
Journal of Alzheimer’s Disease 39 (2014) 565–574
DOI 10.3233/JAD-131058
IOS Press

565

Polygenic Risk for Alzheimer’s Disease is
not Associated with Cognitive Ability or
Cognitive Aging in Non-Demented Older
People

Sarah E. Harrisa,b,∗, Gail Daviesa,b,c, Michelle Lucianob,c, Antony Paytond, Helen C. Foxe,
Paul Haggartyf , William Ollierd, Michael Horang, David J. Porteousa,b, the Genetic and Environmental
Risk for Alzheimer’s disease (GERAD1) Consortium1, John M. Starrb,h, Lawrence J. Whalleye,
Neil Pendletong and Ian J. Dearyb,c

aMedical Genetics Section, University of Edinburgh Centre for Genomics and Experimental Medicine and MRC
Institute of Genetics and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh, UK
bCentre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, UK
cDepartment of Psychology, University of Edinburgh, Edinburgh, UK
dCentre for Integrated Genomic Medical Research, University of Manchester, Stopford Building, Manchester, UK
eInstitute of Applied Health Sciences, University of Aberdeen, Foresterhill, Aberdeen, UK
f Division of Lifelong Health, Rowett Institute of Nutrition and Health, University of Aberdeen, Greenburn Road,
Bucksburn, Aberdeen, UK
gCentre for Clinical and Cognitive Neuroscience. Institute Brain Behaviour and Mental Health, University of
Manchester, Clinical Sciences Building, Salford Royal NHS Foundation Trust, Salford, UK
hAlzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK

Handling Associate Editor: Emilio Di Maria

Accepted 29 September 2013

Abstract. Alzheimer’s disease (AD) and non-pathological cognitive aging have phenotypic similarities which may be influenced
by an overlapping set of genetic variants. Genome-wide complex trait analysis estimates that common genetic variants account
for about 24% of the variation contributing to liability for AD. It is also estimated that 24% of the variance of non-pathological
cognitive aging is accounted for by common single nucleotide polymorphisms. However, although the APOE locus is associated
with both AD and cognitive aging, it is not known to what extent other common genetic variants, with smaller effect sizes that
influence both, overlap. We test the hypothesis that polygenic risk for AD is associated with cognitive ability and cognitive
change in about 3,000 non-demented older people (Cognitive Ageing Genetics England and Scotland-CAGES-consortium). We
found no significant association of polygenic risk for AD with cognitive ability or cognitive change in CAGES, indicating that
the genetic etiologies of AD and non-pathological cognitive decline differ.
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INTRODUCTION

Alzheimer’s disease (AD) is the most common form
of dementia and is predicted to affect over a million
people in the UK by 2025 [1]. It is characterized by
progressive loss of memory, mood changes, and prob-
lems with communication and reasoning [2]. Brain
autopsies reveal extracellular plaques and intracellu-
lar neurofibrillary tangles, and these are considered
hallmarks of the disease [3].

AD is a genetically heterogeneous disease. Candi-
date gene and genome-wide association studies have
identified a number of genes which increase an individ-
ual’s risk of developing the more common form of AD,
late-onset AD (LOAD). These include APOE, CR1,
PICALM, and CLU, with the APOE �4 allele being
by far the strongest genetic risk factor for LOAD [4,
5]. Mutations in three genes have been identified as
causative in cases of the rarer familial early-onset AD
(EOAD). These are APP, PSEN1, and PSEN2 and all
are involved in the amyloid-� (A�) pathway [6–8].
The mutations lead to an increase in A�42 produc-
tion, deposits of which accumulate in the extracellular
plaques identified in the brains of AD patients. See
references [9–11] for reviews of the genetics of AD.

