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Abstract

Electrical gradients are present in many developing and regenerating tissues and around tumours. Mimicking endogenous
electric fields in vitro has profound effects on the behaviour of many cell types. Intriguingly, specific cell types migrate
cathodally, others anodally and some polarise with their long axis perpendicular to the electric vector. These striking
phenomena are likely to have in vivo relevance since one of the determining factors during cancer metastasis is the ability to
switch between attractive and repulsive migration in response to extracellular guidance stimuli. We present evidence that
the cervical cancer cell line HeLa migrates cathodally in a direct current electric field of physiological intensity, while the
strongly metastatic prostate cancer cell line PC-3-M migrates anodally. Notably, genetic disruption of protein serine/
threonine phosphatase-1 (PP1) and its regulator NIPP1 decrease directional migration in these cell lines. Conversely, the
inducible expression of NIPP1 switched the directional response of HeLa cells from cathodal to slightly anodal in a PP1-
dependent manner. Remarkably, induction of a hyperactive PP1/NIPP1 holoenzyme, further shifted directional migration
towards the anode. We show that PP1 association with NIPP1 upregulates signalling by the GTPase Cdc42 and demonstrate
that pharmacological inhibition of Cdc42 in cells overexpressing NIPP1 recovered cathodal migration. Taken together, we
provide the first evidence for regulation of directional cell migration by NIPP1. In addition, we identify PP1/NIPP1 as a novel
molecular compass that controls directed cell migration via upregulation of Cdc42 signalling and suggest a way by which
PP1/NIPP1 may contribute to the migratory properties of cancer cells.
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Introduction

Cell migration plays a pivotal role in many processes such as

embryonic development and wound repair and mis-regulated

signalling responses to migratory cues can induce pathologies such

as tumour metastasis, inflammation and epilepsy [1–4]. Epithelial,

endothelial, neuronal and immune cells, amongst others, are

exposed to a variety of stimuli that direct cell migration. In

addition to the more widely recognised chemical signals, such as

growth factors and cytokines, endogenously generated electric

fields (EF) of ionic nature have been measured around injured

tissues, sites of inflammation and tumours [5–10]. These electrical

signals can act as directional guidance cues during wound healing,

embryonic development and tumorigenesis [11], therefore deci-

phering the molecular mechanisms behind the cellular responses

to EF is of great importance. Applying a steady, direct current

(DC) EF to cells and tissues in vitro mimics the effects of an

endogenous EF [12] and this has identified a number of cell

surface receptors, phosphorylation signalling proteins and second

messengers that transduce electrical signals. For instance, epider-

mal growth factor receptor (EGFR) and integrins are amongst the

first sensors of the electrical signals in several cell types. EGFRs

translocate within the plane of the lipid bilayer to accumulate at

the cathodal, apical side of cells. For keratinocytes and corneal

epithelial cells this occurs within 5–10 min of EF exposure [13,14].

As a consequence, EGF signalling becomes polarised, causing

greater cathodal activation of ERK1/2, downstream cathodal

polymerization of F-actin and directed migration [13–15]. Similar

findings have been reported to underpin cathodal electrotaxis of

embryonic and adult neural progenitor cells [16]. In addition,

integrins a5 and a5ß1 redistribute and aggregate cathodally on

fibroblasts migrating cathodally, as does b1 integrin in epithelial

cells [17,18]. Moreover, depletion of ß4 integrin or the addition of

an anti-integrin b1 subunit antibody suppresses EF-directed

migration [18,19].

The role of protein tyrosine (Tyr) kinases in migration has been

well studied, whereas the contribution of protein phosphatases has

begun to be appreciated only recently [20]. In fact, the only

phosphatase known to be involved in electrotaxis is the lipid

phosphatase ‘phosphatase tensin homolog deleted on chromosome

ten’ (PTEN) [7].

Protein serine/threonine (Ser/Thr) phosphatase-1 (PP1) is one

of the most highly conserved enzymes known and plays a central

role in a range of cellular processes including protein synthesis,

PLoS ONE | www.plosone.org 1 July 2012 | Volume 7 | Issue 7 | e40769



RNA splicing, cell-cycle progression and glycogen metabolism

[21,22]. A large array of regulatory subunits associates with the

PP1 catalytic subunit to determine its cellular localization and

substrate specificity, mediating the control of these many

physiological processes via PP1 holoenzymes [22–24]. NIPP1

(nuclear inhibitor of protein phosphatase 1) is a highly conserved

and ubiquitously expressed protein that was initially characterized

as a PP1 inhibitor [25–27]. NIPP1 serves as a kind of scaffold

protein around which a variety of proteins such as phosphatases,

kinases, splicing factors and chromatin modifiers gather function-

ally. NIPP1 contains two major PP1-interaction sites that reside in

the central and C-terminal domains, among them the amino acid

residues 200–203, which represent a RVxF-type PP1 docking site.

More recent evidence suggests that the effects of NIPP1 on PP1

are substrate dependent: it potently blocks the dephosphorylation

of many PP1 substrates but promotes the dephosphorylation of

substrates that are recruited via its ForkHead Associated (FHA)

domain [28]. Interestingly, PP1 bound to overexpressed wild-type

NIPP1 (W.T-NIPP1) is highly phosphorylated at Thr-320, a mark

which inactivates PP1, whereas PP1 bound to a C-terminus

truncated NIPP1 protein (DC-NIPP1) is less phosphorylated at

Thr-320, which is indicative for a hyperactive PP1/NIPP1

holoenzyme [28].

A role for PP1 as a regulator of cell polarity and migration is

beginning to emerge. PP1 interacts with several proteins that

regulate the actin cytoskeleton and contributes to the formation of

cellular protrusions and adhesions [24]. Moreover, a very recent

report has identified a functional role for PP1 in controlling enteric

nerve cell migration [29]. Here, we investigated whether PP1 and

NIPP1 levels regulate motility and directional migration of the

cervical cancer-derived HeLa cell line. Further, we explored the

contribution of NIPP1-associated PP1 to directional migration by

using HeLa Tet-Off (HTO) cells that were engineered to inducibly

express W.T-NIPP1, C-terminus truncated NIPP1 (DC-NIPP1) or

a PP1-binding mutant of NIPP1 (mNIPP1) [28,30]. We used a DC

electric field (EF) as a readily tractable guidance cue known to

control directed cell migration of normal and tumour cells [31,32].

Here, we demonstrate that PP1 and NIPP1 levels are required for

optimal random motility of single HeLa cells and for directed

migration in response to a DC EF. We confirm that NIPP1 levels

are required for directional cell migration by testing electrotaxis of

the highly metastatic prostate cancer-derived cell line PC-3-M.

