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Abstract

Candida albicans frequently causes superficial infections by invading and damaging epithelial cells, but may also cause
systemic infections by penetrating through epithelial barriers. C. albicans is a remarkable pathogen because it can invade
epithelial cells via two distinct mechanisms: induced endocytosis, analogous to facultative intracellular enteropathogenic
bacteria, and active penetration, similar to plant pathogenic fungi. Here we investigated the contributions of the two
invasion routes of C. albicans to epithelial invasion. Using selective cellular inhibition approaches and differential
fluorescence microscopy, we demonstrate that induced endocytosis contributes considerably to the early time points of
invasion, while active penetration represents the dominant epithelial invasion route. Although induced endocytosis
depends mainly on Als3-E–cadherin interactions, we observed E–cadherin independent induced endocytosis. Finally, we
provide evidence of a protective role for serum factors in oral infection: human serum strongly inhibited C. albicans
adhesion to, invasion and damage of oral epithelial cells.

Citation: Wächtler B, Citiulo F, Jablonowski N, Förster S, Dalle F, et al. (2012) Candida albicans-Epithelial Interactions: Dissecting the Roles of Active Penetration,
Induced Endocytosis and Host Factors on the Infection Process. PLoS ONE 7(5): e36952. doi:10.1371/journal.pone.0036952

Editor: Dana Davis, University of Minnesota, United States of America

Received July 1, 2011; Accepted April 16, 2012; Published May 14, 2012
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Introduction

C. albicans is a normal member of the human microbiota and

colonizes the oral cavity, gastrointestinal tract and urinogenitary

tract of up to 70% or more of the population [1,2,3]. However,

under certain conditions, the fungus can cause superficial

infections at these different mucosa, such as oropharyngeal

candidiasis (OPC) or vulvovaginal candidiasis (VVC). Moreover,

if C. albicans disseminates through these epithelial barriers and

reaches the bloodstream, it can cause life-threatening systemic

infections. Therefore, C. albicans is adapted to interact with a wide

range of host cells and molecules, both during commensal

colonization and various disease manifestations. During both

commensal and pathogenic relationships, attachment to the

epithelial cells represents the initial stage of interaction [4,5,6].

Such attachment events are primarily mediated by adhesins on the

fungal cell surface, which can interact with secreted factors, such

as extracellular matrix (ECM) or serum proteins, immobilized

ligands, such as integrins or cadherins, or indirectly, via other

microorganisms. In contrast to microbial adhesion, invasion and

damage of epithelial cells are largely considered to be solely

pathogenic, rather than commensal attributes [7]. C. albicans can

use two distinct invasion mechanisms to gain entry into host cells:

induced endocytosis and active penetration [8,9]. Invasion via

induced endocytosis is dependent on dynamic microfilaments of

the host, whereas active penetration relies on fungal viability. Phan

et al., (2007) demonstrated that passive uptake of C. albicans by

epithelial cells is driven by the interaction of the GPI-anchored

hypha-associated protein Als3 with mammalian cadherins. This

interaction mimics the formation of adherence junctions, leading

to actin cytoskeleton rearrangements and subsequent internaliza-

tion of the fungal cells [10]. Recently, a second C. albicans invasin,

the heat shock protein 1 (Ssa1), was identified, demonstrating that

C. albicans uses more than one invasin to induce endocytosis [11].

However, we have previously demonstrated that C. albicans cells

are not endocytosed by enterocytes [9], indicating that epithelial

cells also differ in their response to the fungus [9,12]. Invasion into

epithelial cells via active penetration presumably relies on

a combination of physical pressure exerted by the extending

hypha, the secretion of hydrolytic enzymes and as yet unknown

damaging factors. However, the exact mechanisms underlying

active penetration are largely unknown.
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Host cell invasion can also be facilitated by binding extracellular

matrix or serum proteins as bridging molecules – a strategy

described for several bacterial pathogens [13,14,15,16]. C. albicans

is able to bind human serum components such as Factor H [17] as

well as the extracellular matrix proteins laminin, fibronectin,

collagen, entactin, vitronectin and tenascin [4] and binding of

vitronectin by the integrin-like vitronectin receptor has been

shown to reduce yeast cell adhesion to human endothelial cells

[18]; however, it remains unknown whether C. albicans can utilize

extracellular components as bridging molecules to facilitate

invasion. In this study, we evaluated the cellular mechanisms of

C. albicans epithelial invasion to elucidate the relative contributions

of active penetration and induced endocytosis. Furthermore, we

investigated the effects of E-cadherin, soluble ECM molecules and

human serum during interaction with oral epithelial cells. We

provide novel evidence of an Als3-E-cadherin-independent

endocytosis pathway, but demonstrate that active penetration is

the dominant epithelial invasion mechanism. Significantly, in-

vasion and damage of oral epithelial cells was found to be

specifically inhibited by human - but not by bovine - serum, and

this effect was independent from active complement components.

