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Abstract

Epigenetic mechanisms have been implicated in syndromes associated with mental impairment but little is known about
the role of epigenetics in determining the normal variation in human intelligence. We measured polymorphisms in four
DNA methyltransferases (DNMT1, DNMT3A, DNMT3B and DNMT3L) involved in epigenetic marking and related these to
childhood and adult general intelligence in a population (n = 1542) consisting of two Scottish cohorts born in 1936 and
residing in Lothian (n = 1075) or Aberdeen (n = 467). All subjects had taken the same test of intelligence at age 11yrs. The
Lothian cohort took the test again at age 70yrs. The minor T allele of DNMT3L SNP 11330C.T (rs7354779) allele was
associated with a higher standardised childhood intelligence score; greatest effect in the dominant analysis but also
significant in the additive model (coefficient = 1.40additive; 95%CI 0.22,2.59; p = 0.020 and 1.99dominant; 95%CI 0.55,3.43;
p = 0.007). The DNMT3L C allele was associated with an increased risk of being below average intelligence (OR 1.25additive;
95%CI 1.05,1.51; p = 0.011 and OR 1.37dominant; 95%CI 1.11,1.68; p = 0.003), and being in the lowest 40th (padditive = 0.009;
pdominant = 0.002) and lowest 30th (padditive = 0.004; pdominant = 0.002) centiles for intelligence. After Bonferroni correction for
the number variants tested the link between DNMT3L 11330C.T and childhood intelligence remained significant by linear
regression and centile analysis; only the additive regression model was borderline significant. Adult intelligence was
similarly linked to the DNMT3L variant but this analysis was limited by the numbers studied and nature of the test and the
association was not significant after Bonferroni correction. We believe that the role of epigenetics in the normal variation in
human intelligence merits further study and that this novel finding should be tested in other cohorts.
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Introduction

Intelligence is a general mental capability which encompasses the

ability to reason, plan, solve problems, think abstractly, learn

quickly and make sense of our surroundings [1]. Human intelligence

is characterised by a high level of heritability [1,2] but known

genetic effects can account for very little of this [1] and it has been

suggested that the effect of individual genes may be much smaller

than previously assumed [3]. There is growing interest in the

potential for epigenetics to influence cognition [4–7]. Epigenetic

status has recently been defined as ‘‘a stably heritable phenotype

resulting from changes in a chromosome without alterations in the

DNA sequence.’’ [8]. Such epigenetic ‘heritability’ may occur

through either mitosis or meiosis and therefore has the potential to

explain at least part of the high heritability of intelligence.

Epigenetic mechanisms have been implicated in many syndromes

associated with mental impairment; Autism (MIM209850), Rett

(MIM312750), Immunodeficiency-Centromeric Instability- Facial

Abnormalities (ICF) (MIM242860), Prader-Willi (MIM176270),

Angelman (MIM105830), Fragile X (MIM300624), Rubinstein-

Tabi (MIM180849) [4–6,9–13] but little is known about the role of

epigenetics in determining the normal variation in human cognitive

abilities.

The role of epigenetics in human complex traits such as

intelligence is difficult to study for a number of reasons. Epigenetic

status can be influenced by factors such as diet [14] and alcohol

[15] therefore, depending on the epigenetic mark of interest, there

is a danger of reverse causality, where lifestyle choices linked to

intelligence may influence epigenetic status. A further difficulty is

that the epigenetic status of many genes is tissue specific therefore

the epigenome of easily accessible tissues (e.g. blood or buccal cells)

may not always reflect the epigenome of the functional organ of
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interest (e.g. the brain). Perhaps paradoxically, evidence for the

involvement of epigenetic processes in intelligence may be

obtained from genetic association studies. The goal of genetic

association studies is to identify patterns of polymorphisms that

vary systematically between individuals with different phenotypes

and could therefore represent the effects of risk-enhancing or

protective alleles [16]. Association is assumed to arise because the

function of the gene has been altered in some way by the measured

variant - or another in linkage disequilibrium with it - and that the

change in gene function influences the phenotype. Such an

approach can help to identify specific biological processes

underpinning traits that may otherwise be difficult to study in

humans. Analysis of genetic variants within the genes of the

epigenetic pathway has been carried out to look for evidence of the

involvement of epigenetic processes in the aetiology of diseases

such as cancer [17]. We have used the same approach here in

relation to human intelligence.