Further, we demonstrate that binding of PP1 to NIPP1 functions

as a compass which controls the direction in which cells migrate

via regulating the expression of integrin and growth factor

receptors, and Cdc42 GTPase activity. These results identify a

functional role for NIPP1 in cell migration and uncover PP1/

NIPP1 as the first protein Ser/Thr phosphatase complex

controlling the directional response of cells to electrical guidance

cues.

Results

PP1 and NIPP1 are Required for Random and Directional
Migration of HeLa and PC-3-M Cells in Response to
Electrical Guidance Cues

A very recent study has shown that treatment of enteric neural

crest cells with okadaic acid, an inhibitor of protein phosphatases 1

and 2A, induces undirected cell protrusions and random cell

movements [29]. Hence, we investigated a potential role for PP1

in regulating directional migration of cervical epithelium carcino-

ma-derived HeLa Tet-Off (HTO) cells in response to electrical

guidance cues. For this, we tested the effect of previously validated

siRNAs targeting all three PP1 isoforms on random motility of

single cells and on the directed migratory response of cells to an

applied EF (electrotaxis) [33]. PP1 protein levels were reduced by

85% after 48 h of transfection (Fig. 1A). In the absence of an EF,

both control and PP1 knockdown (KD) cells migrated randomly

(Fig. 1B). When a DC EF was applied, 82% 65 of control siRNA

cells migrated cathodally (red, to the right) (Fig. 1B; see video S1).

EF treatment increased the distance migrated, the speed of

migration and the directedness of control siRNA cells (Fig. 1C).

However, PP1 depletion completely impaired electrotaxis, 57%

62 of PP1 siRNA cells migrated cathodally (red, right) and 43%

62 anodally (black, left) (Fig. 1B,C; see video S2). Moreover, we

observed that cells depleted in PP1 displayed less cellular

protrusions and more stress fibers compared to control siRNA

cells (Fig. 1D). In particular, loss of PP1 decreased filopodia

formation in untreated and EF-treated cells (Fig. 1E).

Further, we investigated a possible regulatory role for the PP1

interactor NIPP1 in the formation of actin protrusions and in

random and directional migration of HTO cells. Firstly, we

examined whether NIPP1 is required for migration by testing the

effect of previously validated siRNAs targeting NIPP1 [34]. NIPP1

protein levels were reduced by 80% after 48 h of transfection

(Fig. 2A). In the absence of an EF, both control and NIPP1

knockdown (KD) cells migrated randomly (Fig. 2B). In the

presence of an EF, control cells showed strong cathodal migration;

87% 64 of control siRNA cells migrated cathodally (red, right)

and 13% 64 anodally (black, left) (Fig. 2B; see video S3).

However, NIPP1 KD cells showed a much blunted cathodal

migration, 57% 63 of NIPP1 siRNA cells migrated cathodally

(red, right) and 43% 63 anodally (black, left) (Fig. 2B,C and see

video S4). Moreover, in the absence of an EF a two-fold decrease

in the speed and therefore the distance of cell migration was seen

in NIPP1 siRNA cells compared to control siRNA treated cells

(Fig. 2C). The reduced speed and distance of migration caused by

loss of NIPP1 was even greater in cells exposed to an EF which

showed a four-fold decrease in cell migration and over a two-fold

decrease in speed of migration compared to EF-treated control

siRNA cells (Fig. 2C). Consistent with previous reports, the DC EF

promoted actin polymerization and formation of actin-rich cell

protrusions in control HTO cells (Fig. 2D). However, NIPP1 KD

cells had fewer cell protrusions (Fig. 2D). In particular, the ability

to form filopodia in NIPP1 KD cells was compromised severely in

untreated and EF-treated cells (Fig. 2E).

To further validate our data and to rule out possible off-target

effects of the siRNA targeting NIPP1 we also examined the

electrotactic response of the highly metastatic human prostate

cancer cell line, PC-3-M, depleted in NIPP1 levels via expression

of a shRNA targeting NIPP1 after IPTG treatment. NIPP1 levels

were reduced by about 70% after 5 days of IPTG treatment

(Fig. 3A). We show for the first time that PC-3-M cells display a

very robust electrotactic response towards the anode as indicated

by a strongly negative directedness of 20.9 (Fig. 3B,C and see

video S5) and that loss of NIPP1 strongly reduces the directional

response of these cells to a DC EF (Fig. 3B,C and see video S6).

Collectively, these data show that both PP1 and NIPP1 are

required for the directional migratory response of HeLa and PC-3-

M cells to a DC EF.

PP1/NIPP1 Controls Directional Cell Migration
Next, we took a reverse approach and explored the effect of the

overexpression of NIPP1 and its binding to PP1 on EF-induced

directional migration. For this, we used previously characterized

HeLa Tet-Off (HTO) cell lines that express three different NIPP1

variants in the absence of doxycylin (Fig. 4A) [28,30]. Three days

after doxycyclin removal from the medium, the expression of the

PP1/NIPP1 in Directional Migration
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Figure 1. PP1 loss impairs electrotaxis in HeLa cells. A. Treatment of parental HeLa Tet-Off (HTO) cells with siRNA strongly depletes PP1 levels
48 h post transfection. Endogenous PP1 levels were visualized with PP1 antibodies that recognize all isoforms. B. Plot diagrams show that loss of PP1
impairs the ability of cells to migrate towards the cathode. Each line represents the migration trajectory of a single cell. The starting point for each cell
migration track is at the origin. Cell tracks with end positions to the right appear in red (‘‘C’’, cathode) and those to the left appear in black (‘‘A’’,
anode). EF-untreated cells were assayed as controls. Control siRNA cells migrate strongly towards the cathode; PP1 siRNA treated cells are unable to
migrate in response to a DC EF. Scales show distance migrated in mm. C. PP1 depletion strongly reduces distance migrated, speed, and directedness
in response to physiological DC EF. Error bars are S.E.M. p values for significant differences in distance, speed and directedness are shown. D.
Localization of endogenous PP1 and distribution of filamentous-actin in control and PP1 depleted cells treated with DC EF. Endogenous PP1 levels
were visualized with PP1 antibodies that recognize all isoforms (green) and polymerised actin was detected using rhodamine phalloidin (red). The

PP1/NIPP1 in Directional Migration
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NIPP1 variants was evaluated by Western blotting (Fig. 4B). These

variants included FLAG-tagged W.T-NIPP1, which is associated

with (partially) inactive PP1, C-terminally nicked FLAG-NIPP1

(DC-NIPP1) which is complexed to constitutively active PP1 and a

point mutant (mNIPP1) that lacks a functional RVxF-type PP1

binding motif and can therefore only marginally bind to PP1

(Fig. 4A).