Results

Dissecting the Invasion Routes of C. Albicans Hyphae into
Oral Epithelial Cells
In order to assess the relative contributions of the two known

invasion mechanisms of C. albicans [9], we selectively blocked

either induced endocytosis with the microfilament inhibitor

cytochalasin D (cytD) or active penetration by killing the fungal

cells with thimerosal (Thim). The remaining invasion potential in

the presence of cytD is host actin-independent and predominantly

driven by fungal activity (active penetration only). When

thimerosal was used to kill C. albicans hyphae, the remaining

invasion is solely driven by epithelial cell activity (induced

endocytosis only). The effectiveness of this approach was in-

vestigated by analyzing the invasion potential of thimerosal-treated

fungal cells into cytochalasin D-treated epithelial cells. With this

approach, no epithelial invasion occurred within the 3 h time of

the experiment, indicating that cytochalasin D fully blocked

induced endocytosis within the course of the experiment and that

at least one route must be available for fungal invasion into

epithelial cells. Note that for determining induced endocytosis,

killed C. albicans hyphae, rather than yeast cells, were used because

yeast cells are not endocytosed by epithelial cells [9].

Electron Microscopy of Induced Endocytosis and Active
Penetration
Previous scanning electron microscopy (SEM) studies of viable

hyphae invading oral epithelial cells have demonstrated both

depressions of epithelial cell surfaces (indicative of active penetra-

tion) and membrane ruffling and epithelial cell protrusions

(indicative of induced endocytosis) [8,9]. To further dissect the

cellular events associated with these two invasion mechanisms, we

employed transmission electron microscopy (TEM) of (1) oral

epithelial cells co-incubated with thimerosal killed C. albicans

hyphae (induced endocytosis only), (2) cytD treated epithelial cells

co-incubated with viable C. albicans (active penetration only) and

(3) untreated epithelial cells co-incubated with viable C. albicans

(both invasion mechanisms). Thimerosal killed hyphae (induced

endocytosis only) were engulfed by oral epithelial cells and tightly

surrounded by the host membrane (Fig. 1A, upper panel).

Membrane ruffling was visible around engulfed hyphae (Fig. 1A,

lower panel). In contrast, oral epithelial cells treated with cytD

(active penetration only) did not exhibit filopod formation or

membrane ruffling (Fig. 1B). Invasion of hyphae occurred not only

vertically (tip-first), but also laterally, with few direct physical

contacts between hyphae and epithelial surface structures (Fig. 1B

upper picture). Furthermore, invading hyphae were not tightly

surrounded by host membranes in the presence of cytD. Rather

we observed invaginations and broader spaces between penetrat-

ing hyphae and host membranes (Fig. 1B, lower pictures).

Untreated oral epithelial cells invaded by viable hyphae (both

invasion routes possible) generally reflected that of active

penetration (invaginations and broader spaces between hyphae

and host membranes). However, we also observed intermediate

examples, with filopod-like structures and membrane ruffling on

epithelial surfaces, but also the presence of broader spaces between

hyphae and host membrane (Fig. 1C) similar to pictures shown

previously [8]. We also tested the effect of complete epithelial

inactivation on invasion by killing the epithelial cells with

paraformaldehyde. In contrast to invasion of living cells by viable

C. albicans, where we observed defined spaces between the fungal

cell wall and the host membrane, invasion of killed epithelial cells

was characterized by disrupted cellular structures around the

invading hypha, with no evidence of an intact host membrane

(Fig. 1D).

Relative Contributions of Active Penetration, Induced
Endocytosis and C. Albicans Invasins to Epithelial Invasion
We next sought to quantifiably evaluate the relative contribu-

tions of induced endocytosis and active penetration to C. albicans

invasion. We therefore employed our selective inhibition approach

and analyzed the invasion potential of C. albicans wild type and

mutants lacking the two known fungal invasins, Als3 and Ssa1

[10,11].

