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Abstract

We present an extension-based approach for computing and verifying preferences in an abstract argumentation sys-
tem. Although numerous argumentation semantics have been developed previously for identifying acceptable sets of
arguments from an argumentation framework, there is a lack of justification behind their acceptability based on im-
plicit argument preferences. Preference-based argumentation frameworks allow one to determine what arguments are
justified given a set of preferences. Our research considers the inverse of the standard reasoning problem, i.e., given
an abstract argumentation framework and a set of justified arguments, we compute what the possible preferences over
arguments are. Furthermore, there is a need to verify (i.e., assess) that the computed preferences would lead to the
acceptable sets of arguments. This paper presents a novel approach and algorithm for exhaustively computing and
enumerating all possible sets of preferences (restricted to three identified cases) for a conflict-free set of arguments
in an abstract argumentation framework. We prove the soundness, completeness and termination of the algorithm.
The research establishes that preferences are determined using an extension-based approach after the evaluation phase
(acceptability of arguments) rather than stated beforehand. In this work, we focus our research study on grounded,
preferred and stable semantics. We show that the complexity of computing sets of preferences is exponential in the
number of arguments, and thus, describe an approximate approach and algorithm to compute the preferences. Further-
more, we present novel algorithms for verifying (i.e., assessing) the computed preferences. We provide details of the
implementation of the algorithms (source code has been made available), various experiments performed to evaluate
the algorithms and the analysis of the results.
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1. Introduction

Preferences play a central part in decision making and have been extensively studied in various disciplines such as
economy, operations research, psychology and philosophy [1]. Preferences are used in many areas of artificial intelli-
gence including planning, scheduling, multi-agent systems, combinatorial auctions and game playing [2]. Preference
elicitation is a very difficult task and automating the process of preference extraction can be very difficult. The com-
plexity of eliciting preferences and representational questions like dealing with uncertainty has remained a very active
research area [3, 4, 2]. Preference elicitation plays a vital role in decision support systems [5, 6] and recommender
systems [7], where the most suitable decision(s) or recommendation(s) can be identified and justified with the help of
preferences. Furthermore, elicited preferences can be utilized in dialogue strategies [8, 9], for instance in computa-
tional persuasion [10, 11] or negotiation [12] – where an agent may have the capability of inferring preferences and
reach her goal if (s)he enforces at least one of several desired sets of arguments with the application of preferences.
The inferred preferences can be exploited in optimizing the choice of move in persuasion dialogues for behaviour
change as well as in negotiation dialogues to reach agreement.
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Argumentation has gained an increasing popularity in Artificial Intelligence (AI). It has been widely used for
handling inconsistent knowledge bases [13, 14, 15], and dealing with uncertainty in decision making [16, 17, 18].
Logic-based abstract argumentation [19] provides a formal representation of preferences. An abstract argumentation
framework is a directed graph consisting of nodes that represent unique atomic arguments and directed edges that
represent an attack between two arguments. This visual representation of an argumentation framework as a directed
graph is also known as an argumentation graph. Acceptable sets of arguments called extensions for an argumentation
framework can be computed based on various acceptability semantics [19].

Arguments can have different strengths, e.g., an argument relies on more certain or important information than
another. This has led to the introduction of preference-based argumentation frameworks consisting of preference
relations between arguments [20, 16, 21, 22]. Furthermore, preferences are taken into account in the evaluation of
arguments at the semantic level, which is also known as preference-based acceptability [23]. The basic idea is to
accept undefeated arguments and also arguments that are preferred to their attacking arguments, as these arguments
can defend themselves against their attacking arguments.

Preference-based argumentation framework (PAF) [20, 24] allows one to determine what arguments are justified
given a set of preferences. In our research, we consider the inverse of the standard reasoning problem, i.e., given an
abstract argumentation framework and a set of justified arguments, we compute what the possible preferences over
arguments are. Although a preference-based argumentation framework (PAF) has been previously studied to represent
an abstract argumentation framework [25], there seems to be no previous work on automatically computing implicit
argument preferences in an abstract argumentation framework using an extension-based approach. Furthermore, there
have been no attempts to perform an exhaustive search for all possible preferences, and their explicit enumeration.

There are two aims of our research study. The first aim of our research is to exhaustively compute all possible sets
of argument preferences (restricted to three identified cases) that hold for a given set of conflict-free arguments, i.e.,
extension, in an abstract argumentation framework. In this work, we focus our research study on grounded, preferred
and stable semantics. We present a novel algorithm to perform this computation. We show that the complexity of
computing sets of preferences is exponential in the number of arguments, and thus, describe an approximate approach
and algorithm to compute the preferences that is scalable. The second aim of our research is to verify (i.e., assess)
that all the computed sets of preferences are correct, i.e., each set of preferences when applied to a given abstract
argumentation framework results in the original input extension under a given semantics. We present novel algorithms
to perform this verification. All algorithms have been implemented. We have build a complete system for computing
and verifying preferences, performed various experiments to evaluate the algorithms and analyze the results.

The current paper extends and improves our previous work [26]. The main contributions of our work are as
follows:

1. An extension-based approach is employed for computing and verifying argument preferences. Thus, prefer-
ences specifically justify the reasoning behind the acceptability of the arguments in an extension.

2. Preferences are computed at the end of the argumentation process and need not be stated in advance.

3. Exhaustive search is performed to compute all possible sets of preferences.

4. The approach for computing preferences operates on a conflict-free extension as input which is the minimal
acceptability semantic, therefore, it can take as input most of the extensions given in the literature and stated in
this paper.

5. We present novel algorithms for computing preferences (and additional algorithms for filtering preferences).

6. We present a novel approximate algorithm for computing preferences.

7. We present novel algorithms for verifying preferences.

8. Reference implementation of our algorithms is provided1.

1The source code of the implementation of all algorithms is available at https://github.com/Quratul-ain/AAF_Preferences
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9. Experimental setup (including data sets in the Appendix2), various experiments that have been performed to
evaluate the algorithms and analysis of the results obtained is presented.

In comparison to [26], the contributions 6, 7, 8 and 9 stated above are new.
The remainder of this paper is structured as follows. In Section 2, we present related work. Section 3 presents

the preliminaries that include the background on abstract argumentation framework and acceptability semantics for
acceptable set of arguments also known as extensions. This is followed by background on preference-based argu-
mentation framework. In Section 4, we present our approach and an algorithm for computing all possible sets of
preferences for a given extension and abstract argumentation framework, and we prove the soundness, completeness
and termination of the algorithm. Additionally, we present algorithms for filtering preferences. Furthermore, we
present an approximate approach and algorithm for computing a set of preferences. In Section 5, we present our ap-
proach and algorithms for verifying all computed sets of preferences for a given extension and abstract argumentation
framework. In Section 6, we present the implementation details and evaluation. Finally, we conclude and suggest
future work in Section 7.

2. Related Work

Several variations of argumentation frameworks with preferences have been studied previously. Preference-based
argumentation framework (PAF) [20, 24] is an extension of a standard argumentation framework [19] consisting of
preference relations between arguments. The idea is to accept undefeated arguments and also arguments that are
preferred to their attacking arguments. Value-based argumentation framework (VAF) [27] extends a standard argu-
mentation framework to take into account values promoted by arguments. Preferences over arguments are determined
by the values the arguments promote or support. The idea is to accept undefeated arguments and also arguments
which promote values that are more important or preferred to the values promoted by their attacking arguments. Fur-
thermore, value-based argumentation frameworks (VAF) have been extended to take into account the possibility that
arguments may support multiple values, and therefore, various types of preferences over values could be considered
in order to deal with real world situations [25]. Another variation is an extended argumentation framework (EAF) [21]
that considers the case where arguments can express preferences between other arguments.

Further studies on preference-based argumentation frameworks led to the observation that ignoring the attacks
where the attacked argument is stronger than the attacking argument does not always give intuitive results [21],
since the resulting extension violates the basic condition imposed on acceptability semantics, which is the conflict-
freeness of extensions, thus violating the rationality postulates given in [28]. This problem was later resolved in a
new preference-based argumentation framework that guarantees conflict-free extensions with a symmetric conflict
relation [29, 21]. The preference relation is then used to determine the direction of the defeat relation between the
two arguments. Furthermore, preference relations have been used to refine the results of a framework by comparing
its extensions [24].

Although our work is based on abstract argumentation framework, several variations of structured argumentation
frameworks with preferences have been studied previously. ABA+ [30] generalises preference-based argumentation
framework (PAF) [24] that introduced the concept of attack reversal from less preferred arguments. Another extension
of the ABA framework with preferences is (p ABA) [31] that employs preferences on the extension level to discrimi-
nate among extensions. ASPIC+ [32] encompasses many key elements of structured argumentation such as strict and
defeasible rules, general contrariness mapping and various forms of attacks as well as preferences. DeLP [14], an
early version of preference-based argumentation framework [24], and Deductive Argumentation [33], use preferences
to discard attacks from arguments less preferred than the attacked arguments.

While the above argumentation frameworks allow handling of preferences over arguments, the main limitation
is that preferences need to be stated in advance. More recently, in [34] we have extended our work [26] in ab-
stract argumentation to structured argumentation, i.e., assumption-based argumentation frameworks ABA [35, 36]
and ABA+ [30], where preferences are computed at the assumption level rather than abstract arguments. Another
recent extension is presented in [37], where hidden argument preferences of a group of agents are revealed using

2All data sets are included in the Appendix.
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answer sets. Furthermore, to the best of our knowledge, no previous work has been performed for the verification of
the newly computed preferences along with the implementation and experimental analysis of both the computation
and verification of preferences, that is presented in this extended version of our paper [26].

3. Preliminaries

An argumentation framework is a set of arguments and a binary attack relation among them. Given an argumenta-
tion framework, argumentation theory allows to identify the sets of arguments that can survive the conflicts expressed
in the framework. In this work, we consider finite abstract argumentation frameworks.

Definition 3.1. (Abstract Argumentation Framework [19]): An abstract argumentation framework (AAF) is a pair
AAF = (A,R), whereA is a set of arguments and R is an attack relation (R ⊆ A×A). The notation (A, B) ∈ R where
A, B ∈ A denotes that A attacks B.

A B C D E

Figure 1: Example abstract argumentation framework AAF1

An abstract argumentation framework is a directed graph where the arguments are represented as nodes and the
attack relations as directed edges. An example abstract argumentation framework (A,R) is shown in Figure 1, where
A = {A, B,C,D, E} and R = {(A, B), (C, B), (C,D), (D,C), (D, E)}, which means that A attacks B, C attacks both B
and D, and D attacks both C and E.

Dung [19] originally introduced an extension approach to define the acceptability of arguments in an argumen-
tation framework. An extension is a subset of A that represents the set of arguments that can be accepted together.
Dung’s semantics are based on a conflict-free set of arguments, i.e., a set should not be self-contradictory nor include
arguments that attack each other. This is defined formally as follows.

Definition 3.2. (Conflict-freeness): Let (A,R) be an argumentation framework. The set E ⊆ A is conflict-free if and
only if there are no A, B ∈ E such that (A, B) ∈ R

The minimal requirement for an extension to be acceptable is conflict-freeness. Many other acceptability semantics
have been introduced in the literature, and from these the most common are given as follows.

Definition 3.3. (Extensions): Let AAF = (A,R) be an argumentation framework, and set E ⊆ A and A, B,C ∈ A

• E is admissible iff it is conflict free and defends all its arguments. E defends A iff for every argument B ∈ A, if
we have (B, A) ∈ R then there exists C ∈ E such that (C, B) ∈ R.

• E is a complete extension iff E is an admissible set which contains all the arguments it defends.

• E is a preferred extension iff it is a maximal (with respect to set inclusion) admissible set.

• E is a stable extension iff it is conflict-free and for all A ∈ A \ E, there exists an argument B ∈ E such that
(B, A) ∈ R.

• E is a grounded extension iff E is a minimal (for set inclusion) complete extension.

Every argumentation framework has at least one admissible set (the empty set), exactly one grounded extension,
one or more complete extensions, one or more preferred extensions, and zero or more stable extensions. The following
example shows the extensions for the abstract argumentation framework of Figure 1.

Example 3.1. Given the abstract argumentation framework of Figure 1, then we compute its extensions as follows:
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• Conflict free: {A,C, E}, {A,D}, {B,D}, {A,C}, {A, E}, {B, E}, {C, E}, {A}, {B},

{C}, {D}, {E}, ∅

• Admissible: {A,C, E}, {A,C}, {A,D}, {C, E}, {A}, {C}, {D}, ∅

• Complete: {A,C, E}, {A,D}, {A}

• Preferred: {A,C, E}, {A,D}

• Stable: {A,C, E}, {A,D}

• Grounded: {A}

While an abstract argumentation framework captures the basic interactions between arguments, it does not con-
sider factors such as argument strength, i.e., arguments may not necessarily have the same strengths [38, 39, 15].
Consequently, preferences over arguments can be added to the argumentation framework and taken into account in
order to evaluate arguments [16, 21, 22], which is demonstrated in the following example [23].

Example 3.2. Let (A,R) be an argumentation framework with A = {A, B,C} and R = {(A, B), (B,C)}. The set of
acceptable argument is {A,C}. However, suppose argument B is preferred to A and C. How can we combine the
preference over arguments and the attack relation to decide which arguments are acceptable? We can say that, since
B is preferred to A, it can defend itself from the attack of A. This would lead us to accepting B and rejecting C.

