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Abstract

During the course of fungal infection, pathogen recognition by the innate immune system

is critical to initiate efficient protective immune responses. The primary event that triggers

immune responses is the binding of Pattern Recognition Receptors (PRRs), which are

expressed at the surface of host immune cells, to Pathogen-Associated Molecular Patterns

(PAMPs) located predominantly in the fungal cell wall. Most fungi have mannosylated PAMPs

in their cell walls and these are recognized by a range of C-type lectin receptors (CTLs). How-

ever, the precise spatial distribution of the ligands that induce immune responses within the cell

walls of fungi are not well defined. We used recombinant IgG Fc-CTLs fusions of three murine

mannan detecting CTLs, including dectin-2, the mannose receptor (MR) carbohydrate recogni-

tion domains (CRDs) 4–7 (CRD4-7), and human DC-SIGN (hDC-SIGN) and of the β-1,3 glu-

can-binding lectin dectin-1 to map PRR ligands in the fungal cell wall of fungi grown in vitro in

rich and minimal media. We show that epitopes of mannan-specific CTL receptors can be clus-

tered or diffuse, superficial or buried in the inner cell wall. We demonstrate that PRR ligands do

not correlate well with phylogenetic relationships between fungi, and that Fc-lectin binding dis-

criminated between mannosides expressed on different cell morphologies of the same fungus.

We also demonstrate CTL epitope differentiation during different phases of the growth cycle of

Candida albicans and that MR and DC-SIGN labelled outer chain N-mannans whilst dectin-2

labelled core N-mannans displayed deeper in the cell wall. These immune receptor maps of

fungal walls of in vitro grown cells therefore reveal remarkable spatial, temporal and chemical

diversity, indicating that the triggering of immune recognition events originates from multiple

physical origins at the fungal cell surface.
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Author summary

Invasive fungal infections remain an important health problem in immunocompromised

patients. Immune recognition of fungal pathogens involves binding of specific cell wall

components by pathogen recognition receptors (PRRs) and subsequent activation of

immune defences. Some cell wall components are conserved among fungal species while

other components are species-specific and phenotypically diverse. The fungal cell wall is

dynamic and capable of changing its composition and organization when adapting to dif-

ferent growth niches and environmental stresses. Differences in the composition of the

cell wall lead to differential immune recognition by the host. Understanding how changes

in the cell wall composition affect recognition by PRRs is likely to be of major diagnostic

and clinical relevance. Here we address this fundamental question using four soluble

immune receptor-probes which recognize mannans and β-glucan in the cell wall. We use

this novel methodology to demonstrate that mannan epitopes are differentially distributed

in the inner and outer layers of fungal cell wall in a clustered or diffuse manner. Immune

reactivity of fungal cell surfaces was not correlated with relatedness of different fungal spe-

cies, and mannan-detecting receptor-probes discriminated between cell surface mannans

generated by the same fungus growing under different conditions. These studies demon-

strate that mannan-epitopes on fungal cell surfaces are differentially distributed within

and between the cell walls of fungal pathogens.

Introduction

Fungi are associated with a wide spectrum of diseases ranging from superficial skin and muco-

sal surface infections in immunocompetent people, to life-threatening systemic infections in

immunocompromised patients [1, 2]. The global burden of fungal infections has increased

due to infection related or medically imposed immunosuppression, the use of broad-spectrum

antibiotics that suppress bacterial competitors, and the use of prosthetic devices and intrave-

nous catheters in medical treatments [3, 4]. Patients that are pre-disposed to fungal diseases

include those with neutropenia, those undergoing stem cell or organ transplant surgery or

recovering from surgical trauma as well as HIV infected individuals and those with certain

rare predisposing mutations in immune recognition pathways [3–6].

Innate immunity is the primary defence mechanism against fungal infections and invol-

ves host Pattern Recognition Receptors (PRRs) that recognise specific Pathogen-Associated

Molecular Patterns (PAMPs), which are mostly located within the cell wall [7–9]. These recep-

tor-ligand interactions are the primary origin of all immune responses and they promote

expression and secretion of various chemokines and cytokines that results in recruitment of

neutrophils, macrophages and other immune cell types to the site of infection, which ulti-

mately leads to containment and clearance of the pathogen and the activation of protective

longer term adaptive immunity [9–12].

The repertoire of ligands in fungal cell walls that engage with cognate PRRs has been

reviewed extensively [13–15] but we lack information about where precisely these ligands are

located in the fungal cell wall. Most fungi have a two layered cell wall with an inner layer com-

prised of a conserved glucan-chitin scaffold to which a diversity of outer cell wall components

are attached that varies significantly between different fungal species [14–16]. In Candida spe-

cies the outer wall is dominated by a fibrillar layer of highly glycosylated cell wall proteins that

are extensively decorated with N- and O-linked mannans and phosphomannans [17, 18]. The
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chemical fingerprint of the fungal cell wall mannans are used to identify medically relevant

species in diagnostic tests [19–21]. However, within a species the composition of the cell wall

is highly variable and changes according to morphology, growth stage, nutrient availability,

the presence of antibiotics and other environmental stressors [15, 22–25]. This chemical and

architectural plasticity represents a moving target for the immune system and leads to differen-

tial immune activation at different stages of an infection [25]. Understanding the relationship

between fungal cell wall composition and immune recognition is therefore critically important

in fungal pathogenesis and immunity and in the context of fungal diagnostics, vaccines and

immunotherapies [26–28].

C-type Lectin (CTL) receptors orchestrate antifungal immunity through recognition of

fungal-specific ligands that are mainly located in the cell wall [29–33]. Multiple CTLs partici-

pate in pathogen recognition of fungal cell wall components including β-glucan, chitin, man-

nans and melanin [34–40]. Dectin-1 recognises β-1,3-glucan that is a conserved element of

the inner cell wall of all known fungal pathogens although zygomycetes have lower amounts

of β-1,3-glucan and usually test negatively with β-D-glucan detection diagnostic tests [41, 42].

Mannans are more complex, comprising linear and branched polymers of mannose sugars

linked via α-1,2, α-1,3, α-1,4, α-1,6, and β-1,2 glycosidic bonds that may be further modified

by phosphodiester side chains [18, 43, 44]. These glycosides decorate the cell wall proteins of

the outer cell walls and the integral proteins in the cell membrane and may account for more

than 80% of the mass of the glycoprotein [18, 43, 44]. A wide range of mannan-recognising

immune receptors are present in myeloid and epithelial cells including the mannose receptor

(MR), dectin-2, dectin-3, mincle, DC-SIGN, galectin-3, FcγR, CD14, CD23, TLR2, TLR4 and

TLR6 [13, 34, 37, 45–54]. The number and diversity of mannan-recognising PRRs underlines

their importance in primary immune recognition events. Although these recognition events

are the primary trigger of the immune response, the precise chemical nature and location of

the ligands that are recognised by these immune receptors has not been investigated in detail.

We utilized murine CTL receptor carbohydrate recognition domains and human IgG Fc

fusion proteins (Fc-lectins) including dectin-2, MR CRD4-7, dectin-1 and acquired comm-

ercial human DC-SIGN-Fc to explore the distribution of mannan- and β-glucan- detecting

CTLs [36, 37, 55]. We used the murine MR cysteine rich (CR) domain fused to human IgG Fc

to control for Fc mediated binding events [56, 57]. The CR lacks the carbohydrate recognition

domains and binds to untreated sulphated carbohydrates. These Fc-lectin probes were used to

examine the distribution of immune epitopes in fungal cell surfaces and to examine the nature

of the ligand engaging with specific mannan-detecting CTLs. We undertook a systematic in
vitro analysis to dissect the effect of specific physiological parameters on the spatial distribution

of the PAMP binding events. We reveal remarkable diversity in the location and distribution

of the cognate immune ligands and demonstrate that these ligands bind different mannans in

different parts of the cell wall in order to induce immune responses.