Non-pathological cognitive aging shares some phe-
notypic similarities with AD including memory loss,
and the greatest risk factor for developing AD is age.
To date, the only gene with a replicated effect on nor-
mal cognitive aging is APOE [12], the gene which
is the greatest genetic risk factor for LOAD. Based
on genome-wide testing of single nucleotide polymor-
phisms (SNPs), it is estimated that common genetic
variants account for about 40% to 50% of the vari-
ance in general cognitive functioning in later life, 24%
of the variance in lifetime cognitive change (though
this estimate had large standard errors), and 24% of
the variation contributing to liability for AD [13–15].
The APOE locus alone accounts for about 5% of the
variance in lifetime cognitive change and 4% of the
variance in AD [16, 17]. We hypothesize that AD
and non-pathological cognitive aging share common
genetic risk factors.

A polygenic risk score for a particular disease can be
calculated for each individual in a sample, from pub-
lished genetic association data, by summing the known
effect size of each individual SNP multiplied by the
number of reference alleles present for that SNP in a
particular individual. This technique has successfully
been used to show, for example, that greater polygenic
risk for schizophrenia is associated with more loss
of cognitive function between childhood and old age

in people who have neither dementia nor schizophre-
nia [18]. A recent study investigated a polygenic risk
score, based on just 11 genes significantly associated
with AD, and found only a marginal effect of these
genes on memory scores in individuals aged 45–99
years, independent from APOE [19]. Here we test the
hypothesis that a polygenic risk score created using
data from a published AD genome-wide association
study (GWAS) [4] is associated with cognitive ability
in later life and non-pathological cognitive change in
samples of older, non-demented people from England
and Scotland.

MATERIALS AND METHODS

Cognitive Ageing Genetics in England and
Scotland (CAGES) Consortium’s cohorts

Five polygenic risk scores (created using different
AD association criteria) were created in each of the
five UK-based cohorts that make up the Cognitive
Ageing Genetics in England and Scotland (CAGES)
consortium.

Lothian Birth Cohort 1921 (LBC1921)

LBC1921 consists of 550 (234 men and 316 women)
relatively healthy surviving members of the Scottish
Mental Survey 1932 [20]. The majority of these indi-
viduals had their general cognitive ability assessed at
∼11 years of age using the Moray House Test (MHT)
version 12. This test consists of 75 items of a variety of
types: following directions (14 items), same-opposites
(11 items), word classification (10 items), analogies (8
items), practical items (6 items), reasoning (5 items),
proverbs (4 items), arithmetic (4 items), spatial items
(4 items), mixed sentences (3 items), cypher decod-
ing (2 items), and other items (4 items). At a mean
age of 79.1 years (SD 0.6), they were recruited to
a study to determine influences on normal cognitive
aging and underwent a series of cognitive tests. This
included retaking the MHT [21, 22]. A later-life gen-
eral fluid cognitive functioning score (gf) was derived
from principal components analysis of MHT, Raven’s
Matrices, Logical Memory, and Verbal Fluency [13].
Verbal declarative memory was assessed using the
total Logical Memory score from the Wechsler Mem-
ory Scale-Revised [23]. Crystallized cognitive ability
(vocabulary-based) was assessed using the National
Adult Reading Test (NART) [24]. Cognitive measures
were corrected for age at time of testing and gender
prior to analysis. gf was adjusted for prior cognitive



S.E. Harris et al. / Polygenic Risk for AD and Cognitive Aging 567

ability using the MHT scores from age 11, thus pro-
viding a measure of relative cognitive change from
age 11 to age 79. Both gf and age 11 MHT scores
were adjusted for age in days at time of testing prior to
the creation of the cognitive change measure. Cogni-
tive change measures were extracted and standardized
independently for males and females [16].

