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A B S T R A C T

Objective: We aimed to create an imaging biomarker for knee shape using knee dual-energy x-ray absorptiometry
(DXA) scans and investigate its potential association with subsequent total knee replacement (TKR), indepen-
dently of radiographic features of knee osteoarthritis and established risk factors.
Methods: Using a 129-point statistical shape model, knee shape (expressed as a B-score) and minimum joint space
width (mJSW) of the medial joint compartment (binarized as above or below the first quartile) were derived.
Osteophytes were manually graded in a subset of images and an overall score was assigned. Cox proportional
hazards models were used to examine the associations of B-score, mJSW and osteophyte score with TKR risk,
adjusting for age, sex, height and weight.
Results: The analysis included 37,843 individuals (mean age 63.7 years). In adjusted models, B-score was asso-
ciated with TKR: each unit increase in B-score, reflecting one standard deviation from the mean healthy shape,
corresponded to a hazard ratio (HR) of 2.25 (2.08, 2.43), while a lower mJSW had a HR of 2.28 (1.88, 2.77).
Among the 6719 images scored for osteophytes, mJSW was replaced by osteophyte score in the most strongly
predictive model for TKR. In ROC analyses, a model combining B-score, osteophyte score, and demographics
outperformed a model including demographics alone (AUC ¼ 0.87 vs 0.73).
Conclusions: Using statistical shape modelling, we derived a DXA-based imaging biomarker for knee shape that
was associated with kOA progression. When combined with osteophytes and demographic data, this biomarker
may help identify individuals at high risk of TKR, facilitating targeted interventions.
1. Introduction

Knee osteoarthritis (kOA) exhibits distinct radiological features,
including osteophyte formation and joint space narrowing (JSN), with
JSN largely affecting the medial joint compartment in primary kOA. The
Kellgren-Lawrence grading system, which encompasses both these
rovide a useful imaging biomarke
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elements, serves as a useful tool for classifying kOA severity in epidemi-
ological studies [1]. However, it has limitations in predicting clinical
outcomes, showing weak associations with both pain and function [2,3].
This highlights the need to consider whether other parameters could
provide additional predictive information beyond established radio-
graphic traits, with knee shape emerging as a potential influential factor.
r for predicting Knee replacement.
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Notably, kOA is already recognised to be associatedwith varus and valgus
malalignment, which can both result from and contribute to the disease
by altering joint mechanics and increasing biomechanical stress [4–6].

Statistical shape modelling, facilitated by machine learning tech-
niques, shows promise in identifying joint shape features associated with
adverse clinical outcomes. However, its application in knee-related
studies remains relatively unexplored, with current research primarily
focused on three-dimensional (3D) imaging modalities [7–9]. For
instance, Bowes et al. introduced the B-score [9], derived from a statis-
tical shape model (SSM) applied to knee MRI images. The B-score, which
specifically captured the shape of the femur bone, was associated with
risk of current and future pain, functional limitation and total knee
replacement (TKR), and its predictive accuracy was comparable to that of
the Kellgren-Lawrence grade.

DXA imaging is gaining interest for joint shape evaluation due to its
advantages of low radiation exposure and cost, and widespread avail-
ability. Moreover, modern high-resolution DXA scanners produce images
of comparable quality to radiographs, making it a viable option for
screening individuals at high risk of osteoarthritis progression. Notably,
in the hip, shape variations seen on DXA, including reduced acetabular
coverage and cam morphology, have already been linked to advanced
disease [10,11], while statistical shape modes have identified changes in
hip shape that are linked to disease progression [12].

In this study, our primary objectives were twofold: firstly, to evaluate
the feasibility of measuring knee shape using DXA scans, and secondly, to
investigate whether DXA-derived knee shape is associated with kOA
progression, independently of other radiographic features of kOA. To
achieve this, we developed and applied a statistical shapemodel (SSM) to
approximately 40,000 knee DXA scans from the UK Biobank (UKB). We
then examined the relationships between the top ten knee shape modes
(KSMs) and risk of subsequent TKR. Following this, we derived a B-score
by integrating TKR-associated changes across all KSMs. Finally, we
investigated whether the relationship between knee shape and TKR risk,
as reflected by B-score, was independent of radiographic features of kOA,
by examining multivariable models which also included minimum joint
space width (mJSW) and osteophyte classification (available in a subset
of approximately 7000 scans).

2. Materials and methods

2.1. Participants

We used data from the UKB extended imaging study [13], a
large-scale research study launched in 2014 with the aim of collecting
medical imaging data, including DXA scans, from approximately 100,000
participants in the UKB [14]. The UKB recruited individuals aged be-
tween 40 and 69, with the baseline data collection phase spanning from
2006 to 2010. Participants underwent a thorough assessment at both
baseline and imaging visits, which involved the completion of
touch-screen questionnaires, nurse-lead interviews, and physical mea-
surements. Further information was obtained via data linkage to elec-
tronic health records, including hospital episode statistics (HES) [15].

All subjects provided written informed consent before participation.
UKB has full ethical approval from the National Information Governance
Board for Health and Social Care and the North-West Multi-Centre
Research Ethics Committee (11/NW/0382). Permission to access and
analyse UKB data for this study was approved under UKB application
number 17295.