Results

Distribution of C-type lectin receptor ligands on fungal cell surfaces

We first confirmed the ability of a set of Fc-lectins to bind their cognate target antigens by

ELISA using whole C. albicans yeast cells, purified S. cerevisiae mannan and C. albicans yeast

β-glucan (S1A Fig) and verified the molecular weight of the recombinant Fc-lectins (S1B Fig).

The Fc region did not influence binding since the control protein CR-Fc lacking the MR car-

bohydrate binding domains did not recognise any of the immobilised targets (S1A Fig). Bind-

ing of the various Fc-lectins against reported mannan or β-1,3 glucan targets and Fc-probe

integrity was therefore confirmed.

Mapping of C-type lectin receptor epitopes in fungal cell walls
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We then examined variability in expression and distribution of epitopes for CTL recep-

tors in a range of fungal strains and species (Fig 1). CTL Fc-lectins bound different yeast

cells with differing intensities and patterns (Fig 1A–1C). MR probe (CRD4-7-Fc) and dec-

tin-2-Fc labelled C. glabrata and C. krusei more strongly than C. parapsilosis (Fig 1A and

1B), however there was no clear correlation between the profiles of Fc-lectin binding and the

phylogenetic relatedness of the species. For example, C. albicans and C. dubliniensis are rela-

tively close genetic relatives yet displayed very different CTL binding profiles (Fig 1A–1C).

C. dubliniensis demonstrated higher binding by dectin-2-Fc and CRD4-7-Fc compared to

C. albicans (Fig 1A–1C), and mannose receptor probe (CRD4-7-Fc) bound C. dubliniensis
more diffusely whilst dectin-2-Fc binding was not visible by fluorescence microscopy on C.

albicans yeast cell walls but labelled C. dubliniensis yeast cells in a punctate pattern (Fig 1C).

Uniform diffuse binding of CRD4-7-Fc to C. dubliniensis was displayed as a halo around

yeast cells median Z-stack sections (S2 Fig) and examination across full series of merged z-

stacks revealed this cortical fluorescence that was distinct from the punctate fluorescence

observed for example for dectin-2 binding to C. dubliniensis (Fig 1C).

Three virulent (SC5314, Ysu751, J990102) and three attenuated (IHEM3742, AM2003/

0069, HUN92) isolates of C. albicans were examined, as determined in both mouse and insect

systemic models of infection [58, 59]. There was no clear relationship between the binding

of dectin-2-Fc, CRD4-7-Fc and dectin-1-Fc probes and virulence (Fig 2A). However, strain

CAI4-CIp10 [60], which is the genetic background for the generation of multiple C. albicans
null mutants and its progenitor clinical isolate SC5314 exhibited identical Fc-lectin binding

patterns (Fig 2A). In C. albicans hyphae, similar Fc-lectin binding patterns were observed for

all strains, however, the attenuated HUN92 isolate was a high dectin-2-Fc binder with most

labelling occurring at the hyphal tips (Fig 2B). Therefore, the Fc-lectins demonstrated differing

binding profiles to different Candida species and C. albicans strains with no clear association

between Fc-lectin binding, phylogenetic relatedness and relative virulence.

Differential expression of ligands for C-type lectin receptors during growth

and morphogenesis

We next tested the stability of the epitopes recognised by CTL-Fc-lectins during the growth

and morphogenesis of C. albicans. Samples in the lag phase, early, mid and late exponential as

well as stationary phases were sampled during batch growth (Fig 3A). During the period of

exponential growth of yeast cells, dectin-2-Fc ligand exposure was reduced (p< 0.05) (Fig 3B)

whilst β-glucan exposure detected by dectin-1-Fc staining was decreased during stationary

phase (p< 0.05) (Fig 3B). In contrast, epitopes for mannose receptor assessed by CRD4-7-Fc

binding appeared to be exposed throughout all growth phases of batch growth (Fig 3B). There-

fore, PAMP binding was affected by growth phase and potentially growth rate of the target

pathogen. In addition, we compared the CTL-Fc binding for yeast cells grown on media with

glucose or lactate as the carbon source. Previous work had indicated that growth in these

media resulted in marked effects on cell wall structure and immune responses [25]. This

marked perturbation led to alteration in subtle differences in Dectin-2-Fc and CRD4-7 bind-

ing in S. cerevisiae, C. albicans and C. dubliniensis yeast cells (S3 Fig). Lactate grown cells of C.

albicans and C. dubliniensis showed reduced dectin-1-Fc binding (S3 Fig)–reinforcing obser-

vations of C. albicans made previously [25].

C. albicans filamentation was induced and hyphal cells were fixed at different time points to

test Fc-lectin binding (Fig 4). Mannan-recognising dectin-2-Fc and CRD4-7-Fc demonstrated

strong binding to early germ tubes grown in serum-containing medium (Fig 4A and 4B).

However, binding of both mannan-detecting lectin probes gradually decreased over prolonged
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Fig 1. Binding of CTL receptors does not correlate with fungal phylogenetic relationships. (A) Fc-lectin binding to

different Candida species and S. cerevisiae displayed according to phylogenetic relationships in agreement with the

published dendrogram [94] and represented as Median Fluorescence Intensity (MFI) of probe binding. (B)

Representative images of FACS histograms. (C) Comparison of Fc-lectin binding pattern to evolutionary closely

related C. albicans and C. dubliniensis yeast cells. For immunofluorescence staining and flow cytometry experiments,

2.5 x 106 cells were used in each analysis. The data represent three independent biological experiments performed in

technical duplicates ± SEM. Samples were analysed using a BD Fortessa flow cytometer where 10,000 events were

recorded for each sample (n = 60,000). 3D visualisation was performed using an UltraView VoX spinning disk

confocal microscope and images are presented as extended focus reconstructions in the Volocity software (Quorum

Technologies), which display a single image created by making a brightest-point merge of all the Z-slices through a

cell. Scale bars represent 4 μm.

https://doi.org/10.1371/journal.ppat.1007927.g001
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Fig 2. Binding of Fc-lectin probes to different C. albicans isolates. (A) Binding of Fc-lectin probes to the laboratory

control strain (CAI4-CIp10), and to virulent (SC5314, Ysu751, J990102) and attenuated (IHEM3742, AM2003/0609,

HUN92) clinical isolates and represented as Median Fluorescence Intensity (MFI) of probe binding. (B) Indirect

immunofluorescence staining of hyphae of virulent C. albicans (SC5314, J990102) and attenuated (IHEM3742,

HUN92) isolates with Fc-lectin probes. For immunofluorescence staining and flow cytometry experiments, 2.5 x 106

cells were used in each analysis. The data represent three independent biological experiments ± SEM. Samples were

Mapping of C-type lectin receptor epitopes in fungal cell walls
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periods of hyphal growth (Fig 4A and 4B). In particular, decreasing binding of CRD4-7-Fc to

the mother yeast cell was observed and was virtually absent on germ tubes that were older than

2 h (Fig 4B). In contrast, although germ tubes lacked bud scars, which have exposed β-1,3 glu-

can, dectin-1-Fc demonstrated the opposite pattern with binding gradually increasing to the

lateral cell walls of maturing filamentous cells (Fig 4C). These results reinforce previous obser-

vations that nascent mannan epitopes are gradually modified as the yeast cells and hyphae

progress through different growth stages [61].