Dung’s framework has been extended by introducing preference relations into argumentation systems, which is
known as a preference-based argumentation framework (PAF) [20]. A PAF extends an abstract argumentation frame-
work to account for preferences over arguments. The attack relation in a preference-based argumentation framework
is called defeat, and is denoted by Def .

Definition 3.4. (Preference-based Argumentation Framework (PAF) [20]): A preference-based argumentation frame-
work is a triple (A,Def ,≥) whereA is a set of arguments, Def is the defeat binary relation onA, and ≥ is a (partial
or total) pre-ordering defined onA×A. The notation (A, B) ∈ Def means that argument A defeats argument B.

The notation A ≥ B means that argument A is at least as preferred as B and the relation > is the strict counterpart
of ≥.

Definition 3.5. Let there be an abstract argumentation framework. Preferences could be applied in two ways [24]:

1. one way is to apply preferences at the time of argument acceptability (semantic level); and

2. second way is to compute all preferred extensions and filter them by the application of the preferences.

A B C D

Figure 2: Example abstract argumentation framework AAF2

Example 3.3. Let there be an abstract argumentation framework of Figure 2. By using the first method given in
Definition 3.5, if we assume {A > B,C > D} is the set of preferences between arguments, then we get a single
extension E = {A,C}. Now, by using the second method, we first compute all preferred extensions {A,C}, {B,D}.
These extensions could now be filtered by the application of the set of preferences {A > B,C > D} which suggest
{A,C} to be better than {B,D}.

In this work, we use the first method of applying preferences at the time of argument acceptability (semantic level).

5



4. Computing Preferences

A preference-based argumentation framework (PAF) can represent an abstract argumentation framework [25]:

Definition 4.1. (PAF representing an AAF) A preference-based argumentation framework (A,Def ,≥) represents an
abstract argumentation framework (A,R) iff ∀A, B ∈ A, it is the case that (A, B) ∈ R iff (A, B) ∈ Def and it is not the
case that B > A.

It has been previously shown that each preference-based argumentation framework represents one abstract argu-
mentation framework, however each abstract argumentation framework can be represented by various preference-
based argumentation frameworks [25]. Following this, we introduce an extension-based approach for computing sets
of preferences for a subset of conflict-free arguments in an abstract argumentation framework. For any two arguments
A and B in an argumentation framework, we use the strict preference relation A > B to denote that A is strictly pre-
ferred to B, i.e., A is of greater strength than B, and we use the preference relation A = B to denote that A and B are
of equal strength or preference. We list below the three cases we have identified for which the preferences are com-
puted for a given conflict-free extension E in an abstract argumentation framework AAF = ⟨A,R⟩. The motivation
behind the identified three cases is that we want to find out why a set of arguments are in an extension of the abstract
argumentation framework based on the relationship of attack relations between the arguments and their strengths (i.e.,
preferences between the arguments). The three identified cases are:

• Case 1: Suppose α, β ∈ A and α ∈ E, β < E such that α is attacked by argument β, and α is not defended by
any other argument (not equal to α) in the extension. We have the following preferences for all such α and β:
α > β.

• Case 2: Suppose α, β ∈ A and α ∈ E, β < E, and suppose α attacks argument β and β does not attack α. We
have the following preferences for all such α and β: β ≯ α, i.e., (α > β) ∨ (α = β).

• Case 3: Suppose α, β, γ ∈ A and α, γ ∈ E, β < E where α, β and γ are different arguments, such that, α is
attacked by argument β but defended by argument γ in the extension, i.e., γ attacks β. We have the following
preferences for all such α and β: (α > β) ∨ (α = β) ∨ (β > α).

In other words, we want to determine and compute the preferences between arguments that will ensure that a set
of desired arguments are in an extension of the abstract argumentation framework by establishing that:

• the attacks from arguments that are not in the extension to the arguments that are in the extension that are not
defended by any unattacked arguments in the extension do not succeed, as given in Case 1;

• the attacks from arguments that are in the extension to the arguments that are not in the extension always
succeed, as given in Case 2; and

• the attacks from arguments that are not in the extension to the arguments that are in the extension that are
defended by any unattacked arguments in the extension may or may not succeed, as given in Case 3.

A worked example of how preferences are computed using the above three cases is as follows:

Example 4.1. Let there be the abstract argumentation framework (A,R) of Figure 1, where A = {A, B,C,D, E} and
R = {(A, B), (C, B), (C,D), (D,C), (D, E)}. We consider the conflict-free extensions E1 = {A,C, E}, and E2 = {A,D}
for computing preferences. For the extension E1 = {A,C, E}, we have the following preferences for each case:

• Case 1: (C > D)

• Case 2: ((A > B) ∨ (A = B)) ∧ ((C > B) ∨ (C = B))

• Case 3: (E > D) ∨ (E = D) ∨ (D > E)
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Combining the preferences from the three cases we get (C > D) ∧ (((A > B) ∨ (A = B)) ∧ ((C > B) ∨ (C =
B))) ∧ ((E > D) ∨ (E = D) ∨ (D > E)), which gives us the following sets of preferences:

{C > D, A > B,C > B, E > D}

{C > D, A > B,C > B, E = D}

{C > D, A > B,C > B,D > E}

{C > D, A > B,C = B, E > D}

{C > D, A > B,C = B, E = D}

{C > D, A > B,C = B,D > E}

{C > D, A = B,C > B, E > D}

{C > D, A = B,C > B, E = D}

{C > D, A = B,C > B,D > E}

{C > D, A = B,C = B, E > D}

{C > D, A = B,C = B, E = D}

{C > D, A = B,C = B,D > E}

For the extension E2 = {A,D}, we have the following preferences for each case:

• Case 1: (D > C)

• Case 2: ((A > B) ∨ (A = B)) ∧ ((D > E) ∨ (D = E))

• Case 3: ∅

Combining the preferences from the three cases we get (D > C)∧ (((A > B)∨ (A = B))∧ ((D > E)∨ (D = E)))∧∅,
which gives us the following sets of preferences:

{D > C, A > B,D > E}

{D > C, A > B,D = E}

{D > C, A = B,D > E}

{D > C, A = B,D = E}

4.1. Algorithms for Computing Preferences
As stated previously, in our research study, we consider the inverse of the standard reasoning problem. We now

state the problem of computing preferences precisely as follows.

Problem 4.1. Given an abstract argumentation framework AAF and a single set of justified arguments, i.e., an
extension E under a given semantics (grounded, preferred or stable), we compute what the possible preferences over
arguments are, i.e., a set of sets of preferences PrefSet, such that each set of preferences Prefs ∈ PrefSet when applied
to the AAF results in the single input extension E under a given semantics (grounded, preferred or stable)3.

To solve Problem 4.1, we present Algorithm 1 that performs the computation of preferences over arguments with
the help of Algorithms 2, 3, and 4. We will now present and describe all Algorithms 1, 2, 3, and 4. Algorithm 1
exhaustively computes all possible sets of preferences for a given input extension (consisting of conflict-free argu-
ments) in an abstract argumentation framework (AAF) using the above three cases. The input of Algorithm 1 is a
tuple ⟨AAF,E⟩, where:

• Abstract argumentation framework AAF = ⟨A,R⟩, A denotes the set of all arguments in the AAF, and R
denotes the attack relation between arguments.

3Please note, the application of preferences on an AAF would restrict the result to a single extension E under multi-extension semantics (i.e.,
preferred and stable) and single extension semantics (i.e., grounded).
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• Extension E consists of a finite number of conflict-free arguments such that E ⊆ A.

The algorithm computes and outputs a set consisting of finite sets of preferences, where each set of preferences
is represented as Prefs = {A > B, B = C, ....} such that {A, B,C, ...} ⊆ A. The following are the main steps in
Algorithm 1:

• Line 2: Invoke Algorithm 2 with inputs AAF and E, to compute case 1 set of preferences Prefs.

• Line 3: Invoke Algorithm 3 with inputs AAF, E and Prefs, to compute case 2 preferences and combine them
with case 1 preferences. This results in PrefSet which is a set of sets of preferences.

• Line 4: Invoke Algorithm 4 with inputs AAF, E and PrefSet, to compute case 3 preferences and combine them
with Prefs and PrefSet. This results in an updated final PrefSet which is a set of sets of preferences containing
all three cases of preferences combined together.

• Line 5: Return the final PrefSet.

Algorithm 1 Compute all preferences
Require: AAF, an abstract argumentation framework
Require: E, an extension consisting of conflict-free arguments
Ensure: PrefSet, the set of sets of all possible preferences

1: function ComputeAllPreferences(AAF,E)
2: Prefs← ComputePreferences1(AAF,E)
3: PrefSet ← ComputePreferences2(AAF,E,Prefs)
4: PrefSet ← ComputePreferences3(AAF,E,PrefSet)
5: return PrefSet
6: end function

The following are the main steps in Algorithm 2:

• Line 3: Iteratively pick a single argument A from the extension E.

• Line 4: Find all arguments B that attack A.

• Lines 5 − 11: For each B, if there is no unattacked argument C (where C , A and C ∈ E) that attacks B, then
compute each preference of the form A > B and add it to the set of preferences Prefs.

The following are the main steps in Algorithm 3:

• Line 4: Iteratively pick a single argument A from the extension E.

• Line 5: Find all arguments B that A attacks.

• Lines 6 − 13: For all arguments B attacked by A, compute preferences of the form A > B and A = B, and add
each preference relation to a different set of preferences, as per lines 8 and 9.

The following are the main steps in Algorithm 4:

• Line 3: Iteratively pick a single argument A from the extension E.

• Line 4: Find all arguments B that attack A.

• Lines 5 − 16: For each B, if there is an unattacked argument C (where C , A and C ∈ E) that attacks B, then
compute preferences of the form A > B, A = B and B > A, and add each preference relation to a different set of
preferences, as per lines 9 − 11.

We establish that our approach is sound (that is, all its outputs are correct) and complete (that is, it outputs all
possible solutions). We start with its soundness:

8



Algorithm 2 Compute preferences (Case 1)
Require: AAF, an abstract argumentation framework
Require: E, an extension consisting of conflict-free arguments
Ensure: Prefs, a set of preferences

1: function ComputePreferences1(AAF,E)
2: Prefs← ∅
3: for all A ∈ E do
4: Attackers← {B | (B, A) ∈ R} ▷ get all attackers of A
5: for all B ∈ Attackers do
6: Defenders← {C | C , A,C ∈ E, (C, B) ∈ R,∄X ∈ A s.t. (X,C) ∈ R} ▷ C attacks B & defends A
7: if Defenders = ∅ then ▷ if B not attacked by any C
8: Prefs← Prefs ∪ {A > B} ▷ add preference A > B
9: end if

10: end for
11: end for
12: return Prefs
13: end function

Theorem 4.1. (Soundness): Algorithm 1 is sound in that given an abstract argumentation framework AAF and an
extension E as input, every output preference set Prefs ∈ PrefSet, when applied to the AAF results in the input E
(under a given semantics).

Proof. We prove this by exploring all cases and how these are handled by algorithms 2-4. Each set of preferences
computed for each subset of arguments α, β, γ ⊆ A is such that α, γ ⊆ E, β ∩ E = ∅. We proceed to show how each of
the auxiliary algorithms 2-4 help us achieve this.

Algorithm 2 computing each case 1 preference of the form A > B, A ∈ E, B ∈ β, (B, A) ∈ R ensures that the
following holds:

1. There is no C ∈ E,C , A such that (C, B) ∈ R (lines 6-7).

2. A ∈ E since A is preferred to its attacking argument B, which invalidates the attack (B, A) ∈ R.

3. Since the input extension E consists of conflict free arguments, if A ∈ E then its attacking argument B < E. This
supports that β ∩ E = ∅.

Algorithm 3 computing each case 2 preferences of the form A > B, A = B, A ∈ E, B ∈ β, (A, B) ∈ R, (B, A) < R
ensures the following holds:

1. Since A attacks B and B does not attack A, we have two different preferences between A and B, namely,
A > B, A = B. Therefore A ∈ E with respect to each of these preferences.

2. Preferences A > B, A = B will be in different preference sets, as per lines 8 and 9. We will have Prefs1 ←

Prefs ∪ {A > B} and Prefs2 ← Prefs ∪ {A = B}, where Prefs consists of preferences of case 1.

Algorithm 4 computing each case 3 preferences of the form A > B, A = B, B > A, A ∈ α, B ∈ β,C ∈ γ, (B, A) ∈
R, (C, B) ∈ R ensures the following holds:

1. Since C defends A from the attack of B, we have three different preferences between A and B, namely, A > B,
A = B and B > A. Therefore A ∈ E with respect to each of these preferences.

2. Preferences A > B, A = B, B > A will be in different preference sets, as per lines 9, 10 and 11. We will have
Prefs1 ← Prefs ∪ {A > B}, Prefs2 ← Prefs ∪ {A = B} and Prefs3 ← Prefs ∪ {B > A}, where Prefs consists of
preferences of cases 1 and 2.