2.2. Acquisition of knee DXA images

DXA scans were acquired using a Lunar iDXA scanner (GE Health-
care), with participants in a non-weight bearing supine position [16].
High-resolution DICOM format images were downloaded from the UKB
showcase (downloaded in April 2021). Individuals with prior TKR were
excluded from the analysis.
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2.3. Ascertainment of outcomes

Our primary outcome of interest was TKR, with hospital-diagnosed
knee osteoarthritis (HES-kOA), as a secondary outcome. Both were
identified through linkage to the HES database, which uses codes from
the International Classification of Diseases 9th (ICD-9) and 10th (ICD-10)
revisions, as well as the Office of Population Censuses and Surveys
(OPCS) Classification of Surgical Operations and Procedures, version 4
codes [17]. In this study, we identified cases of HES-kOA and TKR using
the codes adopted from Zengini et al. [18] (Supplementary Table 1). All
UKB participants were prospectively and retrospectively linked. Records
were available from April 1st, 1997, and the data were downloaded in
July 2023, capturing information up until the end of October 2022. For
TKR, we were able to retrieve the date of surgery. However, for HES-kOA,
we only have the date of its initial documentation in the medical records;
hence, we are unable to ascertain the duration of the participant's con-
dition, and the dataset is cross-sectional in nature.

2.4. Assessment of covariates

Participants’ height and weight weremeasured prior to imaging using
standardised procedures [19]. Age and sex were collected at the time of
enrolment into UKB and were self-reported.

2.5. Statistical shape modelling

SSM is a computational technique used in image analysis to quantify
and analyse variations in the shape of objects. The methodologies
employed in this study have been described previously [20,21]. Briefly,
the technique involves placing points around each image within a set of
training images. The points represent the shapes of the bones on each
image. The shapes are aligned to a reference frame and Principal
Component Analysis (PCA) is applied to identify and quantify indepen-
dent modes of shape variation (here termed knee shape modes [KSMs]).
Any shape can be represented concisely using a vector of the weights on
each KSM. Once the SSM is constructed, it can be used to generate new
shapes that fallwithin the observed statistical range in theoriginal dataset.

In this study, SSM was performed using the BoneFinder® software
developed at The University of Manchester [22]. A 129-point template
outlined the distal femur, proximal tibia, proximal fibula, and superior
patella, while excluding any osteophytes (Supplementary Fig. 1). An
automated search model was trained on ~7000 images. Within the
training set, 20% of the images were randomly chosen from individuals
with self-reported non-specific osteoarthritis to enhance the model's
learning of OA patterns. The remaining 80% were randomly selected,
ensuring an equal sex distribution, as described previously [10].
Cross-validation experiments showed the points could be found on a new
image with a mean point-to-point error of <3 mm for 95% of the images
(Supplementary Fig. 2). The BoneFinder® model, employing a
random-forest-based algorithm, automated point placement on the
remaining DXA images (n¼ 31,207 after exclusions). Trained annotators
(RB and FS) manually refined point placements for 4214 images,
enhancing SSM precision (Supplementary Table 2). The final SSM model
was built on 37,927 DXA images. The 27 KSMs derived from the SSM
were standardized using their respective sample standard deviations.

2.6. Generation of a quantitative measure of knee shape: B-score

To integrate the information from all KSMs, we employed the meth-
odology introduced by Bowes et al. [9] to generate an overall knee shape
variable termed the B-score. Using all 27 KSMs from the SSM, we derived
mean shapes for a “diseased group” (including knees with either TKR or
HES-kOA, depending on the specific outcome) and a “healthy group”
(comprising knees that did not advance to TKR or did not have
HES-kOA). For each outcome, we constructed a vector connecting the
mean shapes of the diseased and healthy groups. The KSMs for each
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image were then orthogonally projected onto this vector. The SD of the
projections from healthy cases was calculated and used to normalize all
projections, resulting in the generation of the B-scores. Each increment in
the B-score represents one SD from the mean knee joint shape of the
healthy population (assigned a B-score of 0). As a sensitivity analysis, we
calculated sex-specific B-scores. Separate sets of knee shape data were
considered for each sex, and the calculations followed the same steps as
described above for the overall B-score. Specifically, for each sex, we
calculated the direction vectors based on the difference between the
mean cases and the control shapes specific to that sex and divided the
projections of knee shapes by the sex-specific standard deviations ob-
tained from the healthy group.

2.7. DXA-based measures of joint space and osteophytes

A custom script automatically measured mJSW of the medial and
lateral compartments using specific template points on the distal femur
and proximal tibia (distal femur: medial points 24–30, lateral points
15–20; proximal tibia: medial points 68–73, lateral points 57–62; see
Supplementary Fig. 1). We divided the mJSW in each compartment into
quartiles and generated a binary variable that denoted whether the
mJSW fell within the first quartile (corresponding to the smallest mJSW
value) on the medial side.

