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Abstract

Background: Idiopathic congenital talipes equinovarus (CTEV) is the commonest form of clubfoot. Its exact cause is
unknown, although it is related to limb development. The aim of this study was to quantify the anatomy of the muscle,
subcutaneous fat, tibia, fibula and arteries in the lower legs of teenagers and young adults with CTEV using 3D magnetic
resonance imaging (MRI), and thus to investigate the anatomical differences between CTEV participants and controls.

Methodology/Principal Findings: The lower legs of six CTEV (2 bilateral, 4 unilateral) and five control young adults (age 12–
28) were imaged using a 3T MRI Philips scanner. 5 of the CTEV participants had undergone soft-tissue and capsular release
surgery. 3D T1-weighted and 3D magnetic resonance angiography (MRA) images were acquired. Segmentation software
was used for volumetric, anatomical and image analysis. Kolmogorov-Smirnov tests were performed. The volumes of the
lower affected leg, muscle, tibia and fibula in unilateral CTEV participants were consistently smaller compared to their
contralateral unaffected leg, this was most pronounced in muscle. The proportion of muscle in affected CTEV legs was
significantly reduced compared with control and unaffected CTEV legs, whilst proportion of muscular fat increased. No
spatial abnormalities in the location or branching of arteries were detected, but hypoplastic anomalies were observed.

Conclusions/Significance: Combining 3D MRI and MRA is effective for quantitatively characterizing CTEV anatomy.
Reduction in leg muscle volume appears to be a sensitive marker. Since 5/6 CTEV cases had soft-tissue surgery, further work
is required to confirm that the treatment did not affect the MRI features observed. We propose that the proportion of
muscle and intra-muscular fat within the lower leg could provide a valuable addition to current clinical CTEV classification.
These measures could be useful for clinical care and guiding treatment pathways, as well as treatment research and clinical
audit.
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Introduction

Congenital talipes equinovarus (CTEV), also known as ‘club-

foot’, is a relatively common developmental disorder affecting one

or both feet, with an incidence of 0.3–7 per 1000 live births [1]. It

is characterised by inversion, plantar flexion and adduction of the

foot [2]. Treatment typically involves foot manipulation, serial

casting, bracing and occasionally Achilles tenotomise and surgery,

in the recent past surgical approaches were more common. CTEV

is termed idiopathic in the absence of other clinical features. Its

aetiology is unknown but various genetic and environmental

factors have been suggested [1], including impairment of

myogenesis, angiogenesis, chondrogenesis, neurogenesis and

ontogenesis; but the precise mechanisms remain unclear. A failure

to complete normal embryonic foot rotation, historically known as

the ‘arrest of normal development’ hypothesis [3], was observed in

an embryological and magnetic resonance imaging (MRI) study of

a naturally occurring mutant mouse model of clubfoot [4].

Currently the assessment of CTEV is largely subjective, relying

upon observations of clinical features and general measurements

[5–8]. MRI has been used to study CTEV, predominantly in

research to visualise the bones in the feet [9–17]. With the

suggestion that myogenesis or angiogenesis could be responsible

for CTEV, we were interested in using MRI to investigate the

effects CTEV have on the lower leg as this may provide clues into

CTEV aetiology. Recently two MRI studies of the lower leg have

been published [18,19]. Ippolito et al acquired axial images and

reported a marked hypoplasia of the muscular tissue and an
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increase in adipose tissue in the affected legs of unilateral CTEV

participants, including neonates [18]. Merrill et al conducted

three-dimensional magnetic resonance angiography (MRA) on 11

CTEV participants and reported that 40% of the isolated

unilateral clubfoot participants had arterial anomalies in their

clubfoot lower legs [19]. Their analysis of axial and coronal 2D

images of unilateral CTEV lower legs indicated a decrease in

muscle, an increase in subcutaneous fat (9/11 cases), and a slight

reduction in the length of tibia and fibula of affected CTEV limbs.

In this paper we present a quantitative 3D MRI and MRA, long

term, follow up study of the lower leg anatomy of young people

with unilateral and bilateral CTEV. 3D digitally segmented

anatomical representations were produced from knee to ankle of

the muscles, subcutaneous adipose tissue, tibias, fibulas and

arteries. 3D MRA was used to investigate potential anomalies in

the spatial position, branching and hypoplasia of the arteries in the

lower legs. Data from affected CTEV legs were compared with

those from unaffected legs of unilateral CTEV participants and

with control cohort legs, and the anatomical differences between

groups were quantified. The objectives of this study were to i)

quantitatively phenotype CTEV anatomy in treated cases

approaching skeletal maturity, ii) build 3D anatomical represen-

tations, iii) investigate whether these metrics could be use to

provide insight into CTEV aetiology and iv) identify metrics that

might be used in clinical classification of CTEV to improve either

clinical monitoring or prognosis.

