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ABSTRACT
The Zeno line is the locus of points on the temperature–density plane where the compressibility factor of the fluid is equal to one. It has been
observed to be straight for a broad variety of real fluids, although the underlying reasons for this are still unclear. In this work, a detailed
study of the Zeno line and its relation to the vapor–liquid coexistence curve is performed for two simple model pair-potential fluids: attractive
square-well fluids with varying well-widths λ and Mie n-6 fluids with different repulsive exponents n. Interestingly, the Zeno lines of these
fluids are curved, regardless of the value of λ or n. We find that for square-well fluids, λ ≈ 1.8 presents a Zeno line, which is the most linear
over the largest temperature range. For Mie n-6 fluids, we find that the straightest Zeno line occurs for n between 8 and 10. Additionally, the
square-well and Mie fluids with the straightest Zeno line showed the closest quantitative agreement with the vapor–liquid coexistence curve
for experimental fluids that follow the principle of corresponding states (e.g., argon, xenon, krypton, methane, nitrogen, and oxygen). These
results suggest that the Zeno line can provide a useful additional feature, in complement to other properties, such as the phase envelope, to
evaluate molecular models.
© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0192770

I. INTRODUCTION

The forces that act between molecules of real fluids are excep-
tionally complex multi-body interactions, and yet the thermody-
namic properties of pure fluids exhibit many interesting “simple”
regularities, such as the law of rectilinear diameter1,2 and the law
of corresponding states introduced initially by van der Waals and
later extended by Pitzer and co-workers.3,4 This work considers
another regularity known as the Zeno line, which is the locus of
thermodynamic states with a unit compressibility factor, Z, in the
temperature–density plane. In general, the Zeno line need not be
straight; however, experimentally, it has been observed to be very
nearly straight for a large number of fluids.5,6 To illustrate this, the
Zeno line for argon, xenon, krypton, methane, nitrogen, and oxygen
(the so-called corresponding-state fluids) is represented in Fig. 1 as
gray dashed lines in the reduced absolute temperature T and number
density ρ = N/V plane. For typical systems, the Zeno line extends
from the Boyle temperature TB at zero density and terminates just
above the triple point where it intersects the liquid–solid freezing

curve. If the Zeno line were perfectly straight, then its extrapolation
to zero temperature appears to be at a density ρB. The value of ρB
for Mie and square-well fluids is determined here from the temper-
ature dependence of the second and third virial coefficients of the
system (see Sec. II); however, it is often determined empirically in
experimental or numerical work. These real fluids obey the prin-
ciple of corresponding states, meaning that their thermodynamic
properties are found to be remarkably similar when scaled by their
critical values.7 The classic scaling by the critical temperature and
density highlights the similarity of the phase envelope of these real
fluids [see Fig. 1(a)], while the scaling by the Boyle temperature and
density in Fig. 1(b) highlights the similarity of the Zeno lines and
yields a 45○ Zeno line. Both plots allow for an easy comparison of
the agreement of a molecular model against these two features of real
fluids.

The underlying physical reason for the linearity of the Zeno
line is not fully understood; however, there has been some geo-
metrical analyses on the relationship between the Zeno line and
the line of rectilinear diameter,14,15 as well as investigations into
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FIG. 1. The Zeno line and vapor–liquid coexistence curve for the corresponding
state fluids (gray dashed lines) and the Lennard-Jones 12-6 potential (red sym-
bols) scaled by the critical properties (a) and scaled by the Zeno line properties
(b). Due to the large degree of overlap between different fluids, the dashed lines
appear to be solid. The data for the corresponding states fluids were taken from
the NIST Chemistry WebBook.8 The phase equilibrium data for the Lennard-Jones
fluid are taken from the NIST Standard Reference Simulation Website9 for the
5σ truncation, and the Zeno line data are taken from the work of Urschel and
Stephan.10 For the corresponding state fluids, the ratio of critical temperature to
the Boyle temperature was found to range from Tc/TB ≈ 0.37–0.38, and the ratio
of the critical density is ρc/ρB ≈ 0.28–0.29; thus, the large gray pluses denote
the critical points of these fluids. For the LJ fluid, the critical point is located at11

kBTc/ε = 1.3120(7) and ρcσ3
= 0.316(1). This gives a value of Tc/TB ≈ 0.384

and ρc/ρB ≈ 0.275. The red star denotes the triple point for the LJ system, which
is located at12,13 kBT t/ε = 0.661 and ρσ3

= 0.864.

other Zeno-like lines throughout the T–ρ plane.16–18 The van der
Waals equation of state (EOS) predicts a perfectly straight Zeno
line.19 Commonly used EOSs that are derived from it, such as the
Redlich–Kwong–Soave and Peng–Robinson equations of state, are
able to approximately predict the Zeno line of real fluids with rea-
sonable accuracy,20 implying that they sufficiently capture some
intrinsic behavior of the real fluid. Furthermore, the Zeno line has
been used to improve semi-empirical equations of state,20–22 sug-
gesting that the Zeno line may also be a necessary feature of any
model molecular fluid. In this way, a straight Zeno line provides an
interesting additional basis on which such models may be evaluated,
beyond the examination of the phase envelope, which of course must
also remain well captured.

While many real fluids exhibit straight Zeno lines, the same
is not true for model molecular fluids. Recently, there has been
renewed interest in the Zeno line for fluids modeled with pair-
potentials using molecular simulation.16,23–27 Perhaps the most

widely used model is the Mie potential where the interparticle
energy, u(r), as a function of interparticle distance r is given by the
following expression:

u(r) = n ε
n −m

( n
m
)

m/(n−m)
[(σ

r
)

n
− (σ

r
)

m
], (1)

where σ is the particle diameter and ε is the interaction energy.
The use of this potential is widespread, particularly where the free
parameters are set to n = 12 and m = 6, which is also known as the
Lennard-Jones (LJ) 12-6 fluid. Deiters and his coworkers10,28,29 have
performed an exhaustive study of the characteristic curves of the
Lennard-Jones 12-6 fluid. The Zeno line for the LJ 12-6 fluid (also
presented in Fig. 1) is relatively straight at high-temperatures/low-
densities, but the deviation at low-temperatures/high-densities is
significant when compared to the Zeno line of real fluids. Simi-
larly, the vapor–liquid coexistence curve for the LJ 12-6 fluid (the
red crosses in Fig. 1) is also similar to that of the corresponding-
states; however, the deviation at low and high temperatures is also
easily discernible. As mentioned, many real fluids exhibit a straight
Zeno line; therefore, it is not unreasonable to desire that the founda-
tional molecular models used to construct more “realistic” potentials
or theoretical descriptions should be able to reproduce this behav-
ior. They must do this and more if they are to agree with the
behavior of real fluids over the entire range of temperature and
density/pressure.