Osteophytes were assessed in the sub-sample of 6719 DXA images
used in the search training set. Each image was visually assessed for
osteophytes on a 0–3 scale, referencing a DXA-based atlas created by RB
and FS (supplementary doc) with input from DW (see acknowledge-
ments). Intra-observer repeatability was assessed on a random sample of
200 images, demonstrating good agreement (κ ¼ 0.80). Cumulative
values (ranging from 0 to 12) were computed by aggregating grades from
all four sites on the medial and lateral aspects of the femur and tibia. An
osteophyte score was then assigned based on the total sum: 0 (sum¼ 0), 1
(sum ¼ 1), 2 (sum ¼ 2–3), 3 (sum ¼ 4 or greater), as outlined in Sup-
plementary Table 3.

2.8. Statistical analysis

To assess the comparative strength of the relationships between
KSMs, B-scores, mJSW, and osteophytes with the incidence of TKR and
HES-kOA, we employed Cox proportional hazards modelling and logistic
regression, respectively. The proportional hazards assumption was veri-
fied using the Schoenfeld residuals approach. Results are reported as
hazard ratios (HRs) and odds ratios (ORs) with their corresponding 95%
confidence intervals (CIs). Both unadjusted and adjusted analyses were
conducted, with adjustments made for age, sex, height, and weight.
Height and weight were chosen rather than BMI, which is a linear
combination of the two, because individuals with the same BMImay have
different body compositions, which may in turn contribute differently to
biomechanical forces. Age, height, and weight were treated as contin-
uous variables, while sex was considered as a binary variable. Where
death occurred before TKR, the event was censored at the time of death.

We next constructed multivariable models to investigate whether
relationships between knee shape, as reflected by B-score, and our out-
comes were independent of mJSW and osteophytes. We began by fitting
unadjusted models for B-score, mJSW, and osteophyte score in the subset
of participants with osteophyte data (n ¼ 6719). We then introduced
demographic factors (age, sex, height, and weight). Subsequently, we
assessed models with an additional variable, which could be either B-
score, mJSW, or osteophyte score, depending on the specific model.
Finally, we examined a comprehensive model that included all DXA-
derived variables and demographic factors. Goodness of fit was evalu-
ated using Akaike information criterion (AIC) and Bayesian information
criterion (BIC), while discriminative ability was assessed using either the
area under the receiver operating characteristic curve (AUC) or the
Harrell's Concordance index (C-index) index, for logistic and Cox
regression models, respectively.
3

To further evaluate the discriminative ability of the models, we
plotted receiver operating characteristic (ROC) curves for HES-kOA and
TKR at 5 years. Chi-squared tests were employed to examine the equality
of the area under the curves.

Analyses were conducted using Stata version 17 (StataCorp. 2021.
Stata Statistical Software: Release 17. College Station, TX: StataCorp LLC.)
and python 3.10.5.

3. Results

3.1. Participant characteristics

In total 37,843 participants had SSM and clinical data available
(Fig. 1). A total of 477 participants underwent TKR (1.26%; Table 1),
with an average time to surgery of 2.81 years (SD ¼ 1.91 years; males ¼
2.90 years [1.94], females ¼ 2.72 years [1.90]). There were 704 deaths
during the study period. The sub-sample with osteophyte data (n¼ 6719)
were comparable to the full dataset with respect to their baseline de-
mographics (Table 1), but the proportion of individuals with TKR was
higher (2.19%, n¼ 147). The average time to TKR in this sub-sample was
3.45 years [SD: 2.01; males: 3.81 [1.93], females: 3.14 [2.03]) and there
were 185 deaths.

3.2. Relationship between knee shape and kOA outcomes

We initially evaluated individual modes of variation (KSMs) in rela-
tion to kOA outcomes. To limit multiple comparisons, we focused on the
first 10 KSMs, explaining 79.5% of shape variance. Subsequent KSMs
each made minimal contributions to the sample variance (�2%) (Sup-
plementary Fig. 3). Adjusted analysis results are presented graphically in
Fig. 2, with unadjusted and adjusted associations detailed in Supple-
mentary Table 4. A description of each KSM is provided in Supplemen-
tary Table 5.

Following adjustment for age, sex, height and weight, KSMs 4,7, 8,
and 9 showed strong evidence of an association with TKR. Specifically,
for each standard deviation (SD) increase in KSMs 4& 9 there was a 13%
and a 17% reduced hazard for TKR, while analogous increases in KSM7
and KSM8 were associated with a 43% and 68% increased hazard,
respectively.

Five KSMs displayed strong statistical evidence of an association with
HES-kOA in adjusted models. Increases in modes 1, 9, and 10 were linked
to reduced odds of 9%, 10%, and 8%, whilst increases in modes 7 and 8
were associated with 28% and 33% increased odds, respectively.

Given that variations in knee shape could be spread over multiple
modes, we next assessed the relationship between B-score, a single var-
iable combining shape information across all KSMs, and kOA outcomes.
B-score distribution is shown in Supplementary Fig. 4.