Methods

Objectives
3D magnetic resonance imaging (MRI) and angiography

(MRA) were used to quantify the anatomy of the lower legs of

young people treated for idiopathic congenital talipes equinovarus

(clubfoot), differences between CTEV participants and controls

were investigated.

Participants
The lower legs of eleven young people (5 controls and 6 CTEV)

aged 12–28 years were imaged in this study. The ‘lower leg’ was

defined as the region between the knee and the ankle. The CTEV

cohort comprised six participants with non-syndromic, idiopathic

bilateral (B) or unilateral (U) CTEV (3 males: B1; B2; U4, and 3

females: U1; U2; U3) who had completed treatment. Laterality

was respectively right (U1), left (U2, U3, U4), and bilateral (B1,

B2). For the unilateral CTEV participants, the legs that showed no

clubfoot phenotype were referred to as ‘unaffected’ (Unaff), while

the legs with CTEV were referred to as ‘affected’ (Aff). The CTEV

cohort ages ranges from 12 to 28 years old, with an average age of

17.8 years. Clinical details and treatment histories are summarised

in Table 1 and Table S1. The mild/moderate/severe CTEV

grading system described by Harrold and Walker was used [8].

The CTEV participants were assessed by an experienced CTEV

specialist orthopaedic surgeon (SB). Case B2 had mild disease and

was treated by casting alone, the remaining five cases were

considered to have severe disease and they all received surgical

treatment. The time elapsed between treatment and the MR scan

ranged from 6 years up to 24 years. U1, U2, U3, U4 and B1 were

treated with soft tissue and capsular release surgery; U1 and U2 on

a single occasion, U3 and U4 had repeated surgery, and B1 had

soft tissue and capsular releases followed by bilateral osteotomies.

B1, U3 and U4 have continuing impairment of function, with

limited ability to run and on-going pain. Five volunteers who had

no known limb pathology acted as controls (C) (1 male: C3, plus 4

females: C1; C2; C4; C5). Their ages ranged from 14 to 21 years

old (21, 16, 14, 16, and 16 respectively), with an average age of

16.6 years.

Ethics
The study was approved by the NHS North of Scotland

Research Ethics committee. The participants were recruited from

the Department of Orthopaedic Surgery, NHS Grampian.

Informed written consent to participate in this study was obtained

from all volunteers and their parents when necessary.

Magnetic Resonance Imaging
MRI data were acquired on a 3T Philips Achieve scanner

(Achieve, Philips Medical Systems, Best, Netherlands) with a torso

coil (width 58 cm, length 53 cm). Subjects lay supine and both legs

were imaged simultaneously from knee to ankle. Three dimen-

sional T1-weighted Fast Field Echo (FFE) images were acquired

with 11 ms repetition time (TR) and 2.3 ms echo time (TE).

Typical dataset size was 528 by 528 by 125 and the voxel size was

1 mm by 1 mm by 1 mm. 3D cardiac triggered non-contrast

enhanced magnetic resonance angiography (MRA) experiments

were performed using the TRANCE pulse sequence [20].

TRANCE method acquired turbo spin echo images during the

systole and diastole phase of the cardiac cycle. The systolic and

diastolic image datasets were subtracted to produce 3D images

showing bright arteries on dark background. The repetition time

was 1000 ms, echo time was 65 ms, typical data size were 512 by

Table 1. Clinical details of CTEV participants.

ID Gender Age at scan Laterality Grade Number of treatments and current status

B1 M 13 Bi severe Neonatal strapping and casting. Dennis Browne Boots (DBB). 36 surgery to each side
with osteotomy. Remains symptomatic, significant pain with activities of daily living
(ADL). Very limited ability to run.

B2 M 13 Bi mild Neonatal strapping and casting, DBB. Functioning well. No ADL issues. Able to walk/
run.

U1 F 28 Right severe Neonatal strapping. Surgery x 1. Functioning well. No ADL issues. Able to walk/run.

U2 F 24 Left severe Neonatal strapping, 16 surgery. DBB. Symptoms controlled by insole. No ADL issues.