The binding of mannan-detecting C-type lectins to yeasts, pseudohyphae, hyphae and the

recently described goliath cells [62] of C. albicans was examined (Fig 5). Dectin-2-Fc

analysed using a BD Fortessa flow cytometer where 10,000 events were recorded for each sample (n = 30,000). 3D

visualisation was performed using an UltraView VoX spinning disk confocal microscope and images are presented as

extended focus reconstructions in the Volocity software (Quorum Technologies), which displays a single image created

by making a brightest-point merge of all the Z-slices through a cell. Scale bars represent 4 μm. Statistical analyses were

performed using Kruskal-Wallis with Dunn’s post-hoc test.

https://doi.org/10.1371/journal.ppat.1007927.g002

Fig 3. Expression of ligands for CTL receptors during the batch growth of C. albicans. (A) The OD600 values of samples taken for

analysis during different growth stages are indicated. (B) Median Fluorescent Intensity (MFI) values from indirect

immunofluorescence staining of C. albicans (SC5314) yeast cells by dectin-2-Fc, CRD4-7-Fc and dectin-1-Fc. For

immunofluorescence staining and flow cytometry experiments, 2.5 x 106 cells were used in each analysis. The data represent three

independent biological experiments ± SEM. Samples were analysed using a BD Fortessa flow cytometer where 10,000 events were

recorded for each sample (n = 30,000). Statistical analysis were performed using One Way Anova with Tukey’s post-hoc tests.

https://doi.org/10.1371/journal.ppat.1007927.g003
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demonstrated low intensity binding to C. albicans fixed yeast cells which could be detected

by flow cytometry (Figs 1–3) but not by microscopy (Fig 5A). Fixation was used to capture

and immobilise cells at specific morphological stages, but control experiments showed that

paraformaldehyde fixation did not influence Fc-lectin binding patterns (data not shown).

Fig 4. Indirect immunofluorescence of Fc-lectin binding to target ligands in the C. albicans cell wall during

different stages of hyphal growth. Representative images of immunofluorescence staining of Fc-lectin binding to C.

albicans (SC5314) hyphae over prolonged periods of growth by dectin-2-Fc (A), CRD4-7-Fc (B) and dectin-1-Fc (C).

3D visualisation was performed using an UltraView VoX spinning disk confocal microscope and images are presented

as extended focus reconstructions in the Volocity software (Quorum Technologies), which displays a single image

created by making a brightest-point merge of all the Z-slices through a cell. Scale bars represent 4 μm.

https://doi.org/10.1371/journal.ppat.1007927.g004
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Fig 5. Indirect immunofluorescence of Fc-lectin binding to different C. albicans morphological forms.

Representative images of immunofluorescence staining of Fc-lectin binding to C. albicans yeast, hyphae,

pseudohyphae (SC5314) and goliath (BWP17 + Clp30) cells by dectin-2-Fc (A), CRD4-7-Fc (B), dectin-1-Fc (C) and

CR-Fc (D). 3D visualisation was performed using an UltraView VoX spinning disk confocal microscope and images

are presented as extended focus reconstructions in the Volocity software (Quorum Technologies), which displays a

single image created by making a brightest-point merge of all the Z-slices through a cell.

https://doi.org/10.1371/journal.ppat.1007927.g005
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Dectin-2-Fc exhibited punctate binding pattern on hyphae with strong staining observed at

the hyphal tip (Fig 5A). In contrast, CRD4-7-Fc demonstrated high intensity punctate binding

to both yeast cells and hyphae (Fig 5B). As predicted, dectin-1-Fc recognised yeast cells mai-

nly at the bud scars while some punctate binding was also detected along hyphae (Fig 5C) [63].

All Fc-lectins recognised pseudohyphal cells with intermediate binding strengths compared

to that for yeasts and hyphae (Fig 5A–5C). Recently, goliath cells have been observed as a

form of cellular gigantism in Candida species [59]. Fc-lectin binding to C. albicans goliath

cells revealed punctate dectin-2-Fc binding while CRD4-7-Fc bound more uniformly around

the cell surface (Fig 5). As before, dectin-1-Fc bound mainly to the bud scars of goliath cells

(Fig 5). Negative control protein CR-Fc did not show any binding to any of the C. albicans
morphologies (Fig 5D), and binding to yeast cells was not detected by flow-cytometric analy-

ses. These data demonstrated differences in the specificities of dectin-2-Fc and CRD4-7-Fc

towards the fungal cell surface components, and were in accord with knowledge of the glycan-

binding specificities of dectin-1 [64] and of CR-Fc [57].

Spatial distribution of mannan epitopes in the inner cell wall

To elucidate precise localisation of ligands for mannan-recognising Fc-lectins within the cell

wall, immunogold labelling of dectin-2-Fc, CRD4-7-Fc and CR-Fc-stained embedded secti-

ons of cells were analysed by TEM (Fig 6). We observed clustered dectin-2-Fc binding to both

yeast and hypha inner cell walls of C. albicans with little labelling of the outer mannoprotein-

rich fibrils in multiple sections of independently prepared samples (Fig 6A) and did not

observe clusters in other sample where single colloidal gold particles were imaged in the cell

wall. CRD4-7-Fc recognised ligands within the plasma membrane as well as outer glycoprotein

Fig 6. Immunogold localisation of Fc-lectin probes on C. albicans yeast and hypha cell walls. Representative TEM

images of at least one experiment where Protein A gold conjugate was used to detect dectin-2-Fc (A), CRD4-7-Fc (B)

and CR-Fc (C) binding on C. albicans (SC5314) cell walls. TEM images were taken using a JEM-1400 Plus using an

AMT UltraVUE camera. Scale bars represent 100 nm.

https://doi.org/10.1371/journal.ppat.1007927.g006
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fibrils (Fig 6B). CR-Fc gave no staining (Fig 6C). The differential specificities of dectin-2-Fc,

CRD4-7-Fc and CR-Fc recognition were again demonstrated.

Flow cytometry and microscopy were used to compare binding strengths of Fc-lectins to C.

albicans yeast cell wall after mild heat treatment (at 65˚C) which mechanically perturbs the

normal cell wall architecture resulting in the permeabilising of the wall to otherwise imperme-

able high molecular weight components (Fig 7). This mild heat treatment is often used to heat-

kill (HK) cells to prevent cellular morphogenesis during immunological examinations. Bind-

ing of dectin-2-Fc, CRD4-7-Fc and dectin-1-Fc to formaldehyde-fixed or HK C. albicans yeast

cells were compared (Fig 7A–7C). Dectin-2-Fc binding increased significantly following HK

treatment (Fig 7A) while CRD4-7-Fc binding was reduced to a minor extent (Fig 7B), suggest-

ing that the CRD4-7-Fc MR ligand was superficial whilst the dectin-2 ligand was buried deeper

in the cell wall and was initially inaccessible to CTLs. HK also increased binding of dectin-

1-Fc, due to β-glucan exposure (Fig 7C). The specificity of Fc-lectin binding was further cor-

roborated by blocking the binding of the Fc-lectins with purified C. albicans cell wall mannan

(dectin-2-Fc and CRD4-7-Fc) or yeast cell wall β-glucan (dectin-1-Fc) (Fig 7A–7C). In all

cases external addition of an excess of the target polysaccharide completely blocked the bind-

ing of Fc-lectins to the cell wall. CR-Fc included as a negative control again showed that bind-

ing to fixed or HK cells was not mediated by the Fc region of the CTL-probes (Fig 7A–7C).

Collectively these analyses revealed that some CTL epitopes were clustered in the cell wall

whilst others were uniformly distributed and some were exposed and some cloaked within

the inner cell wall.

Fig 7. Binding of Fc-lectin probes to C. albicans fixed and heat-killed yeast cells. Quantification of Fc-lectin probe binding to WT (fixed) and HK

(heat-treated at 65˚C for 2 h) cells for dectin-2-Fc (blue) (A), CRD4-7-Fc (red) (B), dectin-1-Fc (green) (C) and CR-Fc (orange) binding to WT C.

albicans yeast cells (dark bars), HK C. albicans yeast cells (light bars). Blocking experiments are also shown in which Fc-lectins were preincubated with

purified C. albicans cell wall mannan (25 μg/ml) or β-glucan (for dectin-1-Fc, 100 μg/ml) prior to binding experiments to WT 4% paraformaldehyde

fixed C. albicans yeast cells (crossed bars). For immunofluorescence staining and flow cytometry experiments, 2.5 x 106 cells were used in each analysis.