In agreement with previous studies [9,19], killed hyphae

(induced endocytosis only) were internalized by oral epithelial

cells in a time dependent manner (Wt, Thimerosal, Fig. 2A and B).

Occasionally, we observed both viable and killed hyphae which

had been entirely internalized (Fig. 2C), demonstrating that

induced endocytosis can result in complete uptake of C. albicans.

Indeed, a noteworthy proportion of killed hyphae were in-

ternalized (2.5 and 12.2% at 2 and 3 h, respectively – Fig. 2A

and B Wt, Thimerosal); however, the comparative invasion

potential of untreated living fungi was much higher (32.7 and

69.4% at 2 and 3 h, respectively – control, Fig. 2A and B). As

described previously, we did not observe internalization of killed

yeast cells; these cells remained on the epithelial surface ([9] and

data not shown).

Blocking induced endocytosis via cytD treatment (Wt, cytocha-

lasin D, Fig. 2A and B) also reduced the invasion potential of C.

albicans; however, by 2 and 3 h (24.8 and 50.8%, invasion

respectively) the invasion inhibition elicited by blocking induced

endocytosis was not as striking as for blocking active penetration.

Together, these data demonstrate that C. albicans relies on both

induced endocytosis and active penetration routes for optimal

invasion during the early stages of interaction with epithelial cells,

but that by 3 h, active penetration represents the dominant

invasion mechanism.

Following epithelial invasion, viable C. albicans hyphae rarely

remained in the primarily invaded cell, but rather continued to

penetrate through the basal or lateral membranes and into the

next neighbouring cell (Fig. 2C, upper panel). Typically, within

3 h, viable C. albicans hyphae penetrated from the primarily

invaded cell and through several adjacent epithelial cells or exited

the invaded cell and migrated through the extracellular space

before invading subsequent cells (not shown).

C. albicans Epithelial Invasion
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Induced endocytosis of C. albicans has been shown to be

mediated by Als3- and Ssa1- E-cadherin interactions [10,11]. We

therefore sought to quantitatively determine the contribution of

both Als3 and Ssa1 to the two invasion routes. Viable cells or killed

hyphae of als3D, als3D+ALS3, ssa1D and ssa1D+SSA1 strains

(kindly provided by Scott Filler) were used to infect oral epithelial

cells and invasion kinetics monitored. At both investigated time-

points, invasion of untreated epithelial monolayers by viable als3D
was significantly reduced compared to the wild type under the

same conditions and invasive potential was restored in the

als3D+ALS3 strain. This confirms previous studies that Als3 is

important for invasion [10]. Deletion of SSA1 also reduced C.

Figure 1. Transmission electron microscopy of C. albicans epithelial invasion. Induced endocytosis of thimerosal killed hyphae (A), invasion
of cytochalasin D treated epithelial cells by viable hyphae (B), invasion of untreated epithelial cells by viable hyphae (C), invasion of inactivated
epithelial cells by viable hyphae (D).
doi:10.1371/journal.pone.0036952.g001

Figure 2. Contributions of fungal invasins, induced endocytosis and active penetration to C. albicans oral epithelial invasion. (A and
B) Untreated or thimerosal-inactivated C. albicans cells were co-incubated with either untreated or cytochalasin D treated TR-146 oral epithelial cells
for 2 h (A) and 3 h (B). After fixation, the samples were differentially stained and analyzed by fluorescence microscopy. The experiment was
performed at least two times in duplicates. */**, indicates significant difference compared to the corresponding wild type control (Wt) (p,0.05/
p,0.01, respectively). (C) Micrographs of invading hyphae. C. albicans appears blue (calcofluor white), with extracellular section of the hypha stained
red (Concanavalin A); epithelial cells are stained yellow (Dil). Upper panel: a living hypha penetrating through several epithelial cells. Lower panel:
a killed hypha, fully phagocytosed by an epithelial cell. Only viable hyphae are able to undergo inter-epithelial invasion. Numbers indicate the
number of invaded epithelial cells and arrows mark internalized cells. Scale bar = 10 mm.
doi:10.1371/journal.pone.0036952.g002

C. albicans Epithelial Invasion
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albicans invasion into epithelial cells (24% less invasion than wild

type), but this difference was not statistically significant.

