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Abstract. The term active nematics designates systems in which apolar
elongated particles spend energy to move randomly along their axis and interact
by inelastic collisions in the presence of noise. Starting from a simple Vicsek-
style model for active nematics, we derive a mesoscopic theory, complete with
effective multiplicative noise terms, using a combination of kinetic theory and Itô
calculus approaches. The stochastic partial differential equations thus obtained
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are shown to recover the key terms argued in Ramaswamy et al (2003 Europhys.
Lett. 62 196) to be at the origin of anomalous number fluctuations and long-range
correlations. Their deterministic part is studied analytically, and is shown to give
rise to the long-wavelength instability at onset of nematic order (see Shi X and
Ma Y 2010 arXiv:1011.5408). The corresponding nonlinear density-segregated
band solution is given in a closed form.
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1. Introduction

The study of collective properties of systems of interacting active particles [1–3] is currently
attracting a great deal of interest. In active matter, particles extract energy from their surrounding
and dissipate it to propel themselves in some coherent way in a viscous fluid and/or over
a dissipative substrate. In this last case, or whenever hydrodynamic effects can be neglected,
physicists speak of ‘dry active matter’ [3]. Systems as diverse as animal flocks [4–6], human
crowds [7, 8], subcellular proteins [9], bacterial colonies [10] and driven granular matter [11–13]
have been described in this framework.

In the context of dry active matter, there is now some consensus in the physics community
that minimal models such as the celebrated Vicsek model [14, 15] play a crucial role, since
they stand as simple representatives of universality classes which have started to emerge from
a combination of numerical and theoretical results: for instance, many different microscopic
(particle) models have been shown to exhibit the same collective properties as the Vicsek model,
and the continuous equation proposed by Toner and Tu [16] is widely believed to account for its
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collective properties. Such hydrodynamic theories formulated at the mesoscopic level through
stochastic partial differential equations (PDEs) are the natural framework to characterize and
define universality classes.

In early approaches these mesoscopic theories have been built on the principle of including
all that is not explicitly forbidden, retaining all leading terms (in a gradient expansion sense)
allowed by symmetries and conservation laws [16, 17]. This grants access to the general
structure of these equations and has been successful in describing relevant features of active
matter systems such as their anomalously large number density fluctuations [12, 13, 16, 18].
Despite the attractions of a gradient expansion, it typically contains many transport coefficients
of unknown dependence on microscopic control parameters and hydrodynamic fields such
as local density. Moreover, the dependence of the noise terms on the dynamical fields in
such equations remains arbitrary, and frequently neglected, whereas it could have profound
consequences for important phenomena such as spontaneous segregation, clustering and
interface dynamics.

Ideally, thus, one would be able to derive well-behaved mesoscopic theories using
a systematic procedure starting from a given microscopic model. Kinetic-theory-like
approaches [19–23] go one step toward this goal, by allowing one to compute hydrodynamic
transport coefficients and nonlinear terms. One of the most successful versions is arguably the
‘Boltzmann–Ginzburg–Landau’ (BGL) framework recently put forward by some of us [24, 25],
where, in the spirit of weakly nonlinear analysis, one performs well-controlled expansions in
the vicinity of ordering transitions. Kinetic approaches alone thus yield good deterministic
‘mean-field’ equations but one still needs to ‘reintroduce’ fluctuations in order to get bona fide
mesoscopic descriptions.

In this work, we show how this complete program can be achieved for the case of active
nematics, i.e. systems where particles are energized individually but not really self-propelled,
moving along the axis of the nematic degree of freedom they carry, with equal probability
forward or back (think of shaken apolar rods aligning by inelastic collisions [12]). Starting
from the Vicsek-style model for active nematics introduced in [26], we formulate a version
of the BGL scheme mentioned above adapted to problems dominated by diffusion, derive
the corresponding hydrodynamic equations and study their homogeneous and inhomogeneous
solutions. In a last section, we show how these equations can be complemented by appropriate
noise terms using a direct coarse-graining approach.

2. Kinetic approach

2.1. Microscopic dynamics

We consider the microscopic model for active nematics of [26] in two space dimensions.
This Vicsek-style model can be thought of as a minimal model for a single layer of vibrated
granular rods [12] although it does not deal explicitly with any volume exclusion forces. Here,
rather, pointwise particles j = 1, . . . , N are characterized by their position xt

j and an axial
direction θ t

j ∈ [−π/2, π/2]. They interact synchronously with all neighboring particles situated
within distance r0 in a characteristic driven-overdamped dynamics implemented at discrete
timesteps 1t :

θ t+1t
j =

1

2
Arg

∑
k∈V j

ei2θ t
k

+ψ t
j , (1)
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xt+1t
j = xt

j + d0 κ
t
j n̂t

j , (2)

where V j is the neighborhood of particle j , d0 < r0 is the elementary displacement, n̂t
j ≡

(cos θ t
j , sin θ t

j)
T is the nematic director and ψ and κ are two white noises: the random angle

ψ t
j , familiar of Vicsek-style models, is drawn from a symmetric distribution P̃η(ψ) of variance

η2, and the zero average bimodal noise κ t
j =±1 determines the actual orientation of motion.

Both noises are delta correlated, namely 〈κ t
jκ

t ′
k 〉 ∼ 〈ψ

t
jψ

t ′
k 〉 ∼ δt t ′δ j k . Note that the factor 2 in

the exponential terms of equation (1) implements an alignment interaction which fulfills the
nematic symmetry θ→ θ +π . In other words, particles align their axial direction but do not
carry any polar orientation.

In the following, we adopt the convention [n̂n̂]αβ ≡ n̂αn̂β and label coordinates by greek
indices, α, β, . . .= 1, 2, summing over repeated indices.

2.2. Timescales and lengthscales

We consider low density systems in which particles, at a given time, are either non-interacting
or involved in a binary interaction. In this dilute limit we can neglect interactions between more
than two particles. We also treat interactions as collision-like events, with the mean intercollision
time

τfree ≈
τd

d2
0 ρ0

, (3)

where ρ0 is the global particle density and τd is the shortest microscopic timescale of the
dynamics, associated to the inversion of the rods direction of motion τd ∼1t . This intercollision
time is much larger than the collision timescale

τcoll ≈ τd

(
r0

d0

)2

. (4)

For driven granular rods, τd may be thought of as the inverse of the shaking frequency, and for
typical parameters it is much smaller than both the collision (τcoll) and the mean intercollision
(τfree) timescales; at low enough densities τd� τcoll� τfree. Note that the timescales (4)–(3) are
different from the ones characteristic of ballistic dynamics [20].

To develop a kinetic approach we consider a mesoscopic timescale τB such that τcoll�

τB� τfree. As a consequence, we will treat the inversion of the direction of motion as a noisy
term through Itô stochastic calculus [27]. We also consider a mesoscopic coarse-graining
lengthscale `B which, while being much smaller than the system size L , is larger than the
microscopic scales, such as the step-size d0, the mean interparticle distance ρ−1/2

0 and the
interaction range r0. To summarize, in a dilute system one has

τd� τd

(
r0

d0

)2

� τB�
τd

d2
0ρ0

(5)

and

d0 < r0�
1
√
ρ0
� `B� L , (6)

where we have made explicit the condition that the typical coarse-graining lengthscale `B is
such that many particles are contained in a box of linear size `B, that is ρ0`

2
B� 1.
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2.3. Master equation

We now write down a Boltzmann-like master equation in terms of the single particle probability
distribution f (x, θ, t), with −π

2 < θ6
π

2 , evolving over the timescale 1t ≈ τB. The minimal
spatial resolution is such that many particles are contained in a spatial volume d2x centered
around the position x. Moreover, we consider a dilute system, so that interactions (collisions)
between particles are sufficiently rare to justify (i) binary interactions (as explained above,
particles then either self-diffuse or experience noisy binary, collision-like interactions), (ii)
decorrelation of the orientation between successive binary collisions of the same pair of
particles, that is f2(x, θ1, θ2, t)≈ f (x, θ1, t) f (x, θ2, t).