The data represent three independent biological experiments performed in technical duplicates ± SEM and represented as Median Fluorescence

Intensity (MFI) of probe binding. Samples were analysed using a BD Fortessa flow cytometer where 10,000 events were recorded for each sample

(n = 60,000). Statistical analyses were performed with T-test.

https://doi.org/10.1371/journal.ppat.1007927.g007
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hDC-SIGN epitopes in the plasma membrane and cell wall

Human DC-SIGN-Fc recombinant protein (Life Technologies) was used to further investigate

mannan epitope variability on the fungal surface. hDC-SIGN-Fc consistently demonstrated

high intensity binding of C. albicans fixed yeast cells (Fig 8A) whereas with HK yeast cells

there was a significant decrease in hDC-SIGN-Fc binding (Fig 8A). Binding was completely

blocked in the presence of purified and soluble C. albicans mannan (Fig 8A and 8B) and

decreased by 75% when using S. cerevisiae mannan (Fig 8B). Microscopy revealed a high int-

ensity punctate binding pattern on yeast, hyphae and goliath cells and slightly less to C. albi-
cans pseudohyphal cells (Fig 8C). Using immunogold-labelling, hDC-SIGN-Fc epitopes were

observed in the plasma membrane, inner cell wall and outer fibrils for C. albicans yeast and

hyphae (Fig 8D) that was similar to that observed for CRD4-7-Fc labelling. The binding to

hDC-SIGN-Fc epitopes progressively decreased in maturing, more elongated C. albicans
hyphae (Fig 8E). Reminiscent of CRD4-7-Fc binding, hDC-SIGN-Fc demonstrated high int-

ensity binding to C. albicans cells in different morphologies with binding sites distributed

along the plane of the plasma membrane and in the outer cell wall glycosylated fibril layer.

Chemical nature of C-type lectin receptor targets in fungal cell walls

To assess the nature of the targets of the CTL receptors, the binding of the Fc-lectin probes

was examined using a collection of cell wall mutants including isogenic nulls with truncations

in N- and O-mannans (Fig 9). In general, mannosylation mutants exhibited marked changes

in Fc-lectin recognition. The C. albicans mnn4Δ mutant lacks phosphomannosyl residues

and consequently these mutants have uncharged cell walls [65]. The mnn4Δ demonstrated

increased binding of dectin-2-Fc, reduced binding of CRD4-7-Fc and a similar binding profile

of hDC-SIGN-Fc compared to SC5314 (Fig 9A). The N-mannan outer chain mutant mnn2-
26Δ that lacks N-mannan side chains demonstrated a slight increase in dectin-2-Fc, reduced

CRD4-7-Fc and a similar binding profile of hDC-SIGN-Fc compared to SC5314 (Fig 9A) [66].

An N-mannan mutant och1Δ, with no outer N-linked mannan chains and a markedly redu-

ced phosphomannan content but increased chitin and glucan [67], resulted in much higher

binding of dectin-2-Fc, CRD4-7-Fc and a dense binding pattern all over the yeast cell of

hDC-SIGN-Fc compared to SC5314 (Fig 9A). Increased binding of some N-mannan Fc-lectins

to mannosylation mutants can be explained by the compensatory synthesis of PRR-binding

epitopes as a consequence of the mutation [67]. A pmr1Δ mutant with reduced phosphoman-

nan, O-mannan and N-mannan [68] demonstrated marginally increased recognition by dec-

tin-2-Fc and reduction of CRD4-7-Fc and similar binding of hDC-SIGN-Fc compared to wild

type (Fig 9A). This is compatible with previous observations that dectin-2-Fc recognised inner

cell wall mannans whilst CRD4-7-Fc labelled the outer mannoprotein fibrillary layer (Fig 6A

and 6B). Dectin-1-Fc was used as a control and demonstrated increased binding in all back-

grounds deficient in N- and O-mannan attributable to the increased exposure of inner cell wall

component β-glucan (Fig 9A). Therefore, the cell wall glycosylation status had a major impact

on the ability of CTL probes to bind C. albicans.
To gain further insight into the carbohydrate recognition by the CTL receptors, we analysed

these initially using a microarray comprised mostly of fungal-type saccharides and compared

their binding profiles (Fig 10, S2 Table). Both CRD4-7-Fc and hDC-SIGN-Fc showed strong

binding to the C. albicans N-mannoprotein that is characterised by an α-1,6-mannose back-

bone with oligomeric α-1,2-, α-1,3-, and β-1,2-manno-oligosaccharide branches (Fig 10A and

10B, position 13, S2 Table). The two proteins also bound to other mannan-related saccharides

from S. cerevisiae and M. tuberculosis, that share an α1,6-mannose backbone with α-

1,2-manno-oligosaccharide branches (Fig 10A and 10B, S2 Table). In contrast, no binding was
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Fig 8. hDC-SIGN-Fc binding across the inner and outer cell wall of C. albicans. (A) Median Fluorescent intensity

(MFI) measurements determined by flow cytometry of hDC-SIGN-Fc binding to WT 4% paraformaldehyde fixed C.

albicans (CAI4-CIp10) yeast cells compared to HK cells (treated at 65˚C 2 h) and hDC-SIGN-Fc blocked with C.

albicans cell wall mannan (25 μg/ml). The data represent three independent biological experiments performed in

technical duplicates ± SEM. Samples were analysed using a BD Fortessa flow cytometer where 10,000 events were

recorded for each sample (n = 60,000). (B) Binding of hDC-SIGN-Fc blocked with C. albicans cell wall mannan (25 μg/

ml) or S. cerevisiae cell wall mannan (25 μg/ml) to WT 4% paraformaldehyde fixed C. albicans yeast cells. The data

represent three independent biological experiments ± SEM. Samples were analysed using a BD Fortessa flow cytometer

where 10,000 events were recorded for each sample (n = 30,000). (C) Indirect immunofluorescence staining of
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detected with dectin-2-Fc to any of Manα-1,2-Man-containing polysaccharides in the condi-

tions of the microarray analysis, which suggests it may have less capacity to bind α-mannans

of this type compared to CRD4-7-Fc and hDC-SIGN-Fc (data not shown). Dectin-1-Fc

showed, as predicted, strong and highly specific binding to glucans with a β-1,3-glucosyl back-

bone (Fig 10C, S2 Table).

Glycan microarrays of 474 sequence-defined oligosaccharide probes (S3B Table) were also

applied to compare the binding specificities of dectin-2-Fc, CRD4-7-Fc and hDC-SIGN-Fc.

different C. albicans (SC5314, BWP17 + Clp30 for goliath cells) morphological forms. (D) Immunogold localisation of

hDC-SIGN-Fc on C. albicans (SC5314) yeast and hyphae cells. (E) Representative images of immunofluorescence

staining of hDC-SIGN-Fc binding to C. albicans (SC5314) hyphae over prolonged periods of growth. 3D visualisation

was performed using an UltraView VoX spinning disk confocal microscope and images are presented as extended

focus reconstructions in the Volocity software (Quorum Technologies), which displays a single image created by

making a brightest-point merge of all the Z-slices through a cell. TEM images were taken using a JEM-1400 Plus using

an AMT UltraVUE camera. Scale bars represent 4 μm for immunofluorescence images and 100 nm for TEMs.