In addition to the Mie potential, the particularly simple square-
well fluid has been shown to present a curved Zeno line for a
particular set of model parameters,24 but a full exploration has not
taken place. In square-well systems, the particles interact with each
other through a potential of the following form:

u(r) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

+∞ for 0 < r < σ,

−ε for σ < r < λσ,

0 for λσ < r.

(2)

The particles are hard spheres with diameter σ that interact with
each other through an attractive square-well of depth ε and width λσ.
This potential, while simple, possesses the key elements of excluded
volume and an attractive interaction at intermediate distances. The
square-well model is fundamentally interesting as it is at the heart
of several thermodynamic perturbation theories. In addition, there
exists an exact virial expansion up to the third coefficient30 with
an empirical expression for the fourth,31 and no truncation of the
potential profile is required for simulation, unlike the Mie fluids.
This also facilitates a theoretical examination of the Zeno line as a
basis of comparison against simulation results. Here, an in-depth
examination of the Zeno line for the square-well fluids is carried out.
The first objective is to discern whether the curved Zeno line is the
general case for this model. Once this is established, it is observed
whether the curvature of Zeno line has implications for other prop-
erties of the fluid. In general, by observing the set of conditions for
which the Zeno line is not straight, it may be possible to offer some
insights into why, for so many real fluids, it is.

The remainder of this paper is organized as follows. In Sec. II,
the behavior of the Zeno line in the low density limit is examined
based on the virial expansion. In Sec. III, the details of the molecular
simulation methods used in this work are described. In particular,
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the event molecular dynamics simulations and the methods used
to locate the Zeno line are described, along with the multicanoni-
cal Monte Carlo simulations used to determine vapor–liquid phase
coexistence. The Zeno lines for square-well fluids of different well-
widths and Mie fluids of repulsive exponents are then examined and
discussed. In Sec. V, the vapor–liquid coexistence curves of square-
well and Mie fluids are analyzed. Finally, the main findings of this
work are summarized in Sec. VI, along with directions for future
research.

II. VIRIAL EXPANSION FOR THE ZENO LINE
In this section, theoretical estimates for the properties of the

Zeno line are determined. At very low densities, the thermody-
namic properties of a fluid are well approximated by the virial
expansion,24,32,33 where the deviation of the equation of state from
that of the ideal gas can be expanded in a Taylor series in density
around zero density as follows:

βp
ρ
= 1 + B2(T)ρ + B3(T)ρ2 + B4(T)ρ3 + ⋅ ⋅ ⋅ , (3)

where p is the pressure, β = (kB T)−1 is the inverse temperature,
B2(T) is the second virial coefficient, B3(T) is the third virial coef-
ficient, and so on. The virial coefficients are independent of density,
but, in general, they will depend on the absolute system temperature,
kBT.

At very low densities, the dependence of the temperature of
the Zeno line on the density can be expanded in a power series as
follows:

T(ρ)
TB
≈ 1 − ρ

ρB
+ K( ρ

ρB
)

2

+ ⋅ ⋅ ⋅ , (4)

where ρB and K are considered to be parameters to be determined.
The parameter ρB relates to the slope of the tangent of the Zeno
line at the Boyle temperature, while the parameter K is related to
the curvature of the Zeno line at the Boyle temperature. If the above
expansion for T(ρ) is inserted into Eq. (3), set βp/ρ = 1, and all terms
are expanded and collected into a power series in ρ; the following
series is found:

0 ≈ B2(T)ρ + B3(T)ρ2 + B4(T)ρ3 + ⋅ ⋅ ⋅

≈
⎡⎢⎢⎢⎢⎣

B2(TB) + B′2(TB)TB
⎛
⎝
− ρ

ρB
+ K( ρ

ρB
)

2

+ ⋅ ⋅ ⋅
⎞
⎠

+ 1
2

B′′2 (TB)T2
B(−

ρ
ρB
+ ⋅ ⋅ ⋅)

2

+ ⋅ ⋅ ⋅
⎤⎥⎥⎥⎥⎦

ρ

+ [B3(TB) + B′3(TB)TB(−
ρ

ρB
+ ⋅ ⋅ ⋅) + ⋅ ⋅ ⋅ ]ρ2

+ B4(TB)ρ3 + ⋅ ⋅ ⋅ . (5)

Collecting terms of the same order in ρ,

0 ≈ B2(TB)ρ + [B3(TB)ρB − B′2(TB)TB]
ρ

ρB
ρ

+ [B′2(TB)TBK + 1
2

B′′2 (TB)T2
B − B′3(TB)TBρ2

B

+ B4(TB)ρ2
B](

ρ
ρB
)

2

ρ + ⋅ ⋅ ⋅ . (6)

The coefficients of each power of the density should be zero along
the Zeno line. Zeroing the first term leads to the definition of the
Boyle temperature, TB, which is the temperature at which the lead-
ing/second virial coefficient vanishes [i.e., B2(TB) = 0]. This is not
particularly interesting as it can also be determined directly from the
virial expansion of Eq. (3). Continuing, the second order term leads
to an analytical expression for the density ρB,

ρB =
B′2(TB)
B3(TB)

TB, (7)

where the prime denotes a derivative in temperature. This expres-
sion for ρB was first derived by Holleran33 and explicitly given for
the square-well potential by Apfelbaum and Vorob’ev.24 While the
square-well fluid is explored in a moment, Eq. (7) does allow for the
calculation of the Zeno density for the LJ 12-6 fluid, giving the result
ρBσ3 = 1.147.

Finally, zeroing the third order term in Eq. (6) leads to an
expression for the curvature K of the Zeno line at the Boyle
temperature/zero-density,

K = 1
B′2(TB)TB

[−1
2

B′′2 (TB)T2
B + B′3(TB)TBρB − B4(TB)ρ2

B]. (8)

We believe this to be a new result, which allows the curvature of the
Zeno line at zero density to be estimated within the precision of the
virial terms. If the Zeno line is completely straight, it must also begin
as a straight line; thus, this expression can be used to search for more
“realistic” potentials and their parameters. When Eq. (8) is applied
to the LJ 12-6 system, it yields a curvature value of K = −0.009 975.
This highlights that the LJ 12-6 system does not exhibit an exactly
straight Zeno line, even for low densities. This contradicts earlier
reports based on simulation exploration,16 although it must be said
the virial approach here allows for greater precision in determining
this initial curvature.

