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Abstract

Combining information from multiple SNPs may capture a greater amount of genetic variation than from the sum of
individual SNP effects and help identifying missing heritability. Regions may capture variation from multiple common
variants of small effect, multiple rare variants or a combination of both. We describe regional heritability mapping of human
cognition. Measures of crystallised (gc) and fluid intelligence (gf) in late adulthood (64–79 years) were available for 1806
individuals genotyped for 549,692 autosomal single nucleotide polymorphisms (SNPs). The same individuals were tested at
age 11, enabling us the rare opportunity to measure cognitive change across most of their lifespan. 547,750 SNPs ranked by
position are divided into 10, 908 overlapping regions of 101 SNPs to estimate the genetic variance each region explains, an
approach that resembles classical linkage methods. We also estimate the genetic variation explained by individual
autosomes and by SNPs within genes. Empirical significance thresholds are estimated separately for each trait from whole
genome scans of 500 permutated data sets. The 5% significance threshold for the likelihood ratio test of a single region
ranged from 17–17.5 for the three traits. This is the equivalent to nominal significance under the expectation of a chi-
squared distribution (between 1df and 0) of P,1.4461025. These thresholds indicate that the distribution of the likelihood
ratio test from this type of variance component analysis should be estimated empirically. Furthermore, we show that
estimates of variation explained by these regions can be grossly overestimated. After applying permutation thresholds, a
region for gf on chromosome 5 spanning the PRRC1 gene is significant at a genome-wide 10% empirical threshold. Analysis
of gene methylation on the temporal cortex provides support for the association of PRRC1 and fluid intelligence (P = 0.004),
and provides a prime candidate gene for high throughput sequencing of these uniquely informative cohorts.
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Introduction

Loss of cognitive function is one of the most feared aspects of

growing old. Intelligence and the rate of age related cognitive

change vary widely in healthy individuals and have been

associated with health status, longevity and quality of life

[1,2,3,4,5,6]. As the general population ages, cognitive health is

of paramount importance, and understanding the underlying

mechanisms of general intelligence and age-related decline has

wide-ranging social and economic implications. Although patho-

logical cognitive decline has been studied in diseases such as

Alzheimer’s [7], available phenotypic measures for lifetime

changes in cognitive abilities of healthy individuals are rare. An

important part of the variation in human general intelligence and

in non-pathological, age-associated cognitive decline [8,9] can be

attributed to heritable genetic variation. Identifying the genes and

loci that contribute to the estimated genetic variance would offer

new biological insight, with opportunities to develop tailored

interventions and to inform policy makers.

Here we analyse the genetic contributions to complex variation

in three measures of intelligence: (i) crystallised intelligence; (ii)

fluid general intelligence; and (iii) lifetime change in intelligence.

We use three Scottish birth cohorts whose intelligence was

measured in childhood (age 11 years) and again in late adulthood

(age 65 to 79 years). Crystallised intelligence (gc) is typically

assessed using vocabulary and knowledge-based tests, and tends to
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remain stable with age. Fluid intelligence (gf) is assessed using tests

that require on-the-spot thinking — often with abstract materials

and under time pressure — and tends to peak in early adulthood

and decline thereafter [10,11]. Here, cognitive change was

measured as fluid intelligence in old age adjusted for intelligence

measured at age 11 as described in Deary et al. [9], who showed,

using the same data, that the lower bound estimate for the

proportion of variation in lifetime change of intelligence explained

by genetic factors was 0.24.

To date, as is seen in many complex traits, and despite

moderate-to-high heritability estimates, genomic studies have

yielded little knowledge of the underlying genetic factors

affecting cognitive traits. Although studies for other complex

traits have been successful at garnering the few common genetic

variants that explain a sizeable amount of variation, genome

wide association studies (GWAS) have generally failed to

capture a large proportion of the genetic variation in complex

traits [12,13,14]. A recent GWAS for crystallised and fluid

intelligence did not result in any replicable genome-wide

significant association despite moderately high heritability

estimates of 0.4 (s.e. 0.11) and 0.51(s.e. 0.11) for gc and gf

respectively for the population under study [8]. To address this

gap, we have applied a recently proposed analytical approach

[15] that captures the combined effect of multiple genetic

variants at a region of the genome, thereby identifying some of

the heritability missing when applying standard ‘one at a time’

SNP analyses [16,17]. This approach has the potential to

overcome stringent multiple testing penalties and has been

shown to be more powerful than the ‘one at a time’ SNP

approach in simulated and real data [15]. We hypothesise that

combinations of common and rare variants, that are not in

complete LD with common tagging SNPs, may account for a

substantial part of the missing heritability and that these will be

best captured by estimating the genetic variation from an entire

‘region’ or geographically co-located set of SNPs. The trade-off

comes between capturing as much variation as possible, whilst

having the resolution to locate causal effects. Here we divide the

genome in two ways (regionally and functionally): firstly, into

overlapping regions of 101 SNPs; and secondly by chromosome,

separating SNPs that lie within genes and SNPs that map

outside a 5 kb boundary of genes. We examine the genetic

variation explained by each region or chromosome for

crystallised and fluid intelligence and for the lifetime change

in fluid intelligence, and we compare that to the most significant

results obtained from the ‘one SNP at a time’ association

approach.

