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One aim of synthetic biology is to construct increasingly complex genetic networks from
interconnected simpler ones to address challenges in medicine and biotechnology. How-

ever, as systems increase in size and complexity, emergent properties lead to unexpected
and complex dynamics due to nonlinear and nonequilibrium properties from compo-
nent interactions. We focus on four different studies of biological systems which exhibit
complex and unexpected dynamics. Using simple synthetic genetic networks, small and
large populations of phase-coupled quorum sensing repressilators, Goodwin oscillators,
and bistable switches, we review how coupled and stochastic components can result in
clustering, chaos, noise-induced coherence and speed-dependent decision making. A sys-
tem of repressilators exhibits oscillations, limit cycles, steady states or chaos depending
on the nature and strength of the coupling mechanism. In large repressilator networks,
rich dynamics can also be exhibited, such as clustering and chaos. In populations of
Goodwin oscillators, noise can induce coherent oscillations. In bistable systems, the
speed with which incoming external signals reach steady state can bias the network
towards particular attractors. These studies showcase the range of dynamical behav-
ior that simple synthetic genetic networks can exhibit. In addition, they demonstrate
the ability of mathematical modeling to analyze nonlinearity and inhomogeneity within
these systems.

Keywords: Synthetic biology; genetic regulatory networks; complex dynamics; math-
ematical modeling; repressilator; artificial cell differentiation; synchronization; noise;
cellular decision making.

PACS numbers: 05.45.Xt, 05.65.+b, 87.10.Tf, 87.16.Yc, 87.18.cf, 87.18.Gh

1. Introduction

Synthetic biology is a developing field which utilizes biology, mathematics, compu-

tation and engineering to construct synthetic genetic networks using engineering

principles. A genetic network consists of a number of genes and additional molec-

ular parts such as promoters and operators, where protein production is regulated

through nonlinear positive and/or inhibitive feedback. Synthetic genetic networks

serve two purposes; as stripped-down networks which mimic existing complex nat-

ural pathways or as nanorobots which perform controlled, predictable functions.

Since its inception in 2000, with the development of two fundamental simple

networks, the toggle switch1 and the repressilator,2 there have been a vast num-

ber of proof-of-principle synthetic networks developed and modeled. These include

transcriptional, metabolic, coupled and synchronized oscillators,3–7 networks with

both oscillator and toggle switch functionality,8 calculators,9 pattern formation in-

ducers,10 learning systems11 optogenetic devices,12–14 and logic gates and memory

circuits,15–21 to name but a few.

As further developments are made towards the construction of robust and pre-

dictable genetic networks, it becomes clear that synthetic genetic networks have

the potential to affect and effect a lot of applications in the biomedical, therapeu-

tic, diagnostic, bioremediation, energy-generation and industrial fields.22–25 This

will be enabled when simple synthetic networks start to be assembled, coupled to-

gether and with natural networks18 in increasingly large and complex structures,

in the same way that complex electrical circuits are put together from simple and

basic electrical components.22,26 In line with engineering principles, this calls for
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robust, programmable, standard and predictable assemblies which avoid collateral

cross-talk with cellular parts.

As more elaborate synthetic networks are developed, however, special attention

needs to be given to how the individual components function together as a whole.

In nonlinear and nonequilibrium systems of coupled components or components

within stochastic settings, categories under which synthetic genetic networks fall,

complex, interesting and unexpected dynamics can be observed.27 This includes

entrainment,28,29 cell differentiation30 and coherence resonance.31,32

Unintuitive dynamics arise due to the interactions of the individual compo-

nents which cause qualitative changes in system parameters, which can in turn

lead to spontaneous self-organization, coordination and synchronization of dynam-

ics.33 This is a part of the phenomenon of emergent properties in complex systems,

wherein dynamics are observed in the assembled system, which were not observed

within the individual parts, even though it is these individual parts themselves

which are leading to complex interactions and behavior. In addition to these com-

plex structured assemblies being nonlinear, they are often inhomogeneous and in

nonequilibrium due to the effects of intra- and extra-cellular stochasticity.34 This

can have a constructive effect, unexpectedly leading to noise-induced and noise-

sustained spatiotemporal ordering, phase transition and organization.34,35

In this review, four different studies looking at cases of complex and unex-

pected dynamics within coupled and stochastic simple synthetic networks through

a mathematical and analytical lens will be discussed. These connect to diverse

natural phenomena observed in a wide range of biological organisms including hu-

mans,40–42 animals,43 plants44 and bacteria.45 The simple networks discussed here

act as rudimentary representative networks of more complex natural counterparts.

The synthetic models used are small and large populations of the repressilator2

with phase-repulsive and phase-attractive quorum-sensing,45 the one-gene Goodwin

oscillator46 within a stochastic environment and small and large toggle switches1

within a stochastic environment. These networks are used to model systems such as

the circadian rhythm in chronobiology47 and cellular decision making which drives

differentiation, pattern formation and apoptosis.49,50

The phenomena focused on are synchronization, clustering, inhomogeneity and

chaos kinetics in coupled repressilators and how these are affected by the size of the

system under consideration, the role of noise in regulating coherence and synchro-

nization in a population of Goodwin oscillators and speed dependant cellular deci-

sion making in bistable systems, wherein an incoming signals’ acceleration towards

steady state can bias the systems’ stability. In all four cases, the review begins with

an explanation of the system and the mathematical model used to analyze it. The

methods and techniques used such as bifurcation analysis, direct numerical calcula-

tions, Lyapunov theory and mean field theory are touched upon briefly. Throughout

the review, we will refer to potential advantages and applications within natural

genetic networks, such as adaptability and cell differentiation.
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2. Clustering, Oscillation Death, Chaos and Inhomogeneity in

Genetic Networks with Phase Repulsive Quorum Sensing

Natural genetic networks do not usually operate in isolation. In both bacterial and

eukaryote organisms, cells communicate amongst each other. In this section we

review cellular behavior related to cell-to-cell communication with a focus on syn-

chronization and desynchronization effects of autonomously oscillating and coupled

genetic networks. We concentrate on the repressilator as an example of a synthetic

genetic oscillator network and a prototype model of a circadian oscillator. In addi-

tion, we consider two different types of coupling, namely a phase-attractive and a

phase-repulsive coupling, which can lead to multistability, oscillation death, chaotic

dynamics and noise induced effects among others, as will be seen below.

A common method of communication between bacteria, which will be utilized

here in conjunction with the repressilator, is quorum sensing. It is based on the

relatively free diffusion of small molecules, known as autoinducers (AIs), through

the bacterial membrane. In this way, bacteria are able to sense and respond to

the local density of similar cells around them by monitoring the level of expression

of AI-controlled genes.45 In order to understand how such collective phenomena

emerge from passive intercellular communication, we make use of synthetic ap-

proaches, including mathematical modeling. The Lux system described below has

been used, for instance, as a communication module to build a synthetic mechanism

for programmed population control in bacterial populations.56

Quorum sensing in bacteria shares common features with the community effect

of differentiating mammalian cells. The precursor cells generated by an embryonic

induction tend to stay together and form a cell group of like character, despite

the fact that these cells proliferate and their surrounding environment changes as

a consequence of morphogenesis. Cell-to-cell communication by a diffusible factor

also plays a crucial role in this case.40,41 Links between the two distinct classes of

species and mechanisms may support the vice versa understanding of natural and

synthetic genetic networks.

2.1. The repressilator with quorum sensing coupling

The repressilator is a common motif in natural genetic networks51–53 and is used

as a prototype of a synthetic genetic clock built by three genes, where the protein

product of each gene represses the expression of another in a cyclic manner.2 When

constructed experimentally, the network expressed near-harmonic oscillations in

protein levels. In this design,2 the gene lacI expresses protein LacI, which inhibits

transcription of the gene tetR. The product of the latter, TetR, inhibits transcription

of the gene cI. Finally, the protein product CI of the gene cI inhibits expression of

lacI and completes the cycle [see left-hand module in Fig. 1(a)].

