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This paper presents a series of experiments in automatically generating poetic texts. We confined our attention to the generation of
texts which are syntactically well-formed, meet certain pre-specified patterns of metre, and broadly convey some given meaning. Such
aspects can be formally defined, thus avoiding the complications of imagery and interpretation that are central to assessing more free
forms of verse. Our implemented system, MCGONAGALL, applies the genetic algorithm to construct such texts. It uses a sophisticated
linguistic formalism to represent its genomic information, from which can be computed the phenotypic information of both semantic
representations and patterns of stress. The conducted experiments broadly indicated that relatively meaningful text could be produced
if the constraints on metre were relaxed, and precise metric text was possible with loose semantic constraints, but it was difficult to
produce text which was both semantically coherent and of high quality metrically.
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1 Introduction

The task of automatically generating texts that would be regarded as poetry is challenging, as it involves
many aspects of language. Moreover, there is no well-defined route by which poems are created by human
poets. However, it is possible to set down some properties that a poetic text should manifest, which suggests
that the generation might be achieved by an algorithm that couples a suitably effective search process
with a relatively separate evaluation of the end-product; stochastic search, and in particular evolutionary
algorithms, operate in this way.

We start here with a brief survey of work on automatic poetry generation (Sect. 2), before setting
out a restricted definition of poetry (Sect. 3.1) as a text that embodies meaningfulness, grammaticality,
and poeticness, and a model of its generation as a stochastic search process (Sect. 4). We then describe
McGONAGALL, our implemented system that adopts this model and uses genetic algorithms (Mitchell
1996) to generate texts that are syntactically well-formed (Sect. 5.1), meet certain pre-specified patterns
of metre (Attridge 1995) (Sect. 5.3), and broadly convey some given meaning (Sect. 5.4). Finally, we present
results of some experiments conducted with MCGONAGALL (Sect. 6) and conclude with some discussion
about future avenues of research.

2 A Brief Survey of Poetry Generators

In this section we will examine four particular poetry generators and discuss their relative merits, similari-
ties, and differences. (Further reviews of this area can be found in Bailey (1974), Gervas (2002), Manurung
(2003)).

2.1 ALFRED the Agent

ALFRED the Agent (Donald n.d.) is highly typical of a large number of poetry generators that randomly
choose words from a handcrafted dictionary to fill gaps in some incomplete linguistic structure, defined
either as a predefined template or via some phrase structure rules. Fig. 1 shows some ALFRED output.
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Wheresoever amorphous — just barely the nightclub,

howsoever apostolic amidst a calamity,

a dragon will irrigate a Copernican currant — an emphysema.

His cowlick must have incinerated a housebroken revelry as per a melamine.
your inactive hydrocarbon could atone.

Figure 1. Sample output from ALFRED The Agent

Other systems of this type include Masterman’s haiku generator (Boden 1990) and ALAMO “rimbaude-
laires” (Gervas 2002). Similar systems are available on the web such as ELUAR, The Poetry Creator,
and ADAM. Notable instances are RACTER and PROSE (Hartman 1996), which have the distinction
of having their poetry published — the poetry anthology “The Policeman’s Beard is Half Constructed”
consisted solely of poems constructed by RACTER. Some of these systems employ certain heuristics to
simulate the appearance of coherence and poeticness, such as assigning ad-hoc ‘emotional categories’, e.g.
{ethereality, philosophy, nature, love, dynamism} in ELUAR, and choosing lexical items repetitively to
give a false sense of coherence, as in RACTER.

2.2 Ray Kurzweil’s Cybernetic Poet

Ray Kurzweil’s Cybernetic Poet, or RKCP (Kurzweil 2001), is a commercial software package that gener-
ates well-formed texts based on rhythmic properties of words that are compiled in a statistical language
model trained on existing poems. RKCP employs proprietary algorithms, unavailable for us to analyze.

Crazy moon child
Hide from your coffin
To spite your doom.

Figure 2. Sample output from Kurzweil’s Cybernetic Poet

The RKCP text in Figure 2 is presented as a haiku, although it does not meet the formal requirements
of a haiku, i.e. lines of five, seven, and five syllables. This is because RKCP can relax constraints when it
is unable to write a poem. Unlike the systems listed in Sect. 2.1, RKCP attempts to conform to metre, a
fundamental aspect of most poetry.

2.3 COLIBRI

COLIBRI (Diaz-Agudo et al. 2002) uses case-based reasoning (Aamodt & Plaza 1994) to generate formal
Spanish poetry that satisfies the constraints of strophic forms such as romances, cuartetos, and tercetos
encadenados. Its input is a list of keywords representing the meaning to be conveyed, and a specification
of the particular strophic form required.

Figure 3 shows how COLIBRI works. In (a) we see keywords representing the required meaning for the
poem. In (b) a case is retrieved from a corpus of human-authored poems with an appropriate strophic
form. In (c) the keywords from (a), marked in boldface, have been placed in the text, while maintaining
syntactic well-formedness. Finally, in (d) we see the result of a revision, where the words marked with *
have been substituted in to ensure the metre and rhyme specified by the strophic form.