Statistical analyses were performed with T-test.

https://doi.org/10.1371/journal.ppat.1007927.g008

Fig 9. Fc-lectin binding profiles to C. albicans cell wall glycosylation mutants. (A) Indirect immunofluorescence

images of Fc-conjugated CTL probes binding to C. albicans O-mannan and N-mannan cell wall mutants of C. albicans
(as described in the text). 3D visualisation was performed using an UltraView VoX spinning disk confocal microscope

and images are presented as extended focus reconstructions in the Volocity software (Quorum Technologies), which

displays a single image created by making a brightest-point merge of all the Z-slices through a cell. Scale bars represent

4 μm.

https://doi.org/10.1371/journal.ppat.1007927.g009
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The signal intensities observed with dectin-2-Fc were the lowest overall among the three Fc

probes. Dectin-2-Fc binding was detected to Man9GN2 derived probes that resemble the core

N-mannan structures within the inner C. albicans cell wall (Fig 11A, S3A Table); this relatively

weak and restricted binding is in agreement with previous glycan array studies [37, 69]. No

binding of dectin-2-Fc was detected to oligo-mannose sequences smaller than Man7GN2.

Additionally, binding was detected of dectin-2-Fc to 3’sialyl LNFPIII and a number sulphated

glycans as with hDC-SIGN-Fc.

Fig 10. Glycan microarray analyses of Fc-lectins using the fungal and bacterial polysaccharides. Binding signals of

CRD4-7-Fc (A), hDC-SIGN-Fc (B) and dectin-1-Fc (C) to a variety of fungal and bacterial polysaccharides. The

saccharide positions and predominant oligosaccharide sequences are specified in the supplementary materials (S2

Table). The binding signals are means of the fluorescence intensities of duplicate spots printed at the high level of

probe arrayed 0.1 ng/spot (saccharide positions 1–19) and at 5 fmol/spot (position 20). The error bars represent half

the difference between the two values.

https://doi.org/10.1371/journal.ppat.1007927.g010
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Fig 11. Microarray analysis of Fc-lectins using a screening array of sequence-defined glycan probes. Binding

signals of dectin-2-Fc (A), CRD4-7-Fc (B) and hDC-SIGN-Fc (C) to a variety of sequence-defined lipid-linked glycan

probes. The glycan resembling the core N-mannan structure in C. albicans cell wall (position 250) is highlighted in

dectin-2-Fc panel. The binding signals are means of the fluorescence intensities of duplicate spots printed at 5 fmol/

probe. The error bars represent half of the difference between the two values. The glycan probes are grouped according

to their backbone-type sequences as annotated by the colored panels: disaccharide based: lactose (Lac) and N-

acetyllactosamine (LacNAc); tetrasaccharide based: lacto-N-neo-tetraose (LNnT) and lacto-N-tetraose (LNT); poly-N-

acetyllactosamine (PolyLacNAc); N-glycans; gangliosides; O-glycan-related; polysialyl; glycosaminoglycans (GAGs);

homo-oligomers of glucose and of other monosaccharides, and other non-classified sequences (miscellaneous, Misc).

The list of glycan probes and their sequences are in supplementary materials (S3B Table).

https://doi.org/10.1371/journal.ppat.1007927.g011
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CRD4-7-Fc showed mannose-related binding of high intensity to oligo/high-mannose

N-glycan sequences, fucosylated probes including Fuc-GlcNAc and Man3FGN2, as well as

β-1,4-oligomannoses (Fig 11B, S3A Table). hDC-SIGN-Fc gave strong binding signals with

N-acetylglucosamine containing sequences including chitin-derived glycans (Fig 11C, S3A

Table) and also to glucan oligosaccharide sequences with differing glucosyl linkages as was

also observed in recent studies [70, 71] (Fig 11C, S3A Table)]. hDC-SIGN-Fc also gave bind-

ing to a broad range of N-glycans including oligo/high-mannose sequences having α-1,2-,

α-1,6- and α-1,3/1,6-linked mannose, high-mannose sequences capped by Glc residues

and a number of N-acetylglucosamine-terminating N-glycans; binding was also detected

to β4-linked mannose oligosaccharides as with CRD4-7-Fc. Collectively, glycan array bind-

ing results are consistent with the dectin-2-Fc ligand being based on Man9GN2 found in

the core N-mannan triantennary structure within the C. albicans inner cell wall, whereas

CRD4-7-Fc and hDC-SIGN-Fc have a broader binding profile compared to dectin-2-Fc

and can recognise oligo-mannose structures terminating in α-1,3 and α-1,6- mannose

resembling to some extent those found in the outer-chain mannan structures. This is com-

patible with the binding patterns observed using colloidal-gold TEM.

Discussion

CTL receptors provide a first line defence against fungal pathogens and orchestrate both innate

and adaptive immunity through the recognition of fungal PAMPs. A large number of CTL

receptors have been proposed to bind fungal cell wall epitopes such as mannans, β-1,3-glucan

and chitin [34, 37, 47, 50, 52]. Previous studies suggested dectin-2 to recognise high mannose

residues that are present on fungal cell surfaces while MR was proposed to bind branched N-

mannan structures, with fucose, N-acetylglucosamine sugar residues and mannose-capped

lipoarabinomannan (ManLAM) on the mycobacterial cell wall [34, 37, 72]. hDC-SIGN has

been demonstrated to recognise galactomannan, mannose- and fucose-containing glycoconju-

gates and N-linked mannose rich components in C. albicans cell wall [38, 73]. There is how-

ever limited knowledge of the structural arrangement, spatial distribution and variation in

mannoside architecture of the cell wall of fungal pathogens, which this study addresses. We

deployed recombinant CTL-Fc proteins as probes to explore the distribution, regulation and

chemical structure of fungal ligands for these receptors within the cell wall, in particular for

dectin-2, MR and hDC-SIGN. We did not calibrate the fluorescence intensities of bindings to

individual sites on cell walls and therefore do not make any claims as to ligand concentrations

on the cell surface. We demonstrated that there is considerable intra- and inter-species vari-

ability in the expression of key mannan epitopes. We mapped the patterns of binding to these

ligands during growth and cellular morphogenesis and observed marked spatial segregation

and an unexpected clustering of certain mannan epitopes.

The analysis of C. albicans cell wall mutants corroborated the occurrence of inner cell

wall epitopes for dectin-2-Fc and superficial mannan ligands for MR and hDC-SIGN-Fc. An

och1Δ mutant, which has a defect in its ability to synthesise outer chain N-glycans, had been

shown previously to have exposed inner cell wall components [67]. This mutant also exhib-

ited increased binding by dectin-2-Fc and has been shown to have an elaborated α-1,2- and

α-1,3-mannan side chains to the Man8GlcNAc2 core triantennary complex which is a ligand

that promotes CRD4-7-Fc and hDC-SIGN-Fc binding. Other mutants with decreased N-

mannan outer chains, including mnn2-26Δ and pmr1Δ [66, 68] bound less CRD4-7-Fc and

hDC-SIGN-Fc and more dectin-2-Fc commensurate with an increased exposure of the inner

wall layers. Moreover, the mnn4Δ mutant, which lacks cell wall phosphomannan that confers

a negative charge on the wall [65] had reduced binding by CRD4-7-Fc and hDC-SIGN-Fc
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but increased dectin-2-Fc binding. These observations complement previous studies suggest-

ing that cell surface glycosylation profoundly influences the efficiency of pathogen recogni-

tion by immune receptors [9, 11, 13, 23, 74]. Glycan microarray data with the Fc-lectins and

the fungal-type saccharides are consistent with CRD4-7-Fc and hDC-SIGN-Fc but not dec-

tin-2-Fc recognizing α-1,6-Man backbone with oligomeric α-1,2-, α-1,3-, and β-1,2-Man

branches which comprise C. albicans outer wall N-mannan branches. To date there has been

no evidence for DC-SIGN binding chito-oligosaccharides suggesting that the key residues

for DC-SIGN binding were other sugars, likely mannose based, in the N-mannan branches.

This contrasts with the weak binding detected of dectin-2-Fc to the high-mannose Man9GN2

probe with terminal Manα-1,2-Man sequences, which resembles C. albicans core N-mannan

within the inner cell wall. This is in agreement with published data that showed the Manα-

1,2-Man sequence on the Man9GN2 to be a primary target for dectin-2 binding [37, 69], and

that this receptor could adopt a geometry of the binding site that accommodates the internal

residues of the Manα-1,2-Manα-1,2-Man- (D1 branch) and Manα-1,2-Manα-1,3-Man- (D2

branch) trisaccharide sequences [37, 69]. This prompts a hypothesis that dectin-2 binds to

internal sequences in fungal mannan polysaccharides, expressing higher density of the

ligands and achieving multivalent binding.