U3 F 17 Left severe Neonatal strapping. DBB. 46 surgery. Functioning well. ADLs no issues. Able to walk,
running limited, in pain.

U4 M 12 Left severe Neonatal casting. DBB. 26 surgery. Remains symptomatic. Significant pain with ADL.
Very limited ability to run.

doi:10.1371/journal.pone.0054100.t001
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512 by 45, and they had similar field of view as the T1-weighted

experiments.

Data Analysis
The Fourier transformed MRI were visualised, and anatomical

regions of interest were digitally segmented using the Amira

software (Visage Imaging GmbH, 12163 Berlin, Germany). 2D

images could be viewed from any orientation within the 3D

datasets. 3D surface representations were produced by surface

rendering the 3D finite element meshes generated from segment-

ing the regions of interest. The entire 3D T1-weighted MRI data

of lower legs were used to digitally segment the tibias and fibulas.

Whilst the regions assigned as the lower leg were segmented from

the axial plane just above the proximal tibial plateau to the axial

plane just below the distal tibial plafond. After which, the muscles

and subcutaneous adipose tissues were segmented from the axial

plane just above the proximal tibial physis to the axial plane near

to the proximal region of the Achilles tendon above the distal tibial

physis. Other anatomical features such as the nerve bundles and

tendons were not segmented. The segmentation was semi-

automated using both automatic signal intensity thresholding

and manual painting methods. The volumes of the lower leg

(VLeg), the lower leg muscles (VMusc), subcutaneous fat (VFat), tibia

(VTibia) and fibula (VFibula) were determined from the 3D

segmentation. The MRA experiments produced 3D image

datasets where high intensity signal arises from arterial blood.

Automated signal intensity thresholding methods were used to

digitally segment the popliteal, anterior tibial, posterior tibial, and

peroneal arteries.

To investigate the soft tissue composition of the lower legs, the

percentages of muscle (Muscle%) and subcutaneous fat (Fat%)

were calculated using the equation:

Tissue%~
VTissue

(VMusczVFat)
|100 %ð Þ ð1Þ

where VTissue is either the volume of fat (VFat) or muscle (VMusc). In

this study, the proportion of high intensity pixels in the images of

lower leg muscles (TAMusc) originating predominantly from intra-

and inter-muscular adipose tissue was estimated using the formula:

TAMusc~
PixelHigh

PixelMusc
|100 %ð Þ ð2Þ

where PixelMusc is the total number of pixels in the lower leg

muscle, and PixelHigh is the number of pixels where signal

intensity was over 1.5 times higher than neighbouring muscle pixel

intensity.

The image segmentation protocols were not fully automated

which can result in operator error. An inter-operator reproduc-

ibility study was completed using three trained operators and the

results present in Table S2. It demonstrated that the fractional

error of mean (FEM) of the segmentation protocol were below 4%

for the muscle, subcutaneous fat and tibia measurements, and

under 9% for the fibula measurements. These values were

considered acceptable. The largest errors were associated with

measuring fibula volumes. Both shape and image contrast are

important factors regarding reproducibility, and the fibula’s large

surface area was a major source error.

Statistical Methods
Mean and standard deviations (SD) were calculated and quoted

as mean 6 SD, interquartile ranges were calculated and shown in

box plots. The Kolmogorov-Smirnov (KS) test was used to identify

whether the test data were significantly different from control data.

The KS test calculates maximal distance (D) between cumulative

distributions, an in-house software package was utilised (Data

Analysis Group, University of Dundee). This statistical method is

particularly suitable when datasets are small or unequally

dispersed. The null hypothesis asked whether the test and control

data were drawn from the same population, and a P value of less

than 0.05 was considered statistically significant. Inevitably, the

quality of the MRI experimental data was degraded by leg

movements during the experiment, radio-frequency coil and

magnetic field inhomogeneities, partial volume effects either at

tissue boundaries or from microscopic anatomical features, and

water and lipid chemical shift artefacts. Despite this, the quality of

the anatomical information in these 3T images was very good. In

T1-weighted images, the signal-to-noise of subcutaneous fat and

muscle was of the order of 180:1 and 57:1 respectively; whilst the

contrast between muscular tissue and adjacent subcutaneous

adipose tissue and adjacent cortical bone was of the order 0.52 and

0.75 respectively [21].

