

HZ HZ.

In the first row, Indf2 is left adjoint to the forgetful functor from HZ-modules C,-spectra to
HZ-modules spectra, and for the identification of the first row, we used that induction and base-
change commute (since their right adjoints do). Since (—) ® v HZ preserves pushouts, the total
cofibre of the last square is (NF,) @y, HZ. Thus, the fibre sequence of the lemma follows once
we show that the square of C,-spectra

IndS2(2
nd(HZ) —% P, 10dS(H 27)

_
HZ m HZ®Z/2,w)

is a pushout, where the right vertical, adjoint to the inclusion of the first summand, sends (a, b)
to (a + b, [b]). Indeed, the unique map H(Z & Z/2,w) - HZ compatible with the maps of the
squares will then be the map (2,0) appearing as the left-hand map of the sequence of the lemma,
whose cofibre is the total cofibre (NF,) ®yz HZ as calculated above.

To see that the last square is a pushout, we check that it is so on underlying spectra and on
geometric fixed points. The pushout of underlying spectra is H((Z & Z)/(2, —2)) with the vertical
map given by the projection onto the cokernel and the horizontal map [2,0]: HZ - H(Z &
Z)/(2,—2)). This is equivalent to H(Z @ Z/2) by the isomorphism of abelian groups that sends
[a,b] to (a + b, [b]), and under this isomorphism, the maps correspond to those of the last square.

Let us now check that the square is a pushout on geometric fixed points. The C,-geometric
fixed-points square is

0 0

| |

HZ* — S HZ ®Z 2,0,
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and therefore, we need to verify that the bottom map (2,0)#2 is an equivalence. To this end,
let us compute the cofibre of (2,0): HZ — H(Z X Z/2,w) in C,-spectra. The quotient of (2,0) is
Z/2 @ 7 /2 with the involution w(y, x) = (y,y + x). Its fixed points are 0 @ Z/2, which is also
the quotient of the map (2,0): Z — (Z @® Z/2)“> = (2Z) @ Z/2. Thus, there is a fibre sequence
of C,-spectra

Hz 22 Hz ® 2/2,w) — H(Z/2@ 7/2,w).

The cofibre is equivariantly equivalent to H(Z/2@® Z/2,7) where t flips the summands.
Therefore, its geometric fixed points vanish, and (2, 0)¥C2 is an equivalence.

Finally, the description of the homotopy Mackey functor of (NF,) ®y, HZ follows immedi-
ately from the long exact sequence induced by the fibre sequence, after identifying the kernel and
cokernel of the first map. O

Lemma 5.3. The C,-equivariant homotopy groups of Z*((NF,) ®, HZ) for even k are

Z/2 k<x<<2k-—1
7/4 x=2k
z/2 x=2k+1

0  otherwise.

”fzzkp((N[Fz) ®nz HZ) =

Proof. We calculate the equivariant homotopy groups from the fibre sequence of C,-spectra

(2,0)
s*H(Z @ 7/2,w) — = HZ — I(NF,) ® v, HZ
from Lemma 5.2. We start by calculating the equivariant homotopy groups of the first two spec-
tra. These are, respectively, the Bredon homology groups of S¥° with coefficients in the Mackey

functors of the abelian groups Z with the the trivial involution, and Z & Z/2 with the involution
w(a, x) = (a, [a] + x). These are, respectively, the homology of the chain complexes

0 _2 0 _2_0 _2
<0—>Z—>Z—>...—>Z—>Z—>Z—>Z—>O>,
where the non-zero groups are sitting between degree k and 2k (and k is even), and
1-w 1+w 1I-w 1+w 1-w
(0—» ZXZ)2—— ZXZ[2— .. — ZXL)2—— ZXZ)2— ZXZ]2
1+w
—Q2)xZ/2 - o>

with the non-zero groups sitting in the same degrees. The first complex has homology groups Z /2
in even degrees between k and 2k — 2,a Z in degree 2k, and zero everywhere else. The differentials
of the second complex are, respectively,

(1 +w)(a,x) = (2a,[a]) (1 —w)a,x) = (0,[a])
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for all (a,x) € Z x Z/2. Its homology is then concentrated in even degrees between k and 2k,
with

(@) x 2/2)/{(2a,[aD) = /2

in even degrees between k and 2k — 2 and (2Z) X Z/2 in degree 2k. The long exact sequence of
the above fibre sequence therefore splits and gives rise to exact sequences