Materials and Methods

Phenotypic Data
Ethical approval for all the projects was obtained from the

Lothian Research Ethics Committee. Data were gathered

from three longitudinal studies of relatively healthy older

individuals with detailed cognitive phenotypes: the Lothian

Birth Cohorts of 1921 (LBC1921, N = 550) and 1936

(LBC1936, N = 1091), and the Aberdeen Birth Cohort of

1936 (ABC1936, N = 548). The years 1921 and 1936 refer to

the participant’s year of birth. Participants took a validated

intelligence test at a mean age of 11 years: the Moray House

Test No. 12 (MHT), which is a test of general intelligence

[18,19] and detailed follow-up assessments at a mean age (sd)

of 79.1 (0.6), 69.5 (0.8) and 64.6 (0.9) for LBC1921, LBC1936

and ABC1936, respectively. Cognitive test scores from age 11

and old age were available.

Construction of phenotypes
Selection of individuals, ethical consent, and full details of the

assessments have been described in previous studies

[8,9,18,19,20,21]. In brief, for each cohort, cognitive phenotypes

of fluid-type and crystallized-type intelligence were constructed

[19,20]. The final measure of lifetime cognitive change was

constructed by adjusting fluid intelligence in old age for prior

cognitive ability providing a quantitative measure of cognitive

change from age 11 to old age. Phenotypes were adjusted within

cohort for age and standardised within gender, and are further

defined in Appendix 1.

Genotypic data
Following informed consent, venesected whole blood was

collected for DNA extraction. A total of 599,011 single nucleotide

polymorphisms (SNPs) were genotyped using the Illumina610-

Quadv1 chip as described previously [8]. Quality control (QC)

procedures were performed per SNP and per sample. Individuals

were excluded from further analysis if genetic and reported gender

did not agree. Samples with a call rate #0.95, and those showing

evidence of non-European descent by multidimensional scaling

analysis, were also removed. SNPs were included in the analyses if

they met the following conditions: call rate $0.98, minor allele

frequency $0.01, and Hardy-Weinberg equilibrium test with

p$0.001. To avoid bias from hidden family structure, if a pair of

individuals shared more than 2.5% of the genome in common, one

individual was omitted from the analysis. After QC, 1804

individuals (ABC1936, N = 376; LBC1921, N = 484; LBC1936,

N = 944), and 547,750 autosomal SNPs were included in the

analysis.

Estimation of regional and functional genetic
contribution

In a population of unrelated individuals, SNP genotypes can be

used to estimate shared co-ancestry or identity by state between

individuals with rare SNPs weighted more heavily. Under certain

assumptions it can be shown that a region that is shown to be

identical by state will also be identical by descent [22]. The n6n

genomic relationship matrix (GRM) of relatedness at a population

level between n individuals gives the covariance structure for the

phenotype based on the premise that the more related two

individuals are, or the greater the amount of the genome they

share in common, the greater the expectation of phenotypic

similarity.

Using theory adapted from standard variance components or

pedigree based linkage analysis [23,24,25] and further developed

for genomic prediction [26,27,28], a GRM containing information

from the genotypes of m SNPs can be used to solve a linear mixed

model [Model 1] and partition the phenotypic variance into

estimates of the genetic and environmental variance [15,29]. To

avoid confusion with the well-known family-based estimates of

heritability [30] we define the amount of phenotypic variance

captured by the genotypes of unrelated individuals as population-

sense heritability (h2
ps). The linear mixed model (LMM) is:

Y~XbzIuze ðModel 1Þ

Where Y is an n61 vector of phenotypes for n individuals; Xn621 is

the incidence matrix relating the regression coefficients for 20

principal components and gender to the n individuals; b is a 2161

vector of fixed effects; u is a n61 vector of the additive genomic

random effects where u,N(0,Gs2
u), G is an n6n genomic

relationship matrix estimated from the SNP genotypes and s2
u
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is the genetic variance captured by the SNPs used to estimate the

relationships among the n individuals; I is an n6n identity matrix;

and e is an n61 vector of individual residual effects. The variance

of Y is var (Y) = Gs2
u+Is2

e. G is calculated following Van Raden

(2008) [28]. In short, an n6m matrix, W, is constructed where m is

the number of SNPs available. The elements of W, wij, are defined

as wij~(xij-2pj)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pj(1-pj)

p
with xij being 0, 1 or 2 for the three

possible SNP genotypes for the j-th SNP of the i-th individual and

pj being the allele frequency of the j-th SNP. G is calculated as

WW’/m.

An extension of this to a bivariate analysis [Model 2] was used

to estimate phenotypic and genetic covariances amongst measures

of intelligence.

Y1~X1b1zIu1ze1

Y2~X2b2zIu2ze2 ðModel 2Þ

Where 1 and 2 refer to trait 1 and trait 2, u1 and u2 are n61

vectors of additive genomic random effects. G is the genomic

relationship matrix between all individuals as described above.

The additive genetic covariance of Y1 and Y2 - cov(u1,

u2) =s2
u12 and the environmental covariance cov (e1, e2) is

s2
e12. The additive genetic correlation of Y1 and Y2 is s2

u12/

su1 su2, and the variance-covariance matrix for Y = [Y1, Y2] is

V~
Gs2

u1zIs2
e1 Gs2

u12

Gs2
u12 Gs2

u2zIs2
e2

� �
. A full derivation of the

estimation of the genetic covariance is given in [31].