COLIBRI differs from the systems in the previous sections because, as well as aiming for syntactic well-
formedness (cf. Sect. 2.1) and appropriate rhythm (like RKCP), its goal is a text that is ‘about’ a given
message, even if this is approximated rather trivially. However, when COLIBRI revises a poem to maintain
metre and rhyme it pays no heed to meaning. Modifications to the text at this stage may destroy whatever
meaning has already been set up (cf. Sect. 4.1).
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(a) wna boca ardiente pase techo y suelo

(b) no sélo en plata o viola truncada
se vuelva mas tu y ello juntamente
en tierra en humo en polvo en sombra en nada

(¢) mo sélo en boca y viola ardiente
se pase mas tu y ello juntamente
en tierra en techo en suelo en sombra en nada

(d) no sélo para* boca y viola ardiente
se pase mas tu y ello juntamente
en tia* en techo en suelo en sombra en serpiente*

Figure 3. COLIBRI: (a) input, (b) verse pattern, (c) substituted, and (d) revised

2.4 Chart Generation of Rhythm-Patterned Text

Our initial attempt at poetry generation (Manurung 1999) constructs a syntactically well-formed text
that conveys a conjunction of atomic formulae and satisfies a given metre. A context-free grammar guides
exhaustive search for phrases that match the semantic items, with chart generation (Kay 1996) used to
reduce the computational complexity. Patterns of required rhythms act as filters for potential structures
during generation. Figure 4 shows a generated text in (b) with the metre of a limerick and the semantics
in (a).

(a) cat(c) A dead(c) A eat(e,c,b) A past(e) A bread(b) A gone(b)

(b)  The cat is the cat which is dead.
The bread which is gone is the bread.
The cat which consumed
the bread is the cat
which gobbled the bread which is gone.

Figure 4. Sample (a) input semantics and (b) output limerick from our chart generator

Like COLIBRI, this system takes account of syntax, rhythm, and meaning, but its account of meaning
is much more sophisticated. In particular, it conveys the predicate-argument structure of the input. Also,
COLIBRI handles meaning and metre separately, but our chart generator maintains syntactic, semantic,
and rhythmic well-formedness at every step. Unfortunately, due to its exhaustive search, it is computa-
tionally very expensive, even in our tests on a tiny ‘toy’ grammar and lexicon. It is also not very flexible,
as it can generate only immaculate results — if the linguistic resources are insufficient to produce the re-
quired output, it fails completely. We believe that a poetry generator should be robust, in the sense that
it produces the best possible output with the resources at its disposal.

3 Defining Poetry

There is no universally accepted definition of what counts as poetry, but we will argue for using a particular
restricted definition in our investigations.

3.1 The Unity of Poetry
“Poetry is a literary form in which language is used in a concentrated blend of sound and imagery to create
an emotional response.” (Levin 1962)

This points to a strong interaction, or unity, between the form and content of a poem. The diction and
grammatical construction of a poem affects the message that it conveys to the reader over and above its
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obvious denotative meaning. This contrasts with the commonly-held linguistic notion that a text serves
as a medium for conveying its semantic content.

3.2 Abusing Poetic License
Boden claims, in Boden (1990), that:

“Readers of [poetry] are prepared to do considerable interpretative work. ... In general, the more the audience

is prepared to contribute in responding to a work of art, the more chance there is that a computer’s performance

(or, for that matter, a human artist’s) may be acknowledged as aesthetically valuable ... Much of the beauty,

might one say, is in the eye of the beholder ... Hence poetry, especially poetry of a highly minimalist type

(such as haiku), is more tolerant of programmed production than prose is.”

The implication here is that the automatic generation of poetry is relatively easy because the burden of
assigning meaning to a text is carried by the reader. We believe that this argument abuses poetic license®,
and that by taking it to the extreme, one can potentially justify any randomly created text as being
poetry. This would seriously undermine any research on poetry generation. When appraising the output
of a computer program that is claimed to generate poetry, to what extent can we allow deviations (e.g.
semantic incoherence) in the text, by invoking ‘poetic license’?

We believe the opposite of Boden’s claim to be the case: automatic generation of poetry is harder than
that of prose. Poetry is further constrained by rules of form that prose need not adhere to. Using true
poetic license to turn a phrase in an effective way requires even greater mastery of the language than that
for producing prose. Deviations from the rules and norms must have some purpose, and not be random.

3.3 A Restricted Definition of Poetry

We must have a definition of poetry that renders falsifiable the claim that a program successfully generates
poetry. Our proposed definition is: a poem is a natural language artifact that simultaneously satisfies the
constraints of grammaticality, meaningfulness, and poeticness.

e Grammaticality: A poem must be syntactically well-formed. This might seem obvious for natural
language texts, but it must be stated explicitly in the context of poetry. Syntactic well-formedness in
poetry may well be different from that of ordinary texts (e.g. figurative language), but it is still governed
by rules.

e Meaningfulness: A poem must intentionally convey some conceptual message that is meaningful under
some interpretation. By stipulating this constraint, we are more critical of what we consider not to be
poetry, e.g. the output of ALFRED (Fig. 1), RKCP (Fig. 2), and to a lesser extent, COLIBRI (Fig. 3).

e Poeticness: A poem must exhibit features that distinguishes it from non-poetic text. In our research,
we concentrate on concretely observable aspects, specifically the rhythmic patterns, or metre, of a poem.

This characterization suggests a ‘classical’ account of poetry, i.e. one where adherence to regular patterns
in form is paramount. This avoids some of the complications of imagery or interpretation that are central
to assessing more free forms of verse, and ensures that many of the important aspects of a text can be
defined formally. It is an approximate formalisation of the sort of verse that was normal within British
culture until the mid-20th century and is still commonplace today, and includes established forms such as
limericks and sonnets (although we have not yet tackled the important issue of rhyme). Figure 5 exhibits
Hillaire Belloc’s “The Lion”, an example of this genre — and one that we will revisit throughout this paper.

Although our definition does impose constraints, it says nothing about abstract notions such as imagery
and metaphor, which are beyond the scope of our current work. As the field advances, these might become
further requirements, or be incorporated under the poeticness constraint.

Table 1 shows how the generators in Sect. 2 fit our restricted definition.