Results

1. Anatomical T1-weighted MRI
Representative coronal and axial T1-weighted images of

control, unilateral and bilateral CTEV volunteers are displayed

in Figure 1a–f. The lower legs, their muscles, subcutaneous fat,

tibias, and fibulas were segmented, and typical 3D surface

representations of the anatomical regions of interest are shown

in Figure 1g–i. The volumetric results from the lower leg (VLeg)

were reported in Table 2. The subcutaneous fat (VFat) and muscle

(VMusc) volumes were recorded in Table 3. The tibias (VTibia) and

fibulas (VFibula) values were tabulated in Table 4. The resolution of

the 3D MR scans limited the detailed anatomical characterisation

to muscle compartment rather than allowing delineation of

individual muscle groups.

1.1. Contralateral leg study of control and unilateral

CTEV cohorts. For the unilateral CTEV cohort (n = 4), the

ratio of the affected/unaffected volumes (Aff:Unaff) of lower leg,

subcutaneous fat, muscle, tibia and fibula were calculated. In the

control group, the ratios of the right/left volumes (R:L) were

calculated (n = 5). The results were illustrated in Figure 2.

The average ratio of right/left lower leg volumes in the control

group was 1.0060.03, showing no overall left-right bias (Table 2).

Leg asymmetry was observed in individuals within the controls; for

example C2’s lower right leg was 3.1% smaller than her left, and

C3’s left leg was 4.8% smaller than his right. Interestingly, C2 is

left handed and C3 is right handed. For the unilateral CTEV

participants, the average ratio of affected/unaffected lower leg

volumes was 0.8360.081; the affected lower legs were from 8.7 to

38.4% smaller than the contralateral unaffected legs. The

differences between the control and unilateral CTEV results were

statistically significant (KS test: P = 0.0069, D = 1).

The average ratio of right/left muscle volumes in the control

group was 1.0160.034 (Table 3), with differences in contralateral

muscle volumes ranging from 1.5 to 6.2%. The average ratio of

right/left subcutaneous fat volumes in the control group was

1.0060.057. For the unilateral CTEV participants, the volumes of

the muscles in the affected legs were significantly smaller than

those of the contralateral unaffected legs. The average muscle

volume ratio of the affected/unaffected lower leg was 0.660.078,

with the affected muscles being from 35 to 52% smaller than the

contralateral unaffected leg. The average subcutaneous fat volume

ratio of the affected/unaffected lower leg was 1.0560.069. The

3D MRI Study of Young People with CTEV Clubfoot
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differences between the control and unilateral CTEV muscle

results were statistically significant (P = 0.0069, D = 1), but

differences were not significant for subcutaneous fat (P = 0.259,

D = 0.6) probably because it was underpowered.

The average ratio of the right/left tibia and fibula volumes in

the control legs were 1.0160.023 and 1.0260.034 respectively

(Table 4). On average there was a slight right bias, with the tibia

volumes differing on average by about 1%. In contrast in the

unilateral CTEV group, the average ratio of affected/unaffected

tibia and fibula volumes were 0.9260.06 and 0.8960.068

respectively. The volumes of the affected CTEV tibias were on

average 8% smaller than their contralateral unaffected tibias. The

differences in the tibia (P = 0.0069 and D = 1) and fibula

(P = 0.0069, D = 1) volumes were statistically significant.

1.2. Comparison between the affected CTEV, unaffected

CTEV and control legs. The percentages of muscle (Muscle%)

and subcutaneous fat (Fat%) in the soft tissues of the controls and

CTEV lower legs were calculated (Equation 1), and recorded in

Table 3. The averaged percentages of muscle in the control lower

legs (n = 10) and CTEV unaffected lower legs (n = 4) were similar

at 6066.5% and 58.866.6% respectively. In contrast the

averaged percentage of lower leg muscle for each participant

(n = 6) was significantly lower (41.3.6613.1%) in the CTEV

affected legs compared to the controls, as illustrated in Figure 3A

and B. The differences were statistically significant (P = 0.0066 and

D = 0.8).