Regional population-sense heritability
Yang et al. [32] implement the linear mixed model [Model 1] in

the software package GCTA and have shown that the method can

be used to partition the genetic variation across chromosomes and

functional regions of the genome such as genes [15].

By combining information on multiple SNPs within a genomic

region we aim to capture a substantial part of the heritability

missed by traditional ‘one SNP at a time’ approaches. Identifying

those regions of the genome that capture most variation is an

efficient way of selecting candidate regions for high throughput

sequencing that could complement whole-exome sequencing

experiments until whole genome sequencing is feasible for large

numbers of samples. Here, autosomal SNPs were ranked by

genomic location and divided into regions spanning 101 consec-

utive SNPs. Regions were overlapping to allow for the possibility

that genetic variation is distributed among two or more windows,

with a shared region between two consecutive regions spanning 50

SNPs, resulting in 10,908 overlapping regions from 547,750 SNPs.

Each region was fitted individually in the linear mixed model

[Model 3].

Y~XbzIuRze ðModel 3Þ

Where R is the genomic region. uR is a vector of n additive

genomic random effects from the region, n is the number of

individuals and I is the identity matrix as described above.

Var(Y )~GRs2
uRzIs2

e ; where GR is a GRM derived only from

SNPs within the defined region.

Functional population-sense heritability
Genes are the most important functional units of the genome. In

order to investigate their contribution to variation in cognition we

partitioned, for each of the autosomes, the genetic variance

captured by SNPs located inside and outside genes. SNPs mapping

to each autosome were separated into those that mapped within

5 kb of the transcription start and end sites of a gene (i.e. within

genes) and those that mapped outside these limits. Genome build

37 was used to identify genes and gene limits. A linear mixed

model was used to fit forty-four variance components simulta-

neously, capturing SNPs within genes and SNPs outside genes on

each of the 22 human autosomes [Model 4].

Y~Xbz
X22

c~1

Iuin
c z

X22

c~1

Iuout
c ze ðModel 4Þ

Where uc
in is the vector of additive genomic random effects which

for each chromosome is solved using a GRM derived from SNPs

which lie within genes or within a 5 kb boundary of a gene on that

chromosome c; uc
out is a vector of additive genomic random

effects solved using a GRM derived from SNPs which lie outside

genes on that chromosome c.

For comparison we grouped SNPs by chromosome and the

population-sense heritability was estimated for individual chro-

mosomes [Model 5]. This approach was used previously in a meta-

analysis of five cohorts including those described here for adult

fluid and crystallised intelligence [8] but not for cognitive change.

Y~Xbz
X22

c~1

Iucze ðModel 5Þ

Where uc is the vector of additive genomic random effects on

chromosome c solved for each chromosome using a GRM derived

from SNPs which lie on that chromosome c.

Model fitting
Initially all SNPs were fitted in the model to estimate the genetic

variance and overall heritability for the three cognitive traits in the

population. Bivariate analyses to estimate covariances amongst the

three cognitive measures were performed using ASReml 2

software [33]. To avoid confounding of genetic variation of the

trait and potential variation due to population stratification,

eigenvectors were estimated from the genetic relationship matrix

and the first 20 principal components were fitted as covariates in

the linear mixed model. Sex was also fitted into the model.

Analyses were subsequently carried out fitting the regions defined

above to estimate regional and functional population-sense

heritability.

GCTA/ACTA [34] solves the LMM and obtains estimates of

genetic and residual variances by restricted maximum likelihood

(REML) using the average information (AI) algorithm.

Test statistics were obtained using a standard likelihood ratio

test (LRT) statistic calculated as twice the difference between the

log likelihoods of the full model and a null or reduced model that

did not fit a genetic component. For a single test, the expectation

of the LRT for testing one extra variance component is a 50:50

mixture of a point mass of 0 and a chi square distribution with 1df

[35]. This is so because under the null hypothesis the true value of

the variance components is on the boundary of the parameter

space defined by the alternative hypothesis.

Results from the 10,908 regions were ranked by likelihood ratio

test statistic. The top ten non –overlapping or approximately 0.1%

of regions were fitted back into a linear model with an eleventh

‘polygenic’ variance component comprising all the available

autosomal SNPs. This model was tested against a null model

Complex Variation of Intelligence
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containing only the polygenic variance component under the

expectation that the likelihood ratio test is distributed as a chi-

square with ten degrees of freedom. We repeated the analyses

without the ‘polygenic’ variance component and obtained virtually

the same results.

Finally, the contribution of the identified top ten regions for

each of the traits were analysed for putative pleiotropic effects

across cognitive phenotypes.

Permutation analysis
To date there is little evidence for the empirical distribution of a

suitable threshold for the LRT statistic when testing multiple

genomic regions. Rowe et al. [36] showed that for variance

components based QTL mapping methods, the test statistic and

the variance explained can be hugely inflated if multiple testing

and the underlying genetic architecture are not properly

accounted for. Given that over 10 000 tests were performed,

many of which were highly correlated due to the overlap of

regions, and the novelty of the approach, we derived the empirical

distribution of the test statistic using ACTA [34] to perform 100

permutations for each of the traits resulting in empirical thresholds

for individual tests ranging from 17.6 for gf to 18.8 for gc for a type

1 error rate of 5%. As 100 permutations is not sufficient to ensure

a stable estimate of the threshold, but testing 10,908 regions for

three traits hundreds of times is computationally intensive, we

repeated the analyses using non-overlapping windows and carried

out a further 500 permutations. A permutation involved randomly

permuting the phenotypic and genotypic data and testing 5454

alternate or non-over-lapping regions on the permuted data set.