Localization of the three different NIPP1 variants was examined

by immunocytochemistry. Similar to endogenous NIPP1, FLAG-

tagged W.T- and DC-NIPP1 were localized strongly to the nucleus

in EF-treated and untreated cells (Fig. 4C, cell images).

Perinuclear staining of FLAG-tagged PP1-binding mutant of

NIPP1 (mNIPP1) could also be observed (Fig. 4C, cell images).

Next, we tested whether the association of PP1 with NIPP1

affects electrotaxis of HTO cells. Without the EF, cell migration

was oriented randomly for all cell types (Fig. 4C, ‘‘no EF’’ plots).

However, HTO cells expressing FLAG-tagged NIPP1 variants

showed an array of different behaviors in an EF. 72% 63 of

parental HTO cells migrated cathodally (right) and 28% 63

anodally (left) and displayed a directedness of 0.2760.05 (Fig. 4C;

see video S7). Overexpression of W.T-NIPP1 shifted the cathodal

response to slightly anodal, with only 35%612 of cells migrating

cathodally and 65%612 anodally, and a directedness of

20.1260.05 (Fig. 4C; see video S8). Moreover, overexpression

of DC-NIPP1 induced a strong shift in the directional response.

Only 16%65 of cells migrated cathodally with a remarkable

84%65 of cells migrating anodally giving a strongly reversed

directedness of 20.5560.04 (Fig. 4C; see video S9). Interestingly,

overexpression of mNIPP1 did not affect cathodal migration and

the cells behaved similarly to parental HTO cells; 80%613

migrated cathodally and 20%613 anodally, and displayed a

strong cathodal directedness of 0.5260.1 (Fig. 4C; see video S10).

These results show that control of directional migration by

NIPP1 depends on its association with PP1. When NIPP1 was

overexpressed and able to bind PP1, the cathodal migration

shifted to slightly anodal. Moreover, induction of a constitutively

active PP1/NIPP1 holoenzyme induced an even stronger anodal

response. However, the PP1-binding mutant of NIPP1 caused

cathodal migration, similar to parental cells.

PP1/NIPP1 Controls Centrosome Positioning during
Migration

A correlation between the position of the centrosome and the

direction of cell migration has been observed in several cell types

[35]. In many cases the centrosome is located behind the leading

edge and in front of the nucleus. Therefore, we next aimed to

corroborate the results obtained from measuring the directional

response of the HTO cells overexpressing FLAG-tagged NIPP1

variants by exploring whether there was a correlation between the

position of the centrosome and the direction of cell movement in

the HTO cells. In HTO cells (no EF) centrosomes were positioned

randomly (Fig. 5). Centrosomes of parental cells in an EF

polarized cathodally (Polarization index (PI) = 0.46 (see Experi-

mental Procedures); Fig. 5). However, cells overexpressing W.T-

NIPP1 displayed nearly the same distribution of centrosomes

towards the cathode and anode (PI = 20.09; Fig. 5). Disruption of

EF-induced cathodal centrosomal polarisation in cells overex-

pressing W.T-NIPP1 was dependent on PP1 binding to NIPP1

because cells overexpressing mNIPP1 polarised their centrosomes

towards the cathode (PI = 0.77), as did parental cells (PI = 0.46;

Fig. 5). Intriguingly, induction of a constitutively active PP1/

NIPP1 holoenzyme induced both a strong anodal polarisation of

centrosomes (PI = 20.23) and strong anodal migration of cells

(Figs. 4C, 5). These findings demonstrate that the positioning of

the centrosome during migration mirrors the directional migration

in HeLa cells. Most significantly, this data indicates that

association of PP1 with NIPP1 controls the switch to anodal

centrosome polarisation and anodal migration, probably reflecting

engagement of similar cytoskeletal machinery in both processes.

Inhibition of Cdc42 Reverses the NIPP1-induced Anodal
Migration and Centrosomal Polarization

The effects of NIPP1 on the formation of filopodia (Fig. 2),

directional cell migration (Fig. 4C) and centrosome positioning in

a physiological EF (Fig. 5) are dependent on PP1. Interestingly, a

genome-wide profiling of the HTO cells uncovered that NIPP1

also affects the expression of numerous genes in a PP1-dependent

manner [30]. It is well established that the GTPase Cdc42 controls

filopodial extension and centrosome positioning in migrating cells

[36–38], and that the directional migration of corneal epithelial

cells in response to a DC EF is controlled by a Cdc42/Rho switch

[39]. Collectively, these data lead to the enticing hypothesis that

the NIPP1-induced anodal polarisation is mediated by signalling

through Cdc42. To test this notion, we first analysed the list of

genes that are significantly upregulated by the overexpression of

W.T-NIPP1 or DC-NIPP1, but not by mNIPP1, all compared to

the parental HTO cell line [30] and unpublished data (see

materials and methods). Interestingly, we found 24 genes that are

involved in cytoskeletal dynamics, cell-matrix interactions and the

Cdc42 pathway, and are activated by overexpression of W.T-

NIPP1 or DC-NIPP1, but not by mNIPP1 (Table 1).

Next, we measured the Cdc42 GTPase activity in HTO cells in

a physiological EF and verified whether the measured activity was

inhibited by the specific and cell-permeable Cdc42 GTPase

inhibitor ML141 (CID2950007) [40]. We found that a DC EF

induces a small but significant increase in Cdc42 GTPase activity

in all HTO cells (Fig. 6A; p,0.001) and that treatment of these

cells with 10 mM ML141 completely abolished Cdc42 GTPase

activity (p values comparing samples in the absence and presence

of ML141 were in all cases ,0.01). Interestingly, inhibition of

Cdc42 did not affect cathodal migration of parental cells

(directedness = 0.4260.06; Fig. 6B; see video S11). However, the

reversal in EF-directed migration by overexpression of W.T-

NIPP1 was recovered by inhibition of Cdc42 (directed-

ness = 0.2960.05; Fig. 6B; see video S12). Similarly, EF exposed

DC-NIPP1 cells, which migrate anodally, lost this response when

Cdc42 was inhibited with ML141 and even displayed a moderate

cathodal response (directedness = 0.260.1; Fig. 6B; see video S13).