The Zeno line properties at the Boyle temperature for attrac-
tive square-well fluids of different well widths and Mie n-6 fluids
with varying n are plotted in Fig. 2 to explore the effect of their
parameters on these properties. To calculate these parameters for
the square-well interaction potential, exact expressions for the sec-
ond and third virial coefficients34–36 are used. There are no exact
analytic expressions for higher order virial coefficients, but accurate
empirical approximations have been developed by fitting numer-
ical calculations and are available for the fourth- to ninth-order
virial coefficients31,37–40 for well-widths in the range 1.2 ≤ λ ≤ 2.
The empirical expression for the fourth virial coefficient used here
is taken from Ref. 31, and it is repeated in the Appendix for
completeness. The exact expression for the Boyle temperature for
square-wells can be determined from the second virial to be as
follows:
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FIG. 2. Properties of the Zeno line near the Boyle temperature and zero density for
square-well (black solid lines) and Mie n-6 (red filled circles) systems. (Top) Boyle
temperature TB, (middle) Zeno density ρB, and (bottom) curvature of the Zeno
line K.

kBTB

ε
= [ln λ3

λ3 − 1
]
−1

. (9)

As can be seen, the Boyle temperature monotonically increases with
the decreasing well-width for the square-well fluid. As λ increases,
the square-well Boyle temperature, scaled by ε/kB, also increases; this
reflects the greater interaction “volume” for particles with a larger
well width, which leads to more attractive interactions that require a
higher temperature to overcome.

The Zeno line density, ρB, for square wells can also be deter-
mined exactly and is plotted in Fig. 2. It decreases with the increasing
well width, becoming fairly level at high values of λ and diverging
as λ→ 1. Finally, the curvature at zero density of the Zeno line K
for square wells is determined using approximate expressions for
the fourth virial in Fig. 2. If K < 0 (i.e., λ < 1.896), the Zeno line
initially curves downward from the Boyle temperature at zero den-
sity, while if K > 0 (λ > 1.896), it initially curves upward. The case
K = 0 corresponds to an initially straight Zeno line (λ ≈ 1.896). This
analysis is in agreement with that of Apfelbaum and Vorob’ev24 in
that the Zeno line for the square well fluid is not straight in the low
density region for a general value of λ; however, the best candidate
well-width of λ ≈ 1.896 for a straight Zeno line has been identified.

The same analysis for the Zeno line parameters for various Mie
n-6 fluids is carried out and summarized in Table I. They are also
displayed as the red filled circles in Fig. 2 for comparison against the
square well system. In this work, the analysis is limited to Mie fluids
with m = 6, as this has some physical basis in long-range decay of the
attractive dispersion interaction between atoms.

The author of Ref. 41 provided an exact expression for the
second virial coefficient for the LJ 12-6 potential and approximate
expressions for the values of the third and fourth virial coeffi-
cients. In addition, tables for the values of the second and third
virial coefficients as a function of temperature are provided in the
supplementary material of Ref. 29. For the general Mie n-6 poten-
tial, the second virial coefficient and its first and second derivatives

TABLE I. Zeno line parameters for fluids interacting with the Mie n-6 potential.

n kBTB/ε ρBσ3 K

8 5.278 1.0553 ± 0.0002 0.015 67 ± 0.000 56
10 4.058 1.0970 ± 0.0002 0.002 36 ± 0.000 33
11 3.695 1.1208 ± 0.0001 −0.004 50 ± 0.001 26
12 3.418 1.1446 ± 0.0006 −0.010 51 ± 0.001 47
14 3.023 1.1890 ± 0.0003 −0.019 58 ± 0.001 41
16 2.754 1.2301 ± 0.0003 −0.031 82 ± 0.001 70
20 2.409 1.2968 ± 0.0003 −0.040 36 ± 0.001 16
36 1.864 1.4518 ± 0.0001 −0.059 40 ± 0.002 38
48 1.704 1.5102 ± 0.0003 −0.078 22 ± 0.002 57

were determined via quadrature and series expansion.42 The third
and fourth virial coefficients were computed using Mayer-sampling
Monte Carlo.43 The Boyle temperatures for the Mie fluids were taken
from Ref. 44.

For the LJ 12-6 potential, the Boyle temperature is calculated to
be kBTB/ε ≈ 3.4179. The Boyle temperature decreases with increas-
ing n, which corresponds to increasing the stiffness of the repulsive
core of the interaction potential, while the Zeno density ρB increases.
The curvature K of the Zeno line at zero density decreases with
increasing n. For n = 8, the curvature is positive, while for n > 11, the
curvature is negative. The curvature will be zero somewhere between
n = 10 and 11. With the exception of this particular value of n, none
of the Mie n-6 fluids is expected to have a Zeno line that is perfectly
straight.

Other properties along the Zeno line can be explored, such
as the configurational energy and heat capacity. Within the virial
expansion, the configurational energy is given by the following
expression:

Ures ≈ −kBT2[B′2(T)ρ +
1
2

B′3(T)ρ2 1
3

B′4(T)ρ3 + ⋅ ⋅ ⋅ ]. (10)

To first order in the density, the configurational energy along the
Zeno line should therefore vary as follows:

Ures ≈ −ελ3BHS
2 ρ + ⋅ ⋅ ⋅

≈ −ε
2πλ3

3
ρσ3 + ⋅ ⋅ ⋅ . (11)

The residual heat capacity, which is the derivative of the interaction
energy with temperature, is given by the following expression:

Cres
V ≈ −kBT[[2B′2(T) + TB′′2 (T)]ρ +

1
2
[2B′3(T) + TB′′3 (T)]ρ2

+ 1
3
[2B′4(T) + TB′′4 (T)]ρ3 + ⋅ ⋅ ⋅ ]. (12)

To first order in density, the variation of the heat capacity along the
Zeno line is as follows:

Cres
V ≈ −kBTB[2B′2(TB) + TBB′′2 (TB)]ρ + ⋅ ⋅ ⋅ ,

Cres
V

kB
≈ ( ε

kBTB
)

2
λ3BHS

2 ρ + ⋅ ⋅ ⋅ .
(13)
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Note that as the expressions given in Eqs. (11) and (13) are truncated
to first order in density, they are linear; the neglected higher order
terms will lead to the curvature of these properties with density.

These expressions are used later to provide a basis of compari-
son when exploring the simulation results. In Sec. III, details of the
simulations used to locate the Zeno line and vapor–liquid coexis-
tence curves for square-well fluids are given. The simulation results
can be used to verify these results, confirm if the square-well has a
straight Zeno line, and to explore its other properties.