For each set of permuted data; i) regional population-sense

heritabilities were estimated for all regions (each spanning 101

SNPs) and ii) The top ten regions ranked by LRT test statistic from

each permutation were simultaneously fitted into a linear model to

determine their combined contribution. These were fitted with

and without a ‘polygenic’ component. This gave the empirical

distribution of the test statistic under the null hypothesis for fitting

a single region and for when the ten top ranking regions are fitted

simultaneously.

‘One SNP at a time’ genome-wide association analysis
The software package PLINK [37] was used to carry out single

SNP association tests to assess whether the SNPs of greatest

significance were associated with the regions from [4] that

explained the greatest amount of genetic variation.

Results

Variance captured by all autosomal SNPs or population-
sense heritability

For simplicity we define the proportion of phenotypic variance

captured by SNP genotypes in unrelated individuals as population-

sense heritability (h2
ps) to distinguish it from the often used narrow

and broad sense heritability [29]. Heritabilities, phenotypic and

genetic correlations are given in Table 1. Population-sense

heritability estimates for cognitive traits ranged from 0.19 (s.e.

0.2) to 0.37 (s.e. 0.19). Estimates for crystallised intelligence are

similar to those from the larger previous study [8]. Fluid

intelligence estimates differ slightly due to differences in sample

size, study design and population demographics. Fluid intelligence

was highly genetically correlated to both cognitive change

rA = 0.95 (s.e. 0.25), and to crystallised intelligence rA = 0.66 (s.e.

0.34) (i.e. the amount of correlation emerging from pleiotropy is

high). There was little genetic correlation between crystallised

intelligence and cognitive change rA = 0.008 (s.e. 0.53).

Regional population-sense heritability
The distributions of regional population-sense heritability

estimates for the three traits are similar. Most regions explain

variance close to zero with 1.7 to 2.5% explaining greater than 1%

of variation, 0.07 to 0.18% explaining greater than 2%, and only

0.02% explaining greater than 3%.

The likelihood ratio test statistic for the regional heritability scan

across the genome and the most significant hits from the genome

wide association analyses (2log10P-value.2.7) are given in

Figure 1. Table 2 gives details of the top ten regions for each

trait ranked by LRT and appendix 2 gives the known genes for

each of these regions and pathway analysis. The top ten single

SNP associations for the three traits were all within regions with

h2
ps.1% (Table S1 in File S1). The correlation between the

greatest 2log10 (P-value) for SNP association in each region and

2log10 P-value from the LRT test for each region was 0.52

(Figure 2). When regions were ranked by LRT a region on

chromosome 6 ranking 3rd and 4th for cognitive change and fluid

intelligence respectively also contained the top SNP in the GWAS

for cognitive change. For fluid intelligence, the top ranking region

on chromosome 5 spanned the third ranking single SNP

association (P,3.41E-06). This region on chromosome 5 associ-

ated with fluid intelligence was the only region for all three traits to

exceed genome-wide significance at the P,0.10 threshold. When

the top ten regions (Table 2) from each trait were fitted together in

a LMM they explained 13% (Pperm = 0.58), 15% (Pperm = 0.11)

and 18% (Pperm = 0.43) of the phenotypic variation for crystallised

intelligence, fluid intelligence, and cognitive change respectively.

Table 3 shows regions that explained greater than 1% of

phenotypic variation in more than 1 trait including regions on

chromosome 9 and 11 that potentially have pleiotropic effects on

all three traits.

Regions were defined by number of SNPs; hence there was

variation in physical length of regions across the genome, with the

average region spanning 534 kb. No relationship was found

between the physical length of a region and its significance or the

amount of additive genetic variation explained (Figure S1 in File

S1).

Permutation analyses
To estimate empirical thresholds, phenotypic data for each of

the three traits were permuted 500 times to attain an estimate of

the null distribution when genotype and phenotype were randomly

assorted. We performed 5,454 REML analyses across the genome

for each of the permuted data sets resulting in over 8.2 million

single tests. The results were ranked by log likelihood and

compared to a null model using an LRT. The resulting genome-

wide significance thresholds for the LRT (P,0.05) were 17.2 for

crystallised intelligence, 17.5 for fluid intelligence and 17.08 for

cognitive change Figure 3 shows that the distributions of the test

statistic for the three traits were very similar and that they were

highly inflated when compared to the expectation of the null

distribution for a single test. Thresholds were close to those for the

10,908 tests but less conservative than a Bonferroni correction for

5,454 independent tests which would result in a 5% threshold of

19.7. Table 4 shows that the genome-wide threshold values were

stable after 300 permutations indicating that 500 permutations was

sufficient to estimate 5 and 10% genome-wide thresholds.

The distributions from the permutation analysis (Figure 3) show

that by chance in 5% of cases the variance explained by a region

exceeded 3.8, 3.8 and 4.0% for gc, gf and cognitive change

respectively.