EF-stimulation of these cells (+ML141) promoted formation of

stress fibers (data not shown) and induced cell spreading and

ruffling together with blebbing of the actin cytoskeleton (data not

shown). In many cases where strong ruffling was observed, cells

became detached. An increase in the sub-G1 population (dead

cells) in the ML141-pretreated DC-NIPP1 cells (determined by

flow cytometry) may possibly account for the low migration and

detachment observed in these cells. In contrast, ML141 did not

nuclei have been stained with DAPI (blue). Arrows mark cells with a strong decrease in PP1 levels which correlate with defects in the formation of
actin rich protrusions. Representative images are shown. Scale bar is 50 mm. E. Numbers of cells with filopodia were quantified by counting 100 cells.
Error bars are S.E.M. p values for significant differences are shown. Images show a detail of cell protrusions in control siRNA and PP1 siRNA cells.
Arrows mark numerous filopodia in control cells and outline areas with a major lack of filopodia at the cell edges in PP1 siRNA cells.
doi:10.1371/journal.pone.0040769.g001

PP1/NIPP1 in Directional Migration
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Figure 2. Loss of the PP1 interactor NIPP1 impairs the electrotactic response of HeLa cells. A. Treatment of parental HeLa Tet-Off (HTO)
cells with siRNA strongly depletes NIPP1 levels 48 h post transfection. Cell lysates were analysed by SDS/PAGE and immunoblotting. Bands
corresponding to all PP1 isoforms were detected and GAPDH was used as loading control. B. Plot diagrams show that loss of NIPP1 impairs the ability
of cells to migrate towards the cathode. Control siRNA cells migrate strongly towards the cathode; NIPP1 siRNA treated cells show a much reduced
cathodal response. Scales show distance migrated in mm. Scales are different between diagrams in order to include the tracks of every cell assayed. C.
NIPP1 depletion strongly reduces distance migrated, speed, and directedness in response to physiological DC EF. Data are from at least three
experiments. Error bars are S.E.M. p values for significant differences in distance, speed and directedness are shown. D. Localization of endogenous
NIPP1 and distribution of filamentous-actin in control and NIPP1 depleted cells treated with DC EF. Endogenous NIPP1 levels were recognized with a
rabbit anti-NIPP1 antibody (green) and polymerised actin was detected using rhodamine phalloidin (red). Nuclei are stained with DAPI (blue). NIPP1

PP1/NIPP1 in Directional Migration
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cause a defect in viability of the parental, mNIPP1 and W.T-

NIPP1 cells (Fig. S1).

Inhibition of Cdc42 GTPase in cells overexpressing NIPP1 but

unable to bind PP1 (mNIPP1) did not affect their strong cathodal

migration (directedness = 0.5760.03; Fig. 6B; see video S14).

These results clearly show that the switch in direction of EF-

induced migration caused by overexpression of NIPP1 depends on

the association of NIPP1 with PP1 and that it is mediated by

Cdc42 GTPase activity.

We also investigated whether inhibition of Cdc42 in HTO cells

could recover the polarisation of centrosomes towards the cathode

in the W.T-NIPP1 and DC-NIPP1 cells. We demonstrate that

Cdc42 inhibition increased the centrosomal PI of parental cells to

levels comparable with those observed in mNIPP1 cells (PI = 0.76

in both cases), recovered the cathodal centrosomal polarisation in

W.T-NIPP1 cells (PI = 0.59) and most strikingly, induced strong

polarisation of centrosomes towards the cathode in DC-NIPP1

cells (PI = 0.62) (Fig. 6B). These findings indicate that EF-induced

centrosomal polarisation towards the cathode is Cdc42 GTPase-

independent. However, anodal polarisation of centrosomes

observed in W.T-NIPP1 and DC-NIPP1 cells requires both its

association with PP1 and Cdc42 GTPase activity.

Discussion

Specifically, we found that both PP1 and NIPP1 positively

regulate the formation of cell protrusions and that normal levels of

the two proteins are required for optimal electrotaxis of cancer-

derived cells. Further, we show that association of PP1 with NIPP1

controls directional migration and centrosome polarity.

PP1 Binding to NIPP1 Controls Cell Polarity Via Cdc42-
GTPase

Orientation of the microtubule organizing centre, or centro-

some, towards the leading edge contributes to polarised migration

by aiding microtubule growth into the lamella- and microtubule-

mediated delivery of Golgi-derived vesicles to the leading edge,

providing membrane and associated proteins for forward protru-

sion [41,42]. In addition to establishing cell polarity, Cdc42 also

regulates reorientation of the centrosome towards the leading edge

[36,38]. Indeed, many migrating cell types, including fibroblasts,

localizes to the nucleus in EF-treated and untreated cells and its levels are depleted by siRNA. Scale bar is 50 mm. E. Numbers of cells with filopodia
were quantified by counting 100 cells. Error bars are S.E.M. p values for significant differences are shown. Images show a detail of cell protrusions in
control siRNA and NIPP1si RNA cells. Arrows mark numerous filopodia in control cells and outline areas with a major lack of filopodia at the cell edges
in NIPP1 siRNA cells.
doi:10.1371/journal.pone.0040769.g002

Figure 3. Loss of the PP1 interactor NIPP1 impairs the electrotactic response of PC-3-M cells. A. Treatment of PC-3-M cells with IPTG
induces NIPP1 depletion. Cell lysates were analysed by SDS/PAGE and immunoblotting. Bands corresponding to the PP1 isoforms were detected and
GAPDH was used as loading control. B. Plot diagrams show that loss of NIPP1 impairs the ability of PC-3-M cells to migrate anodally. Migration
trajectories were tracked for three hours. The starting point for each cell migration track is at the origin. Cell tracks with end positions to the right
appear in red and those to the left appear in black. Cathode is marked as ‘‘C’’ and anode as ‘‘A’’ when a DC EF is applied to cells. Control scrambled
PC-3-M cells migrate strongly anodally (negative directedness value); cells expressing shRNA targeting NIPP1 show a much reduced anodal response.
Scales show distance migrated in mm. Scales are different between diagrams in order to include the tracks of every cell assayed. C. NIPP1 depletion
strongly reduced distance migrated and directedness in response to physiological DC EF. Data are from at least three experiments. Error bars are
S.E.M. p values for significant differences in distance, speed and directedness are shown.
doi:10.1371/journal.pone.0040769.g003

PP1/NIPP1 in Directional Migration
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neurons and macrophages, reorient the Golgi complex and the

centrosome towards the leading edge during migration in 2D

culture [43–45]. This reorientation also occurs during wound

healing [46], application of a DC EF [47], shear stress [48], early

development [49] and during antigen presentation to T-cells [50].

We have demonstrated here that in HeLa cells the centrosome is

oriented towards the leading edge of the cell and that centrosomal

polarisation in cells overexpressing the different NIPP1 variants

mirrored exactly the direction of cell migration, i.e. cathodal

centrosomal polarisation in parental and mNIPP1 cells, slightly

anodal in W.T-cells and strongly anodal in DC-NIPP1 cells. These

findings indicate that the association of PP1 with NIPP1 regulates

cell polarity. We also show that Cdc42 GTPase activity is not

essential for the establishment of cathodal centrosomal polarisation

in the parental HTO cells, however it is required for anodal

polarization in these cells.