Lothian Birth Cohort 1936 (LBC1936)

LBC1936 consists of 1091 (548 men and 543
women) relatively healthy surviving members of the
Scottish Mental Survey 1947 [25]. The majority of
these individuals had their general cognitive ability
assessed at ∼11 years of age using the MHT version
12. At a mean age of 69.5 years (SD 0.8), they were
recruited to a study to determine influences on normal
cognitive aging and underwent a series of cognitive
tests, including re-taking the MHT [22, 26]. A gen-
eral fluid (gf) cognitive ability score was derived from
principal components analysis of six Wechsler Adult
Intelligence Scale-IIIUK (WAIS-III) [27] non-verbal
subtests (matrix reasoning, letter number sequencing,
block design, symbol search, digit symbol, and digit
span backward), as described previously [28]. A gen-
eral processing speed factor was similarly derived for
the set of mental speed measures (symbol search, digit
symbol, simple reaction time mean, choice reaction
time mean, and inspection Time) [26] as described
previously [28]. A general memory factor was derived
from principal components analysis of the following
subtests from Wechsler Memory Scale-IIIUK (WMS-
III) [29] and WAIS-III: logical memory I total recall
score (A + B + B2), logical memory II delayed recall
total score (A + B), spatial span forward and back-
ward, verbal paired associates I (List A + B + C + D)
and II (recall total score), letter-number sequencing,
and digit span backward as described previously [30].
Crystallized cognitive ability (vocabulary-based) was
assessed using the NART [24]. Cognitive measures
were corrected for age at time of testing and gender
prior to analysis. The gf was adjusted for prior cogni-
tive ability using the MHT scores from age 11, thus
providing a measure of relative cognitive change from
age 11 to age 70. Both gf and age 11 MHT scores
were adjusted for age in days at time of testing prior to
the creation of the cognitive change measure. Cogni-
tive change measures were extracted and standardized
independently for males and females [16].

Aberdeen Birth Cohort 1936 (ABC1936)

ABC1936 consists of 498 (243 men and 255 women)
relatively healthy surviving members of the Scottish

Mental Survey 1947 [25]. The majority of these indi-
viduals had their general cognitive ability assessed at
∼11 years of age using the MHT version 12. At a
mean age of 64.6 years (SD 0.9), they were recruited
to a study to determine influences on normal cogni-
tive aging and underwent a series of cognitive tests
[21]. A general fluid (gf) cognitive ability score was
derived from principal components analysis of Raven’s
Progressive Matrices, Digit Symbol, Uses of Com-
mon Objects, and Rey Auditory Verbal Learning Test
(AVLT) [13]. Declarative memory was assessed by
AVLT total score [31]. Crystallized cognitive ability
(vocabulary-based) was assessed using the NART [24].
Cognitive measures were corrected for age at time of
testing and gender prior to analysis. gf was adjusted
for prior cognitive ability using the MHT scores from
age 11, thus providing a measure of relative cognitive
change from age 11 to age 64. Both gf and age 11
MHT scores were adjusted for age in days at time of
testing prior to the creation of the cognitive change
measure. Cognitive change measures were extracted
and standardized independently for males and females
[16].

Manchester and Newcastle Longitudinal Studies
of Cognitive Ageing

The Manchester and Newcastle Longitudinal Stud-
ies of Cognitive Ageing began in 1983 with 6,063
(1,825 men and 4,238 women) individuals and docu-
mented longitudinal trajectories in older adults (44–93
years) for up to 20 years [32]. To create a general
fluid cognitive ability (gf), empirical Bayes’s estimates
(EB) for each individual were obtained from a random
effects model fitted by maximum likelihood (ML) to
the standardized age-regressed residuals obtained for
each gender from the Alice Heim 4 (AH4) parts 1 and 2
tests of general intelligence and the non-verbal Cattell
Culture Fair test scores [13]. The AH4 parts 1 and 2
each consist of 65 problems. The AH4 part 1 consists
of logic, arithmetic, and completion of number series
and verbal comparisons. The AH4 part 2 consists of
non-verbal problems in which participants must select
among alternative solutions the correct completions of
logical series defined by progressive mental rotation, or
addition and subtraction, or other comparisons of line-
drawn shapes. A general processing speed factor was
created by a similar method using the Visual Search
for letters and Savage (1984) Alphabet Coding Task
tests. A general memory factor was derived from Ver-
bal Free Recall for 30 words, Verbal Free Recall for 10
words, Cumulative Verbal Learning, Pictorial Recog-
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nition Memory test, Memory for Shapes and Location,
Propositions about people, Memory Circle. Individ-
ual EB estimates were obtained from the standardized
age regressed residuals from each test using a one-
factor model fitted by ML [33]. Crystallized cognitive
ability (vocabulary) was assessed using the Mill Hill
Vocabulary Test [34] corrected for age at time of testing
and gender. Cognitive change measures were created
independently for males and females by growth curve
modeling as described in [16]. Briefly, growth curve
models were estimated that took the 0 point on the age
scale as 70 years and measured variation about it in
units of 10 years. Data were available for up to four
occasions of measurement.