For each permutation the top ten regions were identified, i.e.

those with the greatest likelihoods and fitted simultaneously into a

Complex Variation of Intelligence
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LMM. An LRT was calculated as twice the difference between the

log likelihood of a model fitting ten regions and a null model

without a genetic effect, and we did not fit a polygenic model when

testing the top ten regions. The 95th percentile was used to

estimate a 5% genome-wide threshold for significance of the LRT

between a model fitting the top ten regions of the genome; and a

null model. The polygenic component was omitted as the original

genetic structure was removed by the permutation of genotypes

and phenotypes. The 5% genome-wide threshold was P,3.3E-24

for crystallised intelligence, P,1.42E-24 for fluid intelligence and

P,1.03 E-24.

Functional population-sense heritability
Figure 4 shows estimates of population-sense heritability for

each of the 22 autosomes, and for h2
ps estimates using information

from SNPs inside genes and estimates using information from

SNPs outside genes for each chromosome and trait. For

crystallised intelligence heritability estimates from SNPs on

autosomes 3, 5, 11, 15 and 19 were significantly different from

zero. When divided further chromosomes 9, 15 and 19 had

significant estimates for h2
ps within genes. For fluid intelligence,

estimates of h2
ps on chromosomes 3, 9 and 10 were significant,

explaining 6, 5, and 8% phenotypic variance, respectively.

Table 1. Population-sense heritability (diagonal), phenotypic (upper diagonal) and genetic (lower diagonal) correlations for
measures of general intelligence and cognitive decline estimated from relationship matrices based on 547,750 SNP genotypes.

Trait Crystallised Intelligence Fluid Intelligence Cognitive change

Crystallised intelligence (n = 1791) 0.36 (0.19) 0.59 (0.01) 0.22 (0.02)

Fluid intelligence (n = 1706) 0.66 (0.34) 0.19(0.20) 0.78 (0.009)

Cognitive change (n = 1602) 0.0084(0.53) 0.95 (0.25) 0.26(0.22)

Heritabilities on diagonal, genetic correlations below diagonal, phenotypic correlations above diagonal and standard errors given in brackets.
doi:10.1371/journal.pone.0081189.t001

Figure 1. Plot of likelihood ratio test for phenotypic variance explained by each of 10,908 regions (groups of 101 consecutive
SNPS) (bars) and 2log10 P-values.2.7 for single SNP association (circles). Dashed line is 1% nominal significance threshold for LRT for
individual regions, dotted line is 5% genome-wide significance threshold for individual regions obtained by permutation analysis. A crystallised
intelligence n = 1791, B fluid intelligence n = 1706 , and C cognitive change n = 1602.
doi:10.1371/journal.pone.0081189.g001
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Autosomal h2
ps within genes was significant for chromosomes 9,

14 and 15 and outside genes for chromosomes 3, 16 and 22. For

cognitive change chromosomes 4 and 10 had significant estimates

of h2
ps with chromosome 6 significant for h2

ps outside genes.

Genetic variation of the traits differed across autosomes and for

SNPs within or outside genes. SNPs within genes explained 48, 64

and 38% of the total genetic variation for gc, gf and cognitive

change respectively. There was no correlation between estimates

of autosomal heritability and the number of SNPs used to estimate

each genetic relationship matrix (Table S2 in File S1). Distribu-

tions of allele frequencies for SNPs inside and outside genes did

not differ P,0.99).

Brain-related intermediate traits
The top region associated with gf was genome-wide signifi-

cant at the 10%, however, even if the locus was truly associated

with gf we were not expecting a high level of statistical support

due to the small sample size of the study. In order to gather

further independent evidence that could support or reject the

association of the locus with gf we assembled previously

published data of brain-measured intermediate phenotypes

[38]. Within the chromosome 5 region we found two DNAm

sites, cg04431054 and cg15851800 and two mRNA probes

ILMN_1652306 and ILMN_1685140. DNAm sites cg04431054

and cg15851800 are located 381 base-pairs apart, cg04431054

is 277 base-pairs upstream of PRRC1, and cg15851800 is 104

base-pairs downstream of the transcription start site of PRRC1,

which spans chromosome 5 at base-pair location 126,853,301–

126,890,781. ILMN_1685140 targets transcripts of PRRC1

(Proline-Rich Coiled-Coil 1) and ILMN_1652306 transcripts of

MEGF10, a receptor for amyloid beta uptake, located between

position 126,626,523 and 126,801,429. All four intermediate

phenotypes were measured on tissue from the Cerebellum

(CRBL), Frontal Cortex (FCTX), the Pons (PONS) and the

Temporal Cortex (TCTX). ILMN_1652306 did not pass our

quality control procedure for the CRBL and thus was excluded

from further analyses. Regional genetic relationships were

estimated from 86 available SNPs located within the top 101

SNPs region associated with gf. h2
ps was estimated with ACTA

[34].

The 86 SNPs located on chromosome 5 between 126711782–

127335370 base-pairs explain a significant (P,0.0001) proportion

of the phenotypic variation of cg04431054 for each of the four

brain tissues (Table 5). h2
ps of cg04431054 measured in the CRBL,

FCTX, PONS and TCTX brain regions was 0.46, 0.24, 0.28 and

0.33, respectively.

So far, we have shown that the 623 kb region of chromosome 5

associated with gf is associated with cg04431054 levels in the

CRBL, FCTX, PONS and TCTX brain regions. However, we

have not yet shown a direct link between cg04431054 levels and gf.