We first omit collisions and angular diffusion, only considering equation (2) to get

f (x, θ, t +1t)= 1
2 [ f (x + n̂(θ)d0, θ, t)+ f (x− n̂(θ)d0, θ, t)], (7)

where we have considered that a particle moves along one of the two orientations of n̂ with
equal probability. On the mesoscopic timescale τB� τd ∼1t , Itô calculus [27] to second order
gives

∂t f (x, θ, t)= D0∂α∂β[n̂α(θ)n̂β(θ) f (x, θ, t)], (8)

where

D0 =
d2

0

2τd
(9)

is the microscopic diffusion parameter.
To account for angular diffusion and binary collisions, the appropriate integrals need to be

added to the right-hand side of equation (8):

∂t f (x, θ, t)= D0 ∂α∂β[n̂α(θ)n̂β(θ) f (x, θ, t)] + Idiff[ f ] + Icoll[ f, f ]. (10)

The diffusion integral describes self-diffusion which takes place at a rate λ≈ 1/τd

Idiff[ f ]=−λ f (θ)+ λ
∫ π/2

−π/2
dθ ′ f (θ ′)

∫
∞

−∞

dζ P(ζ ) δπ(θ
′
− θ + ζ ), (11)

where we used the simplified notation f (θ)≡ f (x, θ, t), δπ is a generalized Dirac delta
imposing that the argument is equal to zero modulo π and P(ζ ) is a symmetric noise distribution
of variance σ 2, corresponding to the effective noise arising at the timescale τB from the sum of
the microscopic stochastic contributions to angular dynamics.

Binary collisions are described by

Icoll[ f, f ]= − f (θ)
∫ π/2

−π/2
dθ ′ f (θ ′)K (θ, θ ′)

+
∫ π/2

−π/2
dθ1

∫ π/2

−π/2
dθ2 f (θ1)K (θ1, θ2) f (θ2)

∫
∞

−∞

dζ P(ζ ) δπ(9(θ1, θ2)−θ+ζ ), (12)

where, for the sake of simplicity, we have used the same noise distribution P(ζ ) as in the
self-diffusion integral, and the out-coming angle 9 from deterministic binary collisions is, for
−
π

2 < θ1, θ2 6
π

2 ,

9(θ1, θ2)=
1
2(θ1 + θ2)+ h(θ1− θ2) with h(θ)=


0 if |θ |6

π

2
,

π

2
if
π

2
< |θ |6 π.

(13)
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Note that the role of the function h(θ) is to ensure that 9(θ1, θ2) is π -periodic with respect
to θ1 and θ2 independently, as dictated by the nematic symmetry of the system. The collision
kernel K (θ1, θ2), i.e. the number of collisions per unit time and volume, is calculated as follows,
modifying the standard collision kernel of kinetic theory to take into account the fact that
active nematic particles can move either along n̂ or −n̂ [19, 20, 28]. Consider two particles
with nematic axis n̂(θ) and n̂(θ ′) located in the volume d2x centered around position x. In the
reference frame of the first particle the second one diffuses either along the |n̂(θ)− n̂(θ ′)| or the
|n̂(θ)+ n̂(θ ′)| nematic axis. In unit time, taking into account the characteristic timescales τd and
step-size d0 of its motion, it sweeps a surface (its cross section, which is conserved going back
to the lab reference frame) equal to

K (θ, θ ′)=
r0d0

τd
[|n̂(θ)− n̂(θ ′)|+ |n̂(θ)+ n̂(θ ′)|]

= 2α0

[∣∣∣∣sin
θ − θ ′

2

∣∣∣∣+

∣∣∣∣cos
θ − θ ′

2

∣∣∣∣] , (14)

where we have introduced the microscopic collision parameter

α0 =
r0d0

τd
. (15)

Note that K (θ, θ ′)≡ K̃ (θ − θ ′) is an even function of the difference (θ − θ ′), and fulfills the
nematic symmetry, being invariant under rotation of either angle by π .

Before proceeding to derive hydrodynamic equations, we simplify all notations by
rescaling time t̃ = λt = t/τd and space x̃ =

√
2

d0
x . As in [24, 25] we also set the collision surface

S = 2r0d0 to 1 by a global rescaling of the one-particle probability density f , without loss
of generality. This amounts to set λ= 1, D0 = 1 and 2α0 = 1, so that, dropping the tildes,
our Boltzmann-like master equation now depends only on the global density ρ0 and the noise
intensity σ .

2.4. Hydrodynamic description

In two spatial dimensions, hydrodynamic fields can be obtained by expanding the single particle
probability density f in Fourier series of its angular variable θ ∈ [−π/2, π/2]:10

f (x, θ, t)=
1

π

k=∞∑
k=−∞

f̂ k(x, t) e−i2kθ (16)

and

f̂ k(x, t)=
∫ π/2

−π/2
dθ f (x, θ, t) ei2kθ . (17)

The number density and the density-weighted nematic tensor field w≡ ρQ are then given by

ρ(x, t)=
∫ π/2

−π/2
dθ f (x, θ, t)= f̂ 0(x, t) (18)

10 These k-modes are equivalent to even harmonics if one would define particles orientation in [−π, π] in spite of
the symmetry under rotations by π (with odd ones being zero by symmetry).
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and

w11(x, t)=−w22(x, t)=
1

2

∫ π/2

−π/2
dθ f (x, θ, t) cos(2θ)=

1

2
Re f̂ 1(x, t), (19)

w12(x, t)= w21(x, t)=
1

2

∫ π/2

−π/2
dθ f (x, θ, t) sin(2θ)=

1

2
Im f̂ 1(x, t). (20)

Note that when Im f̂ 1 = 0 the nematic field is aligned either along the x (Re f̂ 1 > 0) or the y
(Re f̂ 1 < 0) axis.

Injecting the Fourier expansion (16) in the master equation (10), one gets, after some
lengthy calculations detailed in appendix A, the infinite hierarchy:

∂t f̂ k(x, t)=
1

2
1 f̂ k(x, t)+

1

4
(∇∗2 f̂ k+1 +∇2 f̂ k−1)+ [P̂k − 1] f̂ k(x, t)

+
1

π

∑
q

f̂ q(x, t) f̂ k−q(x, t)

[
P̂k Ĵk,q −

4

1− 16q2

]
, (21)

where P̂k is the Fourier transform of the noise distribution P(ζ ) (namely, P̂k =∫
∞

−∞
dζ P(ζ ) ei2kζ ) and

Ĵk,q = 4
1 + 2
√

2(2q − k)(−1)q sin
(

kπ
2

)
1− 4(2q − k)2

(22)

and we have introduced the following ‘complex’ operators

∇ ≡ ∂x + i∂y,

∇
∗
≡ ∂x − i∂y,

1 ≡∇∇
∗,

∇
2
≡∇∇,

∇
∗2
≡∇

∗
∇
∗.

The equation at order k = 0 is thus expressed in the simple form

∂tρ =
1
21ρ + 1

2Re(∇∗2 f̂ 1) (23)

and is nothing but the continuity equation for diffusive active matter with local anisotropy
characterized by f̂ 1.