We examined the immunological signature of clinically-relevant Candida species and S.

cerevisiae and demonstrated that there was no simple correlation between phylogenetic rela-

tionships between fungal species and CTL epitope distribution. Despite C. albicans and C.

dubliniensis sharing approximately 95% genome identity [75] the patterns of CTL probe

binding contrasted markedly. The immunologically relevant mannan structures are pro-

duced by activities of multiple families of mannosyltransferases, of which genetic variation

and regulation may not map simply to phylogenetic relationships. We focused mainly on C.

albicans as the model organism for further mapping of cell wall dynamics. Previous studies

demonstrated that dectin-1 recognition of C. albicans was influenced by fungal strain type

because chitin levels modulated the accessibility of dectin-1 ligands [76]. Analogously, bind-

ing of mannan-recognising CTL probes varied in different C. albicans strains and species.

Previous studies have identified virulent and attenuated isolates of this organism [58, 59],

however, Fc-lectin probes recognised both virulent and avirulent strains with similar binding

patterns and there was no simple correlation between virulence and CTL probe binding (Fig

2A). Previous studies have also demonstrated a strong correlation between the capacity to

form hyphae and virulence [77–81]. The intensity and distribution of mannan-specific CTL

binding to hyphae was found to vary during hypha elongation. It is possible that the effi-

ciency by which invading hyphae induce or escape immune surveillance ultimately influences

virulence.

We also demonstrated that C. albicans growth phase influenced expression and exposure

of cell wall components. Batch growth of C. albicans yeast culture revealed increased dectin-

1-Fc binding during the exponential growth phase. This is likely to be due to increased β-glu-

can exposure and number of bud scars on actively dividing cells. As batch culture of cells tran-

sitioned into the stationary phase, a reduction in dectin-1-Fc and increased dectin-2-Fc

binding was observed that was likely to be related both to the degree of mannan shielding of β-

glucan as the cell wall was reorganised. CRD4-7-Fc demonstrated similar binding patterns

during all growth phases of the yeast batch culture, highlighting the diversity in availability of

the cell wall manno-oligosaccharide sequences and suggesting that the CRD4-7-Fc (mannose

receptor) ligand is superficial in the cell wall. This suggestion was supported by colloidal-gold

TEM images showing CTL binding patterns at the ultrastructural level, and is in accord with a

previous study which demonstrated that MR was not required for host defence in a systemic

candidiasis mouse model [82].
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The hyphal cell wall is also modified during the process of hyphal extension [17, 61]. In

this study we mapped the distribution of CTL epitopes on hyphal cell walls over a period of

prolonged hyphal growth and demonstrated that dectin-2-Fc and CRD4-7-Fc ligands were

densely concentrated at the emerging germ tube apex. A previous study on C. albicans sug-

gested that mannan-recognising dectin-2 is a hypha-specific CTL [49], however, we demon-

strate here that the distribution and expression of dectin-2 epitopes on yeast cells varies

between different Candida species. There was little availability of dectin-1-Fc ligands and by

inference β-1-3 glucan on hyphae, possibly because of the lack of bud scars on hyphae as dis-

cussed below. This supports previous studies describing attenuated dectin-1 activation by

hyphal cells [63]. As hyphae elongated, binding of mannan-recognising probes dectin-2-Fc

and CRD4-7-Fc was reduced and became more punctate while binding of dectin-1-Fc to lat-

eral cell walls increased. This finding supports observations that have demonstrated that β-

glucan becomes exposed late during disseminated C. albicans infection [61]. Interestingly,

binding of CRD4-7-Fc to C. albicans germinating cells demonstrated a reduction in mother

yeast cell recognition as the germ tube elongated. It is possible that the mannosylated struc-

tures on yeast cell mannoproteins are chemically modified during hyphal elongation so they

are less able to be recognised by the MR. However, multiple mannan-detecting PRRs were

able to bind each of the various cell types of C. albicans that were studied. This redundancy

in CTL engagement presumably confers advantage in recognising fungal pathogens whose

surfaces and shapes are remodelled in response to host invasion and colonisation of differ-

ent microenvironments.

Morphological alterations of C. albicans, and other fungal pathogens, is often correlated

with their ability to thrive within the human host [83]. These cellular transitions are coupled

to changes in their cell wall composition which makes them a moving target for immune

detection [25, 84, 85]. C. albicans forms cells that are more or less elongated [83]. Synchro-

nously dividing elongated yeast cells (pseudohyphae) are considered by many to be a distinct

cell form, and these cell types are common to all Candida species. The tested Fc-lectin probes

also demonstrated intermediate binding to pseudohyphae of C. albicans (Fig 4), comple-

menting a recent study describing intermediate cytokine profiles to C. albicans filamentous

forms [86]. Goliath cells are recently recognised as an enlarged cell type of C. albicans that

may play an important role in commensalism and persistence in the gut [62]. We observe

that dectin-2-Fc weakly recognises C. albicans yeast cells but has increased binding on goli-

ath cells (Fig 4A), potentially due to cell expansion and concomitant exposure of inner cell

wall epitopes or a novel arrangement of mannoproteins on the surfaces of goliath cells that

may expose more dectin-2-recognising mannan epitopes. Dectin-2-Fc also bound well to

hyphae of C. albicans, in particular at the hyphal tip (Fig 4A). The cell wall of the hyphal apex

is thinner and the polysaccharides are less crystalline and less cross-linked. This may facili-

tate access of high molecular weight PRRs to inner cell wall ligands. Both mannose receptor

(CRD4-7-Fc) and hDC-SIGN-Fc probes demonstrated similar binding to different morphol-

ogies and their binding was not greatly affected by mild heat treatments suggesting their epi-

topes are superficial. As predicted, dectin-1-Fc binding was concentrated at the bud scars of

yeast and goliath cells, but binding was punctate on hyphal cells that lack bud scars. Punctate

binding patterns have been reported elsewhere, in particular for dectin-1 binding revealed

by super-resolution microscopy in which binding became increasingly associated with highly

granular multi-glucan surface exposures in response to caspofungin treatments [87].

Using multiple approaches, we provide evidence that individual mannan-recognising CTLs

recognise different mannan structures that are displayed in distinct binding patterns. CRD4-

7-Fc (MR) and hDC-SIGN-Fc recognised α-1,6-mannose backbone with oligomeric α-1,2, α-

1,3, and β-1,2-mannan branches while dectin-2-Fc bound Man9GN2, which has close
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similarities to the core N-mannan structure in C. albicans inner cell wall. Heat-killing and

immunofluorescent staining of C. albicans cell wall mutants as well as immunogold-labelling

and TEM microscopy supported the conclusion that MR and DC-SIGN recognise outer chain

N-mannan whilst dectin-2 recognises core mannans that are closer to the amide linkage poly-

peptide of the mannoprotein at the base of the fibrillar layer of the outer cell wall. We observed

that CRD4-7-Fc and hDC-SIGN-Fc epitopes were diffusely organised across the plasma mem-

brane plane and within the outer wall mannan fibrils while dectin-2-Fc epitopes were clustered

within the inner cell wall in both yeast and hyphal C. albicans cells. Clustering of the dectin-

2-Fc epitope requires further investigation to verify that the same structures are revealed by

fluorescence imaging and in TEM sections. But at face value this may suggest cooperative

binding whereby binding of a single dectin-2-Fc could stabilize the target ligand in a way that

facilitates bindings of additional PRR molecules. Alternatively, certain cell wall proteins that

display dectin-2 binding ligands might accumulate in microdomains within the inner cell wall.