9



Algorithm 3 Compute preferences (Case 2)
Require: AAF, an abstract argumentation framework
Require: E, an extension consisting of conflict free arguments
Require: Prefs, a set of preferences
Ensure: PrefSet, a set of sets of preferences

1: function ComputePreferences2(AAF,E,Prefs)
2: PrefSet ← {Prefs}
3: PrefSet′ ← ∅
4: for all A ∈ E do
5: Attacked ← {B | (A, B) ∈ R ∧ (B, A) < R} ▷ get arguments A attacks
6: for all B ∈ Attacked do ▷ for all B attacked by A
7: for all Prefs ∈ PrefSet do ▷ for all sets of preferences Prefs
8: PrefSet′ ← PrefSet′ ∪ {Prefs ∪ {A > B}} ▷ add Prefs ∪ {A > B}
9: PrefSet′ ← PrefSet′ ∪ {Prefs ∪ {A = B}} ▷ add Prefs ∪ {A = B}

10: end for
11: PrefSet ← PrefSet′

12: PrefSet′ ← ∅
13: end for
14: end for
15: return PrefSet
16: end function

Theorem 4.2. (Completeness): Algorithm 1 is complete in that given an abstract argumentation framework AAF and
an extension E as input, if there is a preference set Prefs ∈ PrefSet which when applied to the AAF results in the input
E (under a given semantics), then algorithm 1 will find it.

Proof. Similar to above, we prove this by exploring all cases and how these are handled by algorithms 2-4. We find
all sets of preferences computed for each subset of arguments α, β, γ ⊆ A, α, γ ⊆ E, β ∩ E = ∅. We proceed to show
how each of the auxiliary algorithms 2-4 help us achieve this.

Algorithm 2 computes all case 1 preferences of the form A > B, A ∈ E, B ∈ β, (B, A) ∈ R. Lines 3-11 exhaustively
search for A ∈ E for which there is an attacker B (not attacked by any C , A). If there are such A, B ∈ A, the algorithm
will find them and add A > B to a set of preferences.

Algorithm 3 computes all case 2 preferences of the form A > B, A = B, B ∈ β, A ∈ E, (A, B) ∈ R, (B, A) < R. Lines
4-14 exhaustively search for A ∈ E for which there is an attacked argument B and B does not attack A. If there are
such A, B ∈ A, the algorithm will find them and add each A > B, A = B to a different set of preferences.

Algorithm 4 computes all case 3 preferences of the form A > B, A = B, B > A, A ∈ α, B ∈ β,C ∈ γ, (B, A) ∈
R, (C, B) ∈ R. Lines 3-17 exhaustively search for A ∈ E for which there is an attacker B and there is a defender C that
attacks B. If there are such A, B,C ∈ A, the algorithm will find them and add each A > B, A = B, B > A to a different
set of preferences.

After having proved the soundness and completeness of Algorithm 1, we establish its termination.

Theorem 4.3. (Termination): Given an abstract argumentation framework AAF and an extension E as input, Algo-
rithm 1 always terminates.

Proof. Algorithm 1 invokes Algorithms 2, 3 and 4 in lines 2-4 to compute a set of all sets of preferences. To prove
Algorithm 1 terminates we consider the termination of Algorithms 2, 3 and 4 individually. Since we assume that both
the input abstract argumentation framework AAF and an extension E are finite, therefore the for loop which iterates
over all the elements of the extension in Algorithms 2, 3 and 4 will always terminate. The rest of the proof explores
each algorithm in turn.

In Algorithm 2, since the set of Attackers, i.e., all the arguments that attack A, is finite therefore the for loop in
lines 5-10 will always terminate. In Algorithm 3, since the set of Attacked, i.e., all the arguments that are attacked by
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Algorithm 4 Compute preferences (Case 3)
Require: AAF, an abstract argumentation framework
Require: E, an extension consisting of conflict free arguments
Require: PrefSet, a set of sets of preferences
Ensure: PrefSet, an updated set of sets of preferences

1: function ComputePreferences3(AAF,E,PrefSet)
2: PrefSet′ ← ∅
3: for all A ∈ E do
4: Attackers← {B | (B, A) ∈ R} ▷ get all attackers of A
5: for all B ∈ Attackers do
6: Defenders← {C | C , A,C ∈ E, (C, B) ∈ R,∄X ∈ A s.t. (X,C) ∈ R} ▷ C attacks B & defends A
7: if Defenders , ∅ then
8: for all Prefs ∈ PrefSet do ▷ for all sets of preferences Prefs
9: PrefSet′ ← PrefSet′ ∪ {Prefs ∪ {A > B}} ▷ add Prefs ∪ {A > B}

10: PrefSet′ ← PrefSet′ ∪ {Prefs ∪ {A = B}} ▷ add Prefs ∪ {A = B}
11: PrefSet′ ← PrefSet′ ∪ {Prefs ∪ {B > A}} ▷ add Prefs ∪ {B > A}
12: end for
13: PrefSet ← PrefSet′

14: PrefSet′ ← ∅
15: end if
16: end for
17: end for
18: return PrefSet
19: end function

A, is finite therefore the for loop in lines 6-13 will always terminate. Furthermore, since the set of sets of preferences
PrefSet is finite, therefore the for loop in lines 7-10 will always terminate. In Algorithm 4, since the set of Attackers,
i.e., all the arguments that attack A is finite, therefore the for loop in lines 5-16 will always terminate. Furthermore,
since the set of sets of preferences PrefSet is finite, so the for loop in lines 8-12 will always terminate.

Thus, we have proved that Algorithms 2, 3 and 4 terminate. Therefore, Algorithm 1 that invokes Algorithms 2, 3
and 4 always terminates.

4.1.1. Algorithms for Filtering Preferences
Additionally, we present Algorithm 5 to compute the unique preferences for an extension in comparison to an-

other extension, and Algorithm 6 to compute the common preferences for any two extensions. Algorithm 5 takes
as input two different set of of sets of preferences PrefSet1 and PrefSet2 for two different extensions, and computes
the set of unique preferences that do not overlap between PrefSet1 and PrefSet2. The following are the main steps in
Algorithm 5:

• Line 2: Iterate over each element Prefs1 in the set of sets of preferences PrefSet1.

• Line 3: Iterate over each element p in the set of preferences Prefs1.

• Lines 4-6: Check the condition if there is no set of preferences Prefs2 in the set of sets of preferences PrefSet2,
which consists of p, then add p to the unique set of preferences UniquePrefs.

• Line 5: Return the unique set of preferences UniquePrefs.

Algorithm 6 takes as input two different set of sets of preferences PrefSet1 and PrefSet2 for two different exten-
sions, and computes the set of common preferences that overlap between PrefSet1 and PrefSet2. The following are the
main steps in Algorithm 6:

• Line 2: Iterate over each element Prefs1 in the set of sets of preferences PrefSet1.
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Algorithm 5 Algorithm for Computing Unique Preferences

Require: PrefSet1, the set of sets of preferences for first extension.
Require: PrefSet2, the set of sets of preferences for second extension.
Ensure: UniquePrefs, unique preferences for first extension.

1: function ComputeUniquePreferences(PrefSet1, PrefSet2)
2: for all Prefs1 ∈ PrefSet1 do
3: for all p ∈ Prefs1 do
4: if ∄Prefs2 ∈ PrefSet2 s.t. p ∈ Prefs2 then
5: UniquePrefs← UniquePrefs ∪ p
6: end if
7: end for
8: end for
9: return UniquePrefs

10: end function

• Line 3: Iterate over each element p in the set of preferences Prefs1.

• Lines 4-6: Check the condition if there is a set of preferences Prefs2 in the set of sets of preferences PrefSet2,
which consists of p, then add p to the common set of preferences CommonPrefs.

• Line 5: Return the common set of preferences CommonPrefs.

Algorithm 6 Algorithm for Computing Common Preferences

Require: PrefSet1, the set of sets of preferences for first extension.
Require: PrefSet2, the set of sets of preferences for second extension.
Ensure: CommonPrefs, common preferences for both extensions.

1: function ComputeCommonPreferences(PrefSet1, PrefSet2)
2: for all Prefs1 ∈ PrefSet1 do
3: for all p ∈ Prefs1 do
4: if ∃Prefs2 ∈ PrefSet2 s.t. p ∈ Prefs2 then
5: CommonPrefs← CommonPrefs ∪ p
6: end if
7: end for
8: end for
9: return CommonPrefs

10: end function

4.1.2. Illustrative Example
In this section, we present an illustrative example to demonstrate how Algorithm 1 works. Suppose we have an

input abstract argumentation framework (A,R) shown in Figure 1, whereA = {A, B,C,D, E} and R = {(A, B), (C, B),
(C,D), (D,C), (D, E)}. We consider the conflict-free extension E1 = {A,C, E} for computing preferences. Table 1
shows the preferences computed in lines 2, 3 and 4 of Algorithm 1.

• On line 2, Algorithm 2 is invoked, which returns the set of case 1 preferences {C > D}.

• On line 3, Algorithm 3 is invoked, which returns a set of sets of preferences (cases 1 and 2 combined together)
{{C > D, A > B,C > B}, {C > D, A > B,C = B}, {C > D, A = B,C > B}, {C > D, A = B,C = B}}.

• Finally on line 4, Algorithm 4 is invoked, which returns a set of sets of preferences (cases 1, 2 and 3 combined
together) {{C > D, A > B,C > B, E > D}, {C > D, A > B,C > B, E = D}, {C > D, A > B,C > B,D > E},
{C > D, A > B,C = B, E > D}, {C > D, A > B,C = B, E = D}, {C > D, A > B,C = B,D > E},
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Table 1: Computing Preferences for Extension {A,C, E}

Line No. Preference Sets
2 {C > D}
3 {{C > D, A > B,C > B},

{C > D, A > B,C = B},
{C > D, A = B,C > B},
{C > D, A = B,C = B}}

4 {{C > D, A > B,C > B, E > D},
{C > D, A > B,C > B, E = D},
{C > D, A > B,C > B,D > E},
{C > D, A > B,C = B, E > D},
{C > D, A > B,C = B, E = D},
{C > D, A > B,C = B,D > E},
{C > D, A = B,C > B, E > D},
{C > D, A = B,C > B, E = D},
{C > D, A = B,C > B,D > E},
{C > D, A = B,C = B, E > D},
{C > D, A = B,C = B, E = D},
{C > D, A = B,C = B,D > E}}

{C > D, A = B,C > B, E > D}, {C > D, A = B,C > B, E = D}, {C > D, A = B,C > B,D > E},
{C > D, A = B,C = B, E > D}, {C > D, A = B,C = B, E = D}, {C > D, A = B,C = B,D > E}}.

Table 2 presents the sets of preferences for the two preferred extensions {A,C, E} and {A,D} of the abstract argumen-
tation framework given above and shown in Figure 1. The sets of preferences for all conflict-free extensions for this
example abstract argumentation framework are shown in Table A.3 in the Appendix.

Table 2: Preferences for the Preferred extensions {A,C, E} and {A,D}

Preferred Extensions Preference Sets Unique Pref-
erences

Common
Preferences

{A,C, E} {{C > D, A > B,C > B, E > D},
{C > D, A > B,C > B, E = D},
{C > D, A > B,C > B,D > E},
{C > D, A > B,C = B, E > D},
{C > D, A > B,C = B, E = D},
{C > D, A > B,C = B,D > E},
{C > D, A = B,C > B, E > D},
{C > D, A = B,C > B, E = D},
{C > D, A = B,C > B,D > E},
{C > D, A = B,C = B, E > D},
{C > D, A = B,C = B, E = D},
{C > D, A = B,C = B,D > E}}

C > D
E > D
C > B
C = B

A > B
A = B
D > E
D = E

{A,D} {{D > C, A > B,D > E},
{D > C, A > B,D = E},
{D > C, A = B,D > E},
{D > C, A = B,D = E}}

D > C

The unique preferences for an extension in comparison to another extension can be computed by Algorithm 5. By
analysing the preference sets shown in Table 2, we can identify the unique preferences for extension {A,C, E}, which
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are C > D, E > D, C > B and C = B4, and the unique preferences for extension {A,D}, which is D > C. Since,
at least one unique preference for each extension is in its corresponding preference set, therefore it can be concluded
that if we evaluate the example abstract argumentation framework given in Figure 1 with a corresponding preference
set of a given preferred extension, then the evaluation results in exactly the same preferred extension.

Furthermore, we can identify preferences that are common to both extensions, which are A > B, A = B, D > E,
D = E5. The common preferences for any two extensions can be computed by Algorithm 6. It is interesting to note
that, extension {A,C, E} can have preferences D > E and D = E, considering D is not present in the extension. It
can be concluded that if we evaluate the example abstract argumentation framework given in Figure 1, then we get
both preferred extensions with the following preference sets: {A > B,D > E}, {A > B,D = E}, {A = B,D > E} and
{A = B,D = E}.

4.2. An Approximate Algorithm for Computing Preferences
While Algorithm 1 can compute a set of all sets of preferences using the three cases described earlier, the number

of the possible sets of preferences increases exponentially with regards to the number of arguments within the abstract
argumentation framework, resulting in exponential time complexity. This is impractical for a large set of arguments,
and in this section, we describe an approximate method for computing a set of preferences.

We now present and describe Algorithm 7 that approximately computes a possible set of preferences for a given
input extension (consisting of conflict-free arguments) in an abstract argumentation framework (AAF) using the three
cases described earlier. The input of Algorithm 7 is a tuple ⟨AAF,E⟩, where:

• Abstract argumentation framework AAF = ⟨A,R⟩, A denotes the set of all arguments in the AAF, and R
denotes the attack relation between arguments.

• Extension E consists of a finite number of conflict-free arguments such that E ⊆ A.

The algorithm computes and outputs a finite set of preferences, which is represented as Prefs = {A > B,C > B, ....}
such that {A, B,C, ...} ⊆ A.

The following are the main steps in Algorithm 7:

• Lines 3 − 11: Compute all Case 1 preferences.

– Line 3: Iteratively pick a single argument A from the extension E.

– Line 4: Find all arguments B that attack A.