Close examination of the T1-weighted images suggested that

the CTEV lower leg muscles contained a higher proportion of

Figure 1. 3D T1-weighted MRI images of control, unilateral and bilateral CTEV legs. (a,d,g) Control male (C3); (b,e,h) Unilateral CTEV female
(U1); (c,f,i) Bilateral CTEV male (B1). (a–c) Axial distal images at widest part of the lower leg; (d–f) Anterior coronal images through the fibula; (g–i)
Anterior coronal views of 3D surface reconstructions of lower leg (transparent white), subcutaneous fat (transparent cream), muscular tissue (pink),
tibia and fibula (white). t = tibia, f = fibula, m = muscle, sf = subcutaneous fat, yellow arrows points to muscular fat. TR/TE = 11/2.3 ms; matrix size = 528
by 528 by 125; spatial resolution of voxel = 1 mm by 1 mm by 1 mm.
doi:10.1371/journal.pone.0054100.g001
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regions with high intensity signal (producing a bright ‘speckled’

appearance) compared to control or unaffected CTEV images (see

yellow arrows in Figure 2e and f). This signal originates

predominantly from adipose tissue. The proportions of high signal

intensity pixels in the muscular tissues (TAMusc) were quantified

(Equation 2), recorded in Table 5 and graphically displayed in

Figure 3C. The average TAMusc of the control legs (n = 10) and

unaffected CTEV legs (n = 4) were 1.5360.65% and 1.4660.44%

respectively. The average TAMusc of bilateral CTEV affected legs

muscle were used in calculations. Whilst the proportion of

muscular fat (TAMusc) in the lower legs of the control and

unaffected unilateral legs were quite similar, in contrast the

average TAMusc for affected legs in each CTEV participants (n = 6)

was markedly higher at 7.265.64%. The differences between the

control and affected CTEV legs were statistically significant (P is

0.00026, D = 1).

2. 3D Magnetic Resonance Angiography (MRA)
3D non-contrast enhanced MRA images of control (n = 2),

unilateral CTEV (n = 3) and bilateral CTEV (n = 1) participants

were acquired. Anterior MRA images of the popliteal, anterior

tibial, posterior tibial, and peroneal arteries were displayed in

Figure 4. The posterior views are shown in Figure S1. To provide

anatomical landmarks, the arterial images were viewed alongside

Table 2. Lower leg volumes of control and CTEV participants,
with ratio calculations.

VLeg (cm3) VLeg (cm3) Vleg

Control Right Left Right:Left

C1 2511.1 2499.1 1.0

C2 2221.4 2293.1 0.97

C3 2382.7 2268.8 1.05

C4 2922.9 2947.3 0.99

C5 1993.2 2000.2 1.0

Bi-CTEV Right Left Right:Left

B1 2278.3 2244.4 1.02

B2 2595.4 2622.0 0.99

Uni-CTEV Aff Unaff Aff:Unaff

U1 3011.8 3275.2 0.92

U2 2724.4 3219.5 0.85

U3 1240.5 1717.0 0.72

U4 1291.7 1551.7 0.83

VLeg = lower leg volume, Aff = affected, Unaff = unaffected.
doi:10.1371/journal.pone.0054100.t002

Table 3. Muscle and subcutaneous fat volumes in the lower legs of control and CTEV participants, with soft tissue and ratio
calculations.

VMusc (cm3) VFat (cm3) Muscle% Fat% Muscle Fat

Control Right Left Right Left Right Left Right Left Right:Left Right:Left

C1 1262.4 1233.8 765.5 736.3 62.3 62.6 37.7 37.4 1.02 1.04

C2 968.3 982.7 748.3 802.5 56.4 55.0 43.6 45.0 0.99 0.93

C3 1271.0 1192.7 576.0 589.9 68.8 66.9 31.2 33.1 1.07 0.98

C4 1203.8 1181.2 1157.2 1186.9 51 49.9 49.0 50.1 1.02 0.98

C5 1010.4 1029.4 607.8 564.5 62.4 64.6 37.6 35.4 0.98 1.08

BiCTEV Right Left Right Left Right Left Right Left Right:Left Right:Left

B1 343.0 236.6 1344.7 1389.8 20.3 14.5 79.7 85.5 1.45 0.97

B2 1052.6 1080.8 1000.5 1008.9 51.3 51.7 48.7 48.3 0.97 0.99

UniCTEV Aff Unaff Aff Unaff Aff Unaff Aff Unaff Aff:Unaff Aff:Unaff

U1 882.9 1358.8 1511.3 1309.6 36.9 50.9 63.1 49.1 0.65 1.15

U2 940.8 1488.2 1232.0 1183.6 43.3 55.7 56.7 44.3 0.63 1.04

U3 410.7 854.7 488.7 486.5 45.7 63.7 54.3 36.3 0.48 1.0

U4 440.4 712.5 392.7 387.0 52.9 64.8 47.1 35.2 0.62 1.01

VFat = subcutaneous fat volume, VMusc = muscle volume, Aff = affected, Unaff = unaffected.
doi:10.1371/journal.pone.0054100.t003

Table 4. Tibia and fibula volumes of control and CTEV
participants, with ratio calculations.