We observed strong positive associations between B-scores and our
outcomes (Fig. 2; additional data in Supplementary Table 4). After
adjustment, each incremental increase in B-score (which represents a SD
from the mean healthy shape), corresponded to a 2.3-fold increased
hazard for TKR. Similar results were found in the sex-stratified analysis
(Supplementary Table 6). Additionally, each SD increase in B-score was
associated with increased odds of HES-kOA, with a 1.8-fold higher like-
lihood. Stratifying by sex did not alter these findings.

Fig. 3 depicts joint shape variations associated with B-scores �2SD
from the healthy group mean. An increase in B-score is linked with
increasing varus alignment accompanied by reduced medial joint space
width, widening of the femoral articular surface, and a more lateral po-
sition of the patella relative to the inferior femur.

3.3. Relationship between mJSW and kOA outcomes

Results are presented in Table 2 (Supplementary Table 7 for unad-
justed results). Individuals in the first quartile of medial mJSW, repre-
senting the narrowest mJSW, had a 2.5-fold increased hazard for TKR



Fig. 1. Flow Diagram of Participant Progression through the
Study. At the time of the analysis, approximately 39,000 left
knee DXA scans were available. DXA images underwent a
comprehensive assessment to determine their suitability for
inclusion in the SSM. Reasons for exclusion included: poor
image quality, artefacts, positioning issues, short femoral or
tibial shafts, and search failure. A total of 220 participants
withdrew from the study, and an additional 80 participants
were excluded due to having undergone TKR on the contra-
lateral knee before obtaining the DXA image of the left knee.
All participants in the analytic dataset had SSM data avail-
able, which was used to derive B-score and minimum joint
space width (mJSW). Within this dataset, a sub-sample of
6719 participants had additional osteophyte data available.
This sub-sample, comprising participants with B-scores,
mJSW and osteophyte data, were used to develop an imaging
biomarker for predicting TKR. Abbreviations: QC, quality
control; SSM, statistical shape model; TKR, total knee
replacement; UKB, UK Biobank.
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and 53% higher odds of HES-kOA, compared with those in the fourth
quartile. Conversely, when examining lateral mJSW, the first and sec-
ond quartiles showed a lower risk of TKR when compared with the
fourth.

Considering the binary mJSW variable, individuals in the first quar-
tile on the medial side had a 2.3-fold higher hazard for TKR, compared
with individuals in higher quartiles. They also experienced 49%
increased odds of HES-kOA.

3.4. Relationship between osteophytes and kOA outcomes

The prevalence of manually graded osteophytes (n ¼ 6719) are pro-
vided in Supplementary Table 8. The regression analysis (Table 3, with
unadjusted results in Supplementary Table 9) revealed a consistent
pattern of increasing HRs and ORs for kOA outcomes with higher
osteophyte grades. This was apparent across all anatomical sites.

An osteophyte score of 3 (derived from the sum of the osteophyte
grades) was associated with a 22-fold increased hazard for TKR and 10-
fold increased odds of HES-kOAK, compared to a score of 0.
Table 1
Descriptive characteristics of the total study population and the subset in which oste

Full dataset

Female Male

N ¼ 19710 N ¼ 18133

Mean (SD)

Age (years) 63.03 (7.41) 64.41 (7.64)
Height (cm) 163.64 (6.41) 177.23 (6.62)
Weight (kg) 68.11 (12.91) 83.08 (13.38)
mJSW medial compartment (mm) 3.63 (0.60) 4.28 (0.71)
mJSW lateral compartment (mm) 3.78 (0.83) 4.65 (0.84)
B-score knee replacement �0.08 (0.99) 0.11 (1.02)
B-score HES-kOA �0.12 (1.00) 0.20 (1.02)

N (%)

HES-kOA
no 18931 (96.05%) 17243 (95.09%)
yes 779 (3.95%) 890 (4.91%)

Knee replacement
no 19462 (98.74%) 17904 (98.74%)
yes 248 (1.26%) 229 (1.26%)

Osteophyte score
grade 0-1
grade 2-3

The table presents the demographic and clinical characteristics of the study populatio
side provides information for the full dataset, while the right-hand side focuses on th
breviations: HES-kOA, hospital-diagnosed knee osteoarthritis; mJSW, minimum joint
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3.5. Performance of multivariable models in predicting TKR

Table 4 presents a comparison of predictive performance among
different models for TKR, incorporating B-score, binary mJSW, osteo-
phyte score, and demographic variables within the sub-group of 6719
participants.

In the unadjusted models, all DXA-derived variables exhibited asso-
ciations with TKR, with the osteophyte score demonstrating the highest
predictive capability. The inclusion of demographic variables attenuated
these individual associations but improved overall predictive accuracy.

In the multivariable models, incorporating demographic variables and
mJSW led to a modest reduction in the association between B-score and
TKR, with the HR decreasing from 2.59 (95% CI: 2.24, 3.00) to 2.23 (95%
CI: 1.90, 2.62). However, upon inclusion of demographic variables and
osteophyte score, the association considerably weakened, experiencing a
reduction in strength of approximately 50% (HR ¼ 1.74 [95% CI: 1.49,
2.03]). This model also demonstrated the best overall fit, indicated by the
lowest Akaike Information Criterion (AIC) and Bayesian Information Cri-
terion (BIC), and the highest discrimination, as indicated by the C-index.
ophytes were assessed.