– Lines 5 − 10: For each B, if there is no unattacked argument C (where C , A and C ∈ E) that attacks B,
then compute each preference of the form A > B and add it to the set of preferences Prefs.

• Lines 12 − 18: Compute Case 2 preferences and combine them with Case 1 preferences.

– Line 12: Iteratively pick a single argument A from the extension E.

– Line 13: Find all argument B that A attacks.

– Lines 14 − 17: For all arguments B attacked by A, generate a random preference p such that p ∈ {A >
B, A = B}, and add it to the set of preferences Prefs, as per lines 15 − 16.

• Lines 19 − 28: Compute Case 3 preferences and combine them with Case 2 and Case 3 preferences.

– Line 19: Iteratively pick a single argument A from the extension E.

– Line 20: Find all arguments B that attack A.

– Lines 21 − 27: For each B, if there is an unattacked argument C (where C , A and C ∈ E) that attacks
B, then generate a random preference p such that p ∈ {A > B, A = B, B > A}, and add it to the set of
preferences Prefs, as per lines 24 − 25.

4This means it could be either C > B or C = B.
5This means it could be either A > B or A = B, and similarly D > E or D = E.
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Algorithm 7 Approximately compute preferences
Require: AAF, an abstract argumentation framework
Require: E, an extension consisting of conflict-free arguments
Ensure: Prefs, an approximate set of possible preferences

1: function ComputePreferencesApproximately(AAF,E)
2: Prefs← ∅
3: for all A ∈ E do
4: Attackers← {B | (B, A) ∈ R} ▷ get all attackers of A
5: for all B ∈ Attackers do
6: Defenders← {C | C , A,C ∈ E, (C, B) ∈ R,∄X ∈ A s.t. (X,C) ∈ R} ▷ C attacks B & defends A
7: if Defenders = ∅ then ▷ if B not attacked by any C
8: Prefs← Prefs ∪ {A > B} ▷ add preference A > B
9: end if

10: end for
11: end for
12: for all A ∈ E do
13: Attacked ← {B | (A, B) ∈ R ∧ (B, A) < R} ▷ get arguments A attacks
14: for all B ∈ Attacked do ▷ for all B attacked by A
15: Generate a random preference p such that p ∈ {A > B, A = B}
16: Prefs← Prefs ∪ p ▷ add preference p
17: end for
18: end for
19: for all A ∈ E do
20: Attackers← {B | (B, A) ∈ R} ▷ get all attackers of A
21: for all B ∈ Attackers do
22: Defenders← {C | C , A,C ∈ E, (C, B) ∈ R, ∄X ∈ A s.t. (X,C) ∈ R} ▷ C attacks B & defends A
23: if Defenders , ∅ then ▷ if B is attacked by any C
24: Generate a random preference p such that p ∈ {A > B, A = B, B > A}
25: Prefs← Prefs ∪ p ▷ add preference p
26: end if
27: end for
28: end for
29: return Prefs
30: end function

• Line 29: Return the final set of preferences Prefs.

We establish that our approach is sound (that is, its output is correct).

Theorem 4.4. (Soundness): Algorithm 7 is sound in that given an abstract argumentation framework AAF and an
extension E as input, the output preference set Prefs, when applied to the AAF results in the input E (under a given
semantics).

Proof. We prove this by exploring all cases and how these are handled by the algorithm. The set of preferences
computed for each subset of arguments α, β, γ ⊆ A is such that α, γ ⊆ E, β ∩ E = ∅.
Lines 3 − 11 computing each case 1 preference of the form A > B, A ∈ E, B ∈ β, (B, A) ∈ R ensure that the following
holds:

1. There is no C ∈ E,C , A such that (C, B) ∈ R.

2. A ∈ E since A is preferred to its attacking argument B, which invalidates the attack (B, A) ∈ R.

3. Since the input extension E consists of conflict free arguments, if A ∈ E then its attacking argument B < E. This
supports that β ∩ E = ∅.
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Lines 12 − 18 computing a random case 2 preference p of the form p ∈ {A > B, A = B}, A ∈ E, B ∈ β, (A, B) ∈
R, (B, A) < R ensure the following holds:

1. Since A attacks B and B does not attack A, we have two different preferences between A and B, namely,
A > B, A = B. Therefore A ∈ E with respect to each of these preferences.

2. A randomly generated preference p ∈ {A > B, A = B} will be added to the preference set Prefs, as per lines 15
and 16. We will have Prefs← Prefs ∪ p, where Prefs consists of preferences of case 1.

Lines 19 − 28 computing a random case 3 preference of the form p ∈ {A > B, A = B, B > A}, A ∈ α, B ∈ β,C ∈
γ, (B, A) ∈ R, (C, B) ∈ R ensure the following holds:

1. Since C defends A from the attack of B, we have three different preferences between A and B, namely, A > B,
A = B and B > A. Therefore A ∈ E with respect to each of these preferences.

2. A randomly generated preference p ∈ {A > B, A = B, B > A} will be added to the preference set Prefs, as per
lines 24 and 25. We will have Prefs← Prefs ∪ p, where Prefs consists of preferences of cases 1 and 2.

After having proved the soundness of Algorithm 7, we establish its termination.

Theorem 4.5. (Termination): Given an abstract argumentation framework AAF and an extension E as input, Algo-
rithm 7 always terminates.

Proof. Algorithm 7 consists of three for loops for computing each of the case 1 (in lines 3 − 11), case 2 (in lines
12 − 18), and case 3 (in lines 19 − 28) preferences for the output set of preferences. To prove Algorithm 7 terminates
we consider the termination of each of the for loops for the three cases individually. Since we assume that both the
input abstract argumentation framework AAF and an extension E are finite, therefore the three for loops which iterate
over all the elements of the extension in lines 3 − 11, lines 12 − 18 and lines 19 − 28 will always terminate. The rest
of the proof explores each case in turn.

Within the for loop in lines 3− 11, since the set of Attackers, i.e., all the arguments that attack A, is finite therefore
the for loop in lines 5-10 will always terminate. Within the for loop in lines 12 − 18, since the set of Attacked, i.e., all
the arguments that are attacked by A, is finite therefore the for loop in lines 14-17 will always terminate. Within the
for loop in lines 19 − 28, since the set of Attackers, i.e., all the arguments that attack A is finite, therefore the for loop
in lines 21-27 will always terminate.

Thus, we have proved that Algorithm 7 always terminates.

5. Verifying Preferences

As mentioned in Section 2, preference-based argumentation frameworks [20] ignore or remove the attacks where
the attacked argument is stronger than the attacking argument. It was found out later that the resulting extension
violates the basic condition imposed on acceptability semantics, which is the conflict-freeness of extensions. This
problem was later resolved in a new preference-based argumentation framework that guarantees conflict-free exten-
sions with a symmetric conflict relation [29, 24, 21]. The preference relation is then used to determine the direction
of the defeat relation between the two arguments.

Since we assume our input extension to be conflict-free both approaches of attack removal or reversal would
work. Therefore, we consider two methods for the application of preferences, and verifying that this results in our
desired input extension. A preference-based argumentation framework (PAF) can be transformed into an abstract
argumentation framework (AAF) by:

1. applying preferences by attack removal, or,

2. applying preferences by attack reversal.

We now present the formal definitions for both methods of applying preferences to transform a PAF into an AAF.
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A B C D E

Figure 3: Transformed abstract argumentation framework AAF3

Definition 5.1. (Applying preferences by attack removal): A preference-based argumentation framework (A,Def ,≥)
can be transformed into an abstract argumentation framework (A,R) as follows: ∀A, B ∈ A, it is the case that
(B, A) ∈ R iff (B, A) ∈ Def and it is not the case that A > B.

In other words, if B defeats A and A is preferred to B then the attack (B, A) will not appear in the abstract argu-
mentation framework (A,R).

Definition 5.2. (Applying preferences by attack reversal): A preference-based argumentation framework (A,Def ,≥)
can be transformed into an abstract argumentation framework (A,R) as follows:

(i) ∀A, B ∈ A, it is the case that (B, A) < R and (A, B) ∈ R iff (B, A) ∈ Def and it is the case that A > B.

(ii) ∀A, B ∈ A, it is the case that (B, A) ∈ R iff (B, A) ∈ Def and it is not the case that A > B.

In other words, if B defeats A and A is preferred to B then the attack (B, A) will not appear in the abstract ar-
gumentation framework (A,R), and the reverse attack (A, B) will appear in the abstract argumentation framework
(A,R). Also, if B defeats A and A is not preferred to B then the attack (B, A) will appear in the abstract argumentation
framework (A,R).

Example 5.1. We refer back to the abstract argumentation framework (A,R) of Figure 1, whereA = {A, B,C,D, E}
and R = {(A, B), (C, B), (C,D), (D,C), (D, E)}. We consider the preferred extension E1 = {A,C, E} to compute the
following set of sets of preferences using Algorithm 1:

{{C > D, A > B,C > B, E > D},

{C > D, A > B,C > B, E = D},

{C > D, A > B,C > B,D > E},

{C > D, A > B,C = B, E > D},

{C > D, A > B,C = B, E = D},

{C > D, A > B,C = B,D > E},

{C > D, A = B,C > B, E > D},

{C > D, A = B,C > B, E = D},

{C > D, A = B,C > B,D > E},

{C > D, A = B,C = B, E > D},

{C > D, A = B,C = B, E = D},

{C > D, A = B,C = B,D > E}, }

We consider the first set of preferences Pref 1 = {C > D, A > B,C > B, E > D} to demonstrate the application of
preferences. The corresponding preference-based argumentation framework is denoted as PAF = (A,Def ,≥) which
represents the AAF of Figure 1 with a set of preferences Pref 1 = {C > D, A > B,C > B, E > D}. The preferences
can be applied using two different methods, attack removal and attack reversal, defined earlier in Definitions 5.1
and 5.2 to transform the PAF to an AAF. The application of the first method, i.e., attack removal, results in an abstract
argumentation framework shown in Figure 3, where the attacks (D,C) ∈ R and (D, E) ∈ R have been removed.
The application of the second method, i.e., attack reversal, results in an abstract argumentation framework shown in
Figure 4, where the attack (C,D) ∈ R represented as a dashed arrow denotes both the normal and reverse attacks and
the attack (E,D) ∈ R represented as a dotted arrow denotes reverse attack.

To verify that the set of preferences Pref 1 = {C > D, A > B,C > B, E > D} is correct. We apply the preferences to
get the transformed AAFs shown in Figures 3 and 4. The resulting preferred extension for both transformed AAFs is
{A,C, E}. Thus, the set of preferences Pref 1 has been verified to be correct.
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A B C D E

Figure 4: Transformed abstract argumentation framework AAF4

5.1. Algorithms for Verifying Preferences

In order to assess and verify whether the computed set of preferences over arguments is correct, we need to test
that the set of preferences when applied to a given abstract argumentation framework results in our original input
extension under a given semantics. We now state the verification problem precisely as follows.

Problem 5.1. Given an abstraction argumentation framework AAF, an extension E, a semanticsσ ∈ {grounded, preferred, stable},
and a set of sets of preferences PrefSet, each preference set Prefs ∈ PrefSet when applied to the AAF results in the
single input extension E under a given semantics σ.

To solve Problem 5.1, we present and describe Algorithms 8 and 10 for the verification of preferences following
the two methods described above6. The input to both algorithms is a tuple ⟨AAF,E, σ,PrefSet⟩, consisting of:

• An abstract argumentation framework AAF = (A,R), whereA is a set of arguments and R is an attack relation
(R ⊆ A ×A).

• An extension E consists of a finite number of conflict-free arguments such that E ⊆ A.

• σ is a given semantic, where σ ∈ {grounded, preferred, stable}.

• PrefSet is a set of sets of preferences, where each set of preferences Prefs ∈ PrefSet is represented as Prefs =
{A > B, B = C, ....} such that {A, B,C, ....} ⊆ A.

Both algorithms output a Boolean variable vcheck, which is true if all Prefs ∈ PrefSet are correct, otherwise it is
false.

The main functionalities of Algorithm 8 are:

• ApplyPreferences1 applies the preferences using the first method of attack removal in the abstract argumentation
framework given in Definition 5.1.

• ComputeExtensions computes and returns all the extensions in the abstract argumentation framework given a
particular semantics σ7.

• The set of preferences are verified by getting the transformed abstract argumentation framework returned by
ApplyPreferences1 and checking that the resulting extension for a given semantics σ returned by ComputeEx-
tensions function is the same (and only) as the input extension.

6Please note, although an algorithm for preference application by attack removal will suffice for this work, we have presented the algorithm for
preference application by attack reversal for comparison of both approaches in our experiments that are presented later.