III. SIMULATION DETAILS
To determine the Zeno line’s location for all densi-

ties/temperatures, event driven molecular dynamics (EDMD)
simulations in the NVT ensemble for systems of attractive square-
well particles are carried out using the DynamO45 software. For the
square-well system, the pressure can be calculated directly from the
core and bounce event rates, Ṅ core and Ṅ bounce, respectively, using
the following relation:46

Z = 1 + (πβmσ2)1/2

3N
(Ṅ core − λṄ bounce). (14)

This expression implies that along the locus of points where
Z = 1 (i.e., the Zeno line), the two event rates cancel; thus,
Ṅ core = λ Ṅ bounce. A total of N = 864 particles were used for each
simulation, initially arranged in an FCC lattice with random ini-
tial velocities and equilibrated for 102N events. Each simulation
was then permitted to run for further 102N production events, and
this was repeated three times to collect statistics, and the reported
results were averaged over these three runs. Simulations were used
to bracket the Zeno line density to within ±0.02ρB around Z = 1 for
each well width. Estimates for the Zeno state-points were made in
intervals between 0.8T/TB and 0.15T/TB. These simulations per-
formed were then used to determine isotherms around the density
at which Z = 1. For each isotherm, this procedure gives precise data
for Z across a narrow range of densities, which brackets the den-
sity where Z = 1. This dataset for Z as a function of ρ was then
fit to a quadratic polynomial using the UltraNest Bayesian infer-
ence package.47–49 Based on this fit, the density at which Z = 1 is
estimated, and the uncertainty of this estimate is also determined
by propagating the posterior estimates at the fitted Zeno density.
Other properties, such as the configurational internal energy and
heat capacity, are calculated in a similar manner using the posterior
distribution of each respective property fitted to density at isother-
mal state-points bracketing the Zeno density. This distribution is
then evaluated at the Zeno density to give the property along the
Zeno line.

In order to determine the vapor–liquid coexistence curves
for square-well fluids of different well widths, multicanonical
simulations50–52 are performed with cubic simulation boxes of side
lengths L = 7σ, 10σ, 12σ, and 15σ with periodic boundary condi-
tions. For each system size at each temperature, the simulations
are begun with an empty box and a flat multicanonical weight.
Each individual simulation run consists of 107 attempted inser-
tion/deletion moves and 107 attempted displacement moves. Based
on the results of the simulation, the multicanonical weights are
updated after each run to allow for uniform sampling of the num-
ber of particles in the system. The initial runs gradually increase the

maximum number of particles allowed in the system; this facilitates
the determination of the multicanonical weights. Once the freezing
density is reached, simulation runs are repeated in batches of ten
until the frequency of observed particle numbers in the system is
uniform to an acceptable level. From the multicanonical weights, the
density histograms can be determined for any chemical potential.
The vapor–liquid coexistence point is determined by searching for
the chemical potential where the density histogram has two peaks
(one corresponding to the vapor phase and the other to the liquid
phase) with an equal area.

IV. SIMULATION RESULTS FOR THE ZENO LINE
A. Square-well fluids

The simulation results for the Zeno lines of square-well flu-
ids of differing well-widths are shown in Fig. 3. The temperature is
scaled by the Boyle temperature TB, and the density is scaled by ρB, as
determined from the virial expansion results in Eq. (7). The primary
observation is that none of the square-well Zeno lines are straight.
Even the initially straight line of λ = 1.896 identified using the virial
approach begins to curve at higher densities. From the previous anal-
ysis of the viral expansion in Sec. II, all the Zeno lines for square-well
fluids with λ > 1.896 will initially curve upwards from the Boyle tem-
perature at low densities. Indeed, this is observed in Fig. 3, and these
well-widths remain above the 45○ line. For square-well fluids with
λ < 1.896, the Zeno lines are expected to initially curve downwards
from the Boyle temperature at low densities, and this is observed
from the simulation data; however, all the Zeno lines begin to curve
upwards at higher densities (lower temperatures).

Although not straight, one well-width which approximately fol-
lows the linear Zeno line for largest range of temperatures is λ ≈ 1.8,
as demonstrated in Fig. 3. It is shown later that this well-width also
approximates the critical properties and phase envelope reasonably
well. The Zeno lines of the square-well fluids that are closest to the

FIG. 3. The Zeno line (i.e., locus of points with Z = 1) for attractive square-well flu-
ids of varying well width λ (colored solid lines) and real/corresponding-states fluids
(gray solid lines). TB is the Boyle temperature [see Eq. (9)], and ρB is the Zeno
density [see Eq. (7)]. The dashed lines denote the boundaries of the vapor–liquid
coexistence regions, and the dotted lines are the rectilinear diameters. The filled
circles are the critical points for the square-well fluids, while the gray plus is the crit-
ical point for the corresponding states fluids. The red star denotes the triple point53

for the square-well system with λ = 2, and the purple star denotes the triple point54

for λ = 1.5.
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FIG. 4. The Zeno line for attractive square well fluids as in Fig. 3 for a narrower
range of well-width λ = 1.72 to λ = 1.88 and smaller range to highlight the devia-
tion of the LJ 12-6 and square-well fluids. The red circles denote the points on the
Zeno line for the Lennard-Jones 12-6 potential. The black line is the ideal Zeno
line. The gray solid lines are the Zeno lines for the corresponding states fluids.

straight 45○ line are shown in more detail at the lower temperatures
in Fig. 4. As a comparison, the Zeno lines for the LJ 12-6 fluids
are shown as the red filled circles. While a reasonable approxima-
tion of the real-fluid Zeno line is possible, neither the LJ 12-6 nor
any variant of the square-well fluid avoids significant curvature at
high-densities/low-temperatures; thus, some other key feature than
attraction distance must be explored and adjusted to improve the
agreement.

At very low densities, the systems closely resemble that of the
ideal gas, which has Z = 1. This implies that only the locus of points
with Z = 1 (i.e., the Zeno line) will intersect the Boyle temperature at
ρ = 0. Although ideal gases have Z = 1, not all gases with Z of unity
are necessarily ideal. Other properties, such as internal energy or
entropy, can vary, making the fluid non-ideal. In Fig. 5, the varia-
tion of the configurational energy, scaled by the Boyle temperature,
of square-well fluids with different values of λ along the Zeno line is
plotted. These curves appear to be fairly straight, more so than the

FIG. 5. Variation of the configurational energy along the locus of points with Z = 1
for attractive square-well fluids of varying well width λ (filled circles) and the cor-
responding states fluids (gray lines). Inset: Same plot with reduced configurational
energy according to Eq. (11) to highlight the differences in curvature in the main
plot.