Cell-to-cell communication was incorporated to the repressilator design by

adding an additional feedback loop to the network scheme that is based on the

Lux quorum sensing mechanism.54 The genetic module, which can be placed on a
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Fig. 1. Scheme of the repressilator (left module) plus quorum sensing (right module) governing
cell-to-cell communication with (a) reinforcing coupling, (b) repressive coupling. The repressilator
consists of three genes tetR, cI and lacI which produce proteins TetR, CI and LacI respectively,
represented by A, B and C in the mathematical model. The quorum sensing module consists of the
luxI gene, the LuxR protein and AI inducer molecules which can transfer between cellular mem-
branes. Reactions between the components are either excitatory (arrow-head lines) or repressive
(blunt-head lines).

separate plasmid, involves two other proteins;54–56 LuxI, which produces a small AI

molecule that can diffuse through the cell membrane, and LuxR, which responds

to the AI by activating transcription of a second copy of the gene lacI. The ad-

ditional quorum sensing feedback loop can be connected to the basic repressilator

in such a way that it reinforces the oscillations of the repressilator [Fig. 1(a)] or

competes with the overall negative feedback of the repressilator [Fig. 1(b)]. The

first one leads to phase attractive coupling for robust synchronized oscillations,54

whereas the latter one evokes phase-repulsive influence,57–59 which is the key to

multi-stability and rich dynamics including chaotic oscillations.60–62 Thus, through

a single rewiring in the connection between the basic repressilator and the addi-

tional quorum sensing feedback loop, the entire dynamics of the cellular population

are significantly altered. As a consequence, the previously favored in-phase regime

becomes unstable.

The oscillator population will contain stochastic differences from cell to cell,2

giving rise to a broad distribution in the frequencies of the individual clocks which

can impair the expression of a coordinated response of the cell ensemble. However,

phase attractive coupling54 counteracts the desynchronization of the orchestrated

behavior. As the cell density increases, diffusion of extracellular AI molecules into

neighboring cells provides a mechanism of intercell coupling, which leads to a par-

tial frequency locking of the cells. Finally, when the cell density is large enough,

perfect locking and synchronized oscillations are observed through a transition via

clustering. In this case, the system of cells behaves as a macroscopic clock with a

well-defined period. This result indicates that a transition from an unsynchronized

to a synchronized regime develops as the strength of coupling increases (due to an

increase in cell density). This behavior is robust in the presence of noise.54

On the other hand, placing the luxI gene under inhibitory control of the repres-

silator protein TetR [Fig. 1(b)] will lead to repressive and phase-repulsive coupling
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Fig. 2. Principle scheme of phase-repulsive coupling realized by coupling via the slow variable
in a system with two variables with different time scales, slow (horizontal direction) and fast
(vertical direction). The coupling is in the slow direction and tries to pull the coupled oscillators,
represented by black dots, together in the direction of the arrows.

which induces more complex dynamics. This phenomenon is common in several

biological systems, including neural activity in the respiratory system,42 the brain

of songbirds,43 the jamming avoidance response in electrical fish,63 the morphogen-

esis in Hydra regeneration and animal coat pattern formation.64 Phase-repulsive

coupling arises from diffusive coupling via a slow variable and a weak time scale

separation in slow and fast variables, caused by different protein life-times (Fig. 2).

In particular, we consider a population of repressilators with identical param-

eters, with phase-repulsive coupling [Fig. 1(b)] through fast diffusion of the AI

molecule across cell membranes. The mRNA dynamics are described by the follow-

ing Hill-type kinetics with Hill coefficient n:

ȧi = −ai +
α

1 + Cn
i

, (1)

ḃi = −bi +
α

1 +An
i

, (2)

ċi = −ci +
α

1 +Bn
i

+
κSi

1 + Si

, (3)

where the subindex i specifies cell i. ai, bi and ci represent the concentrations of

mRNA molecules transcribed from the tetR, cI and lacI genes, respectively. The

parameter α is the dimensionless transcription rate in the absence of a repressor.

The parameter κ is the maximum transcription rate of the LuxR promoter.

The protein dynamics are given by

Ȧi = βa(ai −Ai) , (4)

Ḃi = βb(bi −Bi) , (5)

Ċi = βc(ci − Ci) , (6)

where variables Ai, Bi and Ci denote the concentration of the proteins TetR, CI

and LacI, respectively. The dynamics of the proteins are linked to the amount of

responsible mRNA, and the parameter βa,b,c describes the ratio between mRNA and
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the protein lifetimes (inverse degradation rates). The model is made dimensionless

by measuring time in units of the mRNA lifetime (assumed equal for all genes)

and the mRNA and protein levels in units of their Michaelis constant. The mRNA

concentrations are additionally rescaled by the ratio of their protein degradation

and translation rates.54

The third term on the right-hand side of Eq. (3) represents activated production

of lacI by the AI molecule, with concentration inside cell i denoted by Si. The

dynamics of CI and LuxI can be considered identical, given that their production

is controlled by the same protein (TetR). Hence, lifetimes of the two proteins are

assumed to be equal and the synthesis of AI Si, can be considered to be expressed

at a rate depending on the concentration Bi of the protein CI. Taking also into

account the intracellular degradation of the AI and its diffusion toward or from the

intercellular space, the dynamics of Si are given by:

Ṡi = −ks0Si + ks1Bi − η(Si − Se) , (7)

where the diffusion coefficient η depends on the permeability of the membrane.

Because of the fast diffusion of the extracellular AI molecules (Se) compared to

the repressilator period, we can apply the quasi-steady-state approximation to the

dynamics of the external AI54 which leads to

Se = QS̄ ≡ Q
1

N

N∑

i=1

Si . (8)

The parameter Q is the coupling coefficient, defined as:

Q =
(δN/Vext)

(kse + δN/Vext)
, (9)

whereN is the number of cells (repressilators), Vext is the total extracellular volume,

kse is the extracellular AI degradation rate, and δ is the product of the membrane

permeability and the surface area.

The coupling coefficient Q ∈ (0, 1) is proportional to the cell density and can be

controlled in a chemostat experiment by changing the total culture volume. There-

fore, in the numerical investigations that follow we use Q as a free and experimen-

tally tunable parameter to study the behavior of the cell ensemble under different

environmental conditions. The other model parameters cannot be changed experi-

mentally in a simple way and so we keep these parameters fixed and dimensionless

throughout the investigations. See Refs. 60, 61 and 62 for details. All parameters

used are biologically reasonable.

2.2. The dynamical regimes for a minimal system of

repressilators coupled via phase-repulsive quorum sensing

The effect of coupling on the dynamics of intercell genetic networks can be un-

derstood by investigating a minimal system of two oscillators with phase repulsive
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Fig. 3. (Color online) Typical time series of the CI protein concentration in a cell for the five

stable regimes in the smallest ensemble of N = 2 coupled repressilators for (a) Q = 0.1 oscillations,
(b) Q = 0.3 inhomogeneous limit cycle (IHLC), (c) Q = 0.4 inhomogeneous steady state (IHSS),
(d) Q = 0.4 homogeneous steady state (HSS), and (e) Q = 0.8 chaotic oscillations.

coupling. Figure 3 shows representative time traces, obtained by direct numerical

calculations of a population of N = 2 coupled repressilators, for increasing coupling

strength Q. The different dynamical regimes found are self-sustained oscillatory so-

lutions [Fig. 3(a)], inhomogeneous limit cycles (IHLC) [Fig. 3(b)], inhomogeneous

steady states (IHSS) [Fig. 3(c)], homogeneous steady states (HSS) [Fig. 3(d)] and

chaotic oscillations [Fig. 3(e)], all of which exist for biologically realistic parameter

ranges.