1 According to the Oxford English Dictionary, poetic license is the “deviation from recognized form or rule, indulged in by a writer or
artist for the sake of effect”.
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The Lion, the Lion, he dwells in the waste,

He has a big head and a very small waist;

But his shoulders are stark, and his jaws they are grim,
And a good little child will not play with him.

Figure 5. Hillaire Belloc’s “The Lion”

Table 1. Poetry generators (Sect. 2) and how they address our constraints

System Grammaticality | Poeticness | Meaningfulness
ALFRED Yes No No
RKCP Yes Yes No
COLIBRI Yes Yes Yes
Chart generation Yes Yes Yes

4 Evolving Poetry

We turn now to the question of how to automatically generate texts that satisfy the three constraints of
grammaticality, meaningfulness, and poeticness.

4.1 The Problem with Unity

Poetry generation can be viewed as a specialized instance of natural language gemeration, or NLG, a
subfield of artificial intelligence that focuses on the development of computer systems that can produce
understandable texts in a human language, starting from some nonlinguistic representation of a commu-
nicative goal as input (Reiter & Dale 2000). A considerable amount of research has been done in NLG on
the so-called “generation gap” problem, where interdependent decisions must be made across various levels
of linguistic representation (Meteer 1991). This problem is exacerbated by the unity of poetry (Sect. 3.1).
For example, with regards to metre, every single linguistic decision potentially determines the success of a
poem in fitting a regular defined pattern. Various solutions have been proposed, such as: using alternative
system architectures, using better search methods, and employing a new paradigm of overgeneration. We
have drawn upon this research to propose our model of poetry generation as stochastic search, which we
present in the following section.

4.2 Poetry Generation as Stochastic Search

Poetry generation can be viewed as a state space search problem, where a state in the search space is
a possible text with all its underlying representation, from semantics all the way down to phonetics. A
goal state satisfies the three constraints of meaningfulness, grammaticality, and poeticness. Such a search
space is undoubtedly immense, even — given the recursive structures in natural language — infinite. Our
proposed solution is to employ a form of stochastic search, a heuristic search strategy that relies on random
traversal of a search space with a bias towards more promising solutions. It has become increasingly popular
for solving computationally hard combinatorial problems from AI domains such as planning, scheduling,
and constraint satisfaction, and has been shown to outperform deterministic approaches in a number of
domains.

The particular search methodology that we use is the genetic algorithm, which is essentially an iteration
of two phases, evaluation and evolution, applied to an ordered set, called the population, of candidate
solutions (Mitchell 1996).

4.3 Satisfying Grammaticality, Meaningfulness, and Poeticness

How do we design our genetic algorithm to find solutions that satisfy the three constraints described in
Sect. 3.37 There are two ways that constraints can be implemented: either invalid solutions are totally
excluded from the search space, or they are admitted to the space but with a bias against them (Davis
& Steenstrup 1987). Our three constraints are not independent. Within a generator, we must be able to
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relate syntactic structure and semantic content systematically, probably by some variant of the widely
accepted notion of compositional semantics. This would be hard to arrange if we allowed syntactically ill-
formed structures. Also, the kind of poeticness we are concentrating on (metre), can be imposed regardless
of grammaticality, but (as we shall see when examining The Lion), grammaticality may sometimes take
precedence. We have therefore decided to treat grammaticality as a prerequisite for meaningfulness and
poeticness; that is, we will implement grammaticality as an absolute constraint on the items admitted to
the search space, through the design of representation and genetic operators. In doing this, we can call on
the immense amount of linguistic work on mechanisms for ensuring grammaticality.

The remaining constraints of meaningfulness and poeticness will be implemented as preferences via the
evaluation functions of the genetic algorithm.

5 McGONACALL, an Instance of an Evolutionary Poet

McGONAGALL is our implementation of poetry generation as stochastic search. In this section we will
describe how MCGONAGALL ensures grammaticality through its representation (Sect. 5.1) and genetic
operators (Sect. 5.2), and how it optimizes poeticness (Sect. 5.3) and meaningfulness (Sect. 5.4).

5.1 Linguistic Representation

Linguistic structures are represented in MCGONAGALL using lezicalized tree-adjoining grammar, or
LTAG (Schabes 1990), augmented with the use of feature structures (Vijay-Shanker & Joshi 1988). These
grammars are based on the composition of elementary trees, of which there are two types, i.e. initial trees
and auxiliary trees. These trees represent minimal linguistic structures in the sense that they account
for all and only the arguments of the head of the syntactic constituent they represent, e.g. a sentential
structure would contain a verb and all its complements. There are two types of operations, substitution of
initial trees (typically labelled a) and adjunction of auxiliary trees (typically labelled 3), that can be used
to compose larger tree structures.

In LTAG, the derivation tree is a data structure that records the composition of elementary trees using
substitution and adjunction. The derived tree, on the other hand, is the phrase structure tree created
by performing all the operations specified within the deriviation tree; in a sense, the derived tree is the
result of generation, whereas the derivation tree is a trace of how it was built up. Figure 6 gives an
example of this. The derived tree in (c) is obtained by a series of operations on the elementary trees in
(a). These operations are recorded by the derivation tree in (b). Each node in the derivation tree specifies
an elementary tree. Furthermore, each node aside from the root node also specifies the Gorn address' of
the node in its parent’s elementary tree where the operation occurs, and is indicated by the label of the
edge connecting a node to its parent. For example, apoor subtitutes into ay..q.q at address 2.2, the object
NP node. The process of composing the elementary trees is illustrated in (d).

The derivation tree can therefore be seen as the basic formal object that is constructed during sentence
generation from a semantic representation (Joshi 1987), and is the appropriate data structure on which
to perform nonmonotonic operations in our stochastic generation framework (Sect. 5.2). Essentially, the
LTAG derivation tree forms the genotypic representation of our candidate solutions, from which we can
compute the phenotypic information of semantic (Sect. 5.4) and prosodic (Sect. 5.3) features via the derived
tree.