7We note that this functionality is not defined as we use an existing function implemented in the Tweety library [40] for this purpose.
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Algorithm 8 Verify Preferences (Attack Removal)
Require: AAF, an abstract argumentation framework
Require: E, an extension consisting of conflict-free arguments
Require: σ, semantics for computing the extension
Require: PrefSet, a set of sets of preferences
Ensure: vcheck, a boolean value indicating preference verification success or failure

1: function VerifyPreferences1(AAF,E, σ,PrefSet)
2: count ← 0 ▷ number of correct sets of preferences
3: for all Prefs ∈ PrefSet do
4: AAF′ ← ApplyPreferences1(AAF,Prefs)
5: Es ← ComputeExtensions(AAF′, σ)
6: if |Es| = 1 & E′ ∈ Es s.t. E′ = E then ▷ computed extension is equal to E
7: count ← count + 1 ▷ increment count
8: end if
9: end for

10: if |PrefSet| = |count| then ▷ all sets of preferences in PrefSet are correct
11: vcheck ← true
12: else
13: vcheck ← false
14: end if
15: return vcheck
16: end function

Algorithm 9 Apply Preferences (Attack Removal)
Require: AAF, an abstract argumentation framework
Require: Prefs, a set of preferences
Ensure: AAF′, an updated abstract argumentation framework

1: function ApplyPreferences1(AAF,Prefs)
2: for all (B, A) ∈ R do
3: if A > B < Prefs then ▷ A is not preferred to its attacker B
4: R′ ← R′ ∪ {(B, A)} ▷ add attack
5: end if
6: end for
7: AAF′ ← (A,R′) ▷ argumentation framework AAF′ with attack relation R′

8: return AAF′

9: end function

We establish that Algorithm 8 is sound (that is, its output is correct) and complete (that is, it outputs all solutions).
We start with its soundness:

Theorem 5.1. (Soundness): Algorithm 8 is sound in that given an abstract argumentation framework AAF, an ex-
tension E, a set of sets of preferences PrefSet, and semantics σ as input, each preference set Prefs ∈ PrefSet, when
applied to the AAF results in the input E (under a given semantics σ).

Proof. We prove this by first proving the auxiliary Algorithm 9 for applying preferences. Algorithm 9 goes through
all attacks (B, A) ∈ R in the input AAF and adds the attack (B, A) to the attack relation R′ where the attacked argument
A is not preferred to the attacking argument B as per lines 3−4. This ensures that any attacks of the form (B, A) where
the attacked argument A is preferred to the attacking argument B are not added to the attack relation R′. This results
in the transformed AAF′ = (A,R′).

Verification is then performed by invoking ComputeExtensions that computes and returns all the extensions in the
transformed abstract argumentation framework AAF′ for a given semantics σ. Since, if the output is a single extension
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which is equal to the input extension as per lines 6 − 8, therefore Prefs is verified to be correct. Thus, PrefSet is then
verified to be correct if the verification for each preference set Prefs ∈ PrefSet is correct as per lines 10 − 14.

Theorem 5.2. (Completeness): Algorithm 8 is complete in that given an abstract argumentation framework AAF, an
extension E, a set of sets preferences PrefSet, and semantics σ as input, each Prefs ∈ PrefSet is verified to be correct,
i.e., each Prefs ∈ PrefSet when applied to the AAF results in the input E (under a given semantics σ).

Proof. Algorithm 8 goes through each Prefs ∈ PrefSet to verify its correctness, as per lines 3 − 9. It then invokes
Algorithm 9 to apply each Prefs to the AAF and get the updated AAF′ as per line 4. ComputeExtensions is then
invoked to get the extension of the updated AAF′ under a given semantics σ.

Algorithm 9 goes through all attacks (B, A) ∈ R in the input AAF and adds the attack (B, A) to the attack relation
R′ where the attacked argument A is not preferred to the attacking argument B as per lines 2 − 6.

Lines 10 − 14 in Algorithm 8 ensure that all Prefs ∈ PrefSet are verified to be correct.

After having proved the soundness and completeness of Algorithm 8, we establish its termination.

Theorem 5.3. (Termination): Given an abstract argumentation framework AAF, an extension E, a set of sets prefer-
ences PrefSet, and semantics σ as input, Algorithm 8 always terminates.

Proof. Algorithm 8 consists of one for loop that goes through each Prefs ∈ PrefSet to verify its correctness, as per
lines 3 − 9. Since we assume that the input PrefSet is finite, therefore the for loop which iterate over all the elements
Prefs ∈ PrefSet in lines 3 − 9 will always terminate.

Algorithm 8 invokes Algorithm 9 to apply each Prefs ∈ PrefSet to the AAF and get the updated AAF′. We now
prove that Algorithm 9 terminates. Since we assume that the attack relation R of the input AAF is finite, therefore the
for loop which iterates over all the elements (B, A) ∈ R in lines 2 − 6 will always terminate.

Thus, we have proved that Algorithm 8 always terminates.

The main functionalities of Algorithm 10 are:

• ApplyPreferences2 applies the preferences using the second method of attack reversal in the abstract argumen-
tation framework given in Definition 5.2.

• ComputeExtensions computes and returns all the extensions in the abstract argumentation framework given a
particular semantics σ.

• The set of preferences are verified by getting the transformed abstract argumentation framework returned by
ApplyPreferences2 and checking that the resulting extension for a given semantic σ returned by ComputeEx-
tensions function is the same (and only) as the input extension.
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Algorithm 10 Verify Preferences (Attack Reversal)
Require: AAF, an abstract argumentation framework
Require: E, an extension consisting of conflict-free arguments
Require: σ, semantics for computing the extension
Require: PrefSet, a set of sets of preferences
Ensure: vcheck, a boolean value indicating preference verification success or failure

1: function VerifyPreferences2(AAF,E, σ,PrefSet)
2: count ← 0 ▷ number of correct sets of preferences
3: for all Prefs ∈ PrefSet do
4: AAF′ ← ApplyPreferences2(AAF,Prefs)
5: Es ← ComputeExtensions(AAF′, σ)
6: if |Es| = 1 & E′ ∈ Es s.t. E′ = E then ▷ computed extension is equal to E
7: count ← count + 1 ▷ increment count
8: end if
9: end for

10: if |PrefSet| = |count| then ▷ all sets of preferences in PrefSet are correct
11: vcheck ← true
12: else
13: vcheck ← false
14: end if
15: return vcheck
16: end function

Algorithm 11 Apply Preferences (Attack Reversal)
Require: AAF, an abstract argumentation framework
Require: Prefs, a set of preferences
Ensure: AAF′, an updated abstract argumentation framework

1: function ApplyPreferences2(AAF,Prefs)
2: for all (B, A) ∈ R do
3: if A > B ∈ Prefs then ▷ A is preferred to its attacker B
4: R′ ← R′ ∪ {(A, B)} ▷ add reverse attack
5: else if A > B < Prefs then ▷ A is not preferred to its attacker B
6: R′ ← R′ ∪ {(B, A)} ▷ add attack
7: end if
8: end for
9: AAF′ ← (A,R′) ▷ argumentation framework AAF′ with attack relation R′

10: return AAF′

11: end function

We establish that Algorithm 10 is sound (that is, its output is correct) and complete (that is, it outputs all solutions).
We start with its soundness:

Theorem 5.4. (Soundness): Algorithm 10 is sound in that given an abstract argumentation framework AAF, an
extension E, a set of sets of preferences PrefSet, and semantics σ as input, each preference set Prefs ∈ PrefSet, when
applied to the AAF results in the input E (under a given semantics σ).

Proof. We prove this by first proving the auxiliary Algorithm 11 for applying preferences. Algorithm 11 goes through
all attacks (B, A) ∈ R in the input AAF and adds:

• the reverse attack (A, B) to the the attack relation R′ where the attacked argument A is preferred to the attacking
argument B as per lines 3 − 4.
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• the attack (B, A) to the the attack relation R′ where the attacked argument A is not preferred to the attacking
argument B as per lines 5 − 6.

This ensures that any attacks of the form (B, A) where the attacked argument A is preferred to the attacking argument
B are not added to the attack relation R′ and the reverse attacks of the form (A, B) are added to the attack relation R′.
This results in the transformed AAF′ = (A,R′).

Verification is then performed by invoking ComputeExtensions that computes and returns all the extensions in the
transformed abstract argumentation framework AAF′ for a given semantics σ. Since, if the output is a single extension
which is equal to the input extension as per lines 6 − 8, therefore the Prefs is verified to be correct. Thus, PrefSet is
then verified to be correct if the verification for each preference set Prefs ∈ PrefSet is correct as per lines 10 − 14.

Theorem 5.5. (Completeness): Algorithm 10 is complete in that given an abstract argumentation framework AAF,
an extension E, a set of sets of preferences PrefSet, and semantics σ as input, each Prefs ∈ PrefSet is verified to be
correct, i.e., each Prefs ∈ PrefSet when applied to the AAF results in the input E (under a given semantics σ).

Proof. Algorithm 10 goes through each Prefs ∈ PrefSet to verify its correctness, as per lines 3 − 9. It then invokes
Algorithm 11 to apply each Prefs to the AAF and get the updated AAF′ as per line 4. ComputeExtensions is then
invoked to get the extension of the updated AAF′ under a given semantics σ.

Algorithm 11 goes through all attacks (B, A) ∈ R in the input AAF as per lines 2 − 8 and adds:

• the reverse attack (A, B) to the the attack relation R′ where the attacked argument A is preferred to the attacking
argument B as per lines 3 − 4.

• the attack (B, A) to the the attack relation R′ where the attacked argument A is not preferred to the attacking
argument B as per lines 5 − 6.

Lines 10 − 14 in Algorithm 8 ensure that all Prefs ∈ PrefSet are verified to be correct.

After having proved the soundness and completeness of Algorithm 10, we establish its termination.

Theorem 5.6. (Termination): Given an abstract argumentation framework AAF, an extension E, a set of sets prefer-
ences PrefSet, and semantics σ as input, Algorithm 10 always terminates.

Proof. Algorithm 10 consists of one for loop that goes through each Prefs ∈ PrefSet to verify its correctness, as per
lines 3 − 9. Since we assume that the input PrefSet is finite, therefore the for loop which iterates over all the elements
Prefs ∈ PrefSet in lines 3 − 9 will always terminate.

Algorithm 10 invokes Algorithm 11 to apply each Prefs ∈ PrefSet to the AAF and get the updated AAF′. We now
prove that Algorithm 11 terminates. Since we assume that the attack relation R of the input AAF is finite, therefore
the for loop which iterates over all the elements (B, A) ∈ R in lines 2 − 8 will always terminate.

Thus, we have proved that Algorithm 10 always terminates.

6. Implementation and Evaluation

We now discuss the implementation details and evaluation of the algorithms presented in the previous sections.

6.1. Implementation
We have implemented our proposed algorithms8 for evaluation purposes, in Java and using the Tweety library [40].

Figure 5 presents an overview of the system functionalities and information flow of the original approach.
The steps are as follows:

1. The input to the system is an abstract argumentation graph AAF (set of arguments A and attack relation R
between arguments) and an extension E consisting of acceptable arguments. This is denoted by (AAF,E).

8The source code of the implementation of all algorithms is available at https://github.com/Quratul-ain/AAF_Preferences
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Figure 5: An overview of the system functionalities and information flow (Original Approach)

2. The ComputePreferences function:

(i) invokes the ComputePreferences1 function (with input (AAF,E)) as given in Algorithm 2 that computes
the set of case 1 preferences Prefs.

(ii) invokes the ComputePreferences2 function (with input (AAF,E,Prefs)) as given in Algorithm 3 that
computes case 2 preferences and combines them with case 1 preferences. This results in PrefSet which is
a set of sets of preferences.

(iii) invokes the ComputePreferences3 function (with input (AAF,E,PrefSet)) as given in Algorithm 4 that
computes case 3 preferences and combines them with case 1 and case 2 preferences, i.e., Prefs and PrefSet.
This results in an updated final PrefSet which is a set of sets of preferences containing all three cases of
preferences combined together.

3. The VerifyPreferencesi function (with input (AAF,E,PrefSet)):

(i) invokes the ApplyPreferencesi function (with input (AAF,Prefs), where i = 1 or i = 2 referring to
the two methods of attack removal or reversal respectively) that applies the preferences to the abstract
argumentation framework AAF and returns an updated abstract argumentation framework AAF′.

(ii) invokes the ComputeExtensions function that computes the set of extensions Es and checks the conditions
that |Es = 1|&E′ ∈ Es s.t.E′ = E. It returns a Boolean variable vcheck, which is true if the conditions are
true for the preference sets; else it is false.
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Figure 6: An overview of the system functionalities and information flow (Approximate Approach)

Figure 6 presents an overview of the system functionalities and information flow of the approximate approach.
The steps are as follows:

1. The input to the system is an abstract argumentation graph AAF (set of arguments A and attack relation R
between arguments) and an extension E consisting of acceptable arguments. This is denoted by (AAF,E).

2. The ComputePreferencesApproximately function (with input (AAF,E)) as given in Algorithm 7 computes
case 1, case 2 preferences randomly, and case 3 preferences randomly and combines them, which results in a
set of preferences Prefs containing all three cases of preferences combined together.

3. PrefSet is created with a set of preferences Prefs from the previous step.

4. The VerifyPreferencesi function (with input (AAF,E,PrefSet)):

(i) invokes the ApplyPreferencesi function (with input (AAF,Prefs), where i = 1 or i = 2 referring to
the two methods of attack removal or reversal respectively) that applies the preferences to the abstract
argumentation framework AAF and returns an updated abstract argumentation framework AAF′.

(ii) invokes the ComputeExtensions function that computes the set of extensions Es and checks the conditions
that |Es = 1|&E′ ∈ Es s.t.E′ = E. It returns a Boolean variable vcheck, which is true if the conditions are
true for the preference sets; else it is false.

6.2. Evaluation
To evaluate how our algorithms perform, we carried out several experiments9 to analyse various metrics of per-

formance. In this section, we present the methodology for our experimental set-up, experiments performed and the

9All data sets are included in the appendix.
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analysis of their results.

6.2.1. Methodology
We now present the experimental methodology that we have adopted in order to evaluate the algorithms used in

our system as follows:

1. We generated abstract argumentation frameworks of increasing size, for which, we used an existing benchmark
abstract argumentation framework generator from the Tweety library [40].