Both inhomogeneous solutions (IHLC and IHSS) are interesting, in that they

show different behavior of isogenetic cells in the same environment. One cell main-

tains a high level of protein CI whereas the other cell keeps a low CI concentration,

which in turn implies a high LacI concentration. Both cells are able to specialize as

a LacI or CI producer and only the history (initial condition in the numerical exper-

iments) determines the CI state. Both inhomogeneous states are combined states

and differ from a bistable system in that each protein level cannot be occupied

independently.

2.2.1. Stability and attractors of the regimes

In order to analyze the dynamical regimes, the coupling parameter Q is varied.

We make use of two methods which complement each other; bifurcation analysis

and direct numerical calculations. See Refs. 61, 62 and 65 for more details of the

bifurcation analysis.
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All regular stable dynamical regimes found with direct numerical calculations

[Figs. 3(a)–(d)] can also be seen in the bifurcation diagram [Fig. 4(a)]. To compare

the bifurcation analysis with the results of direct calculations, we calculated 1000

time series for the system of two coupled repressilators with different random initial

conditions. These cover the 14-dimensional phase-space of the system (seven degrees

of freedom per oscillator) densely enough such that one can detect stable coexisting

attractors with a basin of attraction. Several dynamical regimes coexist at the

same Q value and form the multi-stability of the system. For example, for low cell

densities when Q < 0.129, anti-phase self-oscillations are the only stable regime

but at Q = 0.129, the HSS (black) stabilizes through a limit point bifurcation, and

coexists with the oscillatory solution (yellow).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Q

1

10

a 1

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
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100
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# 
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 r
eg
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o
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ill
at

o
ry

HSS

IHLC IHSS

(b)

Fig. 4. (Color online) For N = 2 repressilators, comparison between (a) bifurcation analysis
showing variable a1 (tetR mRNA) versus coupling Q and (b) direct calculations with random
initial conditions showing the number of regime solutions versus coupling Q. Note the logarithmic
scale of both ordinates in the two plots. The oscillatory regime’s maximum and minimum values
are represented by a yellow solid line (a) and a yellow area (b); the IHLC by solid orange lines (a)

and an orange–white chess board pattern (b); the IHSS by solid blue lines (a) and a small blue
striped area (b); the HSS by a solid black line (a) and a grey area (b).
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Results show that the direct numerical calculations and the bifurcation analysis

coincide in the onset of the HSS, the IHLC, the IHSS and the mutual exclusion

of IHLC and IHSS. Only the existence of stable oscillations for Q > 0.2236 could

not be seen by the direct numerical method, revealing the dominance of the single-

fixed-point solution; at Q = 0.3, 50 solutions end up in the IHLC, while all other

950 are in the HSS and none are in the oscillatory regime [Fig 4(b)].

The chaotic dynamics in Fig. 3(e) can be seen as an additional source of un-

certainty beside the known intrinsic and extrinsic noise sources in genetic net-

works.66,67 The bifurcation analysis [Fig. 4(a)] predicts unstable anti-phase oscil-

lations beyond a torus bifurcation for Q ≈ 0.587, at which stable oscillations dis-

appear and the CI protein trajectory fills up a growing dense space [Fig. 5(b)]. To

find the stable solutions, one can perform direct simulations for different coupling Q

values. For Q < 0.67, the resulting self-oscillations are stable and resistant to small

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
Q

0

0.005

0.01

λ m
ax

(a)

(b)

Fig. 5. For N = 2 repressilators, (a) the maximal Lyapunov exponent λmax versus coupling Q,

(b) the corresponding bifurcation diagram computed as a series of Poincaré sections, with the
ordinate showing the value of the B1 (CI) protein versus coupling Q.
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perturbations in the initial conditions and dynamical noise. The maximal Lyapunov

exponent remains unaffected by the torus bifurcation at λmax ≈ 0 [Fig. 5(a)].68

At Q ≈ 0.67 the torus attractor becomes unstable and λmax increases signifi-

cantly above zero, marking the onset of chaotic behavior. The chaotic regime ranges

up toQ ≈ 0.937 and is interrupted by periodic windows at some intermediate ranges

of Q. The chaotic region ends abruptly at Q ≈ 0.937, at which point λmax declines

to zero and the bifurcation diagram reveals a relatively simple structure. Values

of Q beyond 1 are outside the biologically relevant range but important from the

dynamical system’s viewpoint. It is interesting to note that parameter estimation

methods for chaos in genetic networks have now been developed.69

Both regular and chaotic self-oscillatory regimes have a rather small basin of

attraction, which makes it very difficult to reach them from a random sampling

of initial conditions in the phase-space [Fig. 4(b)]. Thus, it is not clear whether

chaotic dynamics would be observed in an experimental implementation of our

model. However, one can envisage an experimental protocol in which a cell popu-

lation starts from the self-oscillatory regime with small Q, i.e., small cell density,

and smoothly increases its density due to replication. In that case, one can expect

the system to end in a self-oscillatory regime at high cell density Q, and eventually

in a chaotic regime. A “hidden” stable chaotic attractor with a small basin of at-

traction can be important for noisy systems.70 Noise can take the dynamics of the

genetic network from a regular or close-to-regular behavior (smooth oscillations,

HSS, IHSS or IHLC) to the basin of the chaotic attractor, leading to the excitation

of unstable periodic orbits with erratic and sudden responses. This can be beneficial

for the genetic network since it increases the flexibility and speed of state changes

(adaptation).

3. Systems Size Effects in Coupled Genetic Networks

Bacterial colonies typically consist of a population of cells and hence we extend

the results to large ensembles of represillators with phase-repulsive quorum sens-

ing. Figure 6(a) plots the frequency of stable regimes for increasing Q for an en-

semble of N = 100 coupled identical cells obtained from direct calculations with

random initial conditions. The four main regimes HSS, IHSS, IHLC and regular

self-oscillations observed in the minimal system can be detected in a large system.

The results [Fig. 6(a)] reveal a transition from self-oscillations to a single stable

fixed point as the coupling Q increases. This transition is gradual, and exhibits

a multiplicity of regimes similar to the previous situation for N = 2 [Fig. 4(b)].

For Q . 0.13 only self-oscillations are found (Fig. 9). At Q ≈ 0.13 the basin of

the self-oscillatory regime disappears, and IHLC arise [Figs. 7(c) and 8], such that

there is no mixing of the two populations. As in the minimal case of N = 2, the

basin of the IHLC coexists with the basin of the HSS [Fig. 6(a)]. This single fixed

point attractor becomes more likely for larger coupling strengths Q. In the range

Q ∈ [0.2, 0.23], a second transition takes place, through which the IHLC disappears
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Fig. 6. (Color online) Direct calculations showing distribution of (a) the stable regimes for in-
creasing coupling strength Q for a large ensemble of N = 100 repressilators, (b) the effect of
the repressilator population size N on the distribution of stable regimes for a particular coupling
strength Q = 0.24.
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Fig. 7. Time series of CI protein in a fixed system size of N = 18 repressilators and coupling
Q = 0.3 showing the IHSS in (a) 17:1 cluster distribution, (b) 12:6 cluster distribution, (c) an
example of IHLC coexisting for the same parameters. The IHLC example contains six oscillators
in the upper CI state and 12 in the lower one. The three plots illustrate the coexistence of IHLC
and IHSS for the same coupling Q.

and the IHSS regime, corresponding to fully developed oscillation death, arises.

In this regime, all cells differentiate into two different clusters at high and low CI

levels in several different ratios [Figs. 7(a) and 7(b)]. Since each cluster represents

the production of a different protein, this regime can be interpreted as a mechanism

of artificial differentiation in an isogenic population of cells. The basin of the IHSS

regime also coexists with the basin of the single fixed point attractor, which becomes

increasingly more likely for increasing Q, until it turns into the dominant attractor

of the system for Q & 0.4. The dynamical regimes described above persist in a noisy

environment. For instance, protein fluctuations larger than 25% of their mean level

do not alter the clustering attractor in the multistable parameter range.