We adopt a simple ‘flat’ semantic representation (Hobbs 1985) that is often used in NLG (Koller &
Striegnitz 2002). A semantic expression is a set of first order logic literals, which is logically interpreted
as a conjunction of all its members. The arguments of these literals represent concepts in the domain
such as objects and events, while the functors state relations between these concepts. For example, the
representation of the semantics of the sentence “John loves Mary” is {john(j), mary(m),love(l,j,m)},

LA Gorn address is a list of integers that indicates the position of a node within a tree. The Gorn address of the i-th child of node n
is the Gorn address of n with ¢ appended to the end of the list. The Gorn address of a root node is €, or sometimes 0 for convenience.
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Figure 6. A derivation tree captures the process of composition of elementary trees

where [ is the event of j, who has the property of ‘being John’, loving m, who has the property of ‘being
Mary’.

The semantic expression of a tree is the union of the semantic expressions of its constituent elemen-
tary trees, with appropriate binding of variables during substitution and adjunction through the use of
semantic signatures to control predicate-argument structure; cf. Stone & Doran (1997), Kallmeyer (2002).
Ultimately semantic information originates from the lexicon, where words are annotated with the meanings
they convey. Figure 7 shows an example of the substitution of two noun phrases as the subject and object of
a transitive tree. During the substitution of « s, at the subject NP position, the signatures and are

unified. Likewise, for the substitution of aps4,y at the object NP position, the signatures and are uni-
fied. From this, we can recover the semantics of the derivation S = {love(X,Y, Z), john(_,Y), mary(_, Z)}.

Each word is associated with its phonetic spelling, taken from the CMU pronouncing dictionary (Weide
1996). Vowels are marked for lexical stress, with 0 for no stress, 1 for primary stress, and 2 for secondary
stress. For example, the spelling of ‘dictionary’ is [D,IH1,K,SH,AHO,N,EH2,R,IY0]. For monosyllables,
closed class words (e.g. the) receive no stress, and open class words (e.g. cat) primary stress.

5.2 Genetic Operators for Linguistic Structure Building

We have implemented baseline (‘blind’) mutation operators that randomly add or delete subtrees of a
derivation tree. In addition, we have also implemented a subtree swapping operator, which randomly
swaps two derivation tree subtrees. When these subtrees belong to the same derivation tree, it behaves
as a mutator, otherwise, it is used as a crossover operator. These nonmonotonic tree-based operators are
similar to those commonly found in genetic programming (Angeline 1996).

We also implemented semantically motivated (‘smart’) genetic operators that exploit domain knowledge
and attempt to maximize meaningfulness by conveying the target semantics (see Sect. 5.4), whilst still
maintaining grammaticality. This is motivated by NLG systems such as PROTECTOR (Nicolov et al. 1995)
and SPUD (Stone & Doran 1997). When adding content, these operators attempt to convey the unrealized
semantics, i.e. the portion of the target semantics that has not yet been realized by the candidate solution.
Conversely, when deleting content, operators try to remove extraneous items, i.e. semantics realized by the
candidate solution but not present in the target semantics.
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N |
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Figure 7. Compositional semantics through unification of signatures

5.3 FEwaluating Poeticness

In MCGONAGALL, poeticness is taken to be the (well-defined and objectively observable) metre — regular
patterns in the rhythm of the lines (Attridge 1995). Figure 8 shows the metre of Belloc’s “The Lion”, with
stressed syllables in bold type, unstressed syllables in normal type, syllables extraneous to the underlying
metre in italics, and e indicating a ‘missing’ syllable. Each line has the same number of stressed syllables,
with a regular pattern of ‘beats’ at intervals of two unstressed syllables.

The Lion, the Lion, he dwells in the waste,

He has a big head and a very small waist;
But his shoulders are stark, and his jaws they are grim,
And a good little child e will not play with him.

Figure 8. Metre pattern of Hillaire Belloc’s “The Lion”

McGONAGALL tries to maximize the similarity between the target form, a specification of the required
metrical constraints, and the candidate form, the stress pattern of a candidate solution.

The target form is encoded as a list of target syllables, notated as follows: w (‘weak’) is an unstressed
syllable, s (‘strong’) is a stressed syllable, x (‘wildcard’) is any syllable, and b indicates a linebreak. Figure 9
shows example target forms for a limerick, a haiku, and “The Lion” (formatted into lines for readability
purposes).

[w,s,w,w,s,w,w,s,b, [x,x,x,x,x,b, [w,s,w,w,S,W,Ww,S,W,W,S,b,
w,S,W,W,S,wW,w,sS,b, X,X,X,X,X,X,X,b, w,S,W,W,S,W,Ww,S,W,w,S,b,
w,S,w,w,sS,b, X,X,X,X,X,b] w,S,W,W,S,W,W,S,W,w,S,b,
w,S,w,w,sS,b, w,S8,W,W,S,W,W,S,W,W,S,b]

W,S,W,W,S,W,W,sS,b]
(a) (b) (c)

Figure 9. Target forms for (a) a limerick, (b) a haiku, and (c¢) “The Lion”

The candidate form, a representation of the metre exhibited by a candidate solution, is encoded as a
list of candidate syllables obtained from a derived tree by concatenating the phonetic spellings at its leaf
nodes (Sect. 5.1). Notation is as follows: 0 is an unstressed syllable, 1 is a primary stressed syllable, 2 is a
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secondary stressed syllable, and b is a potential site for a natural line break. In addition, candidate syllables
0, 1, and 2 have a subscript index of either 1 or n, indicating whether they belong to a monosyllabic or
polysyllabic word respectively. Figure 10 shows the derived tree representing the text “The lion has a big
head”, and how its stress pattern is obtained.