DNA was extracted from whole blood for all cohorts.
Ethical approval was obtained: for LBC1921 and
LBC1936 from the Lothian Research Ethics Com-
mittee and for LBC1936 from Scotland’s Multicentre
Research Ethics Committee, for ABC1936 from the
Grampian Research Ethics Committee and for the
Manchester and Newcastle subjects from the Univer-
sity of Manchester Research Ethics Committee.

Creating Alzheimer’s disease polygenic risk scores

The CAGES cohorts’ members’ DNA samples
(n = 3,511 with cognitive data and DNA) were geno-
typed at the Wellcome Trust Clinical Research Facility
using the Illumina 610-Quadv1 array (San Diego) [13].
Individuals were excluded based on unresolved gender
discrepancy, relatedness, call rate (≤0.95), and evi-
dence of non-Caucasian descent. SNPs were included
in the analyses if they met the following conditions:
call rate ≥0.98, minor allele frequency ≥0.01, and
Hardy-Weinberg equilibrium test with p ≥ 0.001. The
first four components from a multidimensional scal-
ing (MDS) analysis of the SNP data were extracted
and used as covariates in the analyses to control for
population stratification.

To obtain the data from which AD polygenic
scores could be calculated, summary results were
acquired from the Genetic and Environmental Risk
for Alzheimer’s disease (GERAD1) Consortium. This
included 3,941 AD cases and 7,848 controls geno-
typed using the Illumina 610-quad chip, the Illumina
HumanHap300 BeadChip, or the Illumina Human-
Hap550 Beadchip [4]. AD polygenic risk scores were
created for each participant of the five CAGES cohorts
using the method described elsewhere [35]. Briefly, all
strand-ambiguous SNPs, SNPs with a minor allele fre-
quency <0.02, and SNPs absent from the GERAD1
data were removed from each cohort. SNPs were

then pruned to remove those in linkage disequilibrium
(based on r2 > 0.25 within a 200-SNP sliding window).
SNPs that were identified as being called on the oppo-
site strand to the GERAD1 data were flipped. Risk
scores were then calculated for each individual in each
cohort, using PLINK [36], by summing the log of the
odds ratio from GERAD1, multiplied by the number
of reference alleles carried by the individual. Miss-
ing SNPs were imputed based on the observed allele
frequency in the cohort. A series of risk scores was cre-
ated based on the inclusion of SNPs with varying AD
association p-values: all SNPs, and SNPs with p < 0.5,
p < 0.1, p < 0.05, or p < 0.01.

Statistical analyses

Partial correlations were calculated between the AD
polygenic risk scores and the cognitive phenotypes
described above. This was done within each of the
five CAGES cohorts, correcting for the number of
non-missing SNPs used to form the risk score, and
population stratification (first four components from a
MDS). Analyses were performed for risk scores calcu-
lated using each of the five SNP inclusion thresholds.
Where cognitive phenotypes were derived separately
for males and females, correlation analyses were per-
formed separately for males and females. Correlation
analyses were performed using IBM Statistical Pack-
age for the Social Sciences, Version 19.0 (SPSS Inc.,
Chicago, USA). Random effects meta-analyses of
analyses of similar cognitive traits measured in the dif-
ferent cohorts were performed using Comprehensive
Meta-Analysis, Version 2 (Biostat, Englewood, NJ,
USA).