0 752 (ZP(NF,) ®y, HZ) — (22)x 2/2 27— 2K (NF,) ®yz HZ) — 0

and

0— 2k  (E(NF,) @y, HZ) — Z/2 - 7/2 — 752 _(ZFP(NF,) @y, HZ) — 0

2k2

0— kP (NF,) @y, HZ) — Z/2 N 7/2 — 752 (ZFP(NF,) Qy, HZ) > 0

2k3 2k4

c 0 c
0— ﬂkil(ka(N[Fz) ®nz HZ) — 2/2 — 7/2 — 7, *(Z**(NF,) ®y, HZ) - 0,
which give the groups of the statement. O

Since HZ — (NF,) Qyz HZ is a map of C,-equivariant algebras, the fixed-point spectrum
(Z*P(NF,) ®7 HZ) 2 isamodule over HZ and therefore splits as a wedge of Eilenberg-MacLane
spectra. As a consequence of the decomposition of Lemma 4.3 and the calculation of Lemma 5.3,
we obtain an equivalence

(THR(2)**/*)% ~ @) (Z"*"(HF, @ THF,)) & DE*"(HZ/4 & THF,))

(n,m) n0
n>m>0

& @ E""(HF, ® THF,)).

(n,m)
og<n<m

We recall that the underlying non-equivariant spectrum of THR(Z)#?/? is equivalent to

P cHF, @ THF,)) & PE(HF, @ SHF) @ P (& "(HF, & THF,)),

(n,m) n=0 (n,m)
n>m>0 osn<m

and we now want to identify the maps r, f: (THR(Z)?Z/2)¢: — THR(Z)#%/?> under these
splittings.

Proposition 5.4. Under the above equivalences, the map f : (THR(Z)$%/2)2 — THR(Z)%%/?
corresponds to the map

@ " mHF, @ ZHF,) & PE(HZ/4 @ THF,) & P E""(HF, @ THF,) -

(n,m) n=0 (n,m)
n>m>0 osn<m
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P @+ HF, ® SHF,)) & PE"( HF, SZHF))® @ (***"(HF, ® SHF,)),

(n,m) n=0 (n,m)
n>m>0 os<n<m

which kills the (n > m)-summands and embeds diagonally the (n < m)-summands into the sum of
the summands (n > m) and (n < m), and on the remaining summands, it is given by

prdid: Z*(Hz/4 @ ZHF,) — Z*"(HF, ® ZHF,).

Proof. That f sends the (n < m)-summands diagonally into the sum of the summands (n > m)
and (n < m) follows from Lemma 4.3. For the remaining summands, we need to understand the
restriction map

l’eSeCZ : (ZP((NF,) ®nz HZ))®> — Z*((HF, ® HF,) ®uzenz HZ).
For every fixed n > 0, the sequence
2,0
PPH(Z ® Z/2,w) L9, ooy Z — " (NF,) @y, HZ

is a fibre sequence of HZ-modules, and it thus induces a commutative diagram of HZ-modules

CYHZ S Z [2,w)) ZR (2 HZ) — (52" (N F,) @y y HZ) — (S H(Z S Z /2, w))©

c c c c
res,? l Jrese 2 lresu 2 Jresg 2

SMHZOHZ J2) — 0 s smHZ —  SHF,®HF,) — S (HZ ®HZ /2).

Using the Bredon complexes in the proof of Lemma 5.3, we see that the left-hand square in the
latter diagram is equivalent to the commutative square

SNHQRZOZ/2)®( P THF,) Q00 sany 7 @ P =+mHF)
(n,m) (n,m)
n>m>0 n>m>0
(incl ® id)eaol J{id ®0
4n 20 4n
S4(H Z ®HF,) SMHZ.