2. We input the number of arguments AAFsize of the abstract argumentation framework and attack probability Pr
to the generator in order to randomly generate the abstract argumentation frameworks.

3. The attack probability Pr is taken as 0.25, 0.50 and 0.75.

4. We then compute the grounded, preferred and stable extensions respectively. For each type of extension, a
different set of experiments is performed.

5. For the grounded extension the value of AAFsize starts at 4 and ends at 1210. We only select the generated AAF
where the grounded extension is non-empty and at least of size 1. Additionally, we evaluated the approximate
algorithm (with attack probability Pr = 0.25 in the AAF11) for the grounded extension with larger value of
AAFsize that starts at 5 and ends at 60.

6. For the preferred and stable extensions the value of AAFsize starts at 4 and ends at 1612. We select the extension
of the largest size if there are more than two preferred extensions for the AAF and similarly if there are more
than two stable extensions for the AAF. Additionally, we evaluated the approximate algorithm for the preferred
and stable extensions with larger value of AAFsize that starts at 5 and ends at 60.

6.2.2. Experiments
The purpose of our experimental analysis is not only to present the scalability of the algorithms but also to analyse

the effect of the attack probability on the computation and verification of preferences on the grounded, preferred and
stable extensions. Furthermore, we experimentally check that our implementation reflects the soundness property (i.e.,
Theorem 5.4) proven before for the grounded, preferred and stable extensions, i.e., the correctness of all the computed
preference sets. Full detail of the data sets generated for the experiments is given in Tables 4-28 in the Appendix. The
experiments were run on an Apple Mac book Pro machine, with 16GB of memory and a 3.22 GHz, Apple M1 Pro
8-Core.
We investigate the following hypotheses for the original algorithm (i.e., Algorithm 1).

• Hypothesis 1. The computation of set of sets of preferences is low/high for the grounded, preferred and stable
extensions with lower/higher probability of attacks in the AAF.

• Hypothesis 2. The number of sets of preferences grow exponentially with the increasing size of AAFs.

We investigate the following hypothesis for the approximate algorithm (i.e., Algorithm 7).

• Hypothesis 3. Algorithm 7 is scalable for increasing size of AAFs.

We investigate the following hypotheses for both original algorithm (i.e., Algorithm 1) and approximate algorithm
(i.e., Algorithm 7).

• Hypothesis 4. The number of preferences in each preference set does not grow exponentially with the increasing
size of AAFs.

10Please note, the original algorithm (i.e., Algorithm 1) becomes impractical after the maximum AAFsize value 12.
11We were not able to generate AAFs of larger sizes with Pr = 0.50 and Pr = 0.75 that have at least one non-empty grounded extension using

the existing benchmark abstract argumentation framework generator from the Tweety library [40]
12Please note, the original algorithm (i.e., Algorithm 1) becomes impractical after the maximum AAFsize value 16.
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• Hypothesis 5. The verification of preferences by attack removal approach has lower/higher computation run
time for the grounded, preferred and stable extensions compared to the verification of preferences by attack
reversal approach.

• Hypothesis 6. Algorithm 1 and Algorithm 7 hold the soundness property (i.e., Theorem 4) for the grounded,
preferred and stable semantics.

For the first set of experiments we measured the average execution time in milliseconds (for 10 instances)
between inputting an abstract argumentation framework (where attack probability Pr is taken as 0.25, 0.50 and 0.75)
and extension under the grounded, preferred and stable semantics, and computing all set of sets of preferences by
the Original Algorithm (i.e. Algorithm 1) as shown in Figure 7a, Figure 11a and Figure 15a respectively, and by
the Approximate Algorithm (i.e. Algorithm 7) as shown in Figure 8a, Figure 12a and Figure 16a respectively. We
performed the following analysis:

1. For the grounded extension,

• Original Algorithm: In Figure 7a, the line graph of the AAF with Pr = 0.50 shows a high computation
time (worst-performance) at size 11 and falls down at size 12, where as with Pr = 0.25 computation time
is a steady low (best-performance) and starts to increase at size 12, and for Pr = 0.75 shows an increase
in computation at size 10 which starts to fall down at size 12.

• Approximate Algorithm: In Figure 8a, the line graphs of the AAF with Pr = 0.25,Pr = 0.50, and
Pr = 0.75 show a very low computation time that is not more than 1.0 ms for all AAF sizes.

2. For the preferred extension,

• Original Algorithm: In Figure 11a, the line graph of the AAF with Pr = 0.25 shows a high computation
time (worst-performance) which starts to increase at size 15, where as with Pr = 0.75 shows a steady
low computation time (best-performance) till the largest size 16, and for Pr = 0.50 shows an increase in
computation time at size 16.

• Approximate Algorithm: In Figure 12a, the line graphs of the AAF with Pr = 0.25,Pr = 0.50, and
Pr = 0.75 show a very low computation time that is not more than 1.0 ms for all AAF sizes.

3. For the stable extension,

• Original Algorithm: In Figure 15a, the line graph of the AAF with Pr = 0.25 shows a high computation
time (worst-performance) which starts to increase at size 15 and decreases slightly at size 16, where as
with Pr = 0.50 and Pr = 0.75 shows a steady low computation time (best-performance) till the largest
size 16.

• Approximate Algorithm: In Figure 16a, the line graphs of the AAF with Pr = 0.25,Pr = 0.50, and
Pr = 0.75 show a very low computation time that is not more than 1.0 ms for all AAF sizes.

Hypothesis 1. For the original algorithm (i.e., Algorithm 1), we conclude that when the number of attacks is less
(i.e., Pr = 0.25) in the increasing sizes of AAF, the run time for computation of preferences for the grounded extension
is lower compared to AAFs with higher number of attacks. On the other hand, we conclude that when the number of
attacks is higher (i.e., Pr = 0.75) in the increasing sizes of AAF, the run time for computation of preferences for the
preferred and stable extensions is lower compared to AAFs with lower number of attacks.

For the second set of experiments we measured the average number of all the set of sets of preferences (for
10 instances) computed for an input extension under the grounded, preferred and stable semantics for an abstract
argumentation framework (where attack probability Pr is taken as 0.25, 0.50 and 0.75) by the Original Algorithm (i.e.
Algorithm 1) as shown in Figure 7b, Figure 11b and Figure 15b respectively. We performed the following analysis:

1. For the grounded extension, the line graph of the AAF (as shown in Figure 7b) with Pr = 0.75 shows a high
number of preference sets at size 11 and falls down at size 12, where as with Pr = 0.25 the number of preference
sets is a steady low and starts to increase at size 12, and for Pr = 0.50 the number of preference sets increases
at size 9 and falls down at size 12.
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2. For the preferred extension, the line graph of the AAF (as shown in Figure 11b) with Pr = 0.50 shows that
the number of preference sets starts to increase at size 14, the line graph of the AAF with Pr = 0.25 shows that
the number of preference sets starts to gradually increase at size 8 and grows rapidly at size 15, and the the line
graph of the AAF with Pr = 0.75 shows a steady low number of preferences sets till the largest size 16.

3. For the stable extension, the line graph of the AAF (as shown in Figure 15b) with Pr = 0.25 shows that the
number of preference sets starts to increase rapidly at size 15 and falls down slightly at size 16, the line graph
of the AAF with Pr = 0.50 shows that the number of preference sets starts to increase at size 15, and the the
line graph of the AAF with Pr = 0.75 shows a steady low number of preferences sets till the largest size 16.

Hypothesis 2. For the original algorithm (i.e., Algorithm 1), we conclude that the number of preference sets
computed for the grounded extension is less when the AAFs of increasing sizes have lower number of attacks (i.e.,
Pr = 0.25) compared to AAFs with higher number of attacks. On the other hand, we conclude that the number of
preference sets computed for the preferred and stable extensions is less when the AAFs of increasing sizes have higher
number of attacks (i.e., Pr = 0.75) compared to AAFs with lower number of attacks. For all extensions, the growth
of the number of sets of preferences is exponential with the increasing size of AAFs.

For the third set of experiments we measured the average number of preferences in each set of preferences
(for 10 instances) computed for an input extension under the grounded, preferred and stable semantics for an abstract
argumentation framework (where attack probability Pr is taken as 0.25, 0.50 and 0.75) by the Original Algorithm (i.e.
Algorithm 1) as shown in Figure 7c, Figure 11c and Figure 15c respectively, and by the Approximate Algorithm (i.e.
Algorithm 7) as shown in Figure 8b, Figure 12b and Figure 16b respectively. We performed the following analysis:

1. For the grounded extension, as shown in Figure 7c and Figure 8b, the average number of preferences in each
preference set does not grow more than 12 till AAF size 12. There is a steady increase in the number of
preferences in each preference set with the increasing size of the AAF.

2. For the preferred extension, as shown in Figure 11c and Figure 12b, the average number of preferences in each
preference set remains under 30 till AAF size 16. Similar to the grounded extension, there is a steady increase
in the number of preferences in each preference set with the increasing size of the AAF.

3. For the stable extension, as shown in Figure 15c and Figure 16b, the average number of preferences in each
preference set remains under 30 till AAF size 16. Similar to the grounded and preferred extensions, there is a
steady increase in the number of preferences in each preference set with the increasing size of the AAF.

Hypothesis 4. For both the original algorithm (i.e., Algorithm 1) and approximate algorithm (i.e., Algorithm 7),
we conclude that the number of preferences for all extensions increases steadily with the increasing size of the AAFs
which is mostly similar for all attack probabilities. The growth in the number of preferences in each preference set for
increasing size of the AAFs is not exponential.

Finally, for the fourth set of experiments we measured the average elapsed time in milliseconds (for 10 instances)
between inputting an abstract argumentation framework (where attack probability Pr is taken as 0.25, 0.50 and 0.75),
extension under the grounded, preferred and stable semantics and the set of sets of preferences computed by the
Original Algorithm (i.e. Algorithm 1) or the Approximate Algorithm (i.e. Algorithm 7), and verifying all the set of
sets of preferences to be correct using the two verification methods13:

(i) Attack removal, as shown in Figure 9a, Figure 13a and Figure 17a for the Original Algorithm, and Figure 10a,
Figure 14a and Figure 18a for the Approximate Algorithm.

(ii) Attack reversal, as shown in Figure 9b, Figure 13b and Figure 17b for the Original Algorithm, and Figure 10b,
Figure 14b and Figure 18b for the Approximate Algorithm.

We performed the following analysis:

13This is done separately for both the Original and Approximate algorithms.
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1. For the grounded extension,

• For the preferences computed by the Original Algorithm: In Figure 9a and Figure 9b, the line graphs of the
AAF with Pr = 0.75 for both verification approaches show a high computation time (worst-performance)
at size 11 and this falls down at size 12, where as with Pr = 0.25 computation time is a steady low (best-
performance) and starts to increase at size 12, and for Pr = 0.50 computation time increases at size 9 and
falls down at size 12. Overall, although the line graph pattern of both verification methods is similar, the
computation time of verification by attack removal is lower compared to the attack reversal verification.

• For the preferences computed by the Approximate Algorithm: In Figure 10a and Figure 10b, the line
graphs of the AAF with Pr = 0.25,Pr = 0.50, and Pr = 0.75 for both verification approaches show a very
low computation time that is not more than 1.0 ms for all AAF sizes.

2. For the preferred extension,

• For the preferences computed by the Original Algorithm: In Figure 13a and Figure 13b, the line graphs
of the AAF with Pr = 0.25 for both verification approaches show a high computation time (worst-
performance) which starts to increase rapidly at size 15, where as with Pr = 0.75 shows a steady low
computation time (best-performance) till the largest size 16, and with Pr = 0.50 the computation time
goes up at size 14 and again at size 16 for both verification approaches. Overall, although the line graph
pattern of both verification methods is similar, the computation time of verification by attack removal is
lower compared to the attack reversal verification.

• For the preferences computed by the Approximate Algorithm: In Figure 14a and Figure 14b, the line graph
of the AAF with Pr = 0.25,Pr = 0.50, and Pr = 0.75 for attack removal verification method shows a very
low computation time that is not more than 5.0 ms for all AAF sizes, and for attack reversal verification
method shows a very low computation time that is not more than 3.0 ms for all AAF sizes.

3. For the stable extension,

• For the preferences computed by the Original Algorithm: In Figure 17a and Figure 17b, the line graphs
of the AAF with Pr = 0.25 for both verification approaches show a high computation time (worst-
performance) which starts to increase at size 15 and for the verification method of attack reversal goes
down slightly at size 16, where as with Pr = 0.75 for both verification approaches show a steady low
computation time (best-performance) till the largest size 16, and with Pr = 0.50 for both verification ap-
proaches show a small increase at size 15. Overall, although the line graph pattern of both verification
methods is almost similar, the computation time of verification by attack reversal is lower compared to the
attack removal verification.

• For the preferences computed by the Approximate Algorithm: In Figure 18a and Figure 18b, the line
graphs of the AAF with Pr = 0.25,Pr = 0.50, and Pr = 0.75 for both verification approaches show a very
low computation time that is not more than 4.0 ms for all AAF sizes.

Hypothesis 5. Thus, for the original algorithm, we conclude that the verification of preferences by attack removal
approach has lower run time for grounded and preferred extensions, whereas, the verification of preferences by attack
reversal approach has lower run time for the stable extension. The line graph patterns are similar for both verification
approaches, since this is dependent on the number of sets of preferences computed previously. For the approximate
algorithm, we conclude that the run time for verification of preferences using both approaches is very low (only a few
milliseconds).
Hypothesis 6. For both original algorithm (Algorithm 1) and approximate algorithm (Algorithm 7), both verification
methods resulted in the original input extension for all semantics (i.e., grounded, preferred and stable). Thus, we con-
clude that Algorithm 1 and Algorithm 7 hold the soundness property for the grounded, preferred and stable semantics
in our experimental evaluation.