Equation (21) possesses a trivial, isotropic and homogeneous solution: ρ(x, t)≡ f̂ 0(x, t)=
ρ0 and f̂ k(x, t)= 0 for |k|> 0. We are interested in a nematically ordered homogeneous
solution which could eventually arise following some instability of the isotropic solution above.
In analogy to the scaling ansatz used for polar particles [20, 25], the interaction term in
equation (21) suggests a simple scaling ansatz to close the infinite hierarchy of equations on
f̂ k(x, t). Near an instability threshold with continuous onset, Fourier coefficients should scale as
f̂ k(x, t)∼ ε|k| where ε is a small parameter characterizing the distance to threshold. Moreover,
the curvature induced current (last term of (23)) also induces an order ε variation in the density
field, ρ(x, t)− ρ0 ∼ ε. Then, assuming spatial derivatives to be of order ε, the request that all
terms in equation (23) are of the same order also fixes the diffusive structure of the scaling of
time and spatial gradients: ∂t ∼∇

2
∼1∼ ε2.
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Using the above scaling ansatz, we proceed by discarding all terms appearing in (21) of
order higher than ε3. For k = 1, 2 we get

∂t f̂ 1 =
1
21 f̂ 1 + 1

4∇
2ρ + a1(ρ) f̂ 1 + b1 f̂ ∗1 f̂ 2 (24)

and

0= 1
4∇

2 f̂ 1− a2(ρ) f̂ 2 + b2 f̂ 2
1, (25)

where the coefficients are

a1(ρ)=
8

3π

[
(2
√

2− 1)P̂1−
7

5

]
ρ− (1− P̂1), (26)

b1 =
8

315π
[13− 9P̂1(1 + 6

√
2)], (27)

a2(ρ)= (1− P̂2)+
8

3π

(
P̂2

5
+

31

21

)
ρ (28)

and

b2 =
4

π

(
1

15
+ P̂2

)
. (29)

Equation (25) shows that at this order f̂ 2 is enslaved to f̂ 1 (given that a2 > 0) and, further,

a2(ρ0) f̂ 2 ≈
1
4∇

2 f̂ 1 + b2 f̂ 2
1, (30)

where the coefficient a2 is evaluated at the mean density ρ0, since the δρ = ρ− ρ0 corrections
are of higher order. By substituting equations (25) into (24) one finally gets, neglecting the term
f̂ ∗1∇

2 f̂ 1 ∼ ε
4,

∂t f̂ 1 = (µ− ξ | f̂ 1|
2) f̂ 1 + 1

4∇
2ρ + 1

21 f̂ 1, (31)

where we have introduced the transport coefficients

µ=
8

3π

[
(2
√

2− 1)P̂1−
7

5

]
ρ− (1− P̂1), (32)

ξ =
32ν

35π2

[
1

15
+ P̂2

] [
(1 + 6

√
2)P̂1−

13

9

]
(33)

with ν =

[
8

3π

(
31

21
+

P̂2

5

)
ρ0 + (1− P̂2)

]−1

. (34)

Note that the coefficient ξ is only a function of the average density ρ0, as space and time
dependent corrections are of order ε4. Note also that the coefficients µ and ξ are exactly the
same as those found for the nematic field equation of nematically aligning polar particles [25]11.

11 Note that in [25], the equations obtained are not entirely correct: (i) there is a sign error and a misplaced factor
π in the expression of ξ ; (ii) the term ν

4∇
2 f2 should read ν

41 f2, where 1 is the Laplacian. In addition, let us

emphasize that the Fourier coefficients P̂k have a different definition in [25], due to the absence of global nematic
symmetry: P̂k here corresponds to P̂2k in [25], leading to (only apparent) differences.
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Equations (23) and (31) can be expressed in tensorial notation. To this aim, we introduce
the linear differential operator Γ, such that 011 =−022 ≡ ∂1∂1− ∂2∂2 and 012 = 021 ≡ 2∂1∂2,
and the Frobenius inner product A:B= AαβBαβ (note that w:w= ||w||2 and Γ:w= 2∂α∂βwαβ).
After some manipulation of the terms and the use of equations (19) and (20), we obtain the
hydrodynamic equations for the density and nematic field

∂tρ =
1
21ρ + 1

2(0:w), (35)

∂tw= µw− 2ξ w (w:w)+ 1
21w + 1

80ρ. (36)

Although the tensorial notation might be more familiar to some readers, it is in fact
easier here to continue manipulating the complex field f̂ 1 and the complex operators defined
above. Moreover, in the following we drop the ‘ ˆ ’ superscript to ease notations. Note also that
equations (35) and (36) were also derived from an apolar Vicsek-style model in [29].

The parameter-free character of the Laplacian term in (36) means, consistently with our
expansion in ε, that the nematic phase of our system will be characterized by a single Frank
constant [30]. The nonlinearities studied in [31] are therefore also absent to this order. The last
term in equation (23) (or equation (35)), i.e. 1

2Re
(
∇

2 f1

)
(or 1

2(0 : w)), is a curvature induced
current which couples the density and the nematic field. While its existence was first deduced
from general principles [17], here we have computed it directly from microscopic dynamics.
Our calculations also give an exact expression for the corresponding transport coefficient, which
is equal to the diffusive one (in equation (23) or (35)), here set to 1/2 by our rescaling. In
appendix B, we show explicitly that this curvature-induced current originates from the coupling
of orientation with motility.

We note finally that equations (35) and (36) are similar to those found by Baskaran and
Marchetti [22] but simpler, largely due to our simpler starting point.

2.5. Homogeneous solutions

From now on, we use for P(ζ ) a centered Gaussian distribution of variance σ 2, in which case
P̂k = e−2k2σ 2

. The linear stability with respect to homogeneous perturbations of the disordered
solution ρ(x, t)= ρ0, f̂ 1(x, t)= 0 is given by the sign of µ(ρ0)which yields the basic transition
line

σt =

√√√√1

2
ln

[
5

8(2
√

2− 1)ρ0 + 3π

56ρ0 + 15π

]
. (37)

Note that in the dilute limit ρ0� 1, where the equations have been derived, one has σt ∼
√
ρ0.

For σ < σt, µ > 0, and the homogeneous nematically ordered solution

| f1| =

√
µ

ξ
(38)

exists and is stable w.r.t. homogeneous perturbations. The critical line is shown in figure 1(a)
(black solid line). Note that for σ < σt, all transport coefficients (32)–(34) are positive. This will
be useful in the rest of the paper.
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Figure 1. (a) Basic stability diagram. The line σt (solid, black) marks the linear
instability of the disordered homogeneous solution. The ordered homogeneous
solution is linearly unstable to large wavelengths between the σt and σs (dotted,
purple) lines, and linearly stable below the σs line. The σmin and σmax lines mark
the domain of existence of the band solution (62). (b) Density and order profile
of the band solution for ρ0 = 1, σ = 0.265, L = 1000; note that the lower and
upper levels (ρgas and ρband) are respectively lower than ρt and higher than ρs,
i.e. such that the corresponding homogeneous solution are lineally stable. (c)
Properties of the band solutions for ρ0 = 1: left: values of ρgas (long dash, dark
blue line) and ρband (dashed, red line) as σ varies between σmin and σmax; right:
corresponding variation of the surface fraction ω.
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3. Linear stability analysis

We now study the linear stability of the above homogeneous solutions w.r.t. to arbitrary
perturbations. Linearizing equations (23) and (31) around a homogeneous solution, f1 = f1,0 +
δ f1 and ρ = ρ0 + δρ, one has

∂tδρ =
1
21δρ + 1

2Re(∇∗2δ f1), (39)

∂tδ f1 = (µ0− ξ | f1,0|
2)δ f1 +µ′ f1,0 δρ− 2ξ f1,0 Re( f ∗1,0 δ f1)+ 1

4∇
2δρ + 1

21δ f1, (40)

where µ0 ≡ µ(ρ0) and µ′ is the derivative of µ w.r.t. ρ. We then introduce the real and
imaginary parts of the order parameter perturbation, δ f1 = δ f (R)1 + iδ f (I)1 , and express the spatial
dependence of all perturbation fields in Fourier space, with a wavevector q= (qx , qy), by
introducing the ansatz

δρ(x, t)= δρq est+iqr, (41)

δ f (R)1 (x, t)= δ f (R)1,q est+iqr, δ f (I)1 (x, t)= δ f (I)1,q est+iqr. (42)

The stability of the stationary solution f1,0 is then ruled by the real part of the growth rate s.