VTibia(cm3) VTibia VFibula (cm3) VFibula

Control Right Left Right:Left Right Left Right:Left

C1 249.0 251.8 0.99 46.2 46.6 0.99

C2 241.1 241.9 1.0 42.4 40.4 1.05

C3 284.1 271.6 1.05 41.9 41.7 1.01

C4 270.4 269.0 1.01 51.1 51.2 1.0

C5 203.3 198.4 1.02 34.7 32.4 1.07

Bi-CTEV Right Left Right:Left Right Left Right:Left

B1 288.6 320.9 0.9 57.9 52.0 1.11

B2 287.1 289.4 0.99 41.3 42.6 0.97

Uni-CTEV Aff Unaff Aff:Unaff Aff Unaff Aff:Unaff

U1 216.4 247.0 0.88 28.18 29.2 0.96

U2 261.1 273.1 0.96 41.1 47.2 0.87

U3 159.4 187.0 0.85 16.4 20.6 0.8

U4 250.5 256.7 0.98 33.4 36.7 0.91

VTibia = tibia volume, VFibula = fibula volume, Aff = affected, Unaff = unaffected.
doi:10.1371/journal.pone.0054100.t004
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the 3D anatomical representations of the lower leg, tibia and fibula

from the T1-weighted MRI study. Anomalies in the 3D spatial

position, branching and hypoplasia of the arteries in the lower legs

were investigated. The arteries were viewed from all angles, and

the arteries in affected CTEV lower legs were compared with

contralateral and control legs. No spatial abnormalities in location

or branching of arteries in CTEV legs were detected. However,

there were anomalies involving hypoplasia associated with

underdevelopment of arteries. The results were tabulated

(Table 6), 3 out of 5 of the affected CTEV legs showed hypoplasia.

In comparison, 1 out of 7 unaffected legs showed hypoplasia; this

leg was the unaffected leg of unilateral CTEV participant (U4).

Discussion

This paper reports the first three-dimensional anatomical

segmentation of the entire lower legs of young people with CTEV

using MRI. Previous MRI studies acquired multi-slice datasets and

analysed individual slices through the leg [18,19]. In this study, the

volume of the lower legs, muscles, subcutaneous fat, tibias and

fibulas were determined from the segmentation of continuous 3D

MRI datasets encompassing the lower leg from knee to ankle. The

3D volumetric anatomical analysis demonstrated that the volumes

of the affected lower legs of the unilateral CTEV participants, their

muscles, tibias and fibulas were consistently smaller than their

contralateral unaffected limb. The muscle volumes were much

more sensitive to CTEV than the total lower leg volume. Muscle

hypoplasia and atrophy are recognised features of CTEV,

although their effect on leg circumferences is often masked by

an increase in subcutaneous fat. An example of this is bilateral

CTEV participant B1, the total volume of the lower right leg was

only 1.5% larger than the left leg, suggesting that the legs are quite

similar. However, his right lower leg muscle volume was 45%

larger than his left.

In this study the volumes of the whole tibia and fibula were

determined. On average the volume of the tibia in the affected leg

of unilateral CTEV participants was 8.5% smaller than that of the

contralateral unaffected leg. Differences in the length and cross-

sectional, axial area of tibias and fibulas in contralateral legs of

unilateral clubfoot patients have been reported previously

[18,19,22–25]; whilst this is seldom observed in the general

population [26]. The differences have been attributed to surgical

Figure 2. Right-to-left and affected-to-unaffected ratios of lower legs, tibias, muscles or subcutaneous fat volumes. Ratio of right-to-
left (R:L) volumes for controls (n = 5) (white). Affected-to-unaffected (Aff:Unaff) volumes for the unilateral CTEV group (n = 4) (grey). The mean (dashed
line) and median (solid line) values are shown within boxes representing 25% and 75% limits.
doi:10.1371/journal.pone.0054100.g002

Figure 3. Comparison between anatomy of control, unaffected and affected CTEV legs. (A) Percentages of muscle and (B) subcutaneous
fat in soft tissue of lower legs, and (C) image analysis (TAmusc) of muscular fat in lower leg muscles images. The control legs (n = 10) (white), unaffected
CTEV legs (n = 4) (pale grey), and affected CTEV legs (n = 9) (dark grey). The mean (dashed line) and median (solid line) values are shown within boxes
representing 25% and 75% limits.
doi:10.1371/journal.pone.0054100.g003
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treatment [23] and to decrease in foot height [25], although it is

more likely they are due to asymmetric limb development.