Compared to smaller system sizes, the inhomogeneous states are more likely to

occur, at the expense of the HSS [Figs. 4(b) and 6(b)]. Figure 6(b) shows the growing

basin of attraction of the inhomogeneous solutions when the system size grows. The

likelihood of the IHSS becomes the dominant regime for cell colonies with N & 32

cells. This is similar to the differentiation mechanism and community effect of stem
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cells.40,41 The artificial cell differentiation in the repressilator system is based on

phase repulsive coupling in a weakly nonlinear system with slow-fast dynamics.

Thus, the basic mechanism is extendable to other synthetic genetic oscillators and

possibly inside natural genetic networks regulating cell differentiation.

3.1. Clustering and enhanced complexity of the inhomogeneous

regimes

A small increase in the system size is sufficient to alter the balance between the co-

existing regimes. This underlines the connection between the size of the population

and its dynamical behavior. It is well known that a large population of genetically

identical cells may exhibit diverse phenotypic states even under almost identical

environmental conditions. This heterogeneity is manifested by the existence of sev-

eral subgroups or clusters. Clustering can be defined as a stable dynamical state

characterized by the coexistence of several subgroups where the oscillators exhibit

organized identical or nearly identical behavior. Clustering is a well known prop-

erty, especially for globally coupled systems, and has been investigated in identi-

cal phase,71,72 salt-water73 and electrochemical oscillators,74,75 in synthetic genetic

networks42 and in populations of chaotic oscillators,76–78 among other cases.

The direct numerical calculations’ analysis (Fig. 6) revealed a significant en-

largement (≈ 50%) of the IHSS stability interval in comparison to the minimal case

of N = 2 coupled oscillators (for details see Ref. 61). This is a result of clustering,

or more specifically, of the increased number of possible distributions of the oscil-

lators between the two stable protein levels. Each cluster distribution (respective

separation of cell in a high or low CI state) forms an individual solution (stable or

unstable) in the bifurcation analysis, which leads to a very complex structure of

bifurcation diagrams for systems with N > 2. The different stable cluster distribu-

tions are located on separate branches of the bifurcation continuation.

We focus on the main differences from the minimal case N = 2 and discuss

their relevance to genetic networks. Figures 7(a) and 7(b) show time traces for two

different cluster decompositions in the IHSS regime for a system of N = 18. Each

possible decomposition shows slightly different stable protein concentration levels,

and hence tuning of the protein levels can be accomplished by choosing a specific

Q interval. This specific effect enhances, on the one hand, the biotechnological

applications of synthetic genetic networks by providing a possible method for fine

manipulation of the protein concentration level, and on the other hand can be seen

in natural networks as typical adaptability of a cell population to environmental

conditions.

The population displays even more complicated behavior when analyzing the

clustering effect in the IHLC regime. This complexity is manifested through the for-

mation of sub-clusters in the lower (oscillatory) state, where oscillators exhibit iden-

tical behavior within a single sub-cluster, but with various phase relations among

them (Fig. 8). Moreover, the ratio of the oscillators distributed in the upper versus
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Fig. 8. Examples of time-series showing CI protein concentrations for different IHLC distributions
and phase relation in the sub-threshold oscillations in an ensemble of N = 18 repressilators for
the same coupling Q = 0.2.

lower CI protein affects the amplitude and period of the limit cycle oscillations

located in the lower protein level. In the shown example for N = 18 and Q = 0.2

(Fig. 8) the period varies from ≈ 31.7 for the distribution of one oscillator in the

low CI state and all other 17 in the high state [Fig. 8(a)] up to ≈ 36.5 for the

distribution of five oscillators in the low and 13 in the high CI state [Fig. 8(f)].

In the discussed case every additional oscillator in the lower CI level of the IHLC

lengthens the period by ≈ 1.2 time units, which leads to a significant change in the

period between different distributions.

3.2. Clustering due to regular oscillations in cell colonies

Similarly to the minimal system of N = 2, the repressilator colony can express two

main types of oscillator behavior depending on the coupling strength Q: regular os-

cillations with stable cluster formation and chaotic self-oscillations with temporary

cluster formation. We will denote this as grouping in the following discussion. In

order to distinguish between separate cluster formations for increasing population

sizes via numerical simulations, we use the following definition: oscillators i and j

belong to the same cluster K at time t if the difference between the internal AI

concentrations Si(t) and Sj(t) is smaller than a pre-defined value ε = 0.001. Us-

ing this criteria, the resulting cluster plots classify the temporal grouping of the

oscillators [Figs. 9(b), 10, 11(d) and 12], highlighting the difference in the protein

concentrations of separate cells over time.
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Fig. 9. Three-cluster decomposition for a system of N = 18 repressilators. (a) Time series of
the CI protein concentration in the regular oscillating regime at coupling Q = 0.3, exhibiting
three-cluster decompositions with 7 : 6 : 5 distribution of cells and a phase shift of about ∼ 2π

3

among them. After a transient of about 1.2× 104 time units, a synchronous behavior inside each
cluster emerges and the individual dynamics of the cells inside each cluster are indistinguishable,
(b) Cluster-plot representation of the time-series in (a). White clusters represent a free-running
oscillator, which does not belong to any of the clusters. The coloring in the time series corresponds
to the colouring in the cluster plot.
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Fig. 10. Cluster plot of N = 11 nonidentical repressilators in the self-oscillatory regime at cou-
pling Q = 0.5 as the parameter αi, the dimensionless transcription rate in the absence of a
repressor, is varied in each repressilator. αi increases from bottom to top.

In systems where N > 5, clustering is observed in the regular oscillatory regime.

After a transient, the onset of clustering occurs [Fig. 9(b)].30,71,79 The three-cluster

decomposition dominates, with a nearly equal number of oscillators in each one,

and a distinct phase relation between separate clusters (for details see Table 2 in

Ref. 61). This phenomenon dominates for large system sizes, over wide ranges of

coupling, Q.

Time series of the separate clusters in a regular oscillating regime (the oscillators

within each cluster display synchronous behavior) are given in Fig. 9(a). The long
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Fig. 11. Chaotic behavior seen in (a), (b), (c) time series of the same system of repressilators
taken at different time-points and (d) the corresponding cluster plot over the entire time span
(0, 3 × 104) in the self-oscillatory regime of N = 18 oscillators with weak chaotic behavior and
long lasting grouping at Q = 0.6. The color coding between the four figures matches.
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Fig. 12. Cluster plot in the self-oscillatory regime for N = 18 repressilators with strong chaotic
dynamics and short-lived grouping at coupling Q = 0.75.

transient in the simulation looks unphysiological at first glance, but all simulations

are drawn from random initial conditions with a very large diversity amongst the

cells. We use these unrealistic initial conditions in order to underline the ability

of the system to form stable clusters under any condition. After proliferation, the
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daughter cells are in a similar phase as the mother, which decreases the time to

form stable clusters significantly. Normally, stronger coupling lengthens the period

of coupled systems,29,80 but the situation is different in the present case because

Q controls the re-influx of AI and a higher internal AI concentration shortens the

repressilator cycle. Compared to the coupling strength Q, the system size N and the

cluster composition have a minor influence on the period. The separation into three

clusters can provide the population of cells with high stress resistance, because at

any given time the cells in the different clusters are in different states of the limit

cycle, and hence each cluster will be affected differently by sudden environmental

stresses such as chemicals or lack of nutrients.