3.1. Stability of the disordered isotropic solution

We first study the stability of the disordered solution f1,0 = 0, in the case µ0 < 0. Substituting
equations (41), (42) in equations (39), (40), one has

s δρq = −
q2

2
δρq−

1

2
(q2

x − q2
y)δ f (R)1,q − qxqyδ f (I)1,q,

s δ f (R)1,q = −
1

4
(q2

x − q2
y)δρq +

(
µ0−

q2

2

)
δ f (R)1,q , (43)

s δ f (I)1,q = −
1

2
qxqy δρq +

(
µ0−

q2

2

)
δ f (I)1,q,

where q2
= q2

x + q2
y . All directions of the wavevector q being equivalent, we choose for

simplicity qx = q and qy = 0. From equation (43), one then sees that the component δ f (I)1,q

becomes independent from δρq and δ f (R)1,q , yielding the negative eigenvalue s = µ0−
q2

2 . The
eigenvalues of the remaining 2× 2 block of the stability matrix are solutions of the second
order polynomial

s2 + s[q2
−µ0] +

q2

2

[
q2

4
−µ0

]
≡ s2 +β1 s +β0 = 0. (44)

In the disordered state µ0 < 0, so that β1 and β2 are positive and one always has Re (s) < 0.
Therefore, the homogeneous disordered solution is stable w.r.t. to all perturbations if µ0 < 0,
i.e. σ > σt.
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3.2. Stability of the ordered solution

To study the stability of the anisotropic ordered solution, it is convenient to choose a reference
frame in which order is along one of the axes:

Re( f1,0)=±

√
µ0

ξ
, Im( f1,0)= 0. (45)

This solution is aligned along x , if f1,0 is positive, or along y if negative. For simplicity we will
concentrate further on the case f1,0 > 0, i.e. on the nematic solution aligned along the x-axis.
The real part δ f (R)1 of the nematic field perturbation describes changes in the modulus | f1,0|, and
the imaginary part δ f (I)1 describes perturbations perpendicular to the nematic orientation. The
ansatz (41), (42) then yields the three coupled linear equations

s δρq = −
q2

2
δρq−

1

2
(q2

x − q2
y)δ f (R)1,q − qxqy δ f (I)1,q,

s δ f (R)1,q =

[
µ′ f1,0−

1

4
(q2

x − q2
y)

]
δρq−

[
2µ0 +

q2

2

]
δ f (R)1,q , (46)

s δ f (I)1,q = −
1

2
qxqy δρq−

q2

2
δ f (I)1,q.

We performed a full numerical stability analysis of these equations. The results are presented
in figure 1. The transition to the homogeneous solution is given by the line σt. This solution is
unstable to finite wavelength transversal perturbations of angle |θ |> π

4 between the lines σt and
σs (dotted purple line in figure 1), but is stable deeper in the ordered phase.

Two remarks are in order. Firstly, the angle of the most unstable mode is here always
perfectly π

2 . It is thus possible to obtain the ‘restabilization’ line σs analytically as shown below.
Secondly, there is no spurious instability at low noise and/or high density (although we have
found that such an instability appears if the truncation of the equations is made to the fourth
order).

To obtain the analytic expression of the line σs, we write the wavevector in terms of its
modulus q and its angle θq, so that q2

x − q2
y = q2cos 2θq and 2qxqy = q2sin 2θq. We can then

analyze equations (46) in the longitudinal and perpendicular wavedirections θq = 0,±π

2 , where
the imaginary perturbation δ f (I)1,q decouples from the other two. The latter is stable toward
long-wavelength perturbations, since the corresponding eigenvalue s =−q2/2 is negative. The
stability toward density and real perturbations depends on a 2× 2 matrix which yields the
quadratic eigenvalue equation

s2 + [2µ0 + q2]s +

[(
±µ′ f1,0

2
+µ0

)
q2 +

q4

8

]
= 0 (47)

whose solutions are

s =
1

2

[
−2µ0− q2

±

√
4µ2

0∓ 2µ′ f1,0q2 +
q4

2

]
. (48)

The sign ± in front of the µ′ f1,0 term in equation (47) corresponds to the case θq = 0 (positive
sign) and θq =

π

2 (negative sign) respectively. Note that µ′ is strictly positive, as typical for
all active matter system with metric interactions, where the interaction rate grows with local
density. Also µ0 is positive and of order ε2 (see equation (45)). It it thus easy to see that in
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the case of large q, <[s]6 0. For small values of q, we perform an expansion to order q2 of
the largest growth rate s+, obtained by taking the positive sign in front of the square root in
equation (48), leading to

s+ =
q2

2

[
∓
µ′

2µ0
f1,0− 1

]
. (49)

We can then conclude that for longitudinal perturbations (θq = 0, negative sign in front of µ′),
the homogenous solution is stable confirming the results of numerical analysis. In the case of
transversal perturbations (θq =±π/2), the stability condition is given by

µ0 >
µ′2

4ξ
(50)

meaning that close to the instability threshold of the disordered solution, when µ0 is positive but
small, the state of homogeneous order is unstable with respect to long-wavelength perturbations.
This instability was first identified in a kinetic-equation analysis by Shi and Ma [23]. Note that
condition (50) is valid up to the third order in ε (or, equivalently, in the order parameter ||w||).
It yields the stability line

ρs =
4µ2−µ

′2ξ2

µ′2ξ1− 4µ′
, (51)

where µ2 = µ(ρ = 0), ξ1 = (1/ξ)′ and ξ2 = (1/ξ(ρ0 = 0)). We do not provide here the explicit
analytical expression for σs because this requires solving a sixth order polynomial.

We remark that the near-threshold instability discussed above is rather generic and appears
in ‘dry’ active matter systems with metric interactions, as opposed to systems with metric-
free ones, where the interaction rate is density-independent, and µ′ = 0 [24, 32, 33]. In this
case (topological active nematics), stability would be enforced by the positive higher order
corrections µ0q2 which dominates arbitrarily close to threshold.

4. Inhomogeneous solution

We now show how a spatially inhomogeneous stationary ‘band’ solution to our hydrodynamic
equations can be found. First we remark that our equation for the nematic field, equation (31),
is formally the same as that derived in [25] for polar particles with nematic alignment when
the polar field is set to zero, as it is imposed here by the complete nematic symmetry of our
system. We thus expect an ordered band solution made of two fronts connecting a linearly
stable homogeneous disordered state (ρ = ρgas < ρt) and a linearly stable homogeneous ordered
state (ρ = ρband > ρs) (see figure 1). Following [25], we rewrite

µ(ρ)= µ′(ρ− ρt) (52)

with ρt = (1− P̂1)/µ
′, suppose that the nematic field is aligned along one of the axes and varies

only along y. In other words

Re ( f1)= f1(y), Im ( f1)= 0, ρ = ρ(y). (53)

Equation (35) then becomes

∂2
yρ = ∂

2
y f1 (54)
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which can be integrated to give

ρ = f1 + Ay + ρgas, (55)

where A and ρgas are integration constants. Furthermore, to keep the fields finite for |y| →∞,
one has A = 0. By substituting equations (54) and (55) into equation (31) one gets

∂yy f1 =−4µ′(ρgas− ρt) f1− 4µ′ f 2
1 + 4ξ f 3

1 . (56)

We multiply equation (56) by ∂y f1 and integrate it once to obtain

1

2
(∂y f1)

2
=−2µ′(ρgas− ρt) f 2

1 −
4

3
µ′ f 3

1 + ξ f 4
1 . (57)

Separating the variables we obtain∫
dy =±

∫
d f1√

−4µ′(ρgas− ρt) f 2
1 −

8
3µ
′ f 3

1 + 2ξ f 4
1

. (58)

Integration of this equation under the condition limy→±∞ f1(y)= 0 gives after simplifications

f1 (y)=
3(ρt− ρgas)

1 + a cosh
(
2y
√
µ′(ρt− ρgas)