After taking horizontal cofibres, it induces the map

res;” : SMHZ/A® S HF, @ @ (S*"(HF, ® THF,)) - Z""HF, ® " HF,,
(nm)
n>nnl;n>0

which is given by pr @ id 0. L]

The identification of the map r : (THR(Z)$%/2)¢> — THR(Z)#Z/2 in terms of the above split-
tings will contain higher stable cohomology operations, and this complicates the calculation of the
equaliser of r and f. However, like in the case of fields, it is possible to compute r on homotopy
groups and after identifying only a portion of the matrix describing r, we will be able to compute
TCR(Z;2)$7/2 using Theorem 2.14.
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Proposition 5.5. Under the above splittings, the map r: (THR(Z)$%/2)¢> — THR(Z)$Z/2
corresponds to the map

ro @ E"PHF, @ THF)) @ E"(HZ/A HF) & @ E*H"(HF, @ THF,))

(n,m) n=0 (n,m)
n>m2=0 Oosn<m
- @ (S H2M(HF, @ HF,)) & @(z“”( HF, @ ZHF,))® @ (S (HF, @ SHF,))
(n,m) n=0 (n,m)
n>mz0 ogn<m

with the following properties. It is zero on the (n < m)-summands. On the summands (n > m), it has
components

222N (HE, @ SHF,) — 272" (HF, @ SHF,),
which are zero if n # n’ or m’ < m, and the identity ifn = n’ and m = m’. The entry
>*"(HZ /4 ® ZHF,) - Z*'(HF, @ HF,)

is given by the matrix (Zf,f 5 i(()j ), where 5 : HZ /4 — ZHF, is the Bockstein associated to the short
exact sequence

0->2/2->7/8—7Z/4—0.

The remaining entries are zero on homotopy groups, but generally contain higher stable cohomology
operations (cf. [27, Section IV.1]).

Proof. From Lemma 4.3, we know that r vanishes on the summands (n < m), and that since
r preserves the wedge decomposition over n, its components vanish for n # n’. It remains to
identify

r: (ZP(NF,) Qyy HZ) 2 — (Z¥"°(NF,) Qy, HZ)*®
for every fixed n > 0. The fibre sequence of Lemma 5.2 induces a commutative diagram

(CPHZ S Z [2,w)% 2R (22 HZ)C — (S (N F,) @ » HZ)C — (S H(Z @ Z /2, w))°

| J | |

SHEZ S Z /2, w)e 20 s HZ L S(NF,) @y HZ)PC: — SMH(Z @ Z /2, w)C:.

For any underlying connective C,-spectrum X, the canonical map 7_2(Z°X) — 7, ((ZPX)?C2)
induces an isomorphism in degrees *< 2l and a surjection in degree x= 2I, since the homotopy
orbits of Z/° X are (21 — 1)-connected. By applying this fact to the vertical maps of the commutative
diagram above, we obtain the description of r on the summands (n > m). Let us finally compute
the map

r: 2*(Hz/4 @ THF,) - S*'(HF, @ HF,).
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Using that the fibre sequence of Lemma 5.2 is HZ-linear, by considering the relevant summands
in the diagram above, we get a morphism of exact triangles

an id
SIH2Z @HF,) 22 sing 7 P8 sing 7 14 @ winnigrF, 228 sann gy 7 @)

l(pr,id) Jpl’ lr l(pr,id)

id id
SMHF, — S SMHE, 2 SUHF, @S HH F, T,

where r is the map we are trying to compute, and 5, is the Bockstein of

2
0->2Z—>7Z—->27Z/4—0.
Composing the Bockstein 5, with the projection H2Z — HF, gives the Bockstein for
0->2/2->7/8—2Z/4—0,

which gives the desired result. O

Theorem 5.6. There is an equivalence of spectra

TCR(Z;2)*/* ~ @) (Z**'HF, ® 2*"HZ /8 & T*"*' HF,).

n=0

Proof. For simplicity, we use the symbol @, .-, to denote @, ;) n>ms0 (& " (HF, ® ZHF,))
and a similar symbol for the summands indexed by the pairs (n, m) with 0 < n < m. Consider
the commutative diagram in the stable homotopy category, where the vertical sequences are fibre
sequences:

IR

®n>m20 @ ®05n<m @n>mzo @ ®05n<m

incl Prw\la#id,(ﬁ,id)

P o(Perwzpear))e @ L P o(@rwF ezHR) e P

n>m>0 n>0 0<n<m n>m2>0 n>0 0<n<m

pr f—%id)

D0 SMHZ[ADIHF) - — — — = — — — — + D0 S(HF, ®ZHF,).