Osteophyte dataset

Total Female Male Total

N ¼ 37843 N ¼ 3403 N ¼ 3316 N ¼ 6719

Mean (SD)

63.69 (7.55) 62.08 (7.25) 63.48 (7.65) 62.77 (7.48)
170.15 (9.40) 163.36 (6.43) 176.90 (6.63) 170.04 (9.40)
75.29 (15.12) 68.79 (12.70) 83.65 (13.71) 76.12 (15.15)
3.94 (0.73) 3.55 (0.70) 4.24 (0.81) 3.89 (0.83)
4.20 (0.94) 3.97 (0.94) 4.82 (0.94) 4.39 (1.03)
0.01 (1.01) �0.03 (1.02) 0.08 (1.01) 0.02 (1.02)
0.03 (1.02) �0.04 (1.03) 0.13 (1.02) 0.04 (1.03)

N (%)

36174 (95.59%) 3206 (94.21%) 3119 (94.06%) 6325 (94.14%)
1669 (4.41%) 197 (5.79%) 197 (5.94%) 394 (5.86%)

37366 (98.74%) 3323 (97.65%) 3249 (97.98%) 6572 (97.81%)
477 (1.26%) 80 (2.35%) 67 (2.02%) 147 (2.19%)

2423 (71.20%) 2456 (74.07%) 4879 (72.61%)
980 (28.80%) 860 (25.93%) 1840 (27.39%)

n, comprising all participants with statistical shape modelling data. The left-hand
e sub-sample of participants who had additional osteophyte data available. Ab-
space width; SD, standard deviation; TKR, total knee replacement.



Fig. 2. Associations between the top 10 knee shape modes and B-score with knee osteoarthritis outcomes (n ¼ 37,843). The top panel displays the association of knee
shape with total knee replacement (TKR), whilst the bottom panel presents the association of knee shape with hospital diagnosed knee osteoarthritis (HES-kOA).
Hazard ratios (HRs) and odds ratios (ORs) indicate the change in risk of TKR and HES-kOA per standard deviation increase in knee shape mode (KSM) and per
standard deviation increase in B-score. Models are adjusted for age, sex, height and weight. 95% confidence intervals (CI) are provided. Associations that met the
Bonferroni-significant threshold of p < 0.005 are marked with an asterisk.
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Subsequently, we examined the predictive ability of this model in
classifying TKR at five years. Demographic factors alone achieved an
AUC of 0.73 (Fig. 4), while the optimal model (including osteophyte
score, B-score, and demographics) had an AUC of 0.87 (p < 0.05).
3.6. Performance of multivariable models in predicting HES-kOA

The relationships between DXA-derived variables and HES-kOA re-
flected those observed with TKR, albeit generally weaker in comparison
(Table 4).

As seen for TKR, the model that exhibited the optimal fit and
discrimination comprised the osteophyte score, B-score, and de-
mographic variables.
5

In the ROC analysis, demographic variables alone yielded an AUC of
0.65. However, when the B-score and osteophyte grade were incorpo-
rated into the model, the AUC improved to 0.76.

4. Discussion

The objective of this study was to assess the feasibility of quantifying
knee shape using DXA scans and to investigate the potential prognostic
value of a novel imaging biomarker incorporating joint shape for pre-
dicting TKR. In addition to capturing conventional features of radio-
graphic kOA, namely JSN (as reflected by mJSW) and osteophytes, an
automated model was developed to extract knee shape information using
SSM. This information was quantified as a B-score. We found strong



Fig. 3. Examples of differences in bone shape cor-
responding to an increase and decrease in B-scores. B-
scores were obtained by projecting all statistical knee
shape modes (KSMs) onto a vector connecting
healthy and diseased knee joint shapes. The diseased
population included individuals who underwent TKR
(left) or had hospital-diagnosed knee osteoarthritis
(HES-kOA) (right). The figure illustrates shape
changes associated with �2 standard deviations (SD)
from the mean B-score. The solid blue line depicts the
shape at -2SD, while the dashed red line represents
the shape at þ2SD. (For interpretation of the refer-
ences to color in this figure legend, the reader is
referred to the Web version of this article).

Table 2
Associations of minimum joint space width (mJSW) with HES-kOA and TKR (n ¼ 37,843).