DNA methylation is probably the most commonly studied

epigenetic phenomenon. We investigated the association between

variants in genes involved in the epigenetic marking of DNA by

methylation and childhood and adult general intelligence in

population based samples with an unusually valuable phenotype: a

large number of subjects who had taken the same validated general,

IQ-type mental test at age 11. A sub group of these took the same test

again almost 60 years later. Polymorphisms were measured in the

four DNA methyltransferases: DNMT1 (MIM126375); DNMT3A

(MIM602769); DNMT3B (MIM602900); DNMT3L (MIM606588).

Genetic variation in all four DNMTs was studied in order to provide

additional information on the nature of the epigenetic process which

may influence human intelligence. The main function of DNMT1 is

to ensure the propagation of existing methylation patterns, whilst

DNMT3A and DNMT3B are primarily required for de novo

methylation, with DNMT3L acting as an essential cofactor,

particularly in the establishment of methylation imprints in the

gametes [18–22].

Materials and Methods

Subjects
The Lothian and Aberdeen Birth Cohorts 1936 (LBC1936 and

ABC1936) comprise surviving participants of the Scottish Mental

Survey 1947 (SMS1947) who now live in the Lothian (Edinburgh

and its surroundings) and Aberdeen areas of Scotland, respective-

ly.

Ethics statement
Ethics permission for the study was obtained from the Multi-

Centre Research Ethics Committee for Scotland (MREC/01/0/

56) and from Lothian Research Ethics Committee (LREC/2003/

2/29) and Grampian Research Ethics Committee (LREC/01/

0299). The research was conducted in compliance with the

Helsinki Declaration. All subjects gave written, informed consent.

Mental test
On June 4th 1947 almost all people born in 1936 and attending

school in Scotland were tested on a valid general cognitive ability

test [23]. The mental test was a version of the Moray House Test

(MHT) No. 12, which was concurrently validated against the

Terman-Merrill revision of the Binet Scales with a coefficient of

approximately 0.8. The test was re-administered to the LBC1936

when participants were seen again at age 70 (IQR = 1.3) yrs, using

the same instructions and the same 45-minute time limit. Only two

small changes were made to items whose content had become

archaic. The test is often referred to as the ‘Verbal Test’ or as a

‘verbal reasoning’ test. However, the test has items of a variety of

types: following directions (14 items), same-opposites (11), word

classification (10), analogies (8), practical items (6), reasoning (5),

proverbs (4), arithmetic (4), spatial items (4), mixed sentences (3),

cipher decoding (2), and other items (4). The maximum possible

score in the MHT was 76.

Variant selection and genotyping
Blood samples were taken for DNA extraction from white blood

cells and the samples stored as described elsewhere [24,25]. The

concentration of DNA was determined by RNaseP assay (Applied

Biosystems, Warrington, UK) before genotyping. Genotypes were

detected by allelic discrimination assay using TaqManH MGB probes

labelled with 6-FAMTM and VICH on a 7500 Fast real-time PCR

system (Applied Biosystems, Warrington, UK). The gene variants

studied were: DNMT1 (MIM126375 19p13.3–p13.2; 21220C.T;

rs2114724); DNMT3A (MIM 602769; 2p23; 28510C.T; rs734693);

DNMT3B (MIM602900; 20q11.2; 46359C.T; rs2424913);

DNMT3L (MIM606588; 21q22.3; 11330C.T; rs7354779). A second

variant in DNMT1 (35433A.G; rs2162560) was measured in the

ABC1936 cohort but this was found to be highly reciprocally

correlated with the DNMT1 21220C.T variant (coefficient =

20.85; p,0.001) and therefore was not measured in the larger

LBC1936 and dropped from the study. We used the candidate

polymorphism approach which focuses on individual polymorphisms

that are suspected of being implicated in biological function [16]. This

hypothesis directed approach has the advantage of minimising the

number of variants studied and hence reducing the risk of false

positive results. Very rare variants are of limited value in association

studies as they are only relevant to a small proportion of the

population and their effects are difficult to detect in practice therefore

we selected only variants where the frequency of the homozygous

minor allele was .5%. The DNMT3L 11330C.T variant is a non-

synonymous polymorphism resulting in the amino acid change

Gly278Arg within the C-terminal portion of DNMT3L. Such non-

synonymous variations in the functional domains of the DNMTs are

unusual and no non-synonymous polymorphisms have been detected

in the catalytic domains of DNMT3A/B or DNMT1 in a European

population [26]. Variants in these genes were selected for study

primarily on the basis of whether they have been related to a

phenotype. Such associations are assumed to arise as a result of non-

coding effects [27] or because the variants are in linkage

disequilibrium with functional variant(s) within the gene. The

DNMT3B variant is located in the promoter region and has been

associated with the risk of cancer [28]. For the DNMT1, 3A and 3L

variants we have observed phenotypic associations in other cohorts

(manuscripts in preparation). All available DNA samples from the

cohorts were measured. Only samples in which a valid genotype was

not able to be measured were excluded from the data analysis.