To do that, we estimate the effect of the 86 SNPs on the brain

phenotypes and construct a genetic score [39] for each individual

with gf phenotypes. A significant regression of genetic score for

cg04431054 with gf would indicate a link between the levels of

Figure 2. Comparison of significance of region and top SNP within region. Scatter plot of 2log10 P-values for single SNP association of
greatest significance in region and significance of LRT test for variance explained by entire region (each region contains 101 SNPs). Correlation
coefficient is 0.52.
doi:10.1371/journal.pone.0081189.g002

Complex Variation of Intelligence

PLOS ONE | www.plosone.org 6 December 2013 | Volume 8 | Issue 12 | e81189



cg04431054 and gf. Only one of the four brain regions (TCTX)

showed a significant association with gf (P = 0.004), and explained

0.5% of the phenotypic variance. The regression coefficient was

positive (0.295, se = 0.004) indicating a positive correlation

between methylation levels and gf. Hence, our analyses of brain-

related intermediate phenotypes provides supporting evidence of

the region being truly associated with gf, uncovers the likely target

region of the brain associated with gf and identifies PRRC1 as a

candidate gene for gf.

Discussion

We implemented a recently proposed method of genome

scanning by expanding single SNP analysis to the estimation of

genetic variance explained by regions spanning 101 co-located

SNPs. After deriving empirical thresholds by permutation analysis

we show that stringent thresholds close to that of a bonferroni

correction are necessary for evaluating the likelihood ratio test

statistic and that the distribution of multiple tests is highly inflated

Table 2. Variance explained for top ten regions ranked by significance or LRT for crystallised and fluid intelligence and cognitive
decline.

Chr
region
start (bp)

region
end (bp)

h2
ps

region s.e
h2

ps full
modela s.e. LRT

Greatest single SNP
association in region
2LOG10 (P)

SNP
Var (r2)

Crystallised Intelligence

10 84493034 84943238 0.01 0.008 0.011b 0.007 14.08 4.4 0.009

5 153024650 153532086 0.02 0.01 0.017 0.009 12.07 2.45 0.003

10 84323605 84670475 0.02 0.012 - - 11.85 3.78 0.008

13 57449351 58113705 0.01 0.008 0.01 0.006 10.48 4.45 0.008

9 78430995 78767837 0.01 0.008 0.008 0.006 10.08 3.56 0.008

10 17430161 17790975 0.01 0.008 0.015 0.008 9.95 4.79 0.008

11 102565882 102978790 0.02 0.01 0.015 0.008 9.72 2.43 0.005

14 20640453 21072443 0.03 0.014 0.02 0.012 9.57 2.42 0.004

6 51858157 52238923 0.01 0.008 0.007 0.006 9.55 2.46 0.005

2 84702898 85301342 0.01 0.008 0.013 0.008 9.49 1.59 0.003

13 100772901 101089435 0.02 0.009 0.014 0.008 8.78 2.97 0.002

Fluid Intelligence

5 126711782 127335370 0.02 0.009 0.013 0.008 16.00 5.47 0.013

6 39140691 39378453 0.03 0.013 0.016 0.012 14.10 3.74 0.009

13 65117143 65633593 0.02 0.01 0.015 0.01 14.07 4.15 0.009

6 740414 1013400 0.02 0.009 0.013 0.008 12.36 4.74 0.011

6 39236400 39493104 0.04 0.018 - - 12.34 3.52 0.008

11 102565882 102978790 0.02 0.009 0.015 0.008 11.55 4.42 0.010

9 78430995 78767837 0.01 0.009 0.01 0.007 11.07 3.25 0.007

11 102824059 103220693 0.01 0.007 - - 10.91 3.34 0.007

3 101162780 101999012 0.02 0.011 0.02 0.011 10.55 5.04 0.012

5 33703559 34034521 0.02 0.012 0.016 0.01 9.44 0 0.005

2 151358558 151655394 0.02 0.01 0.012 0.008 9.37 3.43 0.008

5 127010643 127650653 0.01 0.009 0.015 0.008 9.33 0.91 0.007

Cognitive Change

4 53606097 54158143 0.02 0.009 0.01 0.008 10.44 4.4 0.011

15 90960003 91404141 0.02 0.011 0.017 0.011 10.15 4.83 0.012

6 740414 1013400 0.02 0.009 0.014 0.009 10.08 5.57 0.014

4 62441864 63300488 0.03 0.014 0.024 0.012 9.50 2.57 0.006

6 891665 1138987 0.02 0.009 - - 8.77 1.56 0.003

6 12418779 12930959 0.02 0.009 0.014 0.009 8.70 4.02 0.010

2 237734083 238123037 0.02 0.011 0.016 0.006 8.30 3.6 0.009

13 98189341 98677491 0.04 0.022 0.035 0.018 8.12 2.59 0.006

14 64270578 64666246 0.02 0.011 0.016 0.01 8.10 2.77 0.006

6 88043140 88678348 0.01 0.007 0.008 0.007 8.08 3.37 0.008

4 148617678 149254898 0.02 0.01 0.023 0.013 7.92 2.71 0.006

aheritability of region when full model fitting 11 variance components first ten independent (i.e. non overlapping) regions and rest of genome.
bOnly the best supported of multiple overlapping regions was fitted.
doi:10.1371/journal.pone.0081189.t002
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when compared to the null distribution for a single test. This is also

true for estimates of heritability (h2
ps). Table 2 shows that within

the top ten regions ranked by LRT, only a region on chromosome

6 for fluid intelligence and a region on chromosome 13 for

cognitive change explained a greater proportion of the genetic

variance (h2
ps) than 95% of the ranked permutation analyses.