We explain the maps in the diagram: The top map w is the composite pr o(r — f)oincl and is an
equivalence since by Propositions 5.4 and 5.5, it is an isomorphism on homotopy groups. The map
a is then defined to be (r — f)oincl ow™! and by construction is of the form (id, ¢, id), for some
map

Q: @ ® @ e@Z“”(H[FZ@ZH[Fz).

n>m>=0 osn<m n=0

The lower right vertical map is —¢ on the outer summands and the identity on the middle sum-
mand. The map M is the induced map on the cofibres. Propositions 5.4 and 5.5 imply that the
map ¢ is zero on the summand . ,,,- On the other hand, the restriction of r — f to the sum-
mand Z*(HZ /4 @ ZHF,) cannot hit since the cohomology operations do not decrease

n>m>0°
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degrees and r preserves the n-coordinate. Thus, M is given in matrix form by the wedge

0 0
@(24115 0 >
nz0

The fibres of r — f and M are equivalent since w is an equivalence. This completes the proof by
Theorem 2.14. ]

5.2 | Flat base-change and perfect rings

We recall that we always regard the geometric Z/2-fixed points of a ring spectrum with anti-
involution A as a left A-module via the geometric fixed points of the map of Z /2-spectra N, eZ 24 ®
A — A, and similarly asaright A-modulevia A @ N, eZ / A 5 A Wecall these, respectively, the left
and right Frobenius module structures on A%7/2. We will always denote by ® , the derived tensor

product of A-modules.

Definition 5.7. Amap o : A — B of ring spectra with anti-involution is called ¢-flat if the map
BQ®, A%?/? — B#7/2,
induced by the map of left A-modules & : A®?/2 — a*B#7/2 is an equivalence of spectra.

Example 5.8. Let @ : A — B be a map of commutative rings with trivial involution which is flat
2-locally. Then the induced map on Eilenberg-MacLane spectra is ¢-flat precisely if the maps

B®, ,A/2— ,B/2 and B®, ,A; = B,

adjoint to /2 are isomorphisms, where ,(—) denotes the module structure r - x := r’x, and
(=), the two-torsion (they both send b ® a to b?a(a)). Indeed, since « is flat 2-locally, « is ¢-flat
precisely if

B ®A n*(Hé¢Z/2) - ﬂ*(H§¢Z/2)

is an isomorphism. Since HA?#/2 is the connective cover of HA'?/? which is 2-periodic, and
similarly, for HB?#/2, this is equivalent to showing that B ® , ,H(2/2,A) — ,H(Z/2,B) are
isomorphisms for i = 0, 1, and this is exactly the assumption above. In particular:

(i) If B is a perfect [F,-algebra with trivial involution, then the map F, — B is ¢-flat. Indeed, the
maps above are both isomorphic to the Frobenius (—)? : B — B.

(ii) If B is a commutative ring with trivial involution with no 2-torsion, and B/2 is perfect, then
Z — B is ¢-flat. Indeed, the maps above are in this case, respectively, the Frobenius of B/2
and the map 0 — B,.

Recall that, as a C,-spectrum, THR(A)$?/2 is equivalent to B(A;Nec ZA;NE 2(A%2/2)), where
A is regarded as a C,-spectrum via the identification C, = Z/2 (see Lemma 1.2). In particular,
THR(A)$?/2 is canonically a module over A in the category of C,-spectra, by acting on the left
copy of A in the bar construction.
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Proposition 5.9. Let a: A — B be a ¢-flat map of commutative Z [2-equivariant ring spectra.
Then, the canonical map

B ®, (THR(A)*Z/?) — THR(B)?2/>

induced by a: THR(A)??/2 — a* THR(B)??/2 is an equivalence of C,-spectra. Here, B is
considered as a C,-spectrum via the isomorphism C, = Z /2 (see Lemma 1.2).

Proof. Letus first show that the map is an equivalence on underlying spectra. This is themap B ® 4
(A%72/2 @ , A7/2) 5 B#7/2 @, B2/ induced by the map of left A-modules a @ o : A*?/2®,
A%2/2 5 a*(B#2/2 @ B$7/2), where the left A-module structure on the source is the left Frobe-
nius structure on the right A#??/2-factor (or equivalently the right one on the left factor), and
similarly for the B-module structure on the target. Since A is commutative, this A-module struc-
ture agrees with the left Frobenius structure on the first A%Z/2_factor, and therefore, the map
factors as