RESULTS

All cognitive traits were approximately normally
distributed. At the varying SNP set criteria, the follow-
ing range of SNPs across cohorts made up the scores:
119,702–121,500 (all SNPs), 60,924–61,718 (p < 0.5),
12,477–12,863 (p < 0.1), 6,372–6,583 (p < 0.05), and
1,359–1,422 (p < 0.01). SNP rs2075650 in the APOE
locus, which was the top hit in both the GERAD1 AD
GWAS (p = 1.8×10–157) [4] and the CAGES cogni-
tive aging GWAS (p = 2.5 × 10−8) [16], contributes to
all scores.

MHT measured at age 11 in the Scottish cohorts
was significantly positively correlated (r = 0.050,
p = 0.032) with AD polygenic risk score generated only
with SNPs with a p-value <0.1 (Table 1). No other
significant correlations were found (Table 1).
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DISCUSSION

Polygenic risk scores for AD, created using a num-
ber of significance criteria, were not significantly
associated with cognitive ability in later life or rela-
tive age-related cognitive change in the CAGES cohort.
This indicates that, despite high frequency genetic vari-
ants accounting for approximately 24% of the variance
of both AD and non-pathological cognitive aging, and
4–5% of the variance of both being accounted for by
the APOE locus [14–16], the majority of the genetic
variants might not overlap. This supports work from
previous studies that found few significant effects of
either single or multiple AD-associated genes on cog-
nitive ability and or age-related cognitive decline in
non-demented individuals [19, 38], although one study
did find an association between CR1 and cognitive
decline [38]. The single significant result, of a posi-
tive association between one of the AD polygenic risk
scores and childhood cognitive ability, in the Scot-
tish cohorts, may be a type 1 error, given its relatively
high p value. It requires replication in other childhood
cohorts. It is possible that a more accurate AD poly-
genic risk score created using effect sizes generated
from a GWAS of a larger number of individuals could
be significantly associated with cognitive ability and
cognitive aging in the CAGES cohort. A limitation of
this study is that the cognitive tests were not exactly the
same in each cohort. However, it is well documented
that general factors derived from different test batter-
ies rank people almost identically and that individual
tests assessing the same cognitive domain are highly
correlated [39]. For the cognitive aging traits, the
English cohorts measured aging over a shorter period
of time than the Scottish cohorts. However, the later-
life change measured in the English cohorts will also
have occurred in the Scottish cohorts. Therefore, all
cohorts were appropriate for identifying associations
with later-life cognitive aging. A second limitation
is that a second AD cohort was not available to test
whether or not a polygenic risk score for AD predicts
AD in an independent AD cohort. In the future we plan
to perform bivariate genome-wide complex trait anal-
ysis [40] to estimate the genetic correlation between
AD in GERAD1 and cognitive aging in CAGES using
genome-wide SNPs.

The results of this study indicate that the genetic eti-
ologies of AD and non-pathological cognitive decline
differ and that AD is not just the extreme end of a con-
tinuous spectrum of cognitive decline. We have >80%
power to detect a correlation of r = 0.05 for the majority
of the analyses and >90% power to detect a correlation

of r = 0.1 for all analyses. However, it is possible that
individuals in this study will go on to develop a variety
of non-AD dementias, each with its own genetic etiol-
ogy, thus reducing the power to identify an association
between an AD genetic risk score and non-pathological
cognitive decline. Although the APOE �4 allele is a
genetic risk factor for non-pathological cognitive aging
in the CAGES cohorts [16], other genetic variants,
not necessarily associated with AD, each with a very
small effect, might ultimately contribute to the degree
of cognitive decline that a non-demented individual
experiences.
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