Upregulation of Cdc42 Signalling by PP1/NIPP1 Steers
Directional Migration

Spatially and temporally coordinated activities of the small

GTPases Rac, Cdc42 and Rho support polarized cell migration in

a variety of cells [51–55]. Rho regulates stress fiber formation,

motility and focal adhesions, while Rac is involved in lamellipodia

and Cdc42 is more specifically involved in the formation of

filopodia, the structures at the leading edge of the cell which

‘‘sense’’ guidance stimuli [56]. The contribution of Rho GTPases

to polarized cell migration, initially observed during chemotaxis,

has been extended to electrotaxis with the cathode as the

attractant [57,58]. In this model, activities of Rac and Cdc42

are elevated on the side of the cell facing the attractant and Rho

activity is low. Conversely, on the side facing away from the

attractant, Rho activity is high, with relatively low Cdc42 and Rac

activities. Rho activation is downstream of Rac and both Rac and

Figure 4. NIPP1 expression in HTO cells and control of EF-induced directional migration via its binding to PP1. A. Cartoon of
endogenous NIPP1 and the different FLAG-tagged NIPP1 variants expressed after doxycyclin removal in HeLa Tet-Off (HTO) cell lines. All three NIPP1
variants have a forkhead associated domain (FHA). The consensus PP1-binding sequence, RVTF in W.T-NIPP1 has been mutated to RATA in the FLAG-
mNIPP1 variant. The C-terminal auto-inhibitory (ID) domain is not included in the FLAG tagged DC-NIPP1 protein, resulting in the expression of a
constitutively active PP1/NIPP1 holoenzyme. B. Expression of NIPP1 variants confirmed by Western blotting after removal of doxycyclin. Cell lysates
were analysed by SDS/PAGE and immunoblotting. Bands corresponding to the PP1 isoforms were detected and GAPDH was used as loading control.
C. NIPP1 expression and localization in the HTO cells was confirmed by ICC in EF-treated and untreated HTO cells. Anti-FLAG antibody and rhodamine
phalloidin have been used to detect the FLAG-tagged NIPP1 variants (green) and F-actin (red). The nuclei were stained with DAPI. Overexpressed
NIPP1 localizes to the nucleus in EF-treated and untreated cells. Scale bar is 50 mm. Plot diagrams show that an EF of physiological strength (200 mV/
mm) induced distinct migratory responses in the HTO cells expressing different NIPP1 variants. EF-untreated HTO cells are shown as controls.
Migration trajectories were tracked for three hours in the absence and presence of EF. Each cell’s position at 0 h is positioned at the origin (0, 0). Cells
whose end position is to the right are coloured red and those to the left appear in black. Cathode is marked as ‘‘C’’ and anode is marked as ‘‘A’’ when
DC EF is applied to cells. Scales show distance migrated in mm. Note that scales are different among diagrams in order to include the tracks of every
cell assayed.
doi:10.1371/journal.pone.0040769.g004
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Rho are downstream of Cdc42 such that interplay between

activation of these GTPases generates specific GTPase cascades

with specific effects on the actin cytoskeleton and cell migration

[59]. In agreement with this model, our data show that parental

HTO cells with endogenous NIPP1 and PP1 levels migrate

towards an attractive cue, i.e. the cathode. However, our findings

in two cancer-derived cell lines are at odds with the idea that

cathodal polarisation is driven by Cdc42, because treatment of

parental HTO cells with the Cdc42 inhibitor, ML141, does not

affect cathodal migration. In contrast, the anodal response induced

in HeLa cells by W.T-NIPP1 and DC-NIPP1 overexpression

required Cdc42-GTPase activity suggesting that Cdc42 acts as a

downstream effector of PP1/NIPP1.

Here, we have shown that (1) NIPP1 is required for the

formation of filopodia (Fig. 2), it controls directional cell migration

(Fig. 4) and centrosome positioning (Fig. 5) in a physiological EF,

in a PP1-dependent manner. Interestingly, genome-wide profiling

of the HTO cells uncovered that NIPP1 affects the expression of

Figure 5. Centrosome polarization in the HTO cells mirrors directional migration in EF. A. A DC EF polarizes centrosomes to the cathode
in parental HTO cells as seen by counting the cells in 5 regions, top (t), Right (cathode in EF-treated cells), bottom (b), left (anode in EF-treated cells)
and centre of the nucleus (marked as a white dot). B. Parental cells and mNIPP1 cells position their centrosomes cathodally in an EF, whereas
overexpression of W.T-NIPP1 disrupts cathodal centrosomal polarisation and overexpression of DC-NIPP1 shifts cathodal polarisation of centrosomes
to anodal. 100 cells were counted in each case and results are expressed as percentages.
doi:10.1371/journal.pone.0040769.g005
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numerous genes also in a PP1- dependent manner [30]. It is well

established that Cdc42, controls filopodial extension and centro-

some positioning in migrating cells [36–38]. Collectively, these

data suggest that the NIPP1-induced anodal polarisation is

mediated by Cdc42 signalling and therefore our research in this

manuscript deals with proving this specific hypothesis.

In support of this mechanistic model by which NIPP1

association to PP1 controls the directional response via modulating

Cdc42 activity, we show that PP1 binding to NIPP1 controls the

expression of an array of genes implicated in Cdc42 signalling

(Table 1) and that overexpression of PP1-associated NIPP1

increases Cdc42 GTPase activity when cultured in complete

medium. We suggest that polarised distribution of different

amounts and classes of membrane receptors in these cells may

contribute to the transduction of the electric signal and to the

variability in electrotaxis. In particular, high expression levels of

integrin receptors may act cooperatively with EGFR to amplify the

anodal response in DC-NIPP1 cells. In addition to the membrane

receptors, Ephrin A and B receptors, which are upregulated in

cells overexpressing PP1-associated NIPP1 and are implicated in

the attraction/repulsion behaviour of cancer cells [60,61] have

been very recently suggested as sensors of electrical stimuli in

highly metastatic lung cancer cells [62] and may contribute to the

electrotactic properties of the cells tested here.

Potential Physiological/Pathological Significance
In addition to chemical gradients, electrical gradients exist

across epithelia and in breast and prostate tumours [8,10,63].