From the above experimental analysis it is clear that the original Algorithm 1 is exponential in complexity due
to the exponential growth of sets of preferences for larger AAF sizes, however, it is useful to identify the maximum
AAF size at which point this becomes impractical, which is AAF size 12 for the grounded extension and AAF size 16

28



for the preferred and stable extensions as shown in the experiments. The approximate Algorithm 7 has a very low run
time (i.e., just a few milliseconds) and will be suited for real world settings where scalability of AAF size is important.
Hypothesis 3. We carried out further experiments to evaluate the scalability of the approximate Algorithm 7 for
computing preferences and Algorithms 8 and 10 for verifying preferences on larger AAF sizes (i.e., sizes between 5
to 60) as shown in Figures 19, 20, 21, 22, 23 and 24. It is evident from the figures that the approximate Algorithm 7,
and Algorithms 8 and 10 for verifying preferences have very low run time (i.e., just a few milliseconds) even for larger
AAF sizes.
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Figure 7: Computing Preferences of the Grounded Extension (Original Algorithm)

(a) Average time in milliseconds for computing all preference sets

(b) Average number of preference sets

(c) Average number of preferences in each preference set
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Figure 8: Computing Preferences of the Grounded Extension (Approximate Algorithm)

(a) Average time in milliseconds for computing all preference sets

(b) Average number of preferences in each preference set
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Figure 9: Verifying Preferences of the Grounded Extension (Original Algorithm)

(a) Average time in milliseconds for verifying all preference sets (attack removal)

(b) Average time in milliseconds for verifying all preference sets (attack reversal)
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Figure 10: Verifying Preferences of the Grounded Extension (Approximate Algorithm)

(a) Average time in milliseconds for verifying all preference sets (attack removal)

(b) Average time in milliseconds for verifying all preference sets (attack reversal)
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Figure 11: Computing Preferences of the Preferred Extension (Original Algorithm)

(a) Average time in milliseconds for computing all preference sets

(b) Average number of preference sets

(c) Average number of preferences in each preference set
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Figure 12: Computing Preferences of the Preferred Extension (Approximate Algorithm)

(a) Average time in milliseconds for computing all preference sets

(b) Average number of preferences in each preference set
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Figure 13: Verifying Preferences of the Preferred Extension (Original Algorithm)

(a) Average time in milliseconds for verifying all preference sets (attack removal)

(b) Average time in milliseconds for verifying all preference sets (attack reversal)
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Figure 14: Verifying Preferences of the Preferred Extension (Approximate Algorithm)

(a) Average time in milliseconds for verifying all preference sets (attack removal)

(b) Average time in milliseconds for verifying all preference sets (attack reversal)
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Figure 15: Computing Preferences of the Stable Extension (Original Algorithm)

(a) Average time in milliseconds for computing all preference sets

(b) Average number of preference sets

(c) Average number of preferences in each preference set
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Figure 16: Computing Preferences of the Stable Extension (Approximate Algorithm)

(a) Average time in milliseconds for computing all preference sets

(b) Average number of preferences in each preference set
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Figure 17: Verifying Preferences of the Stable Extension (Original Algorithm)

(a) Average time in milliseconds for verifying all preference sets (attack removal)

(b) Average time in milliseconds for verifying all preference sets (attack reversal)
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Figure 18: Verifying Preferences of the Stable Extension (Approximate Algorithm)

(a) Average time in milliseconds for verifying all preference sets (attack removal)

(b) Average time in milliseconds for verifying all preference sets (attack reversal)
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Figure 19: Computing Preferences of the Grounded Extension for larger AAF Sizes (Approximate Algorithm)

(a) Average time in milliseconds for computing all preference sets

(b) Average number of preferences in each preference set
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Figure 20: Verifying Preferences of the Grounded Extension for larger AAF Sizes (Approximate Algorithm)

(a) Average time in milliseconds for verifying all preference sets (attack removal)

(b) Average time in milliseconds for verifying all preference sets (attack reversal)
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Figure 21: Computing Preferences of the Preferred Extension for larger AAF Sizes (Approximate Algorithm)

(a) Average time in milliseconds for computing all preference sets

(b) Average number of preferences in each preference set
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Figure 22: Verifying Preferences of the Preferred Extension for larger AAF Sizes (Approximate Algorithm)

(a) Average time in milliseconds for verifying all preference sets (attack removal)

(b) Average time in milliseconds for verifying all preference sets (attack reversal)
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Figure 23: Computing Preferences of the Stable Extension for larger AAF Sizes (Approximate Algorithm)

(a) Average time in milliseconds for computing all preference sets

(b) Average number of preferences in each preference set
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Figure 24: Verifying Preferences of the Stable Extension for larger AAF Sizes (Approximate Algorithm)

(a) Average time in milliseconds for verifying all preference sets (attack removal)

(b) Average time in milliseconds for verifying all preference sets (attack reversal)

7. Conclusions and Future Work

In this paper we have described a novel extension-based approach to compute and verify (i.e., assess) abstract
argument preferences. We have presented a novel algorithm that takes an abstract argumentation framework and a
set of conflict-free arguments (extension) as input and computes all possible sets of preferences (restricted to three
identified cases) that are valid for the acceptability of the arguments in the input extension. We have shown that the
complexity of computing sets of preferences is exponential in the number of arguments, and thus, describe a novel ap-
proximate approach and algorithm to compute the preferences that is scalable. Furthermore, we have presented novel
algorithms for verifying the computed sets of preferences, ensuring their validity. We have experimentally shown that
both approaches, i.e., attack removal and reversal for the verification, output the desired input extension. We have
implemented all the algorithms and have build a complete system for computing and verifying preferences. We have
performed various experiments for the grounded, preferred and stable semantics with different attack probabilities in
the abstract argumentation frameworks to evaluate the algorithms and performed an analysis of the results obtained.

This work has applications in decision support systems [5, 6, 41] and recommender systems [7], where the re-
sulting decision(s) or recommendation(s) can be justified by the preference set(s). Another application would be to
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explore our work in dialogue strategies [8, 9], for instance in computational persuasion [10, 11] or negotiation [12] –
where an agent may have the capability of inferring preferences and reach her goal if (s)he enforces at least one of sev-
eral desired sets of arguments with the application of preferences. The inferred preferences, in particular the unique
and common preferences can be exploited in optimizing the choice of move in persuasion dialogues for behaviour
change as well as in negotiation dialogues to reach agreement.

As future work, we plan to investigate different ways to aggregate and assess the sets of preferences. Additionally,
we also plan to do an empirical evaluation of our proposed work on concrete examples. This will allow us to filter sets
of preferences, i.e., to accept or reject them; or to rank the sets of preferences by human participants. Furthermore,
we plan to extend our approach to value-based argumentation frameworks [27], where it would be interesting to elicit
values that the arguments promote or support to determine preferences over arguments. An extension of our work [26]
to assumption-based argumentation frameworks ABA [35, 36] and ABA+ [30] has been presented in [34], where we
were interested in eliciting preferences at the assumption level, however in the future, we aim to go beyond this by
exploring other structured argumentation frameworks [42, 32], in particular ASPIC+ [32]. Furthermore, we intend to
investigate the relationship between extension enforcement [43, 44] and our work.
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Appendix A. Preference Sets

Table A.3: Preference sets for all conflict-free extensions

Conflict-free Extensions Preference Sets

{A,C, E} {{C > D, A > B,C > B, E > D}
{C > D, A > B,C > B, E = D}
{C > D, A > B,C > B,D > E}
{C > D, A > B,C = B, E > D}
{C > D, A > B,C = B, E = D}
{C > D, A > B,C = B,D > E}
{C > D, A = B,C > B, E > D}
{C > D, A = B,C > B, E = D}
{C > D, A = B,C > B,D > E}
{C > D, A = B,C = B, E > D}
{C > D, A = B,C = B, E = D}
{C > D, A = B,C = B,D > E}}

{A,D} {{D > C, A > B,D > E}
{D > C, A > B,D = E}
{D > C, A = B,D > E}
{D > C, A = B,D = E}}

{B,D} {{B > A, B > C,D > C,D > E}
{B > A, B > C,D > C,D = E}}

{A,C} {{C > D, A > B,C > B}
{C > D, A > B,C = B}
{C > D, A = B,C > B}
{C > D, A = B,C = B}}

{A, E} {{E > D, A > B}
{E > D, A = B}}

{B, E} {{B > A, B > C, E > D}}

{C, E} {{C > D,C > B, E > D}
{C > D,C > B, E = D}
{C > D,C > B,D > E}
{C > D,C = B, E > D}
{C > D,C = B, E = D}
{C > D,C = B,D > E}}

{A} {{A > B}
{A = B}}

{B} {{B > A, B > C}}

{C} {{C > D,C > B}
{C > D,C = B}}

{D} {{D > C,D > E}
{D > C,D = E}}

{E} {{E > D}}

∅ ∅
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Appendix B. Data sets generated for the Experimental Analysis

We present below all the data sets in the form of tables that were generated to conduct the experimental analysis
presented in Section 6.2. The abbreviations used in the titles of columns in the following tables are given as follows:

• AAF Size: Abstract Argumentation Framework Size.

• Ext Size: Extension Size.

• Attacks: Number of Attacks.

• Preference Sets: Number of Preference Sets.

• Preferences: Number of Preferences.

• CTime: Time for Computing all Preference Sets in milliseconds.

• VTime1: Time for Verifying all Preference Sets in milliseconds, using Attack Removal Method.

• VTime2: Time for Verifying all Preference Sets in milliseconds, using Attack Reversal Method.

Data sets for the Original Algorithm

Table B.4: Grounded Extension with Attack Probability 0.25

AAF
Size

Ext
Size

Attacks Preference
Sets

Preferences CTime
(ms)

VTime1
(ms)

VTime2
(ms)

4 2 3 8 2 0 3 4
5 3 3 12 2 1 4 5
6 3 6 51 4 3 7 8
7 2 10 159 5 4 11 14
8 2 12 242 4 6 17 18
9 4 16 1726 9 27 65 76
10 3 22 19354 9 1452 497 663
11 2 27 2500 5 130 111 118
12 3 30 160976 8 102678 5589 7450
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Table B.5: Grounded Extension with Attack Probability 0.50

AAF
Size

Ext
Size

Attacks Preference
Sets

Preferences CTime
(ms)

VTime1
(ms)

VTime2
(ms)

4 2 5 18 3 1 4 7
5 2 8 21 3 1 4 8
6 2 13 408 6 7 27 19
7 2 19 1869 7 40 61 69
8 2 25 2279 7 40 80 71
9 2 29 50088 7 9163 1361 1789
10 2 41 113597 9 24540 3574 4461
11 2 52 352546 8 1689643 10334 13022
12 1 60 2190 7 59 120 124

Table B.6: Grounded Extension with Attack Probability 0.75

AAF
Size

Ext
Size

Attacks Preference
Sets

Preferences CTime
(ms)

VTime1
(ms)

VTime2
(ms)

4 2 7 19 3 1 5 7
5 1 13 52 4 2 7 9
6 2 19 509 6 9 32 24
7 2 28 10506 8 481 273 315
8 2 36 11539 9 336 358 452
9 2 49 89555 10 9906 3245 3760
10 2 61 308365 12 187235 9002 11324
11 1 75 559968 11 709698 19996 24010
12 1 87 88733 9 537216 4400 5438
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Table B.7: Preferred Extension with Attack Probability 0.25

AAF
Size

Ext
Size

Attacks Preference
Sets

Preferences CTime
(ms)

VTime1
(ms)

VTime2
(ms)

4 2 4 2 2 0 1 3
5 2 7 4 4 1 5 5
6 3 8 8 5 1 10 8
7 3 12 25 7 3 9 11
8 3 15 437 8 12 53 72
9 3 20 380 10 7 53 96
10 4 21 837 12 13 89 143
11 4 27 1008 14 28 122 183
12 4 32 9613 15 1246 843 1311
13 4 41 10736 18 501 971 1608
14 4 49 5389 21 774 581 885
15 4 52 20442 24 3554 2059 3677
16 5 60 20480 26 24654 1908 3548

Table B.8: Preferred Extension with Attack Probability 0.50

AAF
Size

Ext
Size

Attacks Preference
Sets

Preferences CTime
(ms)

VTime1
(ms)

VTime2
(ms)

4 2 7 3 3 0 2 6
5 2 10 6 5 1 6 9
6 2 15 7 7 1 8 12
7 2 22 10 9 1 11 10
8 2 28 17 11 1 7 13
9 2 38 60 12 3 15 21
10 3 45 102 16 5 23 25
11 2 56 682 17 32 85 117
12 2 66 204 17 8 50 42
13 2 81 210 20 9 43 50
14 3 90 3189 25 399 344 584
15 3 105 1997 27 129 223 353
16 2 122 6886 26 5190 692 1276

53



Table B.9: Preferred Extension with Attack Probability 0.75

AAF
Size

Ext
Size

Attacks Preference
Sets

Preferences CTime
(ms)

VTime1
(ms)

VTime2
(ms)

4 1 9 2 3 1 3 5
5 1 15 3 5 0 4 5
6 1 23 3 6 0 3 7
7 1 32 7 7 1 5 9
8 1 42 9 9 1 9 7
9 2 54 9 11 1 10 7
10 2 67 14 12 2 17 7
11 2 81 41 16 3 14 21
12 2 99 9 16 1 7 15
13 2 115 40 21 2 19 17
14 2 134 161 21 6 55 44
15 2 157 106 26 5 35 41
16 2 184 48 28 3 20 33