TKR HES-kOA

HR ll ul p-value OR ll ul p-value

Medial compartment
1st quartile 2.54 1.92 3.37 7.29 x 10�11 1.53 1.32 1.78 2.70 x 10�08

2nd quartile 1.32 0.97 1.79 0.074 1.10 0.94 1.28 0.222
3rd quartile 0.96 0.70 1.32 0.823 0.96 0.83 1.12 0.599

Lateral compartment
1st quartile 0.77 0.58 1.01 0.058 0.83 0.71 0.97 1.70 x 10�02

2nd quartile 0.60 0.45 0.79 3.18 x 10�04 0.72 0.62 0.84 1.49 x 10�05

3rd quartile 0.81 0.63 1.03 0.084 0.82 0.72 0.94 0.004
Binary Q1 vs > Q1 2.28 1.88 2.77 <0.001 1.49 1.33 1.67 6.15 x 10�12

When examining the association between quartiles of minimum joint space width (mJSW) and the risk of total knee replacement (TKR) and hospital diagnosed knee
osteoarthritis (HES-kOA), we designated quartile 4 as the reference category (i.e., the greatest mJSW). Odds ratios (ORs) and hazards ratios (HRs) represent the dif-
ference in risk for someone in the first, second or third quartile versus the fourth quartile. For the binary mJSW variable, the HRs and ORs quantify the risk variation
associated with values above the first quartile in the medial compartment, in comparison with the first quartile (representing the “unhealthiest” mJSW). CI, 95%
confidence interval; Q1, first quartile of mJSW (medial compartment). Models were adjusted for age, sex, height and weight. p < 0.05 are shown in bold.

Table 3
Association of osteophyte grades with TKR and HES-kOA (n ¼ 6719).

TKR HES-kOA

HR ll ul p-value OR ll ul p-value

Medial femur
grade 1 2.58 1.69 3.93 1.11 x 10�05 1.56 1.21 2.00 0.001
grade 2 9.84 6.19 15.65 4.27 x 10�22 6.16 4.44 8.54 1.02 x 10�27

grade 3 20.95 12.88 34.06 1.40 x 10�34 9.21 5.93 14.30 4.87 x 10�23

Lateral femur
grade 1 2.25 1.25 4.04 0.007 2.10 1.42 3.10 2.10 x 10�04

grade 2 7.61 4.59 12.62 3.40 x 10�15 6.66 4.46 9.96 2.28 x 10�20

grade 3 14.22 8.71 23.21 2.57 x 10�26 6.75 4.01 11.38 7.41 x 10�13

Medial tibia
grade 1 3.60 2.47 5.24 2.39 x 10�11 3.08 2.46 3.85 7.60 x 10�23

grade 2 12.01 7.32 19.70 7.85 x 10�23 6.15 4.05 9.32 1.29 x 10�17

grade 3 22.88 11.31 46.28 3.08 x 10�18 14.95 6.91 32.33 6.25 x 10�12

Lateral tibia
grade 1 3.00 2.05 4.39 1.36 x 10�08 2.00 1.61 2.50 7.17 x 10�10

grade 2 9.41 5.38 16.45 3.64 x 10�15 5.66 3.68 8.71 3.16 x 10�15

grade 3 31.56 16.85 59.09 4.00 x 10�27 13.78 6.91 27.46 9.03 x 10�14

OP score
1 1.81 0.94 3.49 0.076 1.56 1.14 2.14 0.005
2 4.62 2.62 8.14 1.19 x 10�07 2.76 2.06 3.70 9.28 x 10�12

3 21.64 12.56 37.29 1.68 x10 �28 9.78 7.16 13.36 <0.001

For individual osteophyte grades, hazard ratios (HRs) and odds ratios (ORs) represent the change in risk compared with grade 0 osteophytes. The osteophyte scores were
determined based on the cumulative sum of the four individual osteophyte grades: 0 (sum¼ 0), 1 (sum¼ 1), 2 (sum¼ 2–3), and 3 (sum¼ 4 or greater). In analysing the
association between osteophyte scores and the probability of total knee replacement (TK)R and hospital diagnosed knee osteoarthritis (HES-kOA), the reference
category was established as 0. The HRs and ORs quantify the change in risk for individuals with scores of 1, 2, or 3 relative to those with a score of 0. Models were
adjusted for age, sex, height and weight. CI, 95% confidence intervals; HES-kOA, hospital diagnosed knee osteoarthritis; TKR, total knee replacement. Abbreviations: CI,
95% confidence intervals.
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Table 4
Predictive performance of B-scores, binary mJSW and osteophyte score with TKR and HES-kOA (n ¼ 6719).

TKR

Model HR ll ul p-value AIC BIC C-stat

B-score 2.59 2.24 3.00 2.81 x 10�37 2390.78 2397.59 0.75
B-score þ demo 2.33 2.00 2.71 8.03 x 10�28 2329.45 2363.51 0.81
B-score þ demo þ mJSW 2.23 1.90 2.62 1.28 x 10�22 2329.16 2370.04 0.81
B-score þ demo þ OP 1.74 1.49 2.03 2.51 x 10�12 2224.79 2265.66 0.86
B-score þ demo þ mJSW þ OP 1.67 1.42 1.97 8.38 x 10�10 2225.13 2272.82 0.86
mJSW 2.68 1.94 3.70 2.50 x 10�09 2508.48 2515.29 0.61
mJSW þ demos 2.24 1.59 3.17 4.31 x 10�06 2422.51 2456.57 0.76
mJSW þ demos þ B-score 1.32 0.92 1.89 0.130 2329.16 2370.04 0.81
mJSW þ demos þ OP 1.86 1.33 2.61 <0.001 2261.53 2302.40 0.85
mJSW þ demo þ B-score þ OP 1.27 0.88 1.82 0.197 2225.13 2272.82 0.86
OP 3.50 2.93 4.18 <0.001 2314.17 2320.99 0.80
OP þ demo 3.04 2.53 3.64 4.76 x 10�33 2272.29 2306.36 0.85
OP þ demo þ B-score 2.46 2.04 2.96 1.18 x 10�21 2224.79 2265.66 0.86
OP þ demo þ mJSW 2.94 2.45 3.52 1.11 x 10�31 2261.53 2302.40 0.85
OP þ demo þ B-score þ mJSW 2.45 2.04 2.95 1.48 x 10�21 2225.13 2272.82 0.86