Interestingly, electroimaging of mammary and cervical tissues has

been used in clinical detection of malignancy [8,9,64]. Prostate

epithelia, vaginal and cervical epithelium have lumen potentials of

about 210 to 250 mV [65,66]. Such a lumen potential would

correspond to transepithelial voltage gradients of 5 V/cm in

prostate epithelium [63] and 1.7 V/cm in cervical epithelium,

assuming that the cellular thickness of the prostatic ducts is 20 mm

and the cervical epithelium is 300 mm (Fig. 7). Similar to prostate

cells described in a model suggested by Djamgoz et al., [63], under

the above electrophysiological conditions cervical epithelial cells

would migrate towards the lumen (cathodally). Such a voltage

gradient in these tissues is comparable to the DC EF strengths used

to induce electrotaxis in the present study. Alterations in the

directional response of cells to electrical gradients have the

potential to increase migration into the lumen or promote

colonisation of surrounding tissues. Given that (1) NIPP1 is

expressed in cervix and also in HeLa and PC-3-M cells derived

from cervical and prostate tumours, respectively [67], (2) NIPP1

levels are tightly linked to malignant phenotype in tumours [68],

(3) NIPP1 levels and its association to PP1 control directional cell

migration, this suggests that an upregulation of PP1/NIPP1 is

expected to reverse the ‘‘default’’ cathodal polarization (towards

the lumen) and encourage invasion of the surrounding tissue

(Fig. 7).

Taken together, we provide the first evidence for homeostatic

regulation of cell migration by NIPP1. In addition, we identify the

Ser/Thr phosphatase holoenzyme PP1/NIPP1 as a novel

molecular compass that controls cell polarisation and directed

cell migration in response to a physiological DC EF via

upregulation of Cdc42 signalling. These intriguing findings suggest

a Ser/Thr phosphatase-based mechanism for acquisition of a cell

‘‘metastatic’’ phenotype and pose novel opportunities for phar-

macological interventions.

Materials and Methods

Chemical Reagents, Cell Cultures and Knockdown
Cell culture media and reagents were purchased from

Invitrogen (Paisley, UK) and Clontech (CA, USA). The Cdc42

inhibitor ML141 was synthesized at Kansas University Specialized

Chemistry Center. When ML141 was used, cell cultures were pre-

treated with the inhibitor for 1 hour before applying the EF (also

for controls without EF-stimulation). All experiments were

conducted at least three times and performed within low passage

of HeLa Tet-Off (HTO) cells expressing the different transgenes

after doxycyclin removal [28,30]. The culture conditions of HTO

cells are described in Tanuma et al. and Van Dessel et al. [28,30].

In all cases, expression of the FLAG-tagged NIPP1 variants was

not higher than twice the levels of endogenous NIPP1. CO2-

independent medium was used for experiments performed in

room air.

SiRNA duplexes against three human PP1 isoforms, NIPP1 and

scrambled control siRNAs were purchased from Dharmacon

(Thermo Fisher Scientific, Tournai, Belgium) and Invitrogen

(Paisley, UK), respectively. Sequences of the siRNAs against PP1

and NIPP1 are described in Van Dessel et al. and Qian et al.,

respectively [30,33]. NIPP1 knockdown was performed in parental

HTO cells using Lipofectamine RNAiMAX reagent (Invitrogen,

Table 1. List of genes from the Cdc42 pathway that are
significantly upregulated by the overexpression of W.T-NIPP1
(WT) or DC-NIPP1 (DC), but not by mNIPP1 (m), in the HTO
cells and compared to parental HTO cells.

Gene Fold change Class

Parental WT DC mNIPP1

DDR2 1 2 3 1 Receptor tyrosine kinase

EGFR 1 1 2 1 Receptor tyrosine kinase

EPHA2 1 3 4 1 Receptor tyrosine kinase

EPHA4 1 2 1 1 Receptor tyrosine kinase

EPHB2 1 2 1 1 Receptor tyrosine kinase

FGFR1 1 2 2 1 Receptor tyrosine kinase

ITGA1 1 1 4 1 Integrin receptors

ITGA2 1 2 1 1 Integrin receptors

ITGA5 1 2 1 1 Integrin receptors

ITGA6 1 4 4 1 Integrin receptors

ITGA11 1 1 6 1 Integrin receptors

ITGAV 1 2 2 1 Integrin receptors

ITGB1 1 1 2 1 Integrin receptors

ITGB2 1 6 4 1 Integrin receptors

ITGB3 1 4 4 1 Integrin receptors

ITGB4 1 1 2 1 Integrin receptors

ITGB5 1 2 2 1 Integrin receptors

CFL2 1 1 3 1 Actin remodeling protein

ACTR3 1 1 2 1 Actin remodeling protein

IQGAP1 1 1 2 1 Ras GTPase-activating-like
protein

JUN 1 2 2 1 Transcription factor

ACTA1 1 2 1 1 Cytoskeletal protein

ACTA2 1 32 108 1 Cytoskeletal protein

ACTG2 1 28 65 1 Cytoskeletal protein

doi:10.1371/journal.pone.0040769.t001
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Paisley, UK) and were analyzed after 48–72 h, as described in

Nuytten et al. [34].

PC-3-M-Luc cells (Xenogen Corporation, CA, US) were

transduced with pLKO_IPTG_1xLacO (Sigma-Aldrich, Dorset,

UK) containing shRNA targeting PPP1R8 (TRC904-218076:

TCCCACTTTCTAGGATCATTT) or non-target shRNA that

does not target any human gene (Sigma-Aldrich, Dorset, UK) and

selected with puromycin (Sigma-Aldrich, Dorset, UK). Expression

of the shRNA was induced at concentration of 200 mM of

isopropylthio-b-galactoside (IPTG) (Sigma-Aldrich, Dorset, UK)

and optimal induction was shown after 3–5 days.

Electrotaxis Experiments
Electrotaxis chambers of dimensions 4 cm61 cm60.5 mm

were designed on laminin pre-coated plates as described previously

[7]. HTO cells expressing the three NIPP1 variants and parental

HTO cells were seeded in chambers at low density for 16–20 h.