Despite this the LRT for the comparison of the linear models did

not achieve genome wide significance for either of these regions.

We did find a genome wide significant region (P,0.10) for the

LRT statistic on chromosome 5 associated with fluid intelligence.

The region spans the CTXN3 gene (cortexin 3) (Figure 5), a brain

(including foetal brain) and kidney specific integral membrane

protein, highly enriched in cortex and located on 5q23. This gene

has been previously identified as a candidate for schizophrenia and

measures of cognitive change [40]. In the GWAS, the third highest

ranking SNP rs790837 (P,1026) is located at position 127004506,

10 kb away from this gene.

The CTXN3-SLC12A2 region is a strong candidate region and

has been linked to brain function and schizophrenia in multiple

studies [41,42,43]. The relationship between pre-morbid measures

of intelligence and the risk of schizophrenia is also documented as

greater than with many other psychoses [44,45]. Although the

overlapping region containing SLC12A2 ranked within the top ten

regions with an LRT of 9.33 (Table 2), here the region containing

cortexin 3 (LRT = 16) was the only region to achieve genome wide

significance (P,0.10). Nonetheless, the strongest evidence suggests

that variation of methylation levels at the promoter region of

PRRC1 are mediating variation if gf. The function of the Golgi-

associated PRRC1 gene in the brain is unknown and will require

follow-up functional studies.

The population-sense heritabilities for fluid intelligence are

lower than those previously reported possibly due to an older

demographic. Family based (narrow-sense) estimates of heritability

for IQ related traits have been shown to decline somewhat with

age [46]. This, in part, will be due to an increase in environmental

variance.

Autosomal heritability
In general the estimates of genomic heritability for chromo-

somes reflected the analysis of smaller regions in that the regions

with the highest test statistics are located on chromosomes

explaining the greatest variance. The sum of heritability estimates

for individual chromosomes was inflated by 20–50% compared to

estimating the heritability for the entire genome. When heritabil-

ities were estimated from SNPs inside and outside genes (i.e. fitting

44 variance components) heritability for fluid intelligence was

doubled when compared to fitting the 22 autosomes (Table S3 in

Table 3. Pleiotropic regions affecting multiple traits.

Chr region start (bp) region end (bp) h2 Crystallised s.e. h2 Fluid s.e. h2 Cog change s.e.

6 740414 1013400 0.00 0.01 0.02 0.01 0.01 0.01

14 64270578 64666246 0.00 0.00 0.02 0.01 0.02 0.01

9 78430995 78767837 0.01 0.01 0.01 0.01 0.02 0.00

10 17430161 17790975 0.01 0.01 0.02 0.00 0.00 0.01

11 102565882 102978790 0.02 0.01 0.02 0.01 0.01 0.01

11 102824059 103220693 0.02 0.01 0.02 0.01 0.01 0.01

doi:10.1371/journal.pone.0081189.t003

Figure 3. Distribution of the likelihood ratio test and variance explained under the null hypothesis. Comparison of the distribution of
likelihood ratio test and variance explained for 5454 regions spanning 101 SNPs for fluid intelligence, crystallised intelligence and cognitive change.
Lower set of distributions for each plot are from the real data, upper set are the 5% genome-wide significance threshold from each of 500 permuted
data sets i.e. empirical null distribution.
doi:10.1371/journal.pone.0081189.g003
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File S1). This could be due to fitting so many correlated variance

components simultaneously; however, estimates for crystallised

intelligence remained stable. It is also possible that this is due to

the lack of independence of SNPs within chromosomes inflating

estimates, although fitting all 44 variance components simulta-

neously should account for this. It is probable that more

information from a greater number of individuals would enable

more precise estimates of covariances and therefore more accurate

estimation and partition of variance components. It is also possible

that crystallised intelligence is a more polygenic trait with some

genetic variance contributed from most chromosomes whereas

fluid intelligence and cognitive change show variation around

many autosomal estimates which are truly zero.

Pleiotropy
Only 2.5% of regions show an h2

ps greater than 1%. Despite

this there is much overlap between the three traits with top regions

affecting multiple traits (Table 3). This suggests that the three traits

are likely to be affected by the same genes and biological pathways.

However, the direction of the effects in these regions will tend to

be different for traits such as cognitive change and crystallised

intelligence that show a genetic correlation close to zero (Table 1).

A single region might also contain linked QTL alleles or regulatory

factors in coupling or cis.

It is also feasible that regional significance is biased by other

factors making a region more or less likely to explain variation in

one or multiple traits. We found no relationship between physical

length of region and test statistic. Yang et al. [29] proposed that

the genetic variation explained by a region was proportional to the

total length of genes. We did not find this in the current study. The

unadjusted r2 values for the relationship between heritability of

autosomes and total length of known genes on each chromosome

was 0.14, 0.02, and 0.01 for crystallised intelligence, fluid

intelligence, and cognitive change with corresponding p-values

of 0.07, 0.54, and 0.65. It is possible that this is dependent on the

heritability and the genetic architecture of the trait, i.e. the more

Table 4. Genome wide thresholds for the Likelihood Ratio
Test (LRT) derived from N permutations.