Table B.10: Stable Extension with Attack Probability 0.25

AAF
Size

Ext
Size

Attacks Preference
Sets

Preferences CTime
(ms)

VTime1
(ms)

VTime2
(ms)

4 2 4 2 2 0 3 1
5 3 6 4 4 1 4 4
6 3 10 17 6 1 12 10
7 3 11 40 7 2 15 14
8 4 14 346 9 7 42 62
9 4 19 144 11 5 30 29
10 4 22 6426 13 330 483 720
11 4 29 715 14 18 104 122
12 4 37 7910 17 382 686 1161
13 4 39 17856 19 2952 1545 2463
14 5 48 14598 23 1992 1425 2334
15 5 52 73677 23 47656 5104 10876
16 5 64 27853 26 32881 20035 5970
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Table B.11: Stable Extension with Attack Probability 0.50

AAF
Size

Ext
Size

Attacks Preference
Sets

Preferences CTime
(ms)

VTime1
(ms)

VTime2
(ms)

4 2 7 3 3 0 3 7
5 2 10 3 5 0 3 5
6 2 15 5 6 1 6 11
7 2 21 13 7 2 10 10
8 2 30 17 10 1 9 12
9 2 37 75 13 4 22 18
10 2 46 2251 14 75 181 233
11 2 54 99 16 5 28 24
12 3 62 797 19 39 93 144
13 3 77 1825 22 291 176 337
14 3 92 819 24 37 102 142
15 3 104 5574 26 1382 584 905
16 3 117 2726 29 189 328 645

Table B.12: Stable Extension with Attack Probability 0.75

AAF
Size

Ext
Size

Attacks Preference
Sets

Preferences CTime
(ms)

VTime1
(ms)

VTime2
(ms)

4 1 10 1 3 0 2 2
5 1 16 3 5 0 4 4
6 2 22 5 7 1 6 4
7 1 32 4 7 1 5 4
8 2 41 15 10 1 11 10
9 1 57 4 10 1 8 6
10 2 68 6 12 1 4 9
11 1 85 12 13 2 6 12
12 2 99 14 17 2 11 18
13 2 117 39 19 3 23 12
14 2 134 43 21 3 22 20
15 2 156 324 25 15 86 93
16 2 177 346 26 15 96 112
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Data sets for the Approximate Algorithm

Table B.13: Grounded Extension with Attack Probability 0.25

AAF
Size

Ext
Size

Attacks Preference
Sets

Preferences CTime
(ms)

VTime1
(ms)

VTime2
(ms)

4 2 3 1 2 0 0 0
5 3 3 1 2 0 1 0
6 3 6 1 4 0 0 0
7 2 10 1 5 0 0 1
8 2 12 1 4 0 0 1
9 4 16 1 9 0 0 0
10 3 22 1 9 0 0 0
11 2 27 1 5 0 1 1
12 3 30 1 8 0 0 1

Table B.14: Grounded Extension with Attack Probability 0.50

AAF
Size

Ext
Size

Attacks Preference
Sets

Preferences CTime
(ms)

VTime1
(ms)

VTime2
(ms)

4 2 5 1 3 0 1 0
5 2 8 1 3 0 0 1
6 2 13 1 6 0 0 0
7 2 19 1 7 0 0 0
8 2 25 1 7 0 1 0
9 2 29 1 7 0 0 0
10 2 41 1 9 0 1 1
11 2 52 1 8 0 1 1
12 1 60 1 7 0 1 0
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Table B.15: Grounded Extension with Attack Probability 0.75

AAF
Size

Ext
Size

Attacks Preference
Sets

Preferences CTime
(ms)

VTime1
(ms)

VTime2
(ms)

4 2 7 1 3 0 0 0
5 1 13 1 4 0 0 0
6 2 19 1 6 0 0 0
7 2 28 1 8 0 0 0
8 2 36 1 9 0 0 1
9 2 49 1 10 0 1 0
10 2 61 1 12 1 0 1
11 1 75 1 11 0 1 1
12 1 87 1 9 0 1 0

Table B.16: Preferred Extension with Attack Probability 0.25

AAF
Size

Ext
Size

Attacks Preference
Sets

Preferences CTime
(ms)

VTime1
(ms)

VTime2
(ms)

4 2 4 1 2 0 2 2
5 2 7 1 4 1 1 3
6 3 8 1 5 0 1 2
7 3 12 1 7 1 5 2
8 3 15 1 8 0 1 1
9 3 20 1 10 0 2 2
10 4 21 1 12 0 2 1
11 4 27 1 14 0 1 0
12 4 32 1 15 1 2 1
13 4 41 1 18 1 2 1
14 4 49 1 21 0 2 1
15 4 52 1 24 0 2 1
16 5 60 1 26 1 2 2
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Table B.17: Preferred Extension with Attack Probability 0.50

AAF
Size

Ext
Size

Attacks Preference
Sets

Preferences CTime
(ms)

VTime1
(ms)

VTime2
(ms)

4 2 7 1 3 0 2 2
5 2 10 1 5 0 2 1
6 2 15 1 7 0 1 1
7 2 22 1 9 0 1 1
8 2 28 1 11 0 3 1
9 2 38 1 12 1 3 1
10 3 45 1 16 1 2 3
11 2 56 1 17 1 3 1
12 2 66 1 17 0 2 1
13 2 81 1 20 1 5 1
14 3 90 1 25 1 2 2
15 3 105 1 27 1 2 1
16 2 122 1 26 0 3 1

Table B.18: Preferred Extension with Attack Probability 0.75

AAF
Size

Ext
Size

Attacks Preference
Sets

Preferences CTime
(ms)

VTime1
(ms)

VTime2
(ms)

4 1 9 1 3 0 1 2
5 1 15 1 5 0 2 1
6 1 23 1 6 0 3 2
7 1 32 1 7 0 1 1
8 1 42 1 9 0 1 2
9 2 54 1 11 0 2 1
10 2 67 1 12 0 1 1
11 2 81 1 16 0 2 2
12 2 99 1 16 1 2 1
13 2 115 1 21 1 1 2
14 2 134 1 21 0 1 1
15 2 157 1 26 1 2 2
16 2 184 1 28 1 2 3
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Table B.19: Stable Extension with Attack Probability 0.25

AAF
Size

Ext
Size

Attacks Preference
Sets

Preferences CTime
(ms)

VTime1
(ms)

VTime2
(ms)

4 2 4 1 2 0 2 2
5 3 6 1 4 0 2 1
6 3 10 1 6 1 1 1
7 3 11 1 7 0 1 1
8 4 14 1 9 0 1 0
9 4 19 1 11 0 0 0
10 4 22 1 13 1 1 1
11 4 29 1 14 1 1 0
12 4 37 1 17 0 2 3
13 4 39 1 19 0 2 2
14 5 48 1 23 0 1 1
15 5 52 1 23 1 2 1
16 5 64 1 26 1 2 1

Table B.20: Stable Extension with Attack Probability 0.50

AAF
Size

Ext
Size

Attacks Preference
Sets

Preferences CTime
(ms)

VTime1
(ms)

VTime2
(ms)

4 2 7 1 3 0 1 3
5 2 10 1 5 0 2 2
6 2 15 1 6 1 2 1
7 2 21 1 7 0 2 1
8 2 30 1 10 0 4 1
9 2 37 1 13 1 1 1
10 2 46 1 14 0 2 1
11 2 54 1 16 1 3 1
12 3 62 1 19 1 2 2
13 3 77 1 22 1 2 1
14 3 92 1 24 1 3 1
15 3 104 1 26 0 3 1
16 3 117 1 29 1 2 2
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Table B.21: Stable Extension with Attack Probability 0.75

AAF
Size

Ext
Size

Attacks Preference
Sets

Preferences CTime
(ms)

VTime1
(ms)

VTime2
(ms)

4 1 10 1 3 0 3 1
5 1 16 1 5 0 2 1
6 2 22 1 7 0 3 3
7 1 32 1 7 0 1 2
8 2 41 1 10 1 1 1
9 1 57 1 10 0 4 2
10 2 68 1 12 1 3 2
11 1 85 1 13 1 3 3
12 2 99 1 17 0 1 2
13 2 117 1 19 0 2 1
14 2 134 1 21 0 1 1
15 2 156 1 25 0 2 2
16 2 177 1 26 0 3 4
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Data sets for the Approximate Algorithm for larger AAF Sizes

Table B.22: Grounded Extension with Attack Probability 0.25 for larger AAF Sizes

AAF
Size

Ext
Size

Attacks Preference
Sets

Preferences CTime
(ms)

VTime1
(ms)

VTime2
(ms)

5 2 4 1 3 0 1 1
10 4 19 1 9 0 1 1
15 2 49 1 6 0 2 2
20 2 89 1 12 0 1 1
25 1 149 1 8 0 1 1
30 1 207 1 10 0 1 0
35 1 293 1 9 0 1 0
40 1 380 1 10 0 1 0
45 1 492 1 11 0 1 0
50 1 602 1 12 0 1 0
55 1 747 1 15 0 1 3
60 1 867 1 16 0 1 1

Table B.23: Preferred Extension with Attack Probability 0.25 for larger AAF Sizes

AAF
Size

Ext
Size

Attacks Preference
Sets

Preferences CTime
(ms)

VTime1
(ms)

VTime2
(ms)

5 2 5 1 4 0 2 3
10 4 23 1 12 0 3 1
15 4 55 1 22 0 3 2
20 4 92 1 31 1 4 4
25 6 153 1 51 1 6 5
30 6 225 1 67 1 6 4
35 6 298 1 86 2 7 5
40 7 394 1 101 2 5 5
45 7 500 1 120 2 7 5
50 8 606 1 146 2 6 6
55 7 733 1 156 4 7 7
60 8 879 1 198 3 8 6
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Table B.24: Preferred Extension with Attack Probability 0.50 for larger AAF Sizes

AAF
Size

Ext
Size

Attacks Preference
Sets

Preferences CTime
(ms)

VTime1
(ms)

VTime2
(ms)

5 2 11 1 5 0 2 1
10 3 45 1 16 1 5 3
15 3 104 1 27 1 5 2
20 3 190 1 37 1 5 3
25 3 302 1 52 2 5 4
30 4 438 1 73 2 7 5
35 4 592 1 91 2 7 6
40 4 785 1 110 2 9 7
45 4 984 1 123 2 8 6
50 4 1229 1 141 2 8 7
55 4 1488 1 154 2 8 6
60 4 1774 1 179 2 8 7

Table B.25: Preferred Extension with Attack Probability 0.75 for larger AAF Sizes

AAF
Size

Ext
Size

Attacks Preference
Sets

Preferences CTime
(ms)

VTime1
(ms)

VTime2
(ms)

5 2 15 1 5 0 2 3
10 2 70 1 15 0 2 3
15 2 157 1 24 0 5 7
20 2 288 1 34 0 4 5
25 2 453 1 46 1 6 6
30 2 651 1 53 2 7 6
35 2 893 1 63 2 9 4
40 2 1165 1 82 2 12 5
45 3 1478 1 100 2 12 6
50 2 1847 1 99 2 9 7
55 2 2227 1 114 2 10 8
60 3 2640 1 135 2 10 7
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Table B.26: Stable Extension with Attack Probability 0.25 for larger AAF Sizes

AAF
Size

Ext
Size

Attacks Preference
Sets

Preferences CTime
(ms)

VTime1
(ms)

VTime2
(ms)

5 2 6 1 4 0 2 2
10 4 24 1 13 0 2 1
15 5 50 1 24 0 1 3
20 5 93 1 39 1 4 3
25 6 148 1 52 1 5 4
30 6 215 1 69 2 6 5
35 6 300 1 87 2 5 5
40 6 388 1 93 2 8 4
45 7 497 1 125 2 5 6
50 7 627 1 140 2 6 6
55 8 740 1 165 3 8 7
60 8 873 1 179 2 6 6

Table B.27: Stable Extension with Attack Probability 0.50 for larger AAF Sizes

AAF
Size

Ext
Size

Attacks Preference
Sets

Preferences CTime
(ms)

VTime1
(ms)

VTime2
(ms)

5 2 10 1 5 0 1 4
10 2 46 1 15 1 3 1
15 3 105 1 26 1 3 2
20 3 193 1 42 1 6 4
25 3 302 1 51 2 7 4
30 4 442 1 72 2 8 4
35 4 595 1 88 2 8 6
40 4 777 1 103 2 8 6
45 4 996 1 126 2 6 6
50 4 1231 1 140 2 10 6
55 4 1498 1 160 2 8 7
60 4 1762 1 182 2 8 7
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Table B.28: Stable Extension with Attack Probability 0.75 for larger AAF Sizes

AAF
Size

Ext
Size

Attacks Preference
Sets

Preferences CTime
(ms)

VTime1
(ms)

VTime2
(ms)

5 1 16 1 4 0 2 2
10 1 71 1 11 0 2 3
15 2 156 1 25 0 3 5
20 2 289 1 33 1 5 4
25 2 445 1 41 1 5 3
30 2 651 1 53 1 7 6
35 2 890 1 66 2 10 5
40 2 1166 1 79 2 10 7
45 2 1480 1 93 2 10 6
50 2 1832 1 100 2 9 6
55 2 2228 1 119 2 10 7
60 2 2656 1 130 2 8 8
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