FIG. 6. Variation of the residual isochoric heat capacity along the locus of points
with Z = 1 for attractive square-well fluids of varying well width λ (filled circles) and
the corresponding states fluids (gray lines). ρB is the Zeno density [see Eq. (7)].
Inset: Reduced heat capacity [see Eq. (13)] along the Zeno line.

corresponding Zeno lines in Fig. 3. The slope of these lines gradu-
ally decreases as λ increases, with the curves of the larger values of
λ nearly overlapping. There is, however, a slight positive curvature
in the data, with smaller values of λ curving upwards and the larger
values of λ curving downwards. This is made more apparent by scal-
ing the configurational energy by the factor λ2BHS

2 ρ, as suggested by
Eq. (11) and shown in the inset in Fig. 5. The gray lines in Fig. 5
are the configurational energies for the various corresponding states
fluids along the Zeno line. These lines are fairly straight and are all
close to each other. They have a lower slope than all the square well
systems and are closest to the λ = 2 system. This is another interest-
ing feature that the square-well fluid fails to reproduce regardless of
well-width.

The variation of the residual isochoric heat capacity of square
well fluids along the Zeno line is shown in Fig. 6. The residual heat
capacities are not linear, but they do seem to begin with a fairly
straight region at low densities that abruptly curve upwards at a par-
ticular density. These curves shift to lower values and become more
straight as the well-width λ increases. In the inset, the heat capacity
is plotted in a manner suggested by Eq. (13). The gray lines in Fig. 6
are the residual isochoric heat capacities for the various correspond-
ing states fluids. These lines are relatively straight and are grouped
fairly close together, but they are more spread than for the other
properties examined for these fluids. While the closest agreement for
the configurational energy of real systems was for square-well fluids
with λ ≈ 2, the agreement for the isochoric heat capacity is closer for
λ ≈ 1.5. Again, the square-well system struggles to reproduce realis-
tic behavior and has conflicting optimal well-widths depending on
the chosen observable.

B. Mie n-6 fluids
Simulation data for the Zeno lines of the Mie n-6 fluids, taken

from Ref. 44, are plotted Fig. 7. In general, these fluids are seen to
follow the ideal Zeno line more closely than the square-well fluids.
For all the Mie n-6 fluids explored, with the exception of n = 8, the
Zeno lines curve downwards at higher density and lie below the ideal
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FIG. 7. The Zeno line for Mie n-6 fluids (colored solid lines) and real/corresponding-
states fluids (gray solid lines). The dashed lines denote the boundaries of the
vapor–liquid coexistence regions, and the dotted lines are the rectilinear diame-
ters. The filled circles are the critical points for the Mie n-6 fluids, while the gray
plus is the critical point for the corresponding state fluids. The data for the Zeno
line and the coexistence curves for the Mie n-6 fluids were taken from the MD
simulations of Refs. 10 and 44.

Zeno line. The Mie 8-6 fluid has the straightest Zeno line, but curves
slightly upwards at large densities and lies above the 45○ line.

Figure 8 shows a more detailed view of the Zeno line of the
Mie n-6 fluids. This plot also includes the Zeno line for the Mie
11-6 fluid. As discussed previously, the curvature K of the Zeno line
near zero density vanishes for 10 < n < 11 (see Table I); however,
only the Zeno line for n = 8 lies above the 45○ line. This implies that,
although the curvature is positive at zero density for n = 10, the cur-
vature eventually becomes negative at higher densities, and the Zeno
line dips below the 45○ line. Hence, it is not expected that any of the
Zeno lines for the Mie n-6 fluids will be straight.

In summary of the simulation results for the Zeno line, it is
clear that both the Mie and square-well potentials can be optimized
using their existing parameterizations to improve their agreement
with real corresponding-states fluids; however, the current forms
cannot maintain a straight Zeno line and thus deviate at higher den-
sities. Optimal values of λ = 1.8 for square-wells and n = 8 to 10 for

FIG. 8. The Zeno line for Mie n-6 fluids as in Fig. 7. The black line is the ideal Zeno
line. The gray dashed lines are the Zeno lines for the corresponding states fluids.

Mie n-6 fluids are suggested here, and Sec. V will explore if these
values also provide good agreement with real fluids for the phase
envelope.

V. VAPOR–LIQUID COEXISTENCE CURVES
As a basis for comparison of the vapor–liquid phase behavior

of square-well and Mie fluids to real fluids, the following form pro-
posed by Apfelbaum and Vorob’ev16,23,25 was used, which was found
to work well for a variety of experimental fluids:16

ρl

ρB
= ρc

ρB
+ Aτ + Bτ β, (15)

A = Tc/TB − β + βρc/ρB

1 − β
, (16)

B = (1 − Tc/TB) − ρc/ρB

1 − β
, (17)

where τ = 1 − T/Tc. This form for the coexistence curve is based on
the ansatz that the Zeno line is straight; that it should be tangent to
the liquid branch of the vapor–liquid coexistence curve at low tem-
peratures; and the universality of the shape of the coexistence curve
near the critical point. In Fig. 9, the liquid branch of the vapor–liquid
coexistence curve for various fluids is plotted. It can be observed that
the form proposed by Apfelbaum and Vorob’ev [see Eq. (15)] pro-
vides a good description for the corresponding states fluids, which is
expected.

A. Square-well fluids
The vapor–liquid coexistence envelopes for attractive square-

well fluids with λ = 1.5 to 2, as determined from the multicanonical
Monte Carlo simulations described in Sec. III, are plotted as the
dashed lines in Fig. 3. When scaled by TB and ρB, the coexistence
curve broadens and shifts down to lower temperatures and higher

FIG. 9. The liquid branch of the vapor–liquid coexistence curve. The filled cir-
cles are the simulation data for square-well fluids. The red star denotes the triple
point53 for the square-well system with λ = 2; the purple star denotes the triple
point54 for λ = 1.5. The red crosses are simulation data for the Lennard-Jones 12-
6 fluid.9 The gray dashed lines are the coexistence curves for the corresponding
states fluids. The solid lines are the predictions of the conjecture of Apfelbaum and
Vorob’ev.16,23,25
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densities as the well width λ increases. Again, the data for real flu-
ids are plotted for comparison, as described in Fig. 1. In general, the
square-well systems do not follow the form of Eq. (15), mainly due
to the fact that the Zeno lines for these systems are not straight. For
square-well fluids with a Zeno line that curves upward, the coexis-
tence curve is broader than the proposed form, while for square-well
fluids with a Zeno line that curves downward, the coexistence curve
is narrower than the proposed form. It appears that the straighter
the Zeno line of a system, the better its liquid branch, as described
by Eq. (15). Despite this, the coexistence curve of these fluids is most
similar to that of the square-well fluid with λ = 1.8, which is also the
well width that has approximately the straightest Zeno line over the
full density range (see Figs. 3 and 4).