Derived tree: Lexicon:
Poem
/\ Ortho | Pronunciation Lexical stress
the [DH, AHO] 0,
S SB lion [L,AY1,RAHO,N] | 1,,0,
/\ ‘ hes | [HH,AH1,Z7] 1,
a [AHO] 0,
NP ve : big [B, IH1,G] 1
A /\ head [HH, EH1,D] 1,
. [-] b
D N V NP

the lion has D NP

a Adj NP

Candidate form:
bg N [01, 24,05, 11, 03,14, 14, b]

Figure 10. The candidate form of a text is a concatenation of lexical stress

Having explicit linebreaks in both target and candidate allows for a flexible handling of linebreaking
anywhere in the text, in contrast to a hierarchical model of metrical forms consisting of lines of syllables
(e.g. in Gervés (2000), Diaz-Agudo et al. (2002)).

To compute the similarity between the target and candidate forms, we use the minimum edit dis-
tance (Sankoff & Kruskal 1983), in which the distance between two strings is the minimal sum of costs
of operations (symbol insertion, deletion, and substitution) that transform one string into another. The
minimum edit distance can be efficiently computed (Jurafsky & Martin 2000) in a way that produces a
pairwise syllable alignment between candidate and target, thus indicating the operations that yield the
minimum cost. The costs are shown in Table 2(a)—(c), which reflect our intuitions, as follows:

(i) There should be no penalty for aligning candidate unstressed, stressed or linebreak syllables with target
syllables of that same class, nor where non-linebreak candidate syllables align with a wildcard in the
target.

(ii) Linebreaks cannot align with non-linebreaks, in either direction.

(iii) Having a linebreak in the candidate where none exists in the target (enjambment, the running on of
a sentence from one line of a poem to the next) should be relatively expensive. Allocating no penalty
for deletion of a candidate linebreak lets a line consist of more than one clause.

(iv) All other operations should incur some penalty. Insertion and deletion should be costlier for stressed
syllables than for unstressed syllables.

Table 2. Operation costs for (a) substitution, (b) insertion, and (c) deletion

(a) (b) (c)

Cost W s X b Cost Cost,
01 0 2 0 0 W 1 01 1
On 0 2 0 0 s 3 0p 1
13 3 0 0 [e9) x 1 11 3
1n 3 0 0 9] b 10 1n 3
2n 1 1 0 o) 2n 2

b 00 00 00 0 b 0

Our candidate forms indicate lexical stress patterns as if the words were pronounced in isolation. Within
poetic text, context can affect stress. To compensate for this, the system iterates over the minimum edit
distance alignment, detecting certain patterns and adjusting the similarity value. Two types of patterns
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are implemented: two consecutive deletions, or two consecutive insertions, of non-linebreaks, increases the
cost by 1; the destressing of a stressed candidate syllable adjacent to a stressed target syllable, or the
stressing of an unstressed candidate syllable adjacent to an unstressed target syllable, decreases the cost
by 1.

Our metre evaluation function, Fj,etre, takes the value computed by the minimum edit distance al-
gorithm, adjusts it using our context-sensitive compensation scheme, and normalizes it to the interval
[0,1].

Table 3 shows Fieire values for various candidate texts, against the target form in Fig. 9(c). The first is
Belloc’s actual poem, which itself contains some metrical imperfections; the second is a limerick by Edward
Lear; the third is an extract from an academic text, containing roughly the correct number of syllables;
the last is chosen for its inappropriateness. The F,,eire scores do not conflict radically with our intuitions
of poetic metre.

Table 3. Metre similarity fitness scores for various candidates
Candidate text Candidate form Frmetre
The Lion, the Lion, he dwells in the | [01, 1n, On, b, 01, 1pn, On, b, 01, 11, O1, 0.787
waste. He has a big head and a very | 01, 11, b, 01, 11, 01, 11, 11, 01, 01, 15,
small waist. But his shoulders are | O, 11, 11, b, 01, 01, 15, Opn, 01, 11,
stark, and his jaws they are grim, and | b, 01, 01, 11, 01, O1, 11, b, 01, O1, 11,
a good little child will not play with | 1n, On, 11, 01, 01, 11, 01, 01, 8]
him.
There was an old man with a beard, | [01, 01, 01, 11, 11, O1, 01, 11, b, O1, 0.686
who said, “it is just as i feared! two | 11, b, 01, 01, 11, 01, 01, 11, b, 11, 11,
owls and a hen, four larks and a | 01, 01, 11, b, 11, 11, Oy, O1, 11, b, 11,
wren, have all built their nests in my | 11, 11, 01, 11, 01, 01, 11, 8]
beard!”
Poetry is a unique artifact of the hu- | [1n, On, On, 01, 01, On, 1n, 1n, On, 2x, 0.539
man language faculty, with its defin- | 01, 01, 15, On, 1n, On, 1n, Oy, On, b,
ing feature being a strong unity be- | 01, 01, On, 1n, Oy, 1n, On, 1y, Opn, O1,
tween content and form. 11, 1n, On, On, On, 1n, 15, Op, O1, 14,
b]
John loves Mary. [11, 11, 1n, Op, b 0.264

5.4 FEwvaluating Meaningfulness

The MCGONAGALL approach to meaningfulness is similar to the above approach to poeticness: try to
maximize the similarity between the target semantics, a specification of the meaning an optimal solution
should convey, and a candidate semantics, the meaning conveyed by a candidate solution. This requires a
method for computing the similarity between two semantic expressions.