3.3. Parameter heterogeneity on the regular-attractor regime

The assumption that the elements of the system are identical and deterministic

(differing only in the initial conditions) is very strong, since cellular populations

are heterogenous. It is important to account for diversity among parameter values

in separate cells by introducing, for example, mismatch in the α parameter values.

Introducing diversity in α is realistic since this parameter defines the expression

strength of genes within the repressilator, which is proportional to the concentration

of repressilator plasmids present in the cell. In particular, we consider here a system

of size N = 11, where for each cell i = 1, . . . , 11 different α’s are assigned from a

defined set of values. This leads to a variability larger than 3% in the oscillation

periods. The control of the number of plasmid copies in experiments was discussed

in Ref. 81 and can be coordinated with the cell’s growth and division.

In the presence of diversity, the three-cluster decomposition remains the dom-

inant state in the system (Fig. 10). However, in contrast to the case of identical

oscillators, the two oscillators with the smallest parameter α, i.e., the cells with

the shortest period, are not phase locked and jump periodically from one of the

three stable clusters to the other. Whereas identical oscillators do not have local

grouping preferences due to the symmetry of the system, the heterogeneity intro-

duced via the parameter mismatch breaks the symmetry and leads to a situation

where oscillators with similar properties (i.e., similar αi) group together in a cluster.

One could speculate that the grouping of cells with similar behavior in an oscil-

lating cluster could be used for cell sorting and optimization of synthetic genetic

circuits.

3.4. Irregular and chaotic self-oscillations in colonies of

identical cells

As in the minimal system with N = 2 repressilators, regular oscillations convert

to irregular oscillations for high cell densities, i.e. coupling Q. Irregular oscillations

look very similar to chaotic time series and a positive maximal Lyapunov exponent

confirms the chaotic behavior for Q > Qchaos ≈ 0.6. The numerical bifurcation

diagram and the development of the maximal Lyapunov exponent versus coupling
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Q look similar to those of the minimal system with N = 2 (Fig. 5). Simulation

details for N = 18 can be found in Ref. 61. The chaotic dynamics appear gradually,

with weak chaotic behavior for Q ∈ [0.6, 0.7] and fully developed chaos for Q ∈

[0.7, 1].

Figure 11 shows weak chaotic dynamics of N = 18 oscillators at Q = 0.6, with

long three- and four-grouping constellations. The cluster plot [Fig 11(d)] illustrates

the interplay of long-time grouping and recurring transients with less ordered states

while a rearrangement to a new grouping happens. The groupings last up to 20,000

time units, i.e., about 4000 cycles. Once the oscillators are distributed in a long-

living grouping state, they oscillate synchronously within the group and cannot be

distinguished by their time series until the next decomposition occurs and spreads

the phases.

The second example of irregular chaotic self-oscillations (Fig. 12) illustrates a

regime of fully developed chaos at high coupling Q = 0.75. The maximal Lyapunov

exponent increases significantly above zero, which confirms the chaotic character of

the dynamics. Interestingly, the temporal groupings of the oscillators are conserved,

but are unstable with a significantly shorter lifetime and faster mixing as compared

to the weak chaotic dynamics discussed above (Fig. 11). In this typical situation

(Fig. 12), the grouping of the oscillators can last up to 5,000 time units, i.e., more

than 100 oscillations.

In general, it can be stated that inside the chaotic ensemble there exists a

tendency to build and break temporal groups, which leads to their mixing. Many

different temporal distributions of the oscillators into groups are possible, which

survive over several oscillation periods until the next mixing occurs. The observed

clustering and grouping effects resemble the dynamical behavior characterized for a

“globally coupled map”.82 The transition from an ordered to a partially ordered and

turbulent phase, where the number of clusters is significantly increased is similar to

the case of a weak and well-developed chaotic clustering decomposition discussed

in this section. Moreover, we show that a growing system increases both the pos-

sibility for grouping formation significantly and the number of different oscillator

distributions between the groups. This enhances the flexibility of the system and

means that by varying environmental conditions, the population can switch between

different distributions to adapt to the surroundings.

Although the chaotic dynamics observed here and the effect of intrinsic noise in

synthetic oscillators2,3 have very similar manifestations despite different origins, we

demonstrate that chaos is an alternative source of uncertainty in genetic networks.

The chaotic dynamics and the grouping phenomena appear gradually for increasing

coupling Q, i.e., at cell densities which can be a cause for stress. One could speculate

that the population has the flexibility to respond to and survive environmental

stress by distributing its cells within stable clusters. The gradual chaotic behavior

enables the population to adapt the mixing velocity and the degree of diversity to

the stress conditions.
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Suzuki et al. systematically investigated five gene network motifs suitable to

control cell differentiation83 and found that the repressilator motif is commonly

embedded in functioning networks which express chaotic dynamics under certain

initial conditions and parameter sets. These findings support the idea to use the

repressilator with repressive cell–cell communication as a prototype of artificial cell

differentiation in synthetic biology.

4. The Constructive Role of Noise in Genetic Networks

Genetic networks cope with significant noisy perturbations caused internally by

the inherent stochasticity of biochemical processes and externally by environmen-

tal fluctuations.66,67 Intrinsic noise is unavoidable because protein synthesis is a

stochastic event, presenting a challenge for the design of any synthetic genetic net-

work, especially small systems where many components are present at low copy

numbers at or below the order of ten. On the other hand, extrinsic sources of noise

arise independently of the gene network under consideration but can act on it.66

Extrinsic noise is caused by molecular species in the cell, such as RNA polymerase,

cells within the population and changing environmental conditions. Noise and noise

reduction strategies in genetic networks is a wide and ongoing field and we refer

the interested readers to the literature e.g., Refs. 84–89. It has been shown that

the interaction of noise with nonlinear systems and forces can have positive effects

on the systems, such as enhanced order and regular behavior, the appearance of

new behavior, improved signal response, better sensitivity and noise-induced trans-

port.32,90–94 In the following sections, we discuss potential beneficial effects of noise

in genetic networks, focusing on noise-induced oscillations and coherence.

4.1. Noise-induced oscillations in circadian gene networks

Biochemical clocks with intrinsic time scales can display regular oscillations in the

presence of intermediate levels of stochasticity.95,96 The oscillations occur within a

narrow frequency range as a temporal coherent output close to nonlinear instabili-

ties of periodic orbits.97 The phenomena is known as coherence resonance, stochastic

coherence, autonomous or self-induced stochastic resonance. Amongst these terms,

we will use stochastic coherence as it describes the systems’ response more appro-

priately. Studies as far back as 197498,99 support the theory that under certain

conditions, noise can have a constructive role and extend the range of parameters

which result in oscillatory behavior.3,100,101

Recent experiments and mathematical models suggest that the circadian rhythm

in individual cells is also a noise-induced oscillation.47,102,103,112 Circadian rhythms

are autonomous 24-hour-period biochemical clocks controlled by external light

which are observed in a vast range of living organisms from cyanobacteria, plants

and insects to mammalian cells. The mammalian circadian clock is based on neg-

ative feedback and is hierarchically organized, mastered by the suprachiasmatic

nuclei (SCN).113,114 The SCN consists of about 20,000 neurons, each equipped
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with an individual molecular clock driving neuronal activity. These clocks interact

with each other,28,115–117 and their activity can be entrained by natural periodic

light modulation, the day-night cycle of the sun or alternative artificial sources.

Although individual cellular circadian clocks are irregular, the orchestrated rhythm

of 20,000 molecular communication clocks in the SCN generate a precise and reli-

able central clock, which persists even in the absence of daily light rhythm under

certain conditions of constant light. This will be further discussed in the following

section.