Based on thermodynamic arguments,55,56 the Zeno line should
become tangent to the extension of the liquid branch of the
vapor–liquid coexistence curve in the limit of zero temperature.
Apfelbaum and Vorob’ev16 observed that this appears to be the case
for many experimental fluids.

For the range of conditions that we explore for the square-well
fluids, we observe that the liquid branch of the coexistence curve
never crosses the Zeno line. In general, for all λ, the curvature of
Zeno lines increases with increasing density, and it appears that the
Zeno line for each λ does indeed adjust to avoid intersecting the liq-
uid branch of the vapor–liquid coexistence line; however, although
it does appear that the Zeno lines could become tangent to the liquid
branch of the vapor–liquid coexistence curve at low temperature, it
will cross the freezing line before this can occur (see Ref. 24). Addi-
tionally, as λ increases, the Zeno line will intersect the freezing curve
at higher scaled temperatures. For reference, the triple points for
λ = 2 are ρtσ

3 ≈ 0.61, kBTt/ε ≈ 2.16, and ptσ
3/ε ≈ 0.056,53 which cor-

respond to the scaled values ρt/ρB = 0.729 and Tt/TB = 0.288. This
is given by the red star in Fig. 3. The triple points for λ ≈ 1.5 were
estimated54 to be ρlσ

3 ≈ 0.835, kBTt/ε ≈ 0.508, and ptσ
3/ε ≈ 0.000

03, which correspond to ρt/ρB = 0.612 and Tt/TB = 0.179. This is
denoted by the purple star.

To estimate the location of the critical temperature Tc and crit-
ical density ρc for square-well fluids, vapor–liquid coexistence data
near the critical point are fit to the law of rectilinear diameter and
the scaled form of the coexistence curve width,

ρl + ρg

2ρc
= 1 + A(1 − T

Tc
), (18)

ρl − ρg = ρcB(1 − T
Tc
)

β
, (19)

where ρg is the vapor density, ρl is the liquid density, A and B are
fit parameters, and β ≈ 0.326 53 is the critical exponent of the three-
dimensional Ising universality class.57

The results of the fits are reported in Table II. When scaled by
the Zeno temperature TB and density ρB, the critical temperature
decreases, while the critical density increases with increasing well
width. This can be observed in Fig. 3, where the critical points of the
square-well fluid systems are denoted by filled circles. Apfelbaum
and Vorob’ev observed that locus of critical points of monatomic
fluids lies on a straight line, when scaled by the Zeno line parameters
TB and ρB (see Fig. 5 in Ref. 16). The scaled critical points of the
square-well fluids are presented in Fig. 11 as filled black circles, along
with the critical points of some experimental fluids. It was observed
that the critical point of square-well fluids is most similar to that of
the corresponding state fluids when the well width is in the range
1.8 ≤ λ ≤ 1.9. Square-well fluids of this approximate well-width also
give the best approximation of the straight Zeno line, as remarked
earlier.

Here, it is observed that, unlike many real fluids, the square-
well fluids do not follow the law of rectilinear diameter, as the mean
of coexisting vapor and liquid densities do not vary linearly with
temperature. The rectilinear diameters of the corresponding states
and square-well fluids can be compared in Fig. 3. It can be observed
that the rectilinear diameters of square-well fluids, in general, curve
toward larger densities and only appear to be straight relatively near
to the critical point. They do become more linear, however, as the
well-width becomes smaller. We note that extremely close to the crit-
ical point, the rectilinear diameter is expected to possess a “hook”
that is described by the universal scaling behavior58–62 of fluids in
the critical region. In this work, however, we are never sufficiently
near to the critical point for this effect to be significant.

B. Mie n-6 fluids
Simulation data for the vapor–liquid coexistence curves for a

range of Mie n-6 fluids with n = 8 to 48, taken from Ref. 44, are
shown as the colored dashed lines in Fig. 7; the filled circles are
the corresponding critical points. As n increases, the critical point
moves up and to the left in nearly a straight line. The black dashed
line connects the Boyle temperature to the critical point of the Mie
8-6 fluid. Interestingly, this line passes closely to critical points of all

TABLE II. Estimated critical constants and parameters of the rectilinear diameter for square-well fluids of varying width. Values
are obtained from a range of system sizes, with smaller systems used for lower temperatures due to sampling issues with
large density differences between phases.

λ kBTc/ε ρcσ
3 A B Tc/TB ρc/ρB

1.50 1.221 ± 0.001 0.308 ± 0.002 0.51 ± 0.09 3.61 ± 0.02 0.4290 ± 0.0002 0.226 ± 0.001
1.60 1.432 ± 0.000 0.283 ± 0.002 0.63 ± 0.10 3.56 ± 0.02 0.4007 ± 0.0001 0.241 ± 0.001
1.70 1.666 ± 0.001 0.269 ± 0.001 0.64 ± 0.08 3.54 ± 0.02 0.3792 ± 0.0002 0.258 ± 0.001
1.80 1.943 ± 0.001 0.261 ± 0.002 0.64 ± 0.15 3.51 ± 0.03 0.3654 ± 0.0002 0.275 ± 0.002
1.90 2.266 ± 0.001 0.255 ± 0.002 0.85 ± 0.14 3.57 ± 0.03 0.3571 ± 0.0002 0.290 ± 0.002
2.00 2.664 ± 0.001 0.258 ± 0.002 1.05 ± 0.18 3.60 ± 0.03 0.3558 ± 0.0002 0.308 ± 0.002
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FIG. 10. The liquid branch of the vapor–liquid coexistence curve for Mie n-6 flu-
ids. The filled circles are simulation data from Ref. 44. The solid lines are the
predictions of the conjecture of Apfelbaum and Vorob’ev.16,23,25

the examined Mie n-6 fluids, although it lies slightly to the right of
these fluids. The dotted lines are the rectilinear diameters of the var-
ious fluids; these are fairly straight for the Mie n-6 fluids. For n = 48,
the rectilinear diameter has a slope such that it passes through the
critical points of the other Mie n-6 fluids. As n decreases, the slope
becomes less steep and becomes similar to that of the corresponding
state fluids.