In Table 1 and Table S1 we summarise the clinical information

available for each participant. Formal pre-treatment grading was

done using the previously widely adopted, pragmatic, qualitative

clinical scale of mild/moderate/severe as described by Harrold

and Walker [8]. Our currently preferred Pirani score had not been

described at the time this cohort were first clinically assessed [7].

The participants had ‘typical’ non-syndromic/idiopathic CTEV;

with one (B1) being so severe that bone surgery had been

necessary. Four others, with the exception of B2 who was treated

by casting alone, had capsular releases and soft-tissue surgery,

sometimes on multiple occasions but no muscles were redirected.

Whilst we acknowledge that the features described could be the

result of the surgical treatment, it is likely that the changes

observed in the MRI are the result of the developmental

pathogenesis of CTEV. In all the surgical procedures, significantly

tendons were not merely divided but elongated with the aim of

restoring functional length to the tendon. This in turn helps to

normalise the forces expected to act on the respective muscle.

Therefore it is anticipated that the forces acting on the muscles will

provide a more normal stimulus for growth, especially compared

to the case of lower limb development in the absence of treatment.

Periods of leg immobilisation during treatment are inevitable and

detailed in Table S1. The maximum period of immobilisation for

these subjects was 2 years, much shorter than the accepted current

treatment with the Ponseti technique. The time period from

completion of immobilisation to the MRI scan was from 6 to 24

years. We propose that our findings can primarily be attributed to

the developmental pathogenesis of the condition; they are not

simply the result of either differences in weight bearing; surgical

treatments; muscle immobilisation; or a consequence of iatrogenic

removal of muscle tension. A comparative MRI study of young

adults treated by Ponseti technique would be interesting, as it

would help clarify this issue. Only in recent years has Ponseti

become the method of choice for CTEV treatment, and as a result

young adults treated by this method alone were not available for

recruitment to this study.

In this study, the increase in adipose tissue within the muscle of

affected CTEV legs was observed, due to either muscle atrophy or

hypoplasia. Other lipids such as those in the myelin sheath

surrounding the axons will also contribute to the high intensity

signal, and the inevitable partial volume effects will detrimentally

affect the result. Ippolito et al reported the presence of fat in the

interstitial regions of the atrophied muscles [18]. It is interesting

that in unilateral CTEV participants, the presence of adipose

tissue in the muscle of the affected leg is much higher than in the

contralateral unaffected leg. The potential to use such a measure

as a prognostic marker of muscle function merits further work.

This is the first reported 3D segmentation of CTEV MRA

images, previous MRA clubfoot studies presented maximum

intensity projections [19,27]. Segmentation allowed representation

of the main arteries to be visualised alongside those of the muscles,

subcutaneous fat, tibias and fibulas in the lower legs; thus

producing digital 3D anatomical models of CTEV lower legs.

Our 3D MR angiography revealed no spatial abnormalities in the

location or branching of the main arteries in CTEV lower legs.

Hypoplasia of the arteries was observed in affected CTEV legs at a

higher frequency (3/5) compared to the unaffected unilateral legs

(1/3) and control legs (0/4). Whilst congenital vascular anomalies

have been observed in approximately 8% of healthy individuals

[28,29], abnormalities in the arterial structure have been reported

to occur at a much higher frequency in clubfoot patients than in

the general population [19,27,28,30–32]. A MRA study by Merrill

et al reported 4 out of 10 isolated unilateral clubfoot patients had

arterial anomalies which include arterial hypoplasia [19]. Non-

contrast enhanced MRA has the advantage that it does not require

the injection of any exogenous contrast agent. It does involve the

subtraction of two images to produce a difference image, and this

has the disadvantage that any leg movements during imaging can

introduce artefacts and degrade image quality. Also it should be

noted our group size was quite small.

Often the unaffected legs of unilateral CTEV patients are

assumed to be ‘normal’; although the validity of this presumption

has not been previously tested. In this paper we investigated this

hypothesis by measuring the proportion of muscle in the soft

tissues and muscular fat of the leg. The data from the unaffected

legs of unilateral CTEV participants were similar to those of

normal legs, and quite different to those of affected CTEV legs.