Following Love (2000), we propose two factors that must be considered: structural similarity and concep-
tual similarity. Structural similarity measures the degree of isomorphism between two semantic expressions.
Conceptual similarity is a measure of relatedness between two concepts (logical literals). We simply use
the following: two concepts are the same if and only if they share the same literal functor.

Computing a structural similarity mapping between two expressions is an instance of the NP-hard graph
isomorphism problem. However, we have implemented a greedy algorithm that serves our purposes and
runs in O(N?), based on Gentner’s structure mapping theory (Falkenhainer et al. 1989). It takes two sets
of logical literals, Siarget and Scandidate, and attempts to ‘align’ the literals. In doing this, it creates various
variable bindings and also two sets of ‘dangling’ literals that are left over (from Siarger and Scandidate) as
unmatched items.

We then apply a function Fjep,, normalised to [0,1], to compute a score based on various aspects of the
best match that has been achieved; this is based on Love’s computational model of similarity (Love 2000).

Table 4 shows an example of computing semantic similarity for a selection of candidate texts against a
target semantics that represents the second line of Belloc’s “The Lion”, i.e. “[The lion] has a big head and
a very small waist”. The target semantic expression is as follows:

Starget = {lion(_, L), own(_, L, H), head(_, H), big(-, H),
own(_, L, W), waist(_, W), small(S,W),very(_, S)}
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The first two texts convey a subset of the target; the third text conveys an altogether different fact about

the lion; the fourth text is purposely inappropriate; and the last text, interestingly, conveys the semantics
of the first text in its object to the verb ‘ove’. As with our metre similarity function, we believe that the
Fsem scores roughly approximate human intuitions.

Table 4. Semantic similarity fitness scores for various candidates

Candidate text Candidate semantics Fsem
The lion has a big head. | {tion(_,L), own(_,L,H), head(_,H), big(-,H)} 0.525
The Tion has a head {lion(_,L), own(_,L,H), head(_,H), 0.598
and a waist own(-,L, W), waist(-, W)}

The Tlion dwells {lion(-,L), dwell(D,L), 0.078
in the waste inside(-,D, W), waste(-, W)}

John loves Mary {john(_,J), love(_,J,M), mary(-,M)} 0.0451
John and Mary Tove {john(-,J), love(-,J,H), mary(-,M), love(-,M,H), 0.389
the lion’s big head lion(_,L), own(-,L,H), head(_,H), big(-,H)}

6 Experiments with MCGONAGALL

We conducted five tests, which clustered into three stages of experiments:

Metrical generation. We set the program to generate grammatical texts that satisfy a given target
metre. This measures its ability to generate solutions that optimize poeticness without concern for
meaning. The evaluation function used was Fiuerre (Sect. 5.3). The target form used was that of a
limerick, as in Figure 9(a).

NLG test. This test measured the ability of MCGONAGALL to generate solutions that optimize mean-
ingfulness, without concern for metre. The evaluation function was Fsen, (Sect. 5.4). This effectively
causes MCGONAGALL to behave as a conventional NLG system, i.e. it attempts to produce a text that
conveys a given input semantics. The target semantics used is a representation of the first two lines of
“The Lion”, with a slight alteration where we have replaced the original opening noun phrase “the lion,
the lion” with “the african lion”, i.e. “The african lion, he dwells in the waste. He has a big head and a
very small waist”. The target semantic expression is as follows:

Starget = {lion(_,1), african(_,1), dwell(d,l),inside(_, d, was), waste(_, was),
own(_,1, h), head(_,h),big(-, h), own(_, 1, wai), waist(_, wai),
small(s,wat),very(_,s)}

We conducted two variants of this test, one with the syntactically-aware ‘blind’ operators and one
with the syntactically and semantically-aware ‘smart’ operators (Sect. 5.2).
Poetry generation. In this test we measured the ability of MCGONAGALL to perform the task it was
designed for, namely the generation of texts that simultaneously satisfy grammaticality, meaningfulness,
and poeticness. We took a very simple approach to combining the metre similarity and semantic sim-
ilarity functions — the arithmetic mean of their scores, i.e. Fpoetry = (Fmetre + Fsem)/2. We used the
same target form and target semantics as in the previous tests. As in the previous test, two variants
were conducted: with the ‘blind’ operators and with the ‘smart’ operators.

6.1 GA Parameters

Throughout our testing, we employed one of the simplest selection algorithms, proportionate selection,
which assigns a distribution that accords parents a probability to reproduce that is proportional to its
fitness (Béck et al. 1997). Individuals are sampled from this distribution using stochastic universal sam-
pling, which minimises chance fluctuations in sampling (Baker 1987). To reduce the chances of premature
convergence or stagnation, we used an elitist population of 20% of the entire population, which was found
to yield the best results during an initial experiment with different ratios. The population size was set to
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Table 5. Statistical summary of test results

Test Min | Max | Mean | Std.Dev
Stage 1:
Metrical generation 0.86 | 1.00 0.93 0.05
Stage 2:
NLG test (blind operators) 0.74 | 0.93 0.85 0.06
NLG test (smart operators) 0.93 | 0.99 0.97 0.03
Stage 3:
Poetry generation test (blind operators) 0.60 | 0.81 0.69 0.06
Poetry generation test (smart operators) | 0.75 | 0.83 0.79 0.02

Table 6. Best found solution for metrical generation test
Fitness score 1.00
Text They play. An expense is a waist.
A lion, he dwells in a dish.
He dwells in a skin.
A sensitive child,
he dwells in a child with a fish.

40, inspired by Cheng (2002), who in turn points to empirical studies by Goldberg (1989). Each test was
run five times, and each run lasted for 500 iterations.