) , (59)

where a =
√

1− 9ξ
2µ′ (ρt− ρgas). We still need to obtain the value of ρgas which is fixed by

the condition
∫

L ρ(y) dy = ρ0L , where L is the length of the box. In the integral on the lhs
we can neglect the exponentially decaying tails and integrate instead on the infinite domain.
Furthermore, in the limit L→∞ we can neglect the exponentially weak dependence of ρgas on
L everywhere except the a term. We then obtain

ρgas ≈ ρt−
2µ′

9ξ

(
1− 4 e−K L

)
, (60)

K =
2
√

2µ′

9
√
ξ

(
1 +

9ξ

2µ′
(ρ0− ρt)

)
. (61)

Substituting it back into equation (59) we get, under the assumption L→∞:

f1 (y)=
f band
1(

1 + 2 e−
K L
2 cosh

(
y 2
√

2µ′

3
√
ξ

)) where f band
1 =

2µ′

3ξ
(62)

and we finally obtain the ordered solution density

ρband = f band
1 + ρgas = ρt +

4µ′

9ξ

(
1 + 2 e−K L

)
(63)

with, as expected, ρband > ρt > ρgas, which guarantees the stability of both the ordered and
disordered parts of the solution. Note that since f band

1 > 0 the nematic order is parallel to the x
direction (i.e. along the band orientation). This is the opposite of what happens in the Vicsek
model, where bands extend transversally with respect to their polarization [15].

We can introduce the band fraction � which indicates the fraction of the box occupied
by the band. If we suppose that the front width is negligible (once again justified in the limit
L→∞), this band fraction is determined by the equation

�(ρband− ρgas)+ ρgas = ρ0. (64)
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Substituting inside the values of ρgas and ρband, we obtain

�=
9ξ (ρ0− ρt)+ 2µ′

6µ′
. (65)

The condition 0<�< 1 gives us the lower σmin and upper σmax limits of the existence of bands.
As found for polar particles aligning nematically, these limits of existence of the band solution
extend beyond the region of linear instability of the homogeneous ordered solution (given by
σ ∈ [σs, σt], see figure 1). In figure 1, we provide a graphical illustration of the shape and
properties of the band solution.

An important problem left for future work is the linear stability analysis of the band
solution in two space dimensions. This is all the more important as the unpublished work of
Shi and Ma [23] suggests the existence of some instability mechanism.

5. Langevin formulation

Being based on a master equation, the derivation we have discussed in the previous sections
leads to a set of deterministic PDEs. This is a standard approach in equilibrium statistical
physics, where the microscopic fluctuations are integrated out in the coarse-graining process
implicit in the definition of a mesoscopic cell size `B. Fluctuations, when needed, can be
eventually introduced as an additive, delta correlated stochastic term as in [16]. However, the
presence of large density fluctuations [17] suggests that fluctuations may not be faithfully
accounted for by some additive noise term. The precise nature of noise correlations at the
mesoscopic level cannot be safely overlooked in non-equilibrium systems, as it is known that
stochastic terms multiplicative in the relevant fields can radically alter the universality class of
mesoscopic theories [34].

In this section, we perform in the same spirit as in [35] a direct coarse-graining of the
microscopic dynamics in order to compute the (multiplicative) stochastic terms which emerge
at the mesoscopic level. In the following, we restrict the computation to the stochastic terms
emerging from the collisionless dynamics. In the dilute, low density regime, where collisions
are sparse, this is not a major limitation, since one can reformulate the microscopic dynamics as
composed of deterministic collisions separated by several self-diffusion events—see section 5.2
for more details.

For real-space coarse-graining, we make use of a smooth, isotropic, normalized (to one)
filter gs(r) decaying exponentially or faster for r > s, e.g. a Gaussian of width s. The fluctuating
coarse-grained density and nematic order field are then defined as

ρ(x, t)≡
N∑

i=1

gs(x
t
i − x) (66)

and

w(x, t)≡
N∑

i=1

gs(x
t
i − x)Q̃t

i , (67)

where we have introduced the microscopic traceless tensor

Q̃t
i = n̂t

i n̂
t
i −
I
2
=

1

2

(
cos 2θ t

i sin 2θ t
i

sin 2θ t
i − cos 2θ t

i

)
≡Q(θ t

i ). (68)
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5.1. Density field fluctuations

The correlations of density field fluctuations can be derived by generalizing an approach first
outlined by Dean [36] for Brownian particles. As mentioned above, we use the collisionless
dynamics. We are interested in the time evolution of the density field (66), which is given by

ρ(x, t +1t)=
N∑

i=1

gs(x
t+1t
i − x)=

N∑
i=1

gs(x
t
i +1xt

i − x), (69)

where 1xt
i = xt+1t

i − xt
i = d0 κ

t
j n̂t

j (see equation (2)).
Expanding up to second order in powers of 1xt

i according to Itô calculus [27] one has

∂tρ(x, t)= T0(x, t)+ T1(x, t), (70)

where

T0(x, t)=
d2

0

2τd

N∑
i=1

[n̂t
i ]α[n̂t

i ]β∂α∂βgs(x
t
i − x) (71)

and

T1(x, t)=
d0

τd

N∑
i=1

κ t
i

(
n̂t

i · ∇
)

gs(x
t
i − x). (72)

The second order term T0 yields the deterministic part of the density dynamics. By
equations (66), (67) and the definition of the microscopic nematic tensor Q̃ (equation (68))
one easily gets

T0 =
D0

2
(0 : w)+

D0

2
1ρ, (73)

that is, the right-hand side of the diffusion equation (35) in non-rescaled time and space units.
The first-order term T1 gives rise to the (zero average) stochastic term we are interested in.
At this stage, T1 is not a simple function of the mesoscopic fields; however, following [36] it is
possible to show that its two point correlation can be recast as a function of ρ and w. Averaging
over the random numbers κ t

i , we have, in the limit s→ 0,

〈T1(x, t)T1(y, t ′)〉 = d2
0

δ(t − t ′)

τd

N∑
i=1

(n̂t
i · ∇x)(n̂t

i · ∇y)gs(x
t
i − x)gs(x

t
i − y)

' d2
0

δ(t − t ′)

τd

N∑
i=1

(n̂t
i · ∇x)(n̂t

i · ∇y)(gs(x−y)gs(x
t
i−x)). (74)

Using equation (68), one then finds, approximating the filter gs by a Dirac delta in the limit
s→ 0,

〈T1(x, t)T1(y, t ′)〉 = d2
0

δ(t − t ′)

τd
∂α∂β

[
δ(x−y)

(
wαβ(x, t)+

1

2
ρ(x, t)δαβ

)]
. (75)

We can rewrite the noise term T1 in the stochastically equivalent (i.e. with the same correlations
on the mesoscopic scale) form

T1(x, t)=∇ ·h(x, t), (76)
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where h is a Gaussian, zero-average vectorial noise, delta-correlated in time with correlations

〈hα(x, t)hβ(y, t ′)〉 '
d2

0

τd
δ(t − t ′) δ(x− y)

(
wαβ(x, t)+

δαβ

2
ρ(x, t)

)
. (77)

Such a noise term can finally be expressed in the more convenient form

hα(x, t)= Kαβ(x, t)h̃β(x, t), (78)

where the Gaussian noise h̃ has correlations independent from the hydrodynamic fields

〈h̃α(x, t)h̃β(x
′, t ′)〉 = 2D0 δαβ δ(t − t ′) δ(x− x′) (79)

and the tensor K is implicitly defined from the relation K ·K= (ρ/2)I + w (with I being the
identity matrix). In the limit of small w considered here, we can expand K to first order in w,
yielding

K=
1
√

2
ρ1/2

(
I +

w
ρ

)
. (80)

The divergence term ∇· appearing in T1 reflects global density conservation, while the
proportionality of noise variance to number density can be interpreted as a consequence of
the central limit theorem. Adding up the two contributions, one finally gets

∂tρ =
D0

2
(0 : w)+

D0

2
1ρ +∇ · (K · h̃). (81)

The coupling of density fluctuations to the density weighted nematic field w= ρQ can be better
understood if we express the deterministic part appearing in the rhs of equation (81) as the sum
of an active, non-equilibrium term

Ta =
D0

2
∂α
(
ρ∂β [Q]αβ

)
(82)

and a locally anisotropic diffusion term

Tm =
D0

2
∂α
(
[Q]αβ ∂βρ

)
+

D0

2
1ρ (83)

whose mobility, proportional to (2Q + I)ρ, stands in a fluctuation–dissipation relation [37]12

to the multiplicative noise term ∇ · (K · h̃), since the noise amplitude in equation (77) is
proportional to (2Q + I)ρ.