To prevent diffusion of electrode products into the cultures, DC

EF were supplied through agar-salt bridges which connected

silver/silver chloride electrodes via beakers of Steinberg’s solution

to reservoirs of culture medium at either side of the chamber. Cell

migration in the electrotaxis chambers was monitored with a Zeiss

Axiovert 100 (Jena, Germany) microscope with a stage incubator

Figure 6. Effect of pharmacological inhibition of Cdc42-GTPase on the HTO cells. A. Effect of ML141 on Cdc42 GTPase activity in
unstimulated cells cultured in complete medium and in EF-stimulated HTO cells overexpressing the FLAG-NIPP1 protein variants. Levels of Cdc42-GTP
determined by G-LISA in parental, W.T-NIPP1, DC-NIPP1 and mRATA cells in the absence or presence of DC EF and in cells pre-treated with 10 mM of
ML141 before electrical stimulation. p values parental to W.T-NIPP1 and parental to DC-NIPP1 in complete medium were 0.1 and 0.01, respectively; p
values comparing samples in the absence and presence of ML141 were in all cases ,0.01. B. Cdc42 inhibition rescues cathodal polarisation and this
correlates with centrosome positioning. Directedness values for the migration of EF-treated cells incubated with ML141. Cdc42 inhibition rescues the
positive cell directedness decreased by W.T-NIPP1 overexpression. The strongly negative directedness value displayed by DC-NIPP1 cells becomes
closer to 0 when cells are pretreated with Cdc42 inhibitor. For simplification directedness values in the absence of EF of the parental, W.T-NIPP1, DC-
NIPP1, and mNIPP1 with and without ML141 have not been included in the diagram. These were, without ML141, 20.0760.04; 0.0560.09;
20.0860.05 and 20.0160.04, respectively; with ML141 were 20.0760.04; 0.0960.05; 20.0760.05 and 20.0160.04, respectively. In the absence of
EF values were in all cases very close to 0 and differences between the four lines were not statistically significant in any of the cases. Data was
quantified from at least three experiments. Error bars are S.E.M. p values for significant differences in directedness are shown. Polarisation index of
centrosomes calculated as explained in materials and methods. Polarisation index of W.T-NIPP1 and DC-NIPP1 cells becomes similar to the
polarisation index of parental cells when cells are treated with the Cdc42 inhibitor ML141.
doi:10.1371/journal.pone.0040769.g006

PP1/NIPP1 in Directional Migration

PLoS ONE | www.plosone.org 10 July 2012 | Volume 7 | Issue 7 | e40769



controlling temperature at 37uC. DC EF (200 mV/mm) were

applied for 3 hours to test cultures for electrotaxis.

Analysis of Centrosome Polarization
After 1–2 h DC EF stimulation, HTO cells were fixed with

100% ice cold methanol for 15 min, permeabilized for 5 min with

0.3% Triton X-100 and blocked for 30 min in 10% donkey serum,

0.2% BSA in PBS. Cells were incubated overnight in the primary

antibody solution (rabbit anti-pericentrin antibody from Santa

Cruz Biotechnology, Heidelberg, Germany, diluted 1:200 in 0.2%

BSA in PBS). Cells were washed three times and incubated in a

secondary antibody solution (donkey anti-rabbit secondary anti-

body Alexa fluor 488 in 0.2% BSA in PBS). Cells were washed

three times and nuclei were stained with 1 mg/ml 49,6-diamidino-

2-phenylindole (DAPI) (Sigma-Aldrich, Dorset, UK) for 3 minutes.

After washing, Hydromount (National diagnostics, USA) was

added to the samples and coverslips of dimension 4 cm60.8 cm

were placed on the cells. Cells were imaged on a Zeiss LSM 700

confocal microscope (Zeiss, Jena, Germany). Cells were divided

into five sections, i.e. centre, and 4690u sectors top, bottom, left

and right and centrosomes within these regions were counted. 100

cells were counted for each treatment and cell type and cells were

scored as percentages. Cells with no EF supplied were regarded as

control. A polarisation index (PI) also was calculated using the

following formula:

PI = (% cells polarised cathodally - % cells polarised anodally)/

(% cells polarised to the cathode + % cells polarised to the anode.

G-LISA
Levels of Cdc42-GTP in the 4 HTO cell lines in the presence

and absence of EF and Cdc42 inhibitor were measured using a G-

LISA kit from Cytoskeleton (cat. Nr. BK127, Cytoskeleton, Inc.,

Denver, CO, USA) following manufacturer’s instructions and as

described [40]. Electrical stimulation was carried out for 10 min in

electrotaxis chambers placed in an incubator. Prior to application

of DC EF, cells were treated for 1 h with 10 mM of ML141

inhibitor. Positive controls included Cdc42-GTP provided in the

kit and negative controls included buffer-only samples.

Western Blot Analysis
HTO cell cultures were lysed in lysis buffer (cat. Nr. C2978;

Sigma-Aldrich, Dorset, UK) supplemented with protease and

Figure 7. Cartoon showing the basic organization of the cervical epithelium and a mechanistic model to explain how PP1/NIPP1
may contribute to invasiveness of tumour cells. Cervical and vaginal epithelia have lumen potentials of about 225 to 250 mV [65,66]. Such a
lumen potential would correspond to a transepithelial voltage gradients of 1.7 V/cm (170 mV/mm). In these electrophysiological conditions cervical
epithelial cells would migrate towards the lumen as they turn over the epithelial lining layer (green arrow). Upregulation of NIPP1 and its recruitment
to PP1 would reverse migration into the lumen, encouraging invasion of the surrounding tissue (red arrow).
doi:10.1371/journal.pone.0040769.g007
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phosphatase inhibitors (Roche Diagnostics, Basel, Switzerland).

30 mg of total protein was used for immunoblot analysis following

fractionation of proteins by sodium dodecyl sulphate polyacryl-

amide gel electrophoresis (SDS/PAGE) on 4–12% Bis–Tris gels

(Novex, Invitrogen, Paisley, Scotland) and transference to nitro-

cellulose membranes (Invitrogen, Paisley, Scotland). Membranes

were probed with rabbit anti-FLAG (Sigma-Aldrich, Dorset, UK)

used at 1:400, goat anti-PP1 antibodies (Santa Cruz Biotechnol-

ogy, Heidelberg, Germany) used at 1:500; rabbit anti-GAPDH

(Abcam, Cambridge, U.K) used at 1:2000. The mouse monoclonal

NIPP1 antibody (mAb 15B8C11) was raised and screened against

bacterially expressed full-length NIPP1 complexed to His-PP1 in

1:1 ratio. These antibodies were purified and enriched from

hybridoma medium by Protein A affinity chromatography and

shown to recognize an epitope located in the central domain of

NIPP1 (amino acids 143–224). Antibody binding was detected

using donkey anti-goat, rabbit or mouse IgG[H + L] conjugated to

an IRDye800 or 680 fluorophore (Rockland, Immunochemicals,

Reading, UK) followed by analysis of the immunoblots using the

Li-Cor Odyssey system.

Immunocytochemistry
Bacterially expressed polyhistidine-tagged NIPP1 143–224 frag-

ment was used to raise the antibodies in rabbits. These antibodies

were affinity-purified on His-NIPP1-143-224 linked to CNBr-

activated Sepharose 4B (GE Health care, Hertfordshire, UK).