In deterministic circadian clocks, mathematical models based on experimental

results predict damped oscillations. It is only with the inclusion of genetic noise

that the system is excited regularly and results in stochastic coherence.47,102,103,112

Hence, noise has a potentially constructive role, involved in the generation of

the central rhythm which pervades the entire body from the activity pattern, to

metabolism and organs.104–111

4.2. Noise-induced synchronization and rhythms

Under constant light conditions, SCN cells are only able to produce self-sustained

oscillations when illumination levels are sufficiently low. If constant light is in-

creased, the circadian clock undergoes a transition from a rhythmic (normal) to

an arrhythmic (abnormal) behavior.118 Remarkably, the individual clocks remain

in the oscillatory state but lose their synchronization,119 oscillating with different

phases and eigen-frequencies due to intercell variability. The fact that increasing

light leads to arrhythmicity119 suggests that illumination may have a repressive

influence on the strength of coupling among clock cells.120 In this scenario, under

constant darkness, the single-cell oscillators are strongly coupled and hence, are

synchronized and phase-locked. The assumption of light-controlled coupling does

not exclude, but rather complements, the direct effect of light on the individual

cells, as it highlights the importance of synchronization for the emergence of overall

circadian rhythmicity.

A hypothesis was developed to test whether random fluctuations in a constant

lighting profile can sustain circadian rhythmicity in a multicellular clock, under

conditions for which the clock is arrhythmic in deterministic conditions.121 The

phenomenon is similar to stochastic coherence mechanisms in stochastic dynamics

literature.93 It is assumed that the only relevant influence of light into the system

is through the inter-oscillator coupling. The direct effect of light on the clock cells

is expected to play a more important role in the case of entrainment to a light–

dark cycle. In addition, it is assumed that noise affects the strength of coupling

among the oscillators globally. The assumption of a chemical (rather than, for

instance, an electrical) mechanism of intercell communication among SCN neurons

as a synchronization factor is supported by recent experimental evidence.122

The hypothesis was validated by a mathematical model of the circadian pace-

maker at the basic genetic level by using a large ensemble of globally coupled
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non-identical Goodwin oscillators. Developed over 40 years ago,46,51 the Goodwin

oscillator consists of a single gene that represses itself directly or indirectly. It has

been implemented in vivo using the PLlacO−1 promoter.3,123 The Goodwin model124

describes circadian oscillations in single mammalian cells by means of three vari-

ables. The clock gene’s mRNA (X) is translated to a protein (Y ) which activates

a transcriptional inhibitor (Z) and in turn inhibits the transcription of the clock

gene. The three variables form a closed negative feedback loop typical for Goodwin

oscillators. Additionally, a global coupling term can be introduced125 depending on

the concentration of a synchronizing factor (a neurotransmitter) in the extracellu-

lar medium. Since the SCN is a relatively small and dense area, fast dynamics of

the small neurotransmitter molecules in the extracellular medium can be assumed

in order to allow for the simplification of cell-to-cell communication by mean field

coupling. The simplified coupling is comparable to the quorum sensing mechanism

in bacterial colonies45 discussed in Sec. 2.

The resulting model is121:

dXi

dt
= νx

Kn
t

Kn
t + Zn

i

− δx
Xi

Kx +Xi

+ νc
αVi

Kc + αVi

, (10)

dYi

dt
= νyXi − δy

Yi

Ky + Yi

, (11)

dZi

dt
= νzYi − δz

Zi

Kz + Zi

, (12)

dVi

dt
= νvXi − δv

Vi

Kv + Vi

− η(Vi −QF ) , (13)

where the index i denotes different cells and Vi represents the internal signaling

molecule concentration of cell i. The production rates are represented by νj , the

degradation rates by δj and Kj are Michaelis constants. The release of signaling

molecules is assumed to be fast compared to the circadian timescale, which results

in an average external signaling molecule level, represented by a mean field F ,

F =
1

N

N∑

i=1

Vi . (14)

The authors distinguish between the intracellular signaling molecule concentra-

tion Vi, which directly activates expression of Xi [Eq. (10)] and the extracellular

signaling molecule concentration F . This coupling mechanism is similar to that sug-

gested by Garćıa-Ojalvo et al.54 for intercell communication of synthetic gene oscil-

lators via small AI molecules. The coupling between the individual cell oscillators

is determined by the membrane permeability η and the relative signaling molecule

influx into the cell Q. It is assumed that light affects the signaling molecule influx,

and thus Q will be considered as the only parameter driving the synchronization

transition through the influence of light. The diversity in the eigen-frequencies of

the individual oscillators was modeled by rescaling the production and degradation
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rate constants (νi and δi) by a scaling factor τi, i = 1, . . . , N , different for each

cell. The value of these factors τi are drawn randomly from a normal distribution

of mean τ̄ = 1.0 and different standard deviation στ .

4.2.1. The mean field synchronization under constant light conditions

In the absence of coupling, oscillations are uncorrelated due to different τi and

initial phases. For sufficiently large ensembles, the mean response of the oscillators

is mostly flat, showing arrhytmicity despite each oscillator having a clear periodic

behavior. Coupling leads to synchronization amongst the circadian oscillators and

rhythmic behavior in the mean field, associated with free running rhythmicity of

mammalian cells under constant darkness conditions. Stronger coupling leads to

a more pronounced synchronization and the amplitude of the mean field increases

until full synchronization.

For the optimal expression of noise-induced rhythmicity, the system must op-

erate close to the nonlinear bifurcation point of Q corresponding to the onset of

synchronization. The transition from a nonsynchronized to a synchronized state as

Q increases (i.e., the light decreases) was investigated with respect to the mean

field. The degree of synchronization Rsyn is the ratio of the variance of the mean

field of protein concentration to the mean variance of each oscillator54 and is defined

as:

Rsyn =
〈Ȳ 2〉 − 〈Ȳ 〉2

1

N

N∑
i=1

(〈Y 2
i 〉 − 〈Yi〉2)

, (15)

where the mean clock protein concentration Ȳ is

Ȳ =
1

N

N∑

i=1

Yi . (16)

A fully desynchronized state results in Rsyn = 0, whereas complete synchroniza-

tion in the case of identical oscillators corresponds to Rsyn = 1. The parameters

are used as per Ref. 121.

Using this definition, Fig 13(a) shows a transition from a nonsynchronized (ar-

rhythmic, Rsyn ≈ 0) to a synchronized (rhythmic, Rsyn ≈ 1) state as the deter-

ministic coupling Q increases, for all diversities στ . As the diversity στ increases,

the transition point shifts to higher coupling strengths. Results are also presented

in Fig. 13(b) by the period of the mean field T , which decreases with increasing

diversity strength.

4.2.2. The mean field under stochastic light conditions — stochastic

coherence

Light affects circadian oscillators and under natural day–night conditions leads to

externally driven entrainment. Following Dı́ez-Noguera,120 it is assumed that light
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Fig. 13. Transition from a nonsynchronized to a synchronized state by increasing coupling Q in
an ensemble of N = 10,000 Goodwin oscillators with Gaussian distributed diversity in the absence
of noise. Plots showing (a) the synchronization degree Rsyn versus the coupling parameter Q for
various values of the diversity coefficient στ , (b) the period of the mean field T , calculated from
the main peak of the power spectrum versus the coupling parameter Q for various values of the
diversity coefficient στ .

has an inhibitory influence on the coupling strength between the cellular oscillators.

Ullner et al.121 assume a direct relation between light and coupling Q, and represent

a random illumination by Q = Q0 + ζ(t). The global noise term ζ(t) is Gaussian,

with zero mean and intensity σ2
m defined by the correlation 〈ζ(t)ζ(t+τ)〉 = σ2

mδ(τ).

This noise is multiplicative, due to its dependence on the state variable representing

the external signaling molecule concentration, F . In addition, it is assumed to be

global because light affects all clock cells similarly.