5.2. Nematic field fluctuations

We next discuss fluctuations of the nematic tensor. As seen from equation (67), w is a
function of the 2N microscopic stochastic variables xt

i and—through the microscopic nematic
tensor (68)—θ t

i , whose dynamics is given by equations (1) and (2). According to Itô calculus,
one has

∂tw=�0 + �1 + �2, (84)

where �0 is the deterministic part of the coarse-grained collisionless dynamics (which we do
not write here explicitly), arising from quadratic contributions in the Itô expansion, while �1

12 Kumaran discusses fluctuation–dissipation relations when the kinetic coefficient is field dependent.
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and �2 are two stochastic contributions, obtained by first order expansion in, respectively, the
angular and spatial stochastic variables,

�1 =
2

τd

N∑
i=1

gs(x
t
i − x)A · Q̃

t

i ψ
t
i , (85)

�2 =
d0

τd

N∑
i=1

κ t
i n̂t

i · ∇gs(x
t
i − x) Q̃

t

i , (86)

where ψ t
i and κ t

i are the microscopic noises and ∂θ Q̃
t

i = 2 A · Q̃
t

i , with

A=
(

0 −1
1 0

)
. (87)

Note that in �1 we have retained only the linear contribution in the microscopic noise ψ t
i . We

first focus on the stochastic terms �1. On coarse-graining scales, averaging over the microscopic
noise ψ t

i , correlations of �1 are given by

〈[�1(x, t)]αβ
[
�1(y, t ′)

]
γ δ
〉 = 4η2 δ(t − t ′)

τd

N∑
i=1

gs(x
t
i − x)gs(x

t
i − y)

[
A · Q̃

t

i

]
αβ

[
A · Q̃

t

i

]
γ δ

≈ 4η2 δ(t − t ′)

τd
gs(y−x)

N∑
i=1

gs(x
t
i−x)

[
A · Q̃

t

i

]
αβ

[
A · Q̃

t

i

]
γ δ
. (88)

To evaluate this correlator, we determine the average value 〈
∑

i gs (A · Q̃
t

i)(A · Q̃
t

i)〉, in the
framework of the deterministic dynamics studied in section 2, namely〈

N∑
i=1

gs(x
t
i−x)

[
A · Q̃

t

i

]
αβ

[
A · Q̃

t

i

]
γ δ

〉
=

∫ π
2

−
π
2

dθ f (x, θ, t) [A ·Q(θ)]αβ [A ·Q(θ)]γ δ . (89)

After some rather lengthy calculations (see appendix C), one finds∫ π
2

−
π
2

dθ f (x, θ, t) [A ·Q(θ)]αβ [A ·Q(θ)]γ δ = ρ Jαβγ δ +
2b2

a2

[
(wµνwµν)Jαβγ δ − 2wαβwγ δ

]
+

1

4a2

[
0µνwµν Jαβγ δ −0αβwγ δ −0γ δwαβ

]
, (90)

where we have introduced the tensor

Jαβγ δ =
1
2

(
δαγ δβδ + δαδδβγ − δαβδγ δ

)
(91)

which plays the role of a unit tensor for the double contraction of symmetric traceless tensors,
e.g. wαβ = Jαβµν wµν . In order to characterize the noise �1, we introduce the following change
of variables:

[�1(x, t)]αβ = Hαβµν(x, t) �̃µν(x, t), (92)
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where �̃ is a tensorial symmetric traceless white noise, such that

〈�̃αβ(x, t)�̃γ δ(y, t ′)〉 = 2Dδ(x− y) δ(t − t ′) Jαβγ δ (93)

with D = 2η2/τd. The correlation of �1 then reads

〈[�1(x, t)]αβ
[
�1(y, t ′)

]
γ δ
〉 = 2Dδ(x− y) δ(t − t ′) Hαβµν(x, t)Hγ δµν(x, t). (94)

By identification with equation (88), and using equation (90), one eventually finds for H

Hαβγ δ = ρ
1/2 Jαβγ δ +

b2

a2 ρ1/2

[
wµνwµν Jαβγ δ − 2wαβwγ δ

]
+

1

8a2 ρ1/2

[
0µνwµν Jαβγ δ −0αβwγ δ −0γ δwαβ

]
. (95)

Note that, in agreement with the central limit theorem, �1 is (at least to first order in w)
proportional to the square root of local density.

The second stochastic term �2, finally, can be treated similarly, but it would give rise to
a conserved noise (due to the presence of ∇ terms) akin to the one discussed for the density
equations, thus related to density fluctuations affecting the w= ρQ field. We discard such
conserved term as irrelevant (in the renormalization group sense) with respect to the non-
conserved multiplicative noise �1.

In order to write down the complete Langevin equation, one also needs to evaluate the
contribution of the deterministic part �0. However, expressing this contribution in terms of
the fluctuating fields ρ and w turns out to be a very complicated task. One should also take
into account collisions between particles, and not only the collisionless dynamics described by
�0. However, as mentioned earlier in this section, in the low density limit where our kinetic
approach is justified, the microscopic dynamics (1)–(2) can be reformulated as deterministic
binary collisions separated by several self-diffusion events, at the cost of a rescaling of the
angular noise amplitude (note that this reformulation is not exact, in the sense that self-diffusion
events no-longer have a Poissonian statistics). As a first approximation, this rescaling of the
angular noise amplitude results in a global rescaling of the noise term �̃ by a phenomenological
factor χ . Therefore, we believe our method to provide essentially the correct relevant stochastic
correlations for the nematic Langevin dynamics, up to an order one unknown multiplicative
constant.

In addition, microscopic collisions could provide a further fluctuation source due to
disorder below the coarse-graining scale, like the randomness of collision times. While we
conjecture them to be irrelevant, we leave a final settlement of this difficult problem for future
work, and use for the deterministic part of the dynamics the hydrodynamic equation (36),
derived from the Boltzmann approach.

We thus finally obtain the stochastic equation for the nematic field (in rescaled units)

∂tw= µw− 2ξ w (w : w)+ 1
21w + 1

80ρ +χH : �̃. (96)

A few remarks are in order: firstly, our expressions of the noise amplitudes K and H
(equations (80) and (95)) suggest that the stochastic terms might be better expressed in terms
of the field Q, rather than w= ρQ; secondly, equations similar to equations (81) and (96) were
also derived from an apolar Vicsek-style model in [29].
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In spite of the limitations listed above, the present approach already provides us with useful
information on the statistics of the noise terms, which is seen to differ significantly from the
white noise postulated on a phenomenological basis in previous works. On top of the overal
ρ1/2 dependency, our calculation reveals a non-trivial dependence of the correlation of the noise
on the nematic order parameter (see equations (80), (81), (94) and (95)).

6. Conclusions

To summarize, using as a starting point the simple active nematics model of [26], we have
demonstrated how one can derive in a systematic manner a continuous mesoscopic description.
We formulated a version of the BGL approach put forward in [24, 25] for this case where
(anisotropic) diffusion dominates, deriving a simple hydrodynamic equation for the nematic
ordering field –equation (36). We have then used a direct coarse-graining approach to endow
the hydrodynamic equations with proper noise terms.