B®, (A%Z/2 Q4 A%7/%y = (B Q4 A%Z/2) 4 A%2/2 =, goz/2 Q. APZ/2
~B¥”2 @, B®, A**/? Z, p#z/2 ®y B*/?,

where the two right pointing arrows are equivalences since « is ¢-flat.
Let us now verify that this map is an equivalence on C,-geometric fixed points. From the bar
construction we see that, this is the map

(B ®, (THR(A)??/2))$C2 ~ B¥2/2 @ ,5,/» THR(A)??/? — THR(B)#?/? ~ (THR(B)?%/2)?2

induced by the map a : THR(A)??/2 — a* THR(B)?%/2, where THR(A)??/2 = A%7/2 ® , A%Z/?
is a left A?Z/2-module via left multiplication on the left factor (notice that A®7/2 is a ring spectrum
since A is commutative), and similarly for the left B¥2/2-module structure on the target. This map
then factors as

B%Z/2 ® ys2/2 THR(A)$Z/2 = B#Z/2 ® o272 A2 @ AP?I?2 ~ BP7I2 @, AP/2
~ B2 @, B®, A%2/2 = B¥2/2 g, B$Z/2 = THR(B)??/?,

where for the last equivalence, we used that « is ¢-flat. O

Proposition 5.10. Under the assumptions of Proposition 5.9, suppose, moreover, that the restriction
maps A?/?> - Aand B?/?> - B are equivalences (for example if A and B are the Eilenberg-MacLane
spectra of commutative rings with trivial involutions). Then, there is an equivalence

(B ®, (THR(A)??/?))%2 ~ B2 ® ,c, ((THR(A)$%/2))2,

and the maps f,r: (THR(B)?%2/2)¢2 — THR(B)#Z/2 correspond under the equivalences of Propo-
sition 5.9, respectively, to the tensor of the restriction maps

res @ res
_

[ B ®,c, ((THR(A)?/2)C2 B ®, (THR(A)?*/?)
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and to the tensor of the canonical map to the geometric fixed points and the map r of THR(A)#Z/2

®
r: B @ o, (THR(AZ/2)C2 2220 p#7/2 @ o, 1, (THR(A)PZ/2) ~

B®, A*?/? ® 142/ (THR(A)??/?) ~ B ® , (THR(A)?%/?),

where the first equivalence is from the fact that « is ¢-flat, and the second is the canonical one.

Proof. The first statement follows from the fact that if the restriction maps of A and B are
equivalences, the canonical map

B2 ®,0, X2 — (B®, X)©

is an equivalence for every A-module X (which is cofibrant under our standing assumption).
Indeed, since the source and target of this map commute with colimits in X, it is sufficient to check
it on the generators A and A ® (C,),. of the category of A-modules. For A, this is the canonical
equivalence

B2 ®,c, A2 ~B% ~ (B, A)".
For A ® (C,), this is the map
B ®,6, (A®(C)) )2 2B ®,0, A— B~ ((B®(C,))? ~ (B, (AR (Cy), ),

where the arrow is induced by the map of A®2-modules a : A — a*B, where A is an A®2-module
via the restriction A2 —» A, and similarly, for B. This is an equivalence since the restrictions of
A and B are. The identifications of f and r follow by naturality and unravelling the definitions,
using Example 2.6 for the cyclotomic structure. O

Corollary 5.11. Let a: A — B be a ¢-flat map of commutative flat Z /2-equivariant ring spectra,
and suppose that the restriction maps AZ/?> — A and B%/* — B are equivalences. Then, there is an
equaliser diagram

res@f
_
TCR(B;2)?%/? —— B% @ 4c, (THR(A)$Z/2)C: B ®, THR(A)?Z/2,

(v lcan)®r

wherev: B® , A%?/2 — B%2/2 is the equivalence from the ¢-flatness condition, and can : B> —
B%C: is the canonical map.

Remark 5.12. One cannot conclude from Corollary 5.11 that TCR(B;2)#7/2 is the base-change
of TCR(A;2)?7/2, nor that it is a B-module. This is because the maps f and r computing
TCR(A;2)%%/2 are A-linear with respect to two different A-module structures.