Genome-wide threshold for LRT

Fluid intelligence
Crystallised
intelligence Cognitive Change

N P,0.05 P,0.10 P,0.05 P,0.10 P,0.05 P,0.10

100 19.0 16.5 19.4 16.3 18.0 16.6

200 17.8 15.8 18.1 16.3 17.6 16.5

300 17.5 15.8 17.6 16 17.0 16.1

400 17.4 15.8 17.1 15.8 17.3 16.3

500 17.5 15.8 17.1 15.9 17.2 16.2

doi:10.1371/journal.pone.0081189.t004

Figure 4. Distribution of population sense-heritability inside and outside genes. Distribution of heritability estimated from all SNPs, SNPs
inside genes and SNPs outside genes by chromosome for crystallised intelligence, fluid intelligence and cognitive decline.
doi:10.1371/journal.pone.0081189.g004
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polygenic the trait the higher the correlation between the amount

of heritable genetic material on each chromosome and the

estimate of heritability. This is reflected in Yang et al.’s report

where, although height and BMI were highly correlated with the

length of genes, there was variation amongst traits with an r2 value

of only 0.02 for von Willebrand factor.

Distributions of the regional heritability test statistic (2log10 P-

value) were compared across traits and gender using a Kolmo-

gorov-Smirnov test. Cognitive change differed from fluid and

crystallised intelligence (P,2.2E-16 and P,5.0E-11, respectively).

Differences between crystallised and fluid intelligence were less

marked (P,0.01). Interestingly, we found some evidence that the

distribution of heritability across the genome for cognitive change

differs in males and females. Genetic variation was higher in

females and the Kolmogorov-Smirnov test of the distributions of

heritabilities for the 10,908 regions in males (n = 871) and females

(n = 933) was suggestive at P-value of 0.06, although the test does

not account for the correlation of the regions and is likely to be

inflated. A previous study showed higher variation within males for

a measure of general intelligence [47]. It is possible that the

increased environmental variance attributable to old age happens

sooner in males than females.

It is not clear from this study whether there is utility in a method

which expands single SNP analyses to encompass genomic regions

Table 5. Population-sense regional heritability for each brain-measured intermediate phenotype within the top gf associated
region on chromosome 5.

Regional heritability of brain-measured intermediate traits

Intermediate Phenotype Tissue h2
ps SE P

cg04431054 CRBL 0.463 0.124 1.370E-08

cg15851800 CRBL 0.000 0.075 0.500

cg04431054 FCTX 0.237 0.104 1.190E-05

cg15851800 FCTX 0.020 0.050 0.325

cg04431054 PONS 0.278 0.111 1.270E-05

cg15851800 PONS 0.003 0.046 0.477

cg04431054 TCTX 0.326 0.110 1.020E-08

cg15851800 TCTX 0.082 0.078 0.063

ILMN_1685140 CRBL 0.025 0.053 0.315

ILMN_1652306 FCTX 0.000 0.049 0.500

ILMN_1685140 FCTX 0.000 0.041 0.500

ILMN_1652306 PONS 0.000 0.033 0.500

ILMN_1685140 PONS 0.046 0.051 0.075

ILMN_1652306 TCTX 0.000 0.079 0.500

ILMN_1685140 TCTX 0.000 0.045 0.500

Tissue: brain region, h2
ps: estimated regional population-sense heritability, SE: estimated standard error of the regional population-sense heritability. P:p-value from the

LRT test testing the significance of the genetic variance component.
doi:10.1371/journal.pone.0081189.t005

Figure 5. Region on chromosome 5 significantly associated with fluid intelligence. Annotation from Ensembl genome browser.
doi:10.1371/journal.pone.0081189.g005
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and that it is able to capture complex local genetic architectures.

We acknowledge the limitations of our analysis. Statistical power

and accuracy of estimation of variance components is most

certainly an issue. Fluid intelligence and cognitive change are

important traits and to date lifetime measurements are rare. This

limits our ability to increase the sample size. We have shown that

the heritability of a region or autosome is not merely a function of

its length or the number of genes contained therein. It will be

desirable to test the methodology with much larger data sets. It

would be interesting to assess whether the regions of greatest

significance are enriched for psychiatric genes in comparison to

randomly selected regions. Gene set enrichment analyses devel-

oped for microarray analysis could be a useful tool for this.

Conclusions

Using a recently proposed population-based linkage scan of the

genome we have conducted a search for regions significantly

associated with measures of cognition and age related cognitive

change. Permutation analysis shows that test statistics and variance

explained by a single window were highly inflated when compared

to the assumption of a chi square distribution for a single test. We

found a significant region on chromosome 5 associated with fluid

intelligence explaining 2% of phenotypic variation.

Although single SNP and regional analysis have similar profiles,

the ranking of the top regions differ. The regions with the highest

test statistic although not genome-wide significant did affect

multiple traits and encompass biologically plausible and interesting

putative candidate genes. These regions indicate areas of the

genome where re-sequencing efforts could be focused to disen-

tangle the fine scale contribution of linked genes and pathways.

Although our methodology would benefit from larger sample sizes

and increased power, the results give new insights into the study of

general intelligence and the underlying mechanisms of cognitive

change.
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