As with the square-well fluids, the liquid branches of the coexis-
tence curves for the Mie n-6 fluids do not cross their respective Zeno
lines. As the Zeno lines curve further downward for larger values of
n, the coexistence curves of the Mie n-6 fluids become more narrow
as n increases. In Fig. 10, the liquid branches of the vapor–liquid
coexistence curves for several Mie n-6 fluids are plotted. The liquid
branch of the Mie fluids is consistently more narrow than the form
given in Eq. (15).

FIG. 11. The critical point for various fluids. The black filled circles are for square-
well of different well widths λ; the dotted lines are a guide for the eyes. The blue
numbers are for Mie n-6 systems, where the number is the value of n; the simu-
lation data for the critical points for these systems were taken from Ref. 44, and
the Zeno line parameters were taken from Ref. 24. The critical points for Mie n-6
fluids are given by the blue numbers, which denote the value of n [see Eq. (1)]; the
data were taken from Table II of Ref. 24, which computed the Zeno line parameters
TB and ρB and compiled the simulation data for the critical point from a variety of
sources.63–67 The green crosses are for the corresponding states fluids, and the
red crosses are for different real fluids; data taken from Ref. 8.

The scaled critical points of the Mie n-6 fluids are presented in
Fig. 11 as blue filled circles. As the repulsive core of the potential
becomes softer (i.e., smaller the value of n), the scaled critical tem-
perature decreases, and the scaled critical density increases, which
is consistent with Fig. 7. As was observed for the square-well fluids,
the Mie fluid that most closely replicates the critical point of the cor-
responding states fluids is that which provides the straightest Zeno
line (i.e., 8 ≤ n ≤ 10).

With the exception of water which is known to behave unusu-
ally in comparison to other fluids, it should be noted that these fluids
lie in the same general region as the square-well and Mie fluids. It
is possible then that the vapor–liquid phase behavior of different
experimental fluids can be replicated using simple pair-potential flu-
ids within reasonable bounds, provided that the free parameters of
the fluid are selected carefully.

VI. CONCLUSIONS
In this work, the Zeno line and its relation to the vapor–liquid

coexistence behavior are examined in detail for attractive square well
fluids of varying widths and Mie n-6 fluids with repulsive cores of
varying steepness.

The properties of the Zeno line at low density can be deter-
mined directly from the virial coefficients. In particular, the cur-
vature of the Zeno line at zero density can be determined directly
from knowledge of the second, third, and fourth virial coefficients
[see Eq. (8)]. By examining the curvature, it is found that, in general,
the Zeno line is not straight for molecular fluids that interact through
model potentials. This implies that, in general, the Zeno line is not
straight for systems with any generic interaction potential and only
specific interaction potentials may possess a straight Zeno line.

For square-well fluids, event-driven molecular dynamics are
performed to establish the Zeno line, and multicanonical Monte
Carlo simulations are used to determine the phase behavior. For
short well-widths with λ < 1.896, the Zeno line has an initially neg-
ative curvature at zero density, while for large well widths with
λ > 1.896, the Zeno line has a positive initial curvature. As the
density increases (or, equivalently, the temperature decreases), the
curvature of the Zeno lines increases so that they all become positive
at the highest densities. The coexistence curves of the square-well
fluid move to lower scaled temperatures and broaden as the well
width increases. In all cases, the liquid branch never crosses the Zeno
line and, instead, appears to approach it as a tangent.

While none of the square-well fluids have a perfectly straight
Zeno line, the well width λ ≈ 1.8 presents a reasonably straight Zeno
line and a phase coexistence curve that is most similar to that of
experimental fluids that obey the law of corresponding states (see
Fig. 3). Perhaps surprisingly, this square-well fluid matches the phase
behavior of the corresponding state systems more closely than the
Lennard-Jones 12-6 system.

The Zeno lines and coexistence behavior for the Mie n-6 flu-
ids were taken from MD simulation data in Refs. 10 and 44. As
with the square-well fluids, none of the Zeno lines for the Mie flu-
ids investigated in this work are entirely straight (Fig. 8). Mie n-6
fluids with n ≥ 11 have negative curvature at zero density, while
those with n ≤ 10 have a positive curvature. Of the fluids stud-
ied, all the Zeno lines curve downward at high densities, with the
exception of n = 8, which curves upward. The scaled coexistence
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curves of the Mie n-6 fluids move to lower temperatures and become
broader as n decreases (i.e., the repulsive core becomes “softer”).
The coexistence curves are all more narrow than that of the cor-
responding state fluids. As with the square-well fluids, the liquid
branch of the coexistence curve appears to approach a tangent to the
Zeno line.

Therefore, general interaction potentials do not lead to the reg-
ularities observed in the thermodynamic properties of real fluids.
This raises the question as to why real systems, which possess excep-
tionally complex, multibody intermolecular forces, exhibit these
regularities in their thermodynamic properties, while simple pair
potentials do not.

For example, many nearly spherical molecules (e.g., argon,
xenon, krypton, methane, nitrogen, and oxygen) follow the law of
corresponding states,3,4 where their thermodynamic properties can
be collapsed into a universal curve by rescaling by their critical prop-
erties. This collapse is sometimes attributed to the fact that they
are non-polar and spherically symmetric; however, this cannot be
the reason, as model fluids with short-ranged, spherically symmet-
ric pair potentials cannot generally be scaled onto each other, as
evidenced by the model systems explored here.

This observation can be rationalized within the renormaliza-
tion group (RG) framework,68,69 which involves a transformation
where the degrees of freedom of a system are sequentially inte-
grated over increasing large length scales, and then scaled back
down. The RG transformation maintains the free energy (partition
function) of the system, but will alter its effective interactions (e.g.,
the transformation will generate multi-body interactions in a sys-
tem that originally had only pair-wise interactions). This process
can be viewed as generating a trajectory that passes through sys-
tems with different interaction potentials, all of which will have the
same equilibrium large-scale structure (e.g., scattering function at
low angles) and thermodynamic behavior. The interaction potential
of a particular real fluid would correspond to a single point on one
of these trajectories. Note that there are many different trajectories
depending on the starting system.

The regularities that are observed in the thermodynamic prop-
erties of real fluids fundamentally arise from the fact that the inter-
molecular forces have a common origin in the electrostatic inter-
actions and correlated fluctuations between electrons and atomic
nuclei. Fluids with phase coexistence behavior that collapse onto the
same corresponding states class would be expected to lie on the same
RG trajectory and therefore have the same, scaled thermodynamic
properties. An interesting feature of many of the RG trajectories that
correspond to real fluids is a straight Zeno line.