Genotyping was carried out by laboratory staff blind to the MHT

score results.

Statistics
Medians are presented with inter-quartile ranges (IQR). The

distributions of MHT scores by cohort are presented in kernel

density plots. The Moray House Test score percentiles were

normalised by transformation to an IQ type scale of mean 100 and

standard deviation 15 using the invnorm function in STATA. This

transformation facilitates the use of parametric tests and allows the

magnitude of any genetic effect to be presented on a commonly

understood scale in the field of cognition. Statistical analysis was

carried out using STATA/SE version 11 (Stata Corp, College

Station, Texas, USA) for both additive (CC vs CT vs TT) and

dominant (CC vs CT/TT) models. Associations between genotype
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and intelligence were evaluated using various statistical tests; linear

regression, logistic regression, Chi2. Genotype-sex interactions

were assessed by Hosmer and Lemeshow likelihood ratio test.

Regression coefficients (un-standardised) are presented with 95%

confidence intervals and p values.

Results

The study population consisted of 50% males and 50% females.

The median MHT score at age 11yrs in the entire sample was 47

(IQR = 17); 42 (IQR = 18) for ABC1936 and 50 (IQR = 15) for

LBC1936. At age 70yrs the median MHT score was 66

(IQR = 11). The population distributions of childhood, and adult

scores are shown in Figure 1. The scores were standardised to an

IQ type scale (mean of 100, standard deviation of 15) for

regression analysis; the levels of significance were similar after

using other transformations to produce normally distributed MHT

data (e.g. squaring in the case of childhood MHT score). The

genotype and allele frequencies for the DNMT variants are shown

in Table 1. All the variants studied were in Hardy-Weinberg

equilibrium in the combined study population and the individual

cohorts (tested by Chi2). The results of linear regression analysis of

DNMT genotype on childhood and adult MHT scores are

presented in Table 2. Of the four gene variants studied only

DNMT3L was liked to intelligence. The minor allele was associated

with a higher level of childhood intelligence in the additive model

(coefficient = 1.40; 95%CI 0.22,2.59; p = 0.020). The DNMT3L

effect size was larger, and the level of significance greater, in the

dominant model which compares carriers of the minor allele (CT/

TT) with the homozygote CC (coefficient = 1.99; 95%CI

0.55,3.43; p = 0.007). The DNMT3L genotype accounted for

around 0.5% of the variance in intelligence, with the common

homozygote (DNMT3L 11330CC) being associated with an

approximately 2 point reduction in standardised intelligence.

There was no evidence of genotype-sex interaction in relation to

childhood intelligence score.

The change in genotype frequency with tertile of intelligence is

illustrated in Figure 2 for the dominant model (p = 0.005 by

chi2). The DNMT3L change in CC frequency with intelligence was

more pronounced at lower levels of intelligence. Logistic regression

analysis of the effect of the CC variant on the likelihood of falling

in the lowest intelligence group is presented for a range of centiles

in Table 3. The DNMT3L 11330 C allele was associated with a

higher risk of being below average intelligence – the lowest 50th

centile – in both the additive (OR 1.25; 95%CI 1.05,1.51;

p = 0.011) and dominant (OR 1.37; 95%CI 1.11,1.68; p = 0.003)

models. The effects sizes and levels of significance were similar

when considering the lowest 40th centile (OR 1.27additive; 95%CI

1.06,1.51; p = 0.009 and OR 1.40dominant; 95%CI 1.23,1.73;

p = 0.002) or the lowest 30th centile (OR 1.34additive; 95%CI

1.10,1.63; p = 0.004 and OR 1.44dominant; 95%CI 1.14,1.82;

p = 0.002). For the 20th centile the odds ratios were similarly

positive but with one of the comparison groups consisting of only

20% of the data the number of observations was too small to

demonstrate significance.