One of the mechanisms through which stochastic coherence arises is through a

noisy precursor area of a Hopf bifurcation.126,127 Therefore, the value of the coupling

strength Q0 is fixed just before the onset of the synchronization transition within

the arrhythmic regime. Under these conditions, random fluctuations in the coupling

(i.e., in the external light) allow the cells to temporarily and rapidly surpass the

bifurcation onset and move the system into the rhythmic regime, enhancing the

stochastic coherence effects. On the other hand, for large couplings (Q > 0.7) the

period of the mean field T depends strongly on Q [Fig. 13(b)]. This is destructive

for stochastic coherence, since the dynamical variability in large Q leads to a large

variability of the period of the mean response and thus to the reduction of its

coherence. Hence, this range of coupling values should be avoided when looking for

stochastic coherence.

As shown in Fig. 13, deterministic synchronization depends on the diversity στ

and hence Q0 should also be chosen with respect to it. Noise-induced coherence

is expressed by a bell-shaped curve of the coherence measure with respect to the

noise intensity σ2
m of the global noise ζ(t) (Fig. 14). The coherence level is given

by the decay time of the autocorrelation function of the mean field, for increas-

ing global noise intensity σ2
m and small rescaling diversity στ = 0.005. Whereas
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Fig. 14. Effect of stochasticity seen in (a) synchronization coefficient Rsyn versus noise intensity
σ2
m, (b) coherence level CR versus noise intensity σ2

m in a normally distributed ensemble of 10,000
Goodwin oscillators with fixed coupling Q0 = 0.15 and στ = 0.005. Other parameters are as given
in literature.121

synchronization measured by Rsyn increases monotonically with the noise intensity

σ2
m, the coherence shows a clear resonance-like behavior with a well pronounced

maximum at an optimal noise level of σ2
m,opt ≈ 0.04. It can be seen that an in-

creasing amount of global noise synchronizes the oscillators [Fig. 14(a)], which ini-

tially leads to an increase in the coherence of the mean field [Fig. 14(b)]. As the

noise intensity increases further, however, synchronization keeps increasing (since

all oscillators are driven globally by the noise) but the coherence of the signal de-

cays. Thus, coherence and synchronization are different effects: synchronization is

necessary but not sufficient for the emergence of coherence. This leads to stochas-

tic coherence, which can be qualitatively seen in the dynamics of the mean field

but not on that of the individual oscillators. It is interesting to note that noise-

improved coherence occurs even in the case of weak synchronization, i.e., even

when the individual genetic oscillators still have large dynamical variations amongst

them.

In conclusion, in the absence of noise, the amplitude of the oscillations in the

mean field is very small. The individual cells are oscillating, but in an incoherent

way. Stronger noise enhances the coupling, and so increases the amplitude of the

mean field rhythm. The optimal noise intensity arises as a compromise between a

strong coupling (and hence enhanced synchronization and large amplitude of the

mean field rhythm), and a low destructive influence of the stochastic fluctuations,

which reduce the coherence. For large noise levels, the coherence of the individ-

ual oscillators becomes dominated by the noise fluctuations, and the resulting loss

of regularity is also reflected in the global rhythm. A detailed description of the

phenomena and the dynamics of the mean field and the individual oscillators for

different noise intensities can be found in Ref. 121.
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5. Speed Dependent Cellular Decision Making (SdCDM) in Noisy

Genetic Networks

Cellular decision making is a nonlinear process through which cells decide between

functionally different fates such as cell differentiation, survival, apoptosis and self-

renewal.131,132 One study, which will be reviewed here, looks into the mechanism

of Speed dependent Cellular Decision Making (SdCDM), which is the dependence

of cellular decision making on the speed with which external signals reach steady

state, referred to as the signal speed, and associated fluctuations.37–39 This effect

was tested on low and high-order switches which act as bistable systems.

5.1. Speed dependent Cellular Decision Making in a small genetic

switch

In order to examine the SdCDM effect on small networks, a genetic switch

[Fig. 15(a)] consisting of two transcription factors X and Y was used.37 The switch

is exposed to two external signals S1 and S2 that represent protein kinases. These

kinases convert each transcription factor to its active phosphorylated form (Xa or

Y a), which enhances the production of its own gene and inhibits the expression of

(a)

(b) (c)

Fig. 15. Small toggle switch network with external signals which have different growth times.
(a) Diagram showing transcriptional small toggle switch. The switch consists of two transcription
factors X and Y and their phosphorylated forms Xa and Y a under the effect of two external
signals S1 and S2, (b) time evolution of the external signals S1 and S2 with different growth times

TS1 and TS2 but equal steady states at Smax = 10, (c) the asymmetry ∆S(t) between the external
signals, which is the difference in signal strength S1(t)−S2(t) with a maximum asymmetry of A.
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(a) (b)

Fig. 16. Bifurcation analysis of the small genetic switch. (a) Two-dimensional phase-space dia-
gram for protein X in the space (S1, S2) with IH,L being the regions of monostability with high or
low values of X, respectively, and IIA being the region of bistability. The direct path from Pi → Pf

gives a symmetric supercritical bifurcation diagram, while the indirect path Pi → Pm → Pf gives
asymmetry, (b) asymmetric bifurcation diagram of X, where r is the distance between Pi and a
point along the path Pi → Pm. (H,L) represents the variables X and Y having high and low
values, respectively. Unitless parameter values are given in Ref. 37.

the other gene. In the system, the signals [Fig. 15(b)] have different growth times

TS1 and TS2, but saturate to equal steady states at Smax.
37 The transient asym-

metry ∆S(t), between the two external signals reaches a maximum asymmetry A

[Fig. 15(c)] and is defined as max(∆S(t)) = Smax(1− (TS1/TS2)).

5.1.1. Bifurcations under the effect of external signals with different

growth times

Figure 16(a) shows the different stability regions in the parameter space (S1, S2).

The borders separate the regions of monostability IH (where X > Y has high

values) and IL (vice versa) from the region of bistability IIA, where X and Y

have high and low concentrations, respectively or vice-versa. The transition from

monostability to bistability represents a decision making process, where the cell

moves from an initial monostable state Pi to its final bistable state Pf , at which

t = TS2
. The path Pi → Pf (which represents the external signals S1 and S2

having the same growth times) gives a symmetric supercritical pitchfork bifurcation

without any distortion.

On the other hand, following path Pi → Pm → Pf (which represents S1 and S2

having different growth times), where t = TS1
at Pm, the symmetry in the super-

critical pitchfork bifurcation diagram is broken. By increasing the maximum asym-

metry A, the bifurcation delay, which is the time needed to leave the neighborhood

of the unstable branch in the bifurcation diagram, was decreased [Fig. 16(b)].37

Throughout bifurcation analysis, in order to concentrate on the effects of external
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(a) (b)

Fig. 17. Selectivity strength under different growth speeds of external signals in a toggle switch.
(a) Typical time evolution of concentrations of X and Y . The value of X increases and levels out
at 1, while the trajectory of Y goes to zero, (b) the probability R, of reaching the upper attractor
(X, Y ) = (H,L) for different values of maximal asymmetry A. As the growth speed of TS1

is
increased, the probability R tends to 0.5. Parameter values are stated in Ref. 37.

signals on genetic switch dynamics, the values of all parameters except S1 and S2,

were taken to be symmetric and constant.37

5.1.2. Effect of different stochastic growth speeds of external signals

Given different growth times for the external signals S1 and S2 and parameters

as defined in Ref. 37, the trajectories of the factors X and Y tended towards the

attractor (X,Y ) = (1, 0) [Fig. 17(a)]. This corresponds to the upper branch of the

bifurcation diagram [Fig. 16(b)] and results from the fact that S1 reaches steady

state faster than S2.
37 The attractors of genetic networks can be taken to correspond

to specific gene expression programs and consequently, to cell types or cell fates.133

To test the effect of the growth speed of external signals in the presence of noise,

different values of TS1 were inserted in S1(t) = (Smax/TS1)t, and TS2 was varied

according to TS2 = (Smax/Smax −A)TS1, keeping A and Smax constant. Thus, the

speed was varied but the decision path, Pi → Pm → Pf , remained fixed.37 As

the growth speed TS1
was decreased [Fig. 17(b)], the probability R of reaching an

attractor in the upper branch of the bifurcation path tend to 0.5, which implies

symmetry between the upper and lower attractors in the bifurcation diagram, nul-

lifying the bias produced by the external signals. Consequently, high growth speeds,

TS1
allow for a stronger selection process, even in the presence of noise. In addition,

a high maximum asymmetry A, gives a higher value for probability of bias R and

hence, a high bias in favor of the upper attractor [Fig. 17(b)].
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Fig. 18. High-dimensional genetic toggle switch network which consists of two sets of nodes rep-
resenting transcription factors TFi with self-activation and cross-inhibition reactions. The former
includes the nodes 6–10, and their activation is affected by five external signals S1, S2, S3, S4

and S5. The latter involves the nodes 11–15, which do not have a direct effect from the external
signals.