Membranes of eukaryotic cells are known to organise some proteins into specialised microdo-

mains which compartmentalise cellular processes and serve as organising centres which

assemble signalling molecules, facilitate protein and receptor trafficking, vesicular transport

and signalling events [88, 89]. Such microdomains have also been described in bacterial mem-

branes and a recently published study suggested that similar microdomains might also exist in

fungal cell walls [90]. Therefore, clustered dectin-2-Fc binding could be related to the accumu-

lation of specialised glycosylated proteins at certain parts of the inner cell wall. Nevertheless,

these attractive hypotheses should be addressed by future studies.

In conclusion, we have demonstrated that mannan epitopes are differentially distributed

in the inner and outer layers of fungal cell wall in a clustered or diffuse manner. Immune reac-

tivity of fungal cell surfaces was not correlated with relatedness of the fungal species, and man-

nan-detecting receptor-probes discriminated between cell surface components generated by

the same fungus growing under different conditions. Moreover, individual mannan-recognis-

ing CTL probes conferred specificity for distinct mannan epitopes. These findings indicate

that the fungal cell wall structures are highly structured but dynamic, and that immune rec-

ognition is likely to involve PRRs acting alone and in concert to mount effective immune

responses. This type of CTL ligand variation carries significant impact on the design of future

fungal diagnostics, vaccine and therapeutics.

Materials and methods

Expression and purification of Fc conjugated C-type lectin receptor

proteins

HEK293T cells stably expressing murine dectin-1-Fc and dectin-2-Fc fusion proteins were

cultured as described previously [36, 37, 56]. Briefly, cells were cultured in T175 flasks and

supernatants were collected. Zeocin (0.4 mg/ml) (Thermo Scientific) was used for selection of

cells expressing Fc conjugated proteins. Large scale transient transfections for murine CRD4-

7-Fc and CR-Fc were carried out using 100 μg of total plasmid DNA and 100 ml of suspension

cultured Expi293F cells (Life Technologies). Supernatants were harvested at day 6. Fc conju-

gated protein concentrations in supernatants were quantified by ELISA. ELISA plates (Ther-

mofisher) were coated with 100 μl of supernatants and incubated overnight at 4˚C. Plates were

washed with PBS + Tween 20 (0.05%) and blocked with 200 μl of 10% FCS in 1 X PBS for 2 h.

Plates were washed with 1 X PBS + Tween 20 (0.05%) and 100 μl of secondary anti-human

antibody conjugated to HRP (Jackson Immunoresearch) diluted 1/10000 in PBS was added

and incubated at room temperature (RT) for 1 h. Wells were washed with 1 X PBS + Tween 20

(0.05%) and 100 μ of TMB (Thermofisher) were added to develop. Reaction was stopped with
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50 μl 2N H2SO4 and plates were assayed on a spectrophotometer at 450nm with the necessary λ
correction at 570nm. Fc chimeric proteins were purified via affinity based Fast Protein Liquid

chromatography using Prosep Ultra resin (Millipore). Fc conjugated proteins were eluted with

0.1 M glycine (pH 2.5) before neutralisation with 1 M Tris buffer (pH 8) and then dialysed in

1 X PBS overnight. Fc conjugated protein concentration was quantified using NanoVue Spec-

trophotometer (GE Healthcare). hDC-SIGN-Fc was purchased commercially (Thermofisher)

and contains the extracellular (Lys 62-Ala 404) domain of human CD209 (NP_066978.1) fused

to the Fc region of human IgG1.

QC of purified Fc-lectins

Purified proteins were checked via SDS-PAGE gel analysis using 4–12% Bis-Tris SDS-PAGE

gels under reducing conditions (S1 Fig). ELISA was carried out for confirmation of binding to

original target using ELISA protocol described above (S1). ELISA plates were coated with live

C. albicans yeast cells, 25 μg/ml S. cerevisiae mannan (SIGMA), 100 μg/ml C. albicans yeast β-

glucan or PBS overnight (S1 Fig). Fc chimeric proteins were added at 5 μg/ml and serial dou-

bling dilutions were performed to confirm concentration-dependent binding.

Comparison of fungal strains under different parameters

For comparison of fixed and heat-killed C. albicans (CAI4-CIp10) cells, a single colony was

inoculated into 10 ml YPD (1% yeast extract, 2% glucose, 2% peptone) and incubated overnight

at 30˚C, 200 rpm. Overnight culture was washed in 1 X PBS and 2.5 x 106 cells were either fixed

with 4% paraformaldehyde or kept at 65˚C in a heat block for 2 h prior to staining. For compar-

ison of C. albicans (CAI4-CIp10) culture overtime, OD600 of overnight culture was measured

and culture was diluted to OD600 of 0.1 in 50 ml YPD in 250 ml flasks. Cells were collected at

OD600 0.2, 0.4, 0.6, 1 and 18, washed in 1 X PBS, fixed with 4% paraformaldehyde at RT for 45

min, washed and then stained. For comparison of different C. albicans isolates and cell wall

mutants, cells were fixed at OD600 ~ 0.5 prior to staining (S1 Table). For comparison of differ-

ent Candida species and S. cerevisiae grown in YPD or minimal medium (0.67% yeast nitrogen

base without amino acids) containing 2% glucose or 2% lactate as the sole carbon source, cells

were fixed in stationary phase, OD600 ~ 18 (S1 Table). Samples were stained as described below

and analysed on BD Fortessa flow cytometer or in 3D on an UltraVIEW VoX spinning disk

confocal microscope. Three independent biological replicates were performed per sample.

Conditions for generating different morphologies of C. albicans
Single colonies of C. albicans were inoculated into 10 ml YPD and incubated overnight at

30˚C, 200 rpm. To induce hypha formation, cultures were diluted 1:1333 in milliQ water and

then adhered on a poly-L-lysine coated glass slide (Thermo Scientific, Menzel-Gläser) for 30

min. prior to incubation in pre-warmed RPMI + 10% FCS at 37˚C for 45 min- 3 h 15 min

depending on the tested parameter. Slides were than washed in DPBS and fixed with 4% para-

formaldehyde. C. albicans pseudohyphae were produced using published conditions with

modifications [91]. Overnight culture was collected by centrifugation, washed twice with 0.15

M NaCl, resuspended in 0.15 M NaCl and incubated at room temperature for 24 h to induce

starvation. After 24 h, cells were transferred into RPMI 1640 at a concentration of 1x106 and

incubated at 30˚C 200rpm for 6 h prior to fixation with 4% paraformaldehyde. Fixed cells were

stained and imaged as described below. To induce goliath cell formation, a single colony of C.

albicans was inoculated in 4 ml SD media (2% glucose, 6.7g/L yeast nitrogen base without

amino acids) and incubated for 24 h at 30˚C 200 rpm [62]. Following incubation, 600 μl of cul-

ture were washed in three times milliQ water and resuspended in 600 μl milliQ water prior to
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OD600 measurement. To elicit zinc starvation, and hence goliath cell formation, washed cells

were inoculated into 4 ml of Limited Zinc Medium (LZM) at OD600 0.2. LZM culture was

incubated for 3 days prior to fixation with 4% paraformaldehyde and staining [62].