Adult intelligence was also related to DNMT3L genotypes

(Table 2). The minor allele was associated with a higher level of

adult intelligence in both the additive (coefficient 1.60; 95%CI

0.14,3.05; p = 0.032) and dominant (coefficient 2.25; 95%CI

0.46,4.05; p = 0.014) models. There was no evidence of genotype-

sex interaction in relation to adult intelligence score. Although the

level of significance was lower than for the childhood association

with DNMT3L genotype it should be noted that this analysis was

based only on LBC1936 therefore the numbers were significantly

reduced. Interpretation of the adult data is also complicated by the

fact that around 95% of the adults improved on their childhood

intelligence score with a median improvement of 15 (IQR = 10)

score points. This means that the most able children are likely to

be limited by the nature of the test in adult life, resulting in a

reduction in the power of the test to discriminate intelligence at the

highest levels (ceiling effect) and a skewed distribution of scores

(Figure 1). There is no way of knowing from the distribution

alone which adults would be affected in this way therefore no

single cut-off value can be derived. However, we can say that the

relationship between adult intelligence and DNMT3L genotype

remained significant, by both the additive and dominant models,

following sequential exclusion of the highest MHT scores over a

large span of the data; from the maximum possible score of 76

down to a score of 67 using the additive model and down to a

score of 59 using the dominant model. At lower cut-off values the

amount of data on which the analysis was based was too low to

provide a meaningful test.

We tested here for the influence of 4 independent gene variants

on intelligence. After Bonferroni correction for the number

variants tested the minor T allele remained associated with a

higher level of childhood intelligence (homozygote CC associated

with a lower level of intelligence) by linear regression (p = 0.028).

The chi2 analysis of the change in minor allele frequency with

childhood intelligence tertile remained significant (p for trend =

0.020). The risk of being in the lowest intelligence centile

associated conferred by the CC genotype also remained significant

across the same range of values for both the additive and dominant

models; below average intelligence (p = 0.044additive, p = 0.012dominant);

lowest 40th centile (p = 0.036additive, p = 0.008dominant); lowest 30th

centile (p = 0.016additive, p = 0.008dominant). After Bonferroni correction

the minor T allele association with adult intelligence by linear

regression was only approaching significance (p = 0.056).

Discussion

We observed a significant association between the DNMT3L

11330C.T variant and childhood intelligence in a study

population made up of two large birth cohorts born in Scotland

in 1936. Adult intelligence was also related to the same DNMT3L

genotype but it should be noted that the test of intelligence,

designed for children, may not have been sufficiently challenging

Figure 1. Kernel density plots of childhood Moray House test
score in childhood (age 11yrs - - - -) and adulthood (age
70yrs ——) Moray House Test score.
doi:10.1371/journal.pone.0011329.g001
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to discriminate adult performance at the highest levels of

intelligence and the number of data points on which the analysis

was based (LBC1936 only) was less than for the childhood data.

The relationship between DNMT3L and adult intelligence was

only approaching statistical significance after Bonferroni adjust-

ment therefore the primary finding here is in relation to childhood

intelligence.

Intelligence is a highly complex phenotype which is the net

result of a wide rage of biological processes and the effect of

individual polymorphisms on intelligence is thought to be very low

[3]. In this study the DNMT3L genotype accounted for around

0.5% of the variance in intelligence, with the common DNMT3L

homozygote genotype being associated with an approximately

2 point reduction in standardised intelligence. It should be

emphasised that this variant could not be used as any sort of test

or predictor of intelligence, at either the group or individual level.

The value of this finding is that it may point to specific biological

processes which are worthy of further study. Current understand-

ing of the role of DNMT3L points to the process of epigenetic

regulation and imprinting – parent of origin specific epigenetic

marking – in particular [21,29,30]. DNMT3L is known to interact

with the histone deacetylases [31] and histone methyltransferases

[32] but its primary effect is on de novo DNA methylation

[21,29,30]. DNMT3L is structurally similar to the other

methyltransferases. It is essential for de novo methylation but its

mode of action primarily involves interaction with the other

methyltransferases as it does not have methyltransferase activity

itself [18–22]. Studies in animals have demonstrated that the

progeny of Dnmt3L knockouts exhibit loss of imprinting, stochastic

imprinting and biallelic expression of imprinted genes [33,34].

The DNMT3L 11330C.T variant alters the amino acids sequence

of the C-terminal portion of DNMT3L which interacts with the

active catalytic methyltransferase domain of DNMT3A and

DNMT3B [19]. A recent study reported differences in the

methylation level of some genes in association with the DNMT3L

11330C.T variant [26]. These differences were not significant

after adjustment for multiple testing but it is unlikely that this study

was sufficiently powered for the very large number of tests carried

out. The imprint is set during reproduction and, in a human study

analogous to the experimental animal knockouts, we measured the

effect of maternal DNMT3L 11330C.T genotype on the

methylation status of the imprinted gene IGF2 in newborn cord

Table 1. DNMT variant genotype and allele frequencies in ABC1936 and LBC1936.