HES-kOA

Model OR ll ul p-value AIC BIC AUC

B-score 1.98 1.79 2.19 <0.001 2820.73 2834.36 0.68
B-score þ demo 1.85 1.67 2.05 3.63 x 10�31 2768.53 2809.41 0.71
B-score þ demo þ mJSW 1.82 1.64 2.03 2.05 x 10�28 2769.10 2816.79 0.71
B-score þ demo þ OP 1.57 1.41 1.74 5.53 x 10�17 2641.17 2688.86 0.76
B-score þ demo þ mJSW þ OP 1.55 1.39 1.72 2.62 x 10�15 2642.15 2696.65 0.76
mJSW 1.65 1.33 2.05 4.79 x 10�06 2983.58 2997.21 0.55
mJSW þ demo 1.54 1.22 1.94 2.47 x 10�04 2892.23 2933.11 0.65
mJSW þ demo þ B-score 1.16 0.91 1.47 0.229 2769.10 2816.79 0.71
mJSW þ demo þ OP 1.43 1.13 1.81 0.003 2704.43 2752.12 0.73
mJSW þ demo þ B-score þ OP 1.13 0.89 1.45 0.310 2642.15 2696.65 0.76
OP 2.25 2.04 2.50 <0.001 2748.39 2762.01 0.71
OP þ demo 2.08 1.87 2.30 <0.001 2711.18 2752.06 0.73
OP þ demo þ B-score 1.84 1.65 2.05 5.91 x 10�29 2641.17 2688.86 0.76
OP þ demo þ mJSW 2.06 1.85 2.28 <0.001 2704.43 2752.12 0.73
OP þ demo þ B-score þ mJSW 1.84 1.65 2.05 7.04 x 10�29 2642.15 2696.65 0.76

The table includes results of univariable and multivariable models (left), and measures of model fit and discrimination (right). Demographic characteristics include age,
sex, height and weight. For B-score, HRs and ORs indicate the change in risk per standard deviation increase in B-score. For mJSW, HRs and ORs reflect the risk
difference between the first quartile (on the medial compartment) compared with quartiles two, three, and four. Osteophyte score was entered into the model as a linear
term and therefore HRs and ORs represent the difference in risk per unit increase in score. When evaluating the predictive accuracy of the time-to-event (cox) models we
used Harrell's C-index. For logistic regression models, where the outcome was binary, we used the AUC. The most parsimonious model, containing the predictors B-
score, osteophyte grade and demographic variables, is shown in bold.
Abbreviations: AIC, Akaike information criterion; AUC, area under the receiver operating characteristic curve; BIC, Bayesian information criterion; CI, 95% confidence
intervals; C-index, Harrell's concordance index; Demo, demographic variables; OP, osteophyte score; HR, hazard ratio; mJSW, minimum joint space width; OR, odds
ratio; TKR, total knee replacement.
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correlations between all of the DXA-derived features investigated and
subsequent risk of TKR. Similar, although comparatively weaker associ-
ations were observed with HES-kOA. Furthermore, combining B-score
with osteophyte score and demographic factors resulted in improved
accuracy in predicting TKR at 5 years, compared with demographic risk
factors alone (AUC ¼ 0.87 compared with 0.73).

Several methodologies have been used to extract additional features
from knee images to aid in the diagnosis and prognosis of OA, including
the use of Deep Learning approaches, as demonstrated in previous studies
on knee radiographs [23–25]. Our study is among the first to examine
knee shape using DXA-based SSM. One previous investigation, involving
a limited cohort of 109 patients, effectively employed this technique to
track changes in knee morphology over 6–12 months [26]. However, in
that study, which only focused on the femur and tibia, the authors did not
annotate osteophytes separately, limiting the ability to determine if
shape contributed additional predictive information. Furthermore, they
did not observe overall shape changes such as varus alignment. The as-
sociation between osteophytes and subsequent TKR in the present anal-
ysis is consistent with results obtained in our previous hip DXA
investigation [11]. Additionally, a previous study examining hip radio-
graphs demonstrated improved prediction of hip OA through the inclu-
sion of an SSM-derived shape score in conjunction with demographic
factors, clinical assessments, and radiologist scores, reinforcing the
findings observed in our study [27].
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The trend toward varus alignment in individuals with HES-kOA and
subsequent TKR in our study is consistent with the recognised varus
malalignment characteristic in kOA [4,5]. This alignment may serve as a
predisposing factor, focusing weight-bearing forces through the medial
compartment, resulting in considerable biomechanical stress. Alterna-
tively, varus may develop due to medial JSN, a well-documented feature
of primary kOA. Additionally, we noted an enlargement of the femoral
articular surface alongside the varus alignment and reduced mJSW in our
analysis. These findings are in keeping with previous research using
MRI-based SSM approaches, which report widening and flattening of the
femoral condyle in knees affected by osteoarthritis [8,28–30].