Corollary 5.13. Let B be a perfect F,-algebra with the trivial involution. Then, there is an equivalence
of spectra

TCR(B; 2)#%/2 ~ @(22"—1 coker(id +(—)?)) @ =2 (ker(id +(—)?)),

n=0

where (—)? . B — B is the Frobenius of B.
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Proof. By Example 5.8, we can apply Corollary 5.11 and find that the maps r and f computing
TCR(B; 2)?%/2 are, on homotopy groups, given by the same maps

(n,m) (n,m)
osn,m on,m
n+m=:sx n+m=sx

as in the case of perfect fields of Proposition 4.5. The calculation then proceeds exactly as in
Remark 4.6. O

Corollary 5.14. Let B be a ring with no 2-torsion and such that B/2 is perfect. Then, TCR(B; 2)$7/2
is a wedge of Eilenberg-MacLane spectra, with homotopy groups given for all l > 0 by

B/{x + x*| x € B) n=4-1
ker (pr+pr?: B/{(4(x + x*)|x € B) - B/2) n =4l

r TOR(B: 222 o | <O PP+ 1 B/(40c 4] x € B) = B/2)
ker (id+(=)*: B/2 - B/2) n=4al+1
0 n=4l+2,

and where t,, TCR(B; 2)??/? = 0 forn < —2.

Proof. By Example 5.8 and Corollary 5.1, the maps r and f computing TCR(B; 2)#7/2 are maps

r.f: @ =*"(HB/2@zHB/2)® @ I*(HB/4 & IHB/2)
(n,m) nz0
n>m>=0
& @ ="™HB/2@IHB/2) -
(n,m)
o<n<m
@ z*+*"(HB/2®3HB/2) & @) Z*"(HB/2 @ SHB/2)
(n,m) n>0
n>mz0
& @ ="*"(HB/2@THB/2).
(n,m)
osn<m
On homotopy groups, they are described by the same projections and diagonals as in the case
for Z of Propositions 5.4 and 5.5, except that r is postcomposed with the root isomorphism of the
perfect F,-algebra B/2. The same argument of the proof of Theorem 5.6 gives a fibre sequence

— ( preyor 0 >
n>0 \/E id+\/§
TCR(B;2)**/* — @) =" (HB/4 @ SHB/2) @z (HB/2 @ THB/2),

n=0 n=0

and, in particular, TCR(B; 2)#Z/2 splits as a wedge of Eilenberg-MacLane spectra, since the pro-
jection map in the fibre sequence is HZ-linear. Moreover, by composing with the Frobenius of
B/2, which is an isomorphism, we can trade \/E for 3, and replace all the other roots by squares.
The homotopy groups non-congruent to 0 modulo 4 follow immediately from the long exact
sequence on homotopy groups, and 7,; is isomorphic to 7, for all I > 0. In order to calculate
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7y, we observe that the fibre of a triangular matrix such as the one above can be calculated by the
iterated pullback

TCR(B;2)$%/2

— \
*/ l HB/4/ \
\ % \EHB i

HB/2
where the three squares are pullbacks. By the Mayer—Vietoris sequence of the top square, we see
that there is an isomorphism

fib(pr + pr?)

SHB/2,

7, TCR(B; 2)?%/? = ker <(ker(pr +pr?) x 7P LB /4)).

By looking at the long exact sequences induced by 8 and b, the right square gives a commutative
diagram with exact rows

B/2 —2— my fib(b) — P — 0

}M_y J l

B/2—*—B/8 B/4 0

Thus, 7,P = (B/8)/Im(4o(id +(—)?)) = B/(4(x + x?)|x € B), and the map a is the reduction
modulo 4. Thus, 77, TCR(B; 2)#7/2 consists of those elements y of B/(4(x + x*)|x € B) such that
y = y? modulo 2. O

Remark 5.15. In §4.2, we have computed the Z/2-equivariant homotopy type of TRR(k;2)
and TCR(k;2) for perfect fields k of characteristic 2. We built our proof onto our knowl-
edge of THR(k)?%/2 and TR(k;2) without ever needing to know the equivariant homotopy
type of THR(k). We can, in fact, use the base-change results of this section to show that as a
Z/2-spectrum

THR(k) ~ k ®;, THR(F,) ~ @ P Hk.

n=0
Indeed, the canonical map
k ®, THR(F,) — THR(k)

is an equivalence on Z/2-geometric fixed points by Proposition 5.9 and its proof. It is also an
equivalence on underlying spectra by [18, Corollary 5.5]. Finally, the equivariant homotopy type
of THR(F,) is computed in [10].
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