Immunofluorescent staining of Fc-lectins binding to fungal cells

Yeast cells were counted using an Improved Neubauer haemocytometer and 2.5 x 106 cells

were transferred into V-bottomed 96-well tissue culture plates. Plates were centrifuged at

4000 rpm 5 min and supernatants were removed. Samples of 1 μg/ml dectin-1-Fc in PBS,

1% (v/v) FCS or 2 μg/ml of dectin-2-Fc, CRD4-7-Fc, CR-Fc or DC-SIGN-Fc (Thermofisher)

in binding buffer (BB) (150 mM NaCl, 10 mM Tris pH 7.4, 10 mM CaCl2 in sterile water

+ 1% FCS) were then added to appropriate wells and incubated for 45 min on ice. Cells

were washed once in PBS + 1% FCS for dectin-1-Fc or BB buffer for dectin-2-Fc, CRD4-

7-Fc, CR-Fc and DC-SIGN-Fc and then stained with Alexa Fluor 488 goat anti-human IgG

antibody (Life Technologies) diluted 1/200 in PBS + 1% FCS or BB buffer and incubated 30

min on ice. Stained cells were washed twice before final resuspension in PBS + 1% FCS or

BB buffer. For staining filamentous cells, Fc protein in PBS + 1% FCS or BB buffer at the

same concentration as above was added on top of poly-L-lysine slides. Three independent

samples performed on separate days were analysed using a BD Fortessa flow cytometer

where 10,000 events were recorded for each sample from three independent experiments

(n > 30,000). Median fluorescence intensity for asymmetric peaks and mean fluorescence

intensity for symmetric peaks was calculated for each sample using FlowJo v.10 software.

Alternatively, 5 μl of yeast cells were added on a poly-L-lysine coated glass slides (Thermo

Scientific, Menzel-Gläser) prior to imaging in 3D on an UltraVIEW VoX spinning disk con-

focal microscope (Nikon, Surrey, UK). In these measurements background fluorescence

was accommodated for by comparing cells incubated with probe plus secondary antibody

to cells incubated with secondary antibody only or unstained cells. Aliquots of the same

samples that were used for flow analysis were also examined by fluorescence microscopy to

record images of the binding patterns. At least 10 images were taken per feature highlighted

representing 20–50 independent cells. Images are presented as extended focus reconstruc-

tions in the Volocity software package, which displays a single image created by making a

brightest-point merge of all the Z-slices through a cell.

High pressure freezing (HPF) of samples for immunogold labelling of C.

albicans with Fc-lectins for transmission electron microscopy (TEM)

Yeast and hyphal C. albicans samples were prepared using high-pressure freezing by

EMPACT2 high-pressure freezer and rapid transport system (Leica Microsystems Ltd., Milton

Keynes, United Kingdom). Cells were freeze-substituted in 1% acetone (w/v) OsO4 by using a

Leica EMAFS2 prior to embedding in Spurr’s resin and polymerizing at 60˚C for 48 h. Ultra-

thin sections were cut using a Diatome diamond knife on a Leica UC6 ultramicrotome and

sections were mounted onto formvar coated copper grids. Subsequently, sections on formvar

coated copper grids were blocked in blocking buffer (PBS + 1% (w/v) BSA and 0.5% (v/v)

Tween20) for 20 min prior to incubation in three washes in binding buffer (150 mM NaCl, 10

mM Tris pH 7.4, 10 mM CaCl2 in sterile water, 1% FCS) for 5 min. Sections were then incu-

bated with Fc chimeric proteins (5 μg/ml for yeast and 10 μg/ml for hyphae) for 90 min before

six washes in binding buffer for 5 min. Fc protein binding was detected by incubation with

Protein A conjugated to 10 nm gold (Aurion) (diluted 1:40 in PBS + 0.1% (w/v) BSA) for 60

min prior to six 5 min washes in PBS + 0.1% (w/v) BSA followed by three, 5 min washes in

PBS, and three, 5 min washes in water. Sections were stained with uranyl acetate for 1 min
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prior to three 2 min washes in water and were left to dry. TEM images were taken using a

JEM-1400 Plus using an AMT UltraVUE camera.

Glycan microarray analyses of Fc-lectins

The binding specificities of the Fc-lectin receptors were analysed using two types of carbohy-

drate microarrays: (1) a microarray designated ‘Fungal and Bacterial Polysaccharide Array’

featuring 19 saccharides (polysaccharides or glycoproteins) and one lipid-linked neoglycolipid

(NGL) derived from the chitin hexasaccharide (S2 Table); and (2) a screening microarray of

474 sequence-defined lipid-linked glycan probes, of mammalian and non-mammalian type

(S3B Table) essentially as previously described [92]; these probes are a subset of a recently gen-

erated large screening microarray containing around 900 glycan probes (in-house designation

“Array Sets 42–56”, which will be published in detail elsewhere).

The Fc-lectin binding was performed in both types of arrays essentially as described [28].

In brief, after blocking the slides with 0.02% v/v Casein (Pierce) and 1% BSA (Sigma) diluted

in HBS (10 mM HEPES-buffered saline, pH 7.4, 150 mM NaCl) with 10 mM CaCl2, the micro-

arrays were overlaid with the Fc-lectins precomplexed with the biotinylated goat anti-human

IgG (Vector) for 2 hours. The Fc-lectin-antibody complexes were prepared by preincubating

the–Fc-lectin with the antibody at equimolar ratios for 1 hour, followed by dilution in the

blocking solution to give the final Fc-lectin concentration: dectin-2-Fc 10 μg/ml, CRD4-7-Fc

20 μg/ml and hDC-SIGN-Fc 2 μg/ml. Dectin-1-Fc used as control for the Fungal and Bacterial

Array was analysed non-precomplexed at 20 μg/ml in the blocking solution 0.5% v/v casein

(Pierce) in HBS. The binding was detected with Alexa Fluor-647-labeled streptavidin (Molecu-

lar Probes, 1 μg/ml). All steps were carried out at ambient temperature. Details of the glycan

library including the sources of saccharides, the generation of the microarrays, imaging, and

data analysis are in the Supplementary glycan microarray document (S4 Table) in accordance

with the Minimum Information Required for A Glycomics Experiment (MIRAGE) guidelines

for reporting glycan microarray-based data [93].

Supporting information

S1 Fig. Concentration response curves of Fc-lectin binding to target antigens via ELISA.

Purified Fc-lectin probes were screened against whole C. albicans (SC5314) yeast cells (black),

purified cell wall mannan (green) or purified yeast β-glucan (blue) (A). Fc-lectin integrity was

checked via reducing SDS-Page, expected band sizes were dectin-1-Fc 55 kDa, dectin-2-Fc 55

kDa, CRD4-7-Fc 110 kDa, CR-Fc 50 kDa, hDC-SIGN-Fc 69kDa (B).

(TIF)

S2 Fig. Comparison of CRD4-7-Fc binding pattern to C. albicans and C. dubliniensis yeast

cells. Images display Z-stack slices from the bottom, median and top as well as a merge of all Z-

slices at the brightest point of CRD4-7-Fc binding to C. dubliniensis and C. albicans yeast cells.

Images were generated using an UltraView VoX spinning disk confocal microscope and

extended focus reconstructions in the Volocity software (Quorum Technologies) were utilised to

generate a single image derived from the brightest-point merge of all the Z-slices through a cell.

(TIF)

S3 Fig. Binding of Fc-lectin probes to S. cerevisiae, C. albicans and C. dubliniensis yeast

cells grown on different carbon sources. Indirect immunofluorescence staining of S. cerevi-
siae (NCPF8313), C. albicans (SC5314) and C. dubliniensis (WÜ284) yeast cells by dectin-2-Fc,

CRD4-7-Fc and dectin-1-Fc represented as Median Fluorescent Intensity (MFI). 2.5 x 106

cells were used in each analysis. The data represent three independent biological
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experiments ± SEM. Samples were analysed using a BD Fortessa flow cytometer, where 10,000

events were recorded for each sample (n = 30,000). Gluc, Glucose; Lac, Lactate. There were no

statistically significant differences observed.

(TIF)

S1 Table. Fungal strains.

(PDF)

S2 Table. Saccharide probes included in the fungal and bacterial polysaccharide array.

(PDF)

S3 Table. A. List of glycan probes, fluorescence binding scores and relative binding intensities

(’matrix’) elicited with the Fc-lectins. B. List of glycan probes and their sequences in the

screening array.

(PDF)

S4 Table. Supplementary glycan microarray document based on MIRAGE glycan microar-

ray guidelines (doi:10.3762/mirage.3).

(PDF)
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