This raises the possibility that there may be certain forms of the
two-body potential that lie on, or very near to, a RG trajectory of
a real fluid. These potentials would reproduce the thermodynamic
properties and large scale structure of the real fluid across a very
broad range of conditions. Not all forms of the potential would sat-
isfy this, but only very specific choices. It is possible, then, that one
such criterion for finding effective pair-potentials, which lie on the
RG trajectory of the corresponding state fluids, is a straight Zeno
line. This motivates the search for spherically symmetric potentials
that have straight Zeno lines. To somewhat limit the scope of the
search, a further constraint is that the potentials must ensure that
the curvature of the Zeno line is zero at low densities [see Eq. (8)]
through their virial coefficients.

To provide a preliminary example of the use of these Zeno
properties, calculations for the Zeno line at low densities were per-
formed on three detailed force fields for argon. The first force field is
a pair-wise additive model developed by Jager and co-workers.70,71

The second model also uses this two-body potential but includes an
additional three-body potential developed by Axilrod, Teller, and
Muto;72,73 we refer to this as the ATM model. The final force field
takes the same two-body potential but adds an improved three-body
potential model developed by Jager et al.70,71 The virial coeffi-
cients for each of these models were calculated by Jager et al.74

The Boyle temperature of all three models is TB = 408.566 K,
which corresponds to Tc/TB = 0.3688. This should be compared to
the experimental value8 of TB = 407.93 K, which corresponds to
Tc/TB = 0.369.

The Zeno density for the pair-wise additive model is
ρB = 52.67 mol l−1, which corresponds to ρc/ρB = 0.2545 and K
= −0.027 67. For the ATM model, ρB = 45.48 mol l−1 (ρc/ρB
= 0.2948) and K = 0.1041. For the non-additive model of Jager and
co-workers,70,71 ρB = 45.04 mol l−1 (ρc/ρB = 0.2977) and K = 0.1089.
The experimental value8 for the Zeno density is ρB = 46.71 mol l−1

(ρc/ρB = 0.287). The quantity ρB requires knowledge of the
third virial coefficient, which depends on the three-body poten-
tial. It is interesting to note that including the three-body
potential significantly improves the estimation of the Zeno
density.

The zero density curvature K of the Zeno line depends on the
fourth virial coefficient, which depends on the four-body potential.
All of the three force fields examined had a curvature greater in mag-
nitude than that of the Lennard-Jones 12-6 potential, although we
expect that the experimental value of K should be very close to zero.
None of the models had a four-body interaction, and one might
expect that if an accurate approximation were included in the force
field, this would lead to a value of K close to zero.

To describe experimental fluids in other corresponding state
classes, such as those with non-zero acentric factors, such as carbon
dioxide or linear alkanes, it is anticipated that a non-spherical pair-
wise additive potential will be required. We expect there to be many
non-spherically symmetric pair potentials that lead to fluids that
possess a straight Zeno line. It would be interesting to explore fluids
composed of linear chains of particles that interact through spheri-
cally symmetric potentials to see if any have straight Zeno lines and
how these fluids relate to the corresponding real fluids. This would
help to explore some of the origin of the straight Zeno line and has
implications for the development of coarse grained potentials.

SUPPLEMENTARY MATERIAL

The supplementary material includes figures containing Zeno
lines for square-well and Mie n-6 fluids scaled by their critical tem-
peratures and densities, a comparison of the calculated vapor–liquid
phase envelopes for square-well fluids to that of other works, and
tabulated vapor–liquid coexistence data for square-well fluids.
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APPENDIX: EXPRESSION FOR THE VIRIAL
COEFFICIENTS FOR SQUARE-WELL FLUIDS

In this appendix, explicit expressions are given for the sec-
ond, third, and fourth virial coefficients that are used in this work.
The second virial coefficient B2 is known exactly for square well
systems34–36 and is given by the following expression:

B2(T)/BHS
2 = 1 − (λ3 − 1)Δ, (A1)

where Δ = eβϵ− 1, β = (kBT)−1, kB is the Boltzmann constant, and
BHS

2 = 2πσ3/3 is the second virial coefficient of a hard sphere with
diameter σ.

The third virial coefficient B3 is also known exactly34–36 and is
given by

B3(T)/[BHS
2 ]2 =

5
8
[1 − Δ f1(λ) − Δ2 f2(λ) − Δ3 f2(λ)], (A2)

where the functions fn(λ) are given by

f1(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for λ ≤ 1,

1
5
(λ6 − 18λ4 + 32λ3 − 15) for 1 < λ ≤ 2,

17
5

for 2 < λ,

(A3)

f2(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for λ ≤ 1,

2
5
(λ6 − 18λ4 + 16λ3 + 9λ2 − 8) for 1 < λ ≤ 2,

1
5
(−32λ3 + 18λ2 + 48) for 2 < λ,

(A4)

f3(λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for λ ≤ 1,

6
5
(λ2 − 1)3 for 1 < λ ≤ 2,

1
5
(5λ6 − 32λ3 + 18λ2 + 26) for 2 < λ.

(A5)

TABLE III. Parameters for the fourth virial coefficient of square-well potential.31

j p4j0 p4j‘ p4j2 p4j3

0 1.147 798 0 0 0
1 −1.686 92 2.004 3.166 19 −2.394 46
2 1.732 86 −0.848 474 −7.272 83 3.283 37
3 −2.3932 −3.172 96 10.1419 −0.915 451
4 3.987 45 3.110 22 7.247 59 −9.608 72
5 −3.161 46 −8.721 17 −4.294 17 −6.296 75
6 −2.3078 −1.089 52 −5.700 65 0.608 232

There is no analytical expression for the fourth virial coefficient;
however, approximate expressions for the fourth, fifth, and sixth
virial coefficients have been provided by Elliott and co-workers31 for
1.2 ≤ λ ≤ 2.0. The nth order virial coefficient Bn(T) is given in the
following form:

Bn(T) = vn−1
0

n(n−1)/2

∑
j=0

B̂nj(λ)Δj , (A6)

where v0 = πσ3/6 is the volume of a sphere of diameter σ and the
functions B̂n j(λ) are

B̂nj(λ) = (
jmax

j
)(λ − 1)jn2 max ( j, 1)B̂red

n j (λ), (A7)

with B̂red
n j (λ) given by

B̂red
n j (λ) ≈ pnj0 + pnj1(λ − 1) + pnj2(λ − 1)2 + pnj3(λ − 1)3. (A8)

The values of the parameters pnjk for the fourth virial coefficient are
shown in Table III.
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