5.2. Speed dependent Cellular Decision Making in large genetic

networks

This section generalizes the effects of SdCDM in high-dimensional circuits.38 In

this case, the circuit (Fig. 18) consists of two layers of self-activating and mutually-

inhibiting transcription factors TFi represented by nodes. There are five external

signals S1, S2, S3, S4, S5 that trigger phosphorylation reactions. Each signal has a

different growth time but saturates to the same maximal strength and affects only

a number of the outer nodes.38

5.2.1. The role of growth speed in decision making

When S = S1 = S2 = S3 = S4 = S5, a subcritical pitchfork bifurcations

occurs due to the disconnection of emerging branches in the bifurcation dia-

grams.38 In order to analyze whether results noted for small networks can be

replicated, i.e., whether different signal strengths and timings affect attractor se-

lection, two pairs of inputs, which will be denoted by (I15, I75) and (I75, I94),

that lead to the same attractor were chosen.38 Each input takes the general form

Ik(t) = (S1(t), S2(t), S3(t), S4(t), S5(t))k, where all signals Si have the same initial

and final amplitudes but different growth times [Fig. 19(a)]. The inter-trajectory

distance (ITD) is a metric of the distance between two trajectories induced, respec-

tively by signals Ik and Ik′ . It is defined as:

ITD(Ik,Ik′)(t) = 1− rt(Ik,Ik′ )(t) , (17)
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(a)

(b) (c)

Fig. 19. (Color online) External signals’ profiles and the effect of speed on high-dimensional
toggle switches. (a) Time evolution of each signal Si for i = 1, . . . , 5 for three different sets of
inputs I15, I75 and I94, (b) time evolution of the inter-trajectory distance ITD(t) for pairs of the
inputs that lead to the same end attractor. The inset shows the trajectory of the pair (I75, I94)
magnified, (c) the distance between final distributions Dr for each node TFi with i = 6, . . . , 15.
The distance occurs from the pair of inputs (I75, I94). The legend describes four cases where the
inputs are the same but signals Si are 100, 300 and 500 numerical integration time-steps slower
and noise σ = 0.5.

where rt(Ik,Ik′ )(t) is the correlation between the trajectories induced by inputs Ik
and Ik′ . Results have shown that the largest inter-trajectory distance is between I15
and I75, while I75 and I94 give the smallest distance [Fig. 19(b)]. Furthermore, the

distance between final probability distributions of each attractors was computed

through the formula Dr(Ik,Ik′ ) = 1 − rd(Ik,Ik′ ), where rd(Ik,Ik′ ) is the correlation

between the distributions across attractors. Symmetry corresponds to a smaller

distance Dr between the final distributions. Decreasing growth speed with a high

value of noise increases the distance Dr, as seen in Fig. 19(c) for inputs (I75, I94),

which implies that decreasing growth speed increases the asymmetry. This agrees

with previous observations that a decrease in signal growth speed leads to more

specific attractor selectivity. However, this is true to a lesser extent, depending on
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the trajectories being analyzed.38 Thus, whereas the observation holds for the pair

(I75, I94) when the ITD is small, the pair (I15, I75) which lead to the same attractor

but have a larger ITD induces the opposite effect (results not shown). The impact

of noise in increasing growth speed symmetry can be seen in Ref. 38.

6. Discussion

In this review, four different phenomena found in natural biological systems have

been mathematically modeled via simple synthetic genetic networks in order to

discuss and explain emergent, unexpected and complex dynamics in relatively sim-

ple network systems. The first phenomenon was cell-to-cell communication in a

population of synthetic genetic repressilator networks coupled via phase-attractive

or phase-repulsive quorum sensing.2,54–56,58–61 The coupling system used was the

Lux system,56 borrowed from nature. The analysis focused on how different phase-

repulsive coupling strengths led to different dynamical regimes, such as oscillations,

inhomogeneity, steady states and chaos. The second study discussed also looked at

repressilators with phase repulsive quorum sensing, but focused on how these in-

teract together in large populations. In agreement with small repressilator systems,

the selection of coupling strength lead to either regulated clustering (of oscillations

or steady states) or chaotic behavior. In both small and large populations, as the

coupling strength was increased, the system was observed to go from oscillatory, to

inhomogeneous limit cycles, inhomogeneous and homogeneous steady states, and

chaotic regimes. The latter is thought to play a role in high stress situations by al-

lowing for a system’s adaptability, and hence, survival. There is also a possibility of

fine-tuning protein levels via the system size and coupling strength selection. This

can be of paramount importance within a bioindustry and therapeutics setting.

This system can be used as an alternative and much simpler mode of studying cell

differentiation. More specifically, it can be used as a tool when looking at commu-

nity traits in artificial cell differentiation, which is a mathematical concept wherein

synchronized and identical cells persist in exhibiting a range of dynamics.

In the third case, the phenomenon analyzed was noise, and how it can have

constructive effects on a system. The authors used a Goodwin oscillator,46,51 repre-

sentative of the circadian clock. They showed that within an artificial constant-light

setting, an arrhythmic system which is on the brink of coherent oscillations can be

pushed into this regime through the presence of noise.121 Thus, noise effectively

served to broaden the parameter range within which synchronized and sustained

oscillations occur. This review also informed on possible synchronization factors,

such as light profiles which can lead to externally-driven entrainment.128–130 This

demonstrates how extra-cellular factors have a potential to be used as triggers in

genetic networks.

In the fourth case, a bistable system was used to analyze decision making in

natural systems found in differentiation, apoptosis and survival mechanisms, among

many others.131,132 The authors have shown how cellular decision making can be
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biased via incoming external signals.37–39 More specifically, the speed with which

external signals reached steady states and the transient maximal asymmetry be-

tween these signals could bias the system towards a specific attractor. The authors

also showed how the impact of the phenomenon of SdCDM decreases with increas-

ing system size.38

The analysis carried out has demonstrated how mathematical analytical tech-

niques via synthetic biology can be used to elucidate novel information on the

causes and effects of observed dynamics in genetic networks, which would other-

wise be more difficult to understand via purely experimental methods. These studies

highlight the role which mathematics should play in synthetic and systems molecu-

lar biology. Throughout the review, a link is made between mathematical analysis

and experimental work to highlight how the different fields can work in tandem.

This was done by analyzing parameters and using settings and conditions which

can be set up relatively easy within an experimental setting.

In a competitive environment, such as the bio-industry, the drive for detailed,

fast, cost-effective and informative results will continue to increase. Analytical mod-

eling of simple and complex synthetic networks will allow us to account for the un-

expected and complex dynamics resulting from nonlinear and nonequilibrium sys-

tems. We have showcased that in-depth analysis of assemblies of networks should

be incorporated into genetic regulatory network studies in order to understand

and control emergent properties. This will contribute towards the development of

synthetic biology as a robust and predictable field in biological engineering.
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