After applying a DC EF for the indicated times, HTO cells were

fixed in thechamberswith8%formaldehyde inPBSfor15 min.After

removing the top of the chamber carefully, cells were washed with

PBS permeabilized for 10 min with 1% NP-40, washed again and

blocked for 30 min in 10% donkey serum or BSA in PBS. Cells were

then incubated for2 hinrabbitanti-FLAGantibody (Sigma-Aldrich,

Dorset, UK) at 5 mg/ml in 0.2% BSA in PBS or overnight with the

purified rabbit anti-NIPP1 antibodies diluted at 1:125 in 1% BSA.

Cells were washed three times and incubated for 45 min with Alexa-

FluorTM488 and 594 conjugated to IgG (either anti-rabbit, goat or

mouse) secondary antibodies (Molecular Probes) in0.2% BSA inPBS

and TRITC-Phalloidin (Sigma-Aldrich, Dorset, UK) used at 1:1000.

Cells were washed three times with 0.2% BSA in PBS and nuclei were

stained with 1 mg/ml 49,6-diamidino-2-phenylindole (DAPI) (Sig-

ma-Aldrich, Dorset, UK) for 3 minutes. After washing, Hydromount

was added to the cells before placing a coverslip of dimension

4 cm60.8 cm to the 4 cm61 cm on top. Chambers were left to dry

overnight at 4uC. Cells were imaged on a Zeiss LSM 700 confocal

microscope (Zeiss, Jena, Germany).

Time-lapse Imaging and Quantification of Cell Migration
Time-lapse images were recorded every 5 min for 3 hours and

migration trajectories of 100 cells were analyzed with ImageJ

software and cell tracking and chemotaxis plugins. Migration

directedness cosine h, where h is the angle between the EF vector

and a straight line connecting the start and end position of a cell,

was used as a parameter to indicate how directly a cell migrates in

the presence and absence of DC EF [13,69]. A cell moving exactly

toward the cathode would have a directedness of 1; a cell moving

perfectly along the field lines toward the anode would have a

directedness of 21. Therefore, the average of directedness values

of a population of cells gives an objective quantification of how

directionally the cells have migrated. A group of cells migrating

randomly would have an average directedness value of 0.

Migration rate was analyzed with the following parameters. Speed

of cell migration is the total length of the migration trajectory of a

cell divided by the given period of time. The distance is the

straight-line distance between the start and end positions of a cell.

Gene Expression Analysis
The genome-wide expression profiling of the HTO cell lines

stably expressing W.T-NIPP1 or mNIPP1 were described previ-

ously (Van Dessel et al, 2010) and the data are available at GEO

under the accession number GSE19642. The genome-wide

expression profiling of the DC-NIPP1 cell line was performed as

the gene expression profiling of W.T-NIPP1 and mNIPP1

expressing HTO cell lines. The list of the genes that were

significantly upregulated by the overexpression of W.T-NIPP1 or

DC-NIPP1, but not by mNIPP1, were compared with a list of

genes involved in the Cdc42 pathway. The latter list was

composed of 144 genes, which were all linked to Cdc42 pathway

based on Ingenuity Pathway Analysis (Ingenuity Systems Inc,

USA) and the Human Protein Reference DatabaseH.

FACS Analysis
Cells were cultured for 3 days in the absence of doxycyclin.

Adherent and floating cell fractions were collected separately and

finally pooled together by gentle centrifugation. Cells were re-

suspended in 1 ml of ice cold 70% ethanol (v/v) and fixed for at

least 30 mins at room temperature. Cells were adjusted to

approximately 0.56105 cells/ml and washed 26 in PBS +1%

w/v BSA. Cells were then spun at 1000 g for 5 mins and re-

suspended in 1 ml of staining buffer (50 mg/ml propidium iodide,

50 mg/ml ribonuclease A, 0.1% (v/v) in PBS) for 20 min at room

temperature and protected from light and then analyzed by flow

cytometry using BD FACSCalibur.

Statistical Analysis
Experiments were performed at least three times and the data is

the average of duplicate or triplicate determinations. Error bars

show the standard error of the mean (S.E.M). Statistical analyses

were performed using Student’s t-test.

Supporting Information

Figure S1 FACS analysis showing the effect of ML141 in the cell

cycle of parental, W.T-NIPP1, DC-NIPP1 and mNIPP1 HeLa

Tet-Off cells. ML141 (1 h pre-treatment) does not have an effect

on cell cycle of parental, W.T-NIPP1 and mNIPP1 cells, however

the sub-G1 population of DC-NIPP1 cells appears increased.

Three experiments were performed with similar results and a

representative experiment is shown.

(TIF)

Video S1 Movie showing migration of control siRNA-treated

parental HeLa Tet-Off cells in a physiological EF (cathode to the

right, t = 3 h).

(MOV)

Video S2 Movie showing migration of PP1 siRNA-treated parental

HeLa Tet-Off cells in a physiological EF (cathode to the right, t = 3 h).

(MOV)

Video S3 Movie showing migration of control siRNA-treated

parental HeLa Tet-Off cells in a physiological EF (cathode to the

right, t = 3 h).

(MOV)

Video S4 Movie showing migration of NIPP1 siRNA-treated

parental HeLa Tet-Off cells in a physiological EF (cathode to the

right, t = 3 h).

(MOV)

Video S5 Movie showing migration of control non-target PC-3-

M cells in a physiological EF (cathode to the right, t = 3 h).

(MOV)
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Video S6 Movie showing migration of NIPP1 shRNA PC-3-M

cells in a physiological EF (cathode to the right, t = 3 h).

(MOV)

Video S7 Movie showing migration of parental HeLa Tet-Off

cells in a physiological EF (cathode to the right, t = 3 h).

(MOV)

Video S8 Movie showing migration of W.T-NIPP1 HeLa Tet-

Off cells in a physiological EF (cathode to the right, t = 3 h).

(MOV)

Video S9 Movie showing migration of DC-NIPP1 HeLa Tet-Off

cells in a physiological EF (cathode to the right, t = 3 h).

(MOV)

Video S10 Movie showing migration of mNIPP1 HeLa Tet-Off

cells in a physiological EF (cathode to the right, t = 3 h).

(MOV)

Video S11 Movie showing migration of ML141 pre-treated

parental HeLa Tet-Off cells in a physiological EF (cathode to the

right, t = 3 h).

(MOV)

Video S12 Movie showing migration of ML141 pre-treated

W.T-NIPP1 HeLa Tet-Off cells in a physiological EF (cathode to

the right, t = 3 h).

(MOV)

Video S13 Movie showing migration of ML141 pretreated DC-

NIPP1 HeLa Tet-Off cells in a physiological EF (cathode to the

right, t = 3 h).

(MOV)

Video S14 Movie showing migration of ML141 pretreated

mNIPP1 cells in a physiological EF (cathode to the right, t = 3 h).

(MOV)
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