The three mutation operators used, along with their probabilities, were creation (0.5), adjunction (0.3),
and deletion (0.2). The choice of these probabilities is intended to account for the fact that the substitu-
tion operation typically introduces the essential linguistic structures, and that adjunction is for auxiliary
constituents. For crossover, the subtree swapping operator was used. The probabilities of applying genetic
operators were pmutation = 0.6, Perossover = 0.4, for both the blind and smart variants.

A handcrafted grammar and lexicon was used, with 33 elementary trees and 134 lexical items, 28 of
which were closed class words. Most of the content words were taken from “The Bad Child’s Book of
Beasts” (Belloc 1991).

6.2 Overview of Results and Analysis

Table 5 shows a statistical summary of the best fitness scores obtained during the three stages of experi-
ments. It shows the minimum, maximum, mean, and standard deviation of the best fitness scores obtained
after the last iteration across the five runs of each test. From this table we can observe that the GA is
able to find optimal solutions with fitness approaching the maximum of 1.0 during the first two stages of
experiments, but is failing to do so for the difficult multi-objective optimization task of the third stage.

Figure 11 shows, over time, the maximum and average of the best fitness scores across all the GA runs
for the metrical generation test, (a), NLG test with blind and smart operators, (b) and (c¢), and poetry
generation test with blind and smart operators, (d) and (e).

6.3 Metrical Generation

Table 6 shows the highest-scoring candidate from the metrical generation test. As expected, the text is
syntactically well-formed, being generated through a composition of LTAG elementary trees. The target
metre is satisfied perfectly in terms of syllable count, stress placement, and linebreaking.

6.4 NLG Test with Blind Operators

Table 7 shows the highest-scoring candidate from the blind operators NLG test. It shows the fitness score,
text, and the best mapping of Surget t0 Scandidate i terms of matched and unmatched literals.

The generator achieves a near-optimal solution of 0.93. At a glance, we can note that the text is certainly
more ‘about’ the concepts within the target semantics than the best solution from the metrical generation
test (Table 6) — at the expense of metre. This shows the marked effect of changing the evaluation func-
tion from metre similarity to semantic similarity. In terms of the evaluated semantic mapping, the only
suboptimal feature is the presence of the unmatched candidate literal own(-52, 53, 54), which represents
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Figure 11. Maximum and average of best fitness scores for (a) metrical generation test, NLG test with (b) blind and (c¢) smart

operators, poetry generation test with (d) blind and (e) smart operators

the fact that the head owns the waist. This is conveyed by the peculiar second sentence. If we observe
the text itself, we can see that the facts that the head and waist belong to the lion are expressed by the
genitive determiner ‘“7ts’. There is also the spurious relative clause “that is him” that does not contribute
to the semantics, but makes the text unnecessarily complex.
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Table 7. Best found solution for NLG test with blind operators

Fitness score 0.93
Text An african lion, it dwells in a waste.
Its big head, that is him, it has its very small waist.
Matched {(inside(_2, d, was), inside(_A7, 45, 48)), (lion(_0, 1), lion(_50, _46)),
literals (african(-1,1), african(-51, 46)), (dwell(d, 1), dwell(-45, _46)),
(waste(-3, was), waste(-49, 48)), (head(-5, h), head(-59, -53)),
(own(-4,1,h), own(-61,_46,_53)), (own(-7,1, wai), own(-56, 46, _54)),
(big(-6, h), big(-60, _53)), (small(s, wai), small(-57,_54)),
(waist(8, wai), waist(_55, -54)), (very(9, s), very(-58, -57))}
Unmatched 0
target
Unmatched {own(_52, 53, 54)}
candidate

Table 8. Best found solution for NLG test with smart operators

Fitness score

0.99

Text

An african lion, who has a very small waist,
it dwells in a waste. Its head, it is big.

Matched {(inside(_2, d, was), inside(_45, 43, 46)), (lion(_0, 1), lion(_48, _44)),

literals (african(_1,1), african(A49, 44)), (dwell(d, 1), dwell(_43, _44)),
(waste(-3, was), waste(-47, -46)), (head(-5, h), head(-57, _56)),
(own(4,1, h), own(-58, 44, _56)), (own(-7,1, wai), own(-50, 44, _51)),
(big(-6, h), big(_55,.56)), (small(s, wat), small(_53,_51)),
(waist(-8, wai), waist(_52, _51)), (very(-9, s), very(-54, -53))}

Unmatched 0

target

Unmatched 0

candidate

6.5 NLG Test with Smart Operators

Table 8 shows the highest-scoring candidate from the smart operator NLG test. It shows that an optimal
solution was found; i.e. a text that conveys the semantics without any unmatched literals (the score of
0.99 and not 1 is caused by rounding off in the scaling function). Our own subjective analysis of the text
itself seems to confirm this: the text is clearly understandable, if somewhat verbose.

Comparing Figure 11(b) to (c¢) we can see that the semantically smart operators lead to these optimal
solutions much more rapidly and consistently.

Although McGONAGALL successfully found an optimal solution in this instance, some further tests
indicated that it struggles to do so when the size of Siqrget is roughly double the size of the one used in
this test.

6.6 Poetry Generation with Blind Operators

Table 9 shows the highest-scoring candidate from the blind operator poetry generation test. It shows the
fitness score, text, and semantic mapping of Siurget t0 Scandidate- In contrast to the previous tests, no
optimal solution was found to this much more difficult multi-objective optimization task.

The text is metrically perfect. However, in terms of conveying Siarget, it performs suboptimally. The
unmatched target literals show that the text is failing to convey three concepts from Sigrget, i.e. that the
lion is african, that its head is big, and that the waist is very small. The text contains three instances
of the phrase ‘will be rare’, which is unrelated to the semantics of Sigrger. While this phrase contributes
positively to achieving the target metre, it leads to unmatched candidate literals. Also, the second line
is a repeat of the first. Although it contributes positively to the metre, our mapping algorithm is unable
to match the semantics it conveys, resulting in unmatched candidate literals that penalizes the semantic
similarity score. This does not seem to reflect the intuition that most humans would have reading the text,
i.e. that it is simply a repetition of the first line.