By employing a B-score, we were able to investigate whether the
relationships we found between knee shape and TKR/HES-kOA were
independent of other kOA-related features, namely mJSW and osteo-
phytes. While all three variables showed associations with TKR and HES-
kOA in univariable analyses, mJSW was not retained in the most parsi-
monious model, suggesting mJSW is captured within the SSM-derived B-
score. In contrast, both B-score and osteophyte score remained as inde-
pendent predictors, with their combined effect improving model per-
formance, albeit osteophyte score contributed more significantly. Since
our SSM template excluded osteophytes, they are unlikely to have
directly contributed to the B-score, suggesting that joint alignment may
play a role in the relationship between osteophytes and the progression
of kOA. Demographic factors including age, sex, and weight, were also



Fig. 4. Receiver Operating Characteristic (ROC) Curve for Prediction of HES-kOA and TKR at 5 Years (n ¼ 6719). Model 1: age, sex, height, and weight; Model 2: age,
sex, height, weight, B-score; Model 3: age, sex, height, weight, binary osteophyte grade; Model 4: age, sex, height, weight, B-score, binary osteophyte grade.
Abbreviation: AUC, area under the receiver operating characteristic curve.
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strong predictors of TKR/HES-kOA, underscoring the importance of
considering imaging biomarkers in conjunction with these variables
rather than substituting them.

Our research adopts a novel approach by developing an imaging
biomarker for knee shape using DXA scans. This was made possible
through the application of SSM to DXA images obtained from a large
sample of individuals within the UKB, in whom follow-up data for THR
via HES linkage was available. Given the scale of the study, our SSM
could serve as a reference model, facilitating replication and validation.
Furthermore, the SSM and the BoneFinder search model will be made
publicly available on the BoneFinder website. Another notable strength
of our study is that, unlike prior studies using SSM to characterise knee
shape, which typically focused on the tibia and femur, our SSM uniquely
incorporated the superior patella and fibula. Analysing the four bones
together allows for a comprehensive assessment of the joints overall
8

shape, which is important given that the knee joint is a complex
biomechanical unit.

Our study has several limitations. Firstly, by excluding participants
with previous TKR, we could evaluate the predictive potential of DXA-
derived imaging biomarkers for future TKR. However, it is possible
that some participants had pre-existing HES-kOA at the time of their DXA
scan. It was reassuring to observe broadly consistent relationships be-
tween imaging biomarkers and both HES-kOA and TKR. Nonetheless,
since our analysis only allowed for cross-sectional examination of HES-
kOA relationships, further research is needed to ascertain whether
DXA-derived biomarkers can also predict subsequent HES-kOA in in-
dividuals with early-stage disease.

Secondly, while knee shape data were obtained from all participants
with available DXA scans, osteophyte data, which required manual
annotation, were only obtained in a subset. Still, this sample still
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provided sufficient numbers of individuals with TKR to compare the
predictive value of different models. Additionally, It's important to
acknowledge that DXA scans were conducted with participants in the
supine position, a factor that could impact JSN.

Thirdly, our dataset may have underrepresented TKR cases due to
procedures being conducted in the private sector not being captured
through HES linkage. Furthermore, the available HES data lacked spec-
ification regarding whether diagnoses and procedures applied to the left
or right knee. While this could affect effect estimates, it is more likely to
reduce effect sizes rather than introduce bias into the study. It is also
worth emphasising that surgical decision-making involves a multifaceted
consideration of various factors. Therefore, it is possible that some par-
ticipants may have had advanced disease but were unsuitable for, or
chose not to undergo, knee replacement surgery.

Fourthly, there may be issues with generalisability as the UKB pop-
ulation is predominantly white (95%) and has lower rates of all-cause
mortality compared to the population at large, reflecting the well-
known “healthy volunteer” effect [31]. Moreover, 11% of UKB partici-
pants recruited from Scotland and Wales were excluded due to separate
systems for HES linkage.

Finally, it is important to stress that our study aimed to investigate the
feasibility and effectiveness of using SSM on knee DXA scans to quantify
overall knee shape, and to assess the initial predictive capabilities of this
approach. Further research, including validation using external datasets,
is necessary to confirm the reliability of this approach before clinical
implementation and to mitigate the risk of overfitting.

In summary, our study highlights the potential value of SSM as a tool
for characterising joint shape in knee DXA scans. Moreover, our findings
show that knee shape, when integrated with osteophytes and de-
mographic factors in a predictive model, holds promise for identifying
individuals at risk of knee osteoarthritis progression. With lower radiation
exposure compared to conventional X-rays, DXA scans could offer a viable
alternative for identifying individuals whomay benefit from interventions
aimed at slowing the progression of the disease. However, further studies
in independent cohorts are needed to validate these findings.
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