The next stage, left for future work, consists in studying the stochastic PDEs obtained. At
the linear level, it is clear that in the long-wavelength limit, standard results on giant density
fluctuations [17] are recovered. However, the large amplitude of density fluctuations calls for
a nonlinear analysis (which turns out to be very difficult), where the density dependence of
the noise derived in section 5 may play an important role. Ideally, one should try to tackle this
issue by applying methods from field theory and renormalization group analysis. In addition, we
note that the multiplicative nature of the noise may also affect finite-wavelength properties, like
coarsening behavior. The analysis of the stochastic PDEs can be done numerically, but some
care must be taken when dealing with the multiplicative, conserved noise terms in (81).

Pending such attempts, some remarks and comments are already in order: like all previous
cases studied before, the hydrodynamic equations found exhibit a domain of linear instability
of the homogeneous ordered solution bordering the basic transition line σt. This solution does
become linearly stable deeper in the ordered phase (for σ below σs). Moreover, we have found
that the long-wavelength instability of the homogeneous ordered solution leads to a nonlinear,
inhomogeneous band solution—see equation (62)—and that this band solution exists beyond
the [σs, σt] interval. These coexistence regions suggest, at the fluctuating level, discontinuous
transitions.

This seems to be at odds with the reported behavior of the original microscopic model:
(i) the order/disorder transition has been reported to be of the Kosterlitz–Thouless type [26];
(ii) there is no trace, at the microscopic level, of the existence of a non-segregated, homogeneous
phase; (iii) coming back to giant number fluctuations, we note that the standard calculation is
made in the homogeneous ordered phase whereas the numerical evidence for them reported
in [26] appears now to have been obtained in the inhomogeneous phase. All this calls for
revisiting the simple particle-based model and, eventually, understanding its behavior in the
context of the stochastic continuum theory constructed here.
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Appendix A. Fourier expansion of the master equation

We provide in this appendix details of the Fourier expansion of the master equation (10), leading
to equation (21). Multiplying equation (10) by ei2θ and integrating over θ , one gets

∂t f̂ k = ∂α∂β

∫ π/2

−π/2
dθ ei2kθ n̂α(θ)n̂β(θ) f (x, θ, t)+

∫ π/2

−π/2
dθ ei2kθ Idiff[ f ]

+
∫ π/2

−π/2
dθ ei2kθ Icoll[ f, f ]. (A.1)

In the following, we successively compute each term of the rhs of equation (A.1).

A.1. Diffusion-like term

Let us define Qαβ(θ) as

Qαβ(θ)= n̂α(θ)n̂β(θ)−
δαβ

2
. (A.2)

We then have

Q11(θ, t)=−Q22(θ, t)=
1

2
cos 2θ =

ei2θ + e−i2θ

4
,

Q12(θ, t)= Q21(θ, t) =
1

2
sin 2θ =

ei2θ
− e−i2θ

4i
. (A.3)

As a result,

∂α∂β

∫ π/2

−π/2
dθ ei2kθ n̂α(θ)n̂β(θ) f (θ)= ∂α∂β

∫ π/2

−π/2
dθ ei2kθ

(
Qαβ(θ)+

δαβ

2

)
f (θ)

=
1

2
1 f̂ k +

1

4

(
∇
∗2 f̂ k+1 +∇2 f̂ k−1

)
. (A.4)

A.2. Self-diffusion term

We have rather straightforwardly∫ π/2

−π/2
dθ ei2kθ Idiff[ f ]= − f̂ k +

∫ π/2

−π/2
dθ ′ ei2kθ ′ f (θ ′)

∫
∞

−∞

dζ ei2kζ P(ζ )

=

[
P̂k − 1

]
f̂ k, (A.5)

where

P̂k =

∫
∞

−∞

dζ ei2kζ P(ζ ) (A.6)

is the Fourier transform of P(ζ ).
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A.3. Binary collisions term

Let us split the Fourier transformed collision integral into an outgoing (negative) collision term
I (−)k and an ingoing (positive) collision term I (+)k . A direct integration of the outgoing collision
term yields, using K (θ, θ ′)= K̃ (θ − θ ′),

I (−)k ≡−

∫ π/2

−π/2
dθ ei2kθ f (θ)

∫ π/2

−π/2
dθ ′ f (θ ′)K̃ (θ − θ ′)=−

1

π

∑
q

K̂q f̂ q f̂ k−q, (A.7)

where K̂q is the Fourier coefficient of K̃ (θ − θ ′) given by, using equation (14),

K̂q =

∫ π/2

−π/2
dθ ei2qθ

[∣∣∣∣sin
θ − θ ′

2

∣∣∣∣+

∣∣∣∣cos
θ − θ ′

2

∣∣∣∣]= 4

1− 16q2
. (A.8)

Then, the calculation of the ingoing collision term requires a few steps. After integration of the
(generalized) Dirac delta δπ , we have

I (+)k = P̂k

∫ π/2

−π/2
dθ1

∫ π/2

−π/2
dθ2 ei2k9(θ1,θ2) f (θ1)K̃ (θ1−θ2) f (θ2). (A.9)

By the change of variables φ = θ1− θ2, one gets

I (+)k = P̂k

∫ π/2

−π/2
dθ2

∫ π/2−θ2

−π/2−θ2

dφ ei2k9(θ2+φ,θ2) f (θ2 +φ)K̃ (φ) f (θ2). (A.10)

Using the π -periodicity of the integrand with respect to φ, we can change the integration interval
on φ, yielding

I (+)k = P̂k

∫ π/2

−π/2
dθ2

∫ π/2

−π/2
dφ ei2k9(θ2+φ,θ2) f (θ2 +φ)K̃ (φ) f (θ2). (A.11)

On this interval of φ, one has from equation (13)

9(θ2 +φ, θ2)= θ2 +
φ

2
. (A.12)

Expanding f in Fourier series (see equations (16) and (17)), we get

I (+)k =
P̂k

π 2

∑
q,q ′

f̂ q f̂ q ′

∫ π/2

−π/2
dθ2 ei2(k−q−q ′)θ2

∫ π/2

−π/2
dφ ei(k−2q)φ K̃ (φ). (A.13)

The integral over θ2 is equal to πδk,q+q ′ . Defining

Ĵk,q =

∫ π/2

−π/2
dφ ei(k−2q)φ K̃ (φ), (A.14)

we finally obtain

I (+)k =
P̂k

π

∑
q

Ĵk,q f̂ q f̂ k−q . (A.15)

The coefficient Ĵk,q can be computed explicitly, leading to

Ĵk,q = 4
1 + 2
√

2(2q − k)(−1)q sin
(

kπ
2

)
1− 4(2q − k)2

. (A.16)

Note finally that Ĵ0,q = K̂q .
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Appendix B. Curvature-induced current and equilibrium limit

In this appendix, we show explicitly that the curvature-induced current, that is the term
1
2Re(∇∗2 f̂ 1) appearing in the continuity equation (23), originates from the coupling of
orientation with motility. To this aim, we consider a slightly generalized microscopic process
w.r.t. equations (1) and (2), where particles are also allowed to move perpendicular w.r.t. to the
nematic tensor. Replace equation (2) by

xt+1t
i = xt

i + d0 R
(
θ t

i

)
, (B.1)

where R(θ) is a stochastic operator defining the coupling between orientation and particle
motion

R(θ)=


n̂(θ) w.p. p/2,

−n̂(θ) w.p. p/2,

n̂⊥(θ) w.p. (1− p)/2,

−n̂⊥(θ) w.p. (1− p)/2,

(B.2)

where 06 p 6 1, w.p. stands for ‘with probability’ and n̂⊥(θ)= n̂(θ +π/2) is the perpendicular
director. The standard active nematic case is recovered for p = 1, while p = 1/2 corresponds
to an isotropic random walk, a case for which motion is decorrelated from order. The
corresponding collisionless master equation reads

f (x, θ, t +1t)=
p

2

[
f (x− n̂(θ)d0, θ, t)+ f (x + n̂(θ)d0, θ, t)

]
+
(1− p)

2

[
f (x− n̂⊥(θ)d0, θ, t)+ f (x + n̂⊥(θ)d0, θ, t)

]
. (B.3)

By making use of Itô calculus, one gets at the mesoscopic timescale τB

∂t f (x, θ, t)= (2p− 1)∂α∂β

[
n̂α(θ)n̂β(θ)−

δαβ

2

]
f (x, θ, t)+

1

2
1 f (x, θ, t), (B.4)

where we have used the identity n̂⊥α (θ)n̂
⊥

β (θ)= δαβ − n̂α(θ)n̂β(θ). By considering the zeroth-
order Fourier term of f (for which collision and angular diffusion terms vanish), one obtains
the continuity equation (see also [29] for a similar result)

∂tρ =
1

2
1ρ +

2p− 1

2
Re
(
∇
∗2 f1

)
(B.5)

which shows that the non-equilibrium current vanishes for p = 1
2 .