Gene (variant)

DNMT
(21220C.T)

DNMT3A
(28510C.T)

DNMT3B
(46359C.T)

DNMT3L
(11330C.T)

Homozygote common 350 (22.8) 898 (58.3) 481 (31.2) 813 (53.8)

Heterozygote 795 (51.7) 544 (35.3) 753 (48.9) 607 (40.2)

Homozygote minor 393 (25.6) 99 (6.4) 307 (19.9) 92 (6.1)

Total 1538 (100) 1541 (100) 1541 (100) 1512 (100)

Common allele frequency 0.49 0.76 0.56 0.74

Minor allele frequency 0.51 0.24 0.44 0.26

Genotype counts are presented with percentages in brackets.
doi:10.1371/journal.pone.0011329.t001

Table 2. Relationship between DNMT variants and standardised1 Moray House Test (MHT) score.

Gene (variant)

DNMT1
(21220C.T)

DNMT3A
(28510C.T)

DNMT3B
(46359C.T)

DNMT3L
(11330C.T)

Comparison

Regression
coefficient
(95% CI) p value

Regression
coefficient
(95% CI) p value

Regression
coefficient
(95% CI) p value

Regression
coefficient
(95% CI) p value

Childhood intelligence

Additive model2 0?73
(20?30,1?76)

0?167 0?88
(20?28,2?04)

0?135 0?78
(20?24,1?80)

0?132 1?40
(0?22,2?59)

0?020

Dominant model3 0?76
(20?95,2?46)

0?385 0?73
(20?72,2?17)

0?325 21.31
(20?24,2?86)

0?097 1?99
(0?55,3?43)

0?007

Adult intelligence

Additive model2 20.11
(21?40,1?17)

0?863 1.11
(20?33,2?54)

0?130 20?03
(21?30,1?25)

0?969 1?60
(0?14,3?05)

0?032

Dominant model3 0?10
(22?07,2?26)

0?929 0?89
(20?91,2?69)

0?330 0?21
(21?73,2?15)

0?830 2?25
(0?46,4?05)

0?014

1Transformed to normalised IQ type scale of mean 100 and standard deviation 15.
2TT.CT.CC.
3CT/TT.CC.
doi:10.1371/journal.pone.0011329.t002
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blood (manuscript in preparation). The minor DNMT3L allele,

associated here with a higher level of adult intelligence, was

associated with a significantly lower level of methylation in IGF2

using the same statistical model (p = 0.035, n = 840).

A mechanism operating through epigenetic regulation, and

imprinting in particular, would be consistent with many of the

characteristics of human intelligence. Although known imprinted

genes make up only around 1% of all genes in humans they

primarily affect brain function and behaviour and pre-natal growth

[5,35]. These two key effects of the imprinted genes are consistent

with the epidemiological link between IQ and birth weight [36].

The differential maternal and paternal inheritance patterns of many

mental disorders would also be consistent with an imprinting

mechanism [37,38]. Direct evidence of an imprinting link to

intelligence comes from disorders of imprinting, such as Prader-

Willi syndrome (MIM176270) and Angelman syndrome

(MIM105830), which are associated with a reduction in IQ [12].

Other mental impairment syndromes have been linked to

imprinting changes or genetic polymorphisms relevant to epigenet-

ics [9,11,13,39,40]. Evidence in support of a role for imprinting in

neural function and cognition continues to grow [5,41–47] but

direct evidence in humans is difficult to obtain because of the

difficulty of studying the brain directly. A link between intelligence

and a genetic variant within a gene which is critical to imprinting is

therefore a useful piece of additional evidence.

The potential involvement of epigenetics, and imprinting in

particular, raises the intriguing possibility that even the heritable

component of intelligence could be modifiable by factors such as

diet during early development. The ultimate methyl donor for

epigenetic-methylation reactions is the folate-methylation cycle

and feeding pregnant dams diets deficient in methyl donors results

in altered epigenetic regulation of specific genes in the offspring;

e.g. axin fused [48] and the Agouti gene which is under imprinting

control [49,50]. Variation in the expression and epigenetic

marking of the imprinted genes is also seen in humans

[35,51,52] and human twin studies have demonstrated the

heritability of imprinted gene methylation [53,54]. We speculate

that these two properties of imprinting – heritability and plasticity

– could potentially explain the apparent paradox of the high level

of IQ heritability [2] alongside the steady rise in IQ test scores

from one generation to the next in the so called ‘‘Flynn effect’’

[55,56].

The association between genetic variation in DNMT3L and

childhood intelligence reported here must be considered an initial

and as yet un-replicated finding, with the priority being to

replicate the association in other populations. An association

between DNMT3L and intelligence would be consistent with the

critical role of DNMT3L in imprinting and the evidence linking

imprinting to cognitive function but more work is needed to

determine which function of DNMT3L is influenced by the

11330C.T variant and to investigate how this process might

influence human intelligence.
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