The original text that conveys Siqrget has 22 syllables, whereas a limerick has 34 syllables. This may
explain why the generator had to “pad out” the remaining syllables by adding unrelated content such as
“will be rare” and repeating the first line, to the detriment of semantic similarity.



October 17, 2009

Journal of Experimental & Theoretical Artificial Intelligence jetai'rev

Using Genetic Algorithms to Create Meaningful Poetic Text

Table 9. Best found solution for poetry generation test with blind operators

Fitness score

0.81

Text

A Tion, it dwells in a waste.

A lion, it dwells in a waste.

A waste will be rare.

Its head will be rare.

Its waist, that is small, will be rare.

Matched {(head(_5, k), head(_53, 52)), (own(4, 1, k), own(_54, 28, 52)),

literals (own(_7,1, wai), own(_48, 28, _45)), (Lion(_0, 1), lion (29, _28)),
(dwell(d, 1), dwell(-27,_28)), (inside(-2, d, was), inside(-30, 27, _31)),
(waste(-3, was), waste(-32, -31)), (small(s, wai), small(-47, -45)),
(waist(-8, wat), waist(-46, 45))}

Unmatched {african(-1,1),big(-6, h),very(-9,s)}

target

Unmatched {rare(_33, _34), will(_35, _36), waste(_37, _34), dwell(_38, _39),

candidate lion(-40, _39), inside(_41, 38, _42), waste(_43, 42), rare(_44, _45),

will(-49, -50), rare(-51, _52), will(-55, -56) }

Table 10. Best found

solution for poetry generation test with smart operators

Fitness score

0.83

Text

A very e african lion,

15

who is african, dwells in a waste.

Its head, that is big,

is very e big.

A waist, that is its waist, it is small.

Matched {(inside(_2, d, was), inside(_150, 147, _149)), (lion(_0, 1), lion(_151, _140)),
literals (dwell(d, 1), dwell(-147, -140)), (waste(-3, was), waste(-148, _149)),
(head(-5, h), head(-138, -136)), (own(-4,1, h), own(-139, 140, _136)),
(own(-7,1, wai), own(-146, _140, _143)), (small(s, wai), small(_142, _143)),
(african(-1,1), african(-152, _140)), (big(-6, h), big(-135, -136)),
(waist(-8, wai), waist(-144, _143))}

Unmatched {very(L9, s)}

target

Unmatched {very(_137, _135), big(_141, _136), waist(_145, _143), very(-153, _152),
candidate african(_154, 140)}

6.7 Poetry Generation with Smart Operators

Table 10 shows the highest-scoring candidate from the smart operators poetry generation test. Again, no
optimal solution is found. However, although the fitness score is very similar to the one in Table 9, the
characteristics of the text are markedly different.

It is interesting to see the detrimental effect that the smart operators, which increase bias towards
semantics, have on the metre. Unlike the metrically perfect limerick in Table 9, this text requires several
edit operations (2 insertions and 2 deletions). (Even Belloc’s original poem contains similar rhythmic
imperfections — see Fig. 8). However, the text in Table 10 conveys Sigrger much better than that in
Table 9. The only aspect that it fails to convey is the fact that the waist is very small. Three of the
unmatched candidate literals are actually semantically accurate duplicates of the literals mapped in the
proper matches, and not extraneous semantics. Unfortunately our mapping algorithm does not account
for these in a satisfactory manner, just as it wrongly penalized the solution in Table 9 for the repetition
of the first line.

We believe that this resulting text is comparable to the results obtained from our chart generation
system, where we adopted an exhaustive search approach to poetry generation (see Sect. 2.4).

7 Summary

We have presented a model of poetry generation as stochastic search, where a goal state is a text that
satisfies the constraints of meaningfulness, grammaticality, and poeticness. Previous attempts at poetry
generation (Section 2) only properly addressed a subset of these constraints, with the exception of our
initial attempt at poetry generation using chart generation (Manurung 1999). Unfortunately, this approach
was computationally very expensive and was not very robust, i.e. if the system was unable to perfectly
satisfy any of the constraints, it would fail to produce a single solution.
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We reported on MCGONAGALL, our implemented instance of this model, which operationalizes the three
constraints by focusing on texts that are syntactically well-formed, meet certain pre-specified patterns of
metre, and broadly convey some pre-specified meaning. It satisfies grammaticality through the use of
lexicalized tree-adjoining grammar (LTAG) and optimizes meaningfulness and poeticness by maximizing
evaluation functions that measure the degree of isomorphism between the phenotypic features exhibited
by a candidate solution and the target semantics and metre. Experiments showed that it managed to
find optimal solutions for moderately sized target semantics and metre forms in isolation. However, it
encountered difficulties when simultaneously considering both evaluation functions.

There is still a lot of interesting research to be carried out in this area, particularly in exploring the
different ways in which grammaticality, meaningfulness and poeticness can be defined. The notion of
grammaticality can be augmented through the use of figurative language rules (Quinn 1982). With regards
to meaningfulness, we note that our measure of isomorphism to a target semantics actually embodies the
narrower notion of faithfulness to a specific meaning rather than the general concept of meaningfulness
proposed in Sect. 3.3. A more ambitious account could consider aspects such as coherence, relevance, and
interestingness. As for poeticness, whilst there are other phonetic features such as rhyme and alliteration
that can be explored, there are many more features to be considered, such as figurative language and
metaphor.
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