Appendix C. Correlation of the nematic field fluctuations

In this appendix, we wish to compute the rhs of equation (89), that is, the non-trivial part of the
noise correlation in the nematic order parameter equation. In other words, we need to compute
the fourth-rank tensor

Rαβγ δ =
∫ π

2

−
π
2

dθ f (x, θ, t) [A ·Q(θ)]αβ [A ·Q(θ)]γ δ . (C.1)

This is a priori a complicated task, and it will be useful to use a mapping between tensors
and ‘multicomplex’ numbers (see, e.g. http://en.wikipedia.org/wiki/Multicomplex number).
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Although such a mapping is perhaps not a standard method, it will prove a very convenient
technique in the following. We present this mapping in appendix C.1, and we sketch the main
steps of the calculation in appendix C.2.

C.1. Mapping between tensors and ‘multicomplex’ numbers

Let us first emphasize that the mapping presented here is restricted to two-dimensional spaces.
Before turning to tensors, we recall the rather natural correspondence between two-dimensional
vectors and complex numbers: a vector V= (V1, V2) can be mapped onto a complex number
V= V1 + iV2, where i2

=−1. Denoting the mapping by a double arrow↔, we can write

V= (V1, V2) ←→ V= V1 + iV2 = Vαiα−1. (C.2)

Here, and in what follows, a sum over repeated indices is understood. The scalar product
between two vectors V and V′ can be expressed in complex notations as

V ·V′ =
1

2

(
VV′∗ + V∗V′

)
. (C.3)

Such a mapping can be generalized to describe tensors by introducing several imaginary
numbers i, j, . . . , which commute one with the other. For instance, a second rank tensor Q
of components Qαβ can be mapped onto a ‘bicomplex’ number

Qαβ ←→ Q= Q11 + iQ21 + jQ12 + ijQ22 = Qαβ iα−1jβ−1 (C.4)

where i2
= j2
=−1 and i,j commute. The contraction operation between two tensors can also

be expressed in complex notations, through a generalization of equation (C.3). A symmetric
traceless tensor Q reads in complex notations

Q= Q11 + (i + j)Q12− ijQ11 = (1− ij)(Q11 + iQ12) (C.5)

and is thus fully characterized by the complex number Q11 + iQ12. For instance, the local
nematic tensor Q(θ) defined in equation (68) maps onto 1

2(1− ij) e2iθ , and the nematic field
w maps onto 1

2(1− ij) f1. These simple relations will be useful in the following.
In addition, one of the interests of the complex notation is that tensorial products simply

map onto products of complex numbers. Starting from two vectors V and V′, their tensorial
product maps as follows:

Pαβ = VαV ′β ←→ P= (V1 + iV2)(V
′

1 + jV ′2). (C.6)

The introduction of fourth rank tensors follows the same line. Introducing four independent
imaginary numbers i, j, k, l (i2

= j2
= k2
= l2
=−1), a tensor of components Rαβγ δ can be

mapped onto a ‘quadricomplex’ number:

Rαβγ δ ←→ R= Rαβγ δ iα−1jβ−1kγ−1lδ−1. (C.7)

If R is the tensorial product of two second rank tensors Q and Q′, namely Rαβγ δ = QαβQ ′γ δ, the
associated ‘quadricomplex’ number is the product of two bicomplex numbers

R=
(
Qαβ iα−1jβ−1

) (
Q ′γ δ kγ−1lδ−1

)
. (C.8)

In particular, if Q and Q′ are symmetric traceless tensors, the above expression simplifies to

R= (1− ij)(1− kl)(Q11 + iQ12)(Q
′

11 + kQ ′12). (C.9)

Such relations will turn useful in the following calculations.
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C.2. Calculation of the correlation

We now turn to the calculation of the fourth rank tensor defined in equation (C.1), using the
mapping to ‘multicomplex’ numbers introduced above. We first need to evaluate A ·Q(θ) in
these notations. It is rather straightforward to show that

(A ·Q(θ))αβ ←→ iQ(θ)= 1
2(i + j) e2iθ . (C.10)

This can be shown from the mapping A↔ i− j, using a generalization of equation (C.3). The
resulting expression is however simple to interpret, since the multiplication by i corresponds to a
rotation by an angle of π

2 in the complex plane. Computing the tensorial product (A ·Q)(A ·Q),
one finds

(A ·Q(θ))αβ(A ·Q(θ))γ δ ←→
1
4(i + j)(k + l) e2iθ e2kθ . (C.11)

Expanding the two exponentials and using standard trigonometric relations leads to

e2iθ e2kθ
=

1
2(1 + ik)+ 1

2(1− ik) e4iθ . (C.12)

As a result,

(A ·Q(θ))αβ(A ·Q(θ))γ δ←→
1
8(1 + ik)(i + j)(k + l)+ 1

8(1− ik)(i + j)(k + l) e4iθ . (C.13)

Computing the average over the phase-space distribution f (x, θ, t) leads to∫ π
2

−
π
2

dθ f (x, θ, t) [A ·Q(θ)]αβ [A ·Q(θ)]γ δ

←→
1

8
(1 + ik)(i + j)(k + l)ρ(x, t)+

1

8
(1− ik)(i + j)(k + l) f1(x, t). (C.14)

It is then necessary to use the closure relation (30), yielding∫ π
2

−
π
2

dθ f (x, θ, t) [A ·Q(θ)]αβ [A ·Q(θ)]γ δ ←→
1

8
(1 + ik)(i + j)(k + l)ρ

+
b2

8a2
(1− ik)(i + j)(k + l) f 2

1 +
1

32a2
(1− ik)(i + j)(k + l)∇2 f1. (C.15)

We now need to perform the inverse mapping onto tensors. Let us start with the first term in the
rhs of equation (C.15). Looking for a tensor of the form aδαγ δβδ + bδαδδβγ + cδαβδγ δ, one finds
by identification of the associated complex expressions that

(1 + ik)(i + j)(k + l) ←→ δαγ δβδ + δαδδβγ − δαβδγ δ ≡ 2Jαβγ δ. (C.16)

The second and third terms in the rhs of equation (C.15) can be computed along the same line.
Both terms have a similar structure, which can be formally written as (1− ik)(i + j)(k + l)(C11 +
iC12)(D11 + iD12), where Cαβ and Dαβ are symmetric traceless tensors that do not necessarily
commute (Cαβ may include derivation operators). One then finds, again by identification of the
complex forms

(1− ik)(i + j)(k + l)(C11 + iC12)(D11 + iD12) ←→ CµνDµν Jαβγ δ −CαβDγ δ −Cγ δDαβ . (C.17)
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As a result, we find

(1− ik)(i + j)(k + l) f 2
1 ←→ 4

[
(wµνwµν)Jαβγ δ − 2wαβwγ δ

]
, (C.18)

(1− ik)(i + j)(k + l)∇2 f1 ←→ 2
[
0µνwµν Jαβγ δ −0αβwγ δ −0γ δwαβ

]
. (C.19)

Gathering all terms, one then recovers equation (90) from equation (C.15).
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