However although the anatomy of the unaffected legs of unilateral

CTEV participants closely resembled that of normal legs, this does

not prove they are completely ‘normal’.

There are a number of ways to extend and improve this 3D

MRI CTEV study. The number of participants in the groups

could be increased to establish the validity of the hypotheses about

causality and to assess the value of these proposed measures in

clinical practice. With increased numbers, it would also be feasible

to subdivide the groups by gender, age and on the basis of their

CTEV severity. Other clinical information such as whether the

participants were right or left handed, and the current exercise

regime of the individual could also be collated. A complementary

study that could clarify if these findings are associated with

primary aetiology of CTEV would be to image pre-treated CTEV

neonates. This would avoid the limitations associated with a

imaging study of young adult limbs that have undergone

treatment.

In conclusion, this study has demonstrated that 3D anatomical

representations can be produced by segmenting 3D T1-weighted

MRI and the 3D MRA datasets from the lower leg of young

people with CTEV. This is a very powerful method for visualising

Table 5. Proportion of high intensity pixels (TAMusc) in the
images of lower leg muscles of control and CTEV participants,
with ratio calculations.

TAMusc TAMusc TAMusc

Control Right Left Right:Left

C1 0.63 1.09 0.57

C2 2.2 2.36 0.93

C3 0.9 0.73 1.23

C4 1.54 1.68 0.91

C5 2.12 2.03 1.05

Bi-CTEV Right Left Right:Left

B1 16.38 19.71 0.83

B2 2.43 3.15 0.77

Uni-CTEV Aff Unaff Aff:Unaff

U1 4.8 1.77 2.72

U2 3.38 1.1 3.08

U3 6.21 1.08 5.73

U4 7.88 1.91 4.12

TAmusc = image analysis, Aff = affected, Unaff = unaffected.
doi:10.1371/journal.pone.0054100.t005
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and quantifying clubfoot anatomy. The volume of lower leg

muscle is particularly affected by CTEV, and the proportion of

muscle in the soft tissue of CTEV legs was significantly lower than

in controls, whilst the proportion of adipose tissue was higher. The

phenotype of the unaffected lower leg of unilateral CTEV

participants more closely resembled those of normal legs than

those of affected CTEV legs. We propose that the changes we have

observed are primarily due to the underlying developmental

pathogenesis of CTEV, and are not simply the result of surgery,

other treatments or weight bearing. To unequivocally clarify this

Figure 4. Anterior coronal 3D MRA reconstructions of arteries in legs of CTEV and control teenagers and young adults. The popliteral
artery ‘Po’ (yellow), anterior tibia artery ‘AT’ (red), posterior tibia artery ‘PT’ (pink), and fibula artery ‘F’ (green) are overlaid onto 3D surface
reconstructions of lower leg (transparent white) and tibia and fibula (white) from T1-weighted MRI. (a) C3, (b) C5, (c) U1, (d) U2, (e) U4, (f) B2.
doi:10.1371/journal.pone.0054100.g004
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more research is required, which could be obtained by quantifying

the soft tissues in the lower legs of young adults who were treated

by Ponseti method and also of neonates with CTEV prior to their

treatment.

Several metrics developed in this paper may be useful in the

assessment and management of CTEV. This was a small clinical

study and thus further research is required to evaluate their

general clinical utility, and to refine the techniques. For example it

would be advantageous to achieve shorter data acquisition times

and fully automated image analysis. This could be a valuable

addition to current scoring systems to improve clubfoot manage-

ment, by informing prognostication, guiding treatment pathways

and in clinical treatment audit.

Supporting Information

Figure S1 Posterior coronal 3D MRA reconstructions of
arteries in legs of CTEV and control young adults. The

popliteral artery ‘Po’ (yellow), anterior tibia artery ‘AT’ (red),

posterior tibia artery ‘PT’ (pink), and fibula artery ‘F’ (green) are

overlaid onto 3D surface reconstructions of lower leg (transparent

white) and tibia and fibula (white) from T1-weighted MRI. (a) C3,

(b) C5, (c) U1, (d) U2, (e) U4, (f) B2.

(TIF)

Table S1 Clinical treatment history of CTEV partici-
pants.
(DOCX)

Table S2 Reproducibility study of volumetric segmen-
tation protocol. The volumes (VFat, VMusc, VTibia and VFibula)

were determined form control (C3) and bilateral CTEV (B1) lower

leg datasets by 3 trained operators. The fractional error of mean

(FEM) is shown.

(DOCX)
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