At 2 h and 3 h post-infection, the invasion potential of als3D
cells into untreated and cytD treated monolayers was virtually

identical (als3D, control vs. als3D, cytochalasin D; Fig. 2A and B).

This result, that blocking induced endocytosis in the absence of

Als3 had no further effect on fungal invasion, confirms previous

findings that Als3 mediates induced endocytosis. However,

because the invasion rate of als3D into cytD-treated monolayers

was significantly lower than for wild type cells (Wt, cytochalasin D

vs. als3D, cytochalasin D; Fig. 2A and B), Als3 likely also plays

a role in active penetration, possibly via anchoring C. albicans to the

epithelial substrate. In contrast, deletion of SSA1 did not result in

further reduction in invasion of cytD-treated epithelial mono-

layers.

Interestingly, under conditions which permit induced endocy-

tosis only (thimerosal-treatment of hyphae – als3D, Thimerosal;

Fig. 2 B), invasion of als3D was not completely blocked, although

significantly lower than that of thimerosal-treated wild type cells at

3 h post-infection. This remaining, albeit low level, invasion

potential of killed als3D hyphae provides evidence that C. albicans

possesses other factors which mediate induced endocytosis.

However, because killed als3D hyphae were internalized around

65% less than killed wild type hyphae, we conclude that Als3 is

one of the major invasins of C. albicans.

Based on these observations, we conclude that Als3 plays major

roles in both induced endocytosis and active penetration.

Since fungal-driven active penetration appeared to represent the

dominant route of invasion into oral epithelial cells, we next

investigated whether invasion requires viable host cells. Therefore,

TR-146 oral epithelial cells were killed by fixing with para-

formaldehyde and invasion of C. albicans was quantified by

differential staining. Killing of host cells did not prevent invasion.

However, after 3 h, we observed approximately 30% reduced

invasion into inactivated epithelial cells as compared to viable cells

(data not shown), indicating that viability of host cells and native

host cell properties are not essential for, but enhance invasion.

The Invasion Efficiency of C. Albicans into Host Cells is
Epithelial Cell Type Dependent
Induced endocytosis of non-professional phagocytic host cells

occurs predominantly via cell surface associated protein interac-

tions (e.g. Als3-E-cadherin), whereas active penetration relies on

a combination of physical forces and directed hyphal growth [12].

To further examine the relative importance of the two invasion

mechanisms and to determine whether invasion is epithelial cell

type-dependent, we next investigated the invasion potential of C.

albicans interacting with HeLa epithelial cells as compared to TR–

146 oral cells. HeLa cells can be invaded by C. albicans [20], but do

not express E–cadherin on the cell surface [21]. We first confirmed

the presence of E–cadherin on the surface of TR-146, but not

HeLa cells after infection with C. albicans via immuno-fluorescent

microscopy (data not shown).

We reasoned that if induced endocytosis was exclusively reliant

on C. albicans- E–cadherin interactions on epithelial cells, then

blocking active penetration should completely block invasion of

HeLa cells. Indeed, during the first 2 h, killed hyphae invaded

HeLa cells very poorly (Wt+Thim (HeLa), Fig. 3A). However, by

3 h, the number of killed hyphae endocytosed by TR-146 and

HeLa cells was comparable. This data suggests the existence of

a secondary, E-cadherin-independent endocytic pathway.

On the fungal side, Als3 and Ssa1 are required for E-

cadherin-mediated induced endocytosis. Viable als3D exhibited

significantly reduced HeLa invasion compared to the wild type

and invasion was restored by ALS3 complementation (Fig. 3B).

However, the relative reduction in invasiveness of als3D into

HeLa cells was not as strong as compared to TR-146 oral

epithelial cells (Fig. 2A/B and Fig. 3B). Indeed, whilst wild type

C. albicans invaded TR-146 more efficiently than HeLa cells,

als3D cells exhibited a much greater defect in TR146 invasion.

This reinforces the concept that Als3 plays a major role in E-

cadherin-dependent epithelial invasion, but also functions in-

dependently of E-cadherin. Killed als3D cells (induced endocy-

tosis only) were again internalized by HeLa cells, although to

a lesser degree than the wild type and this defect was reversed

in the als3D+ALS3 strain. ssa1D also exhibited reduced invasion

of HeLa cells. However, internalization of killed ssa1D cells by

HeLa cells was comparable to the wild type.

Together these data suggest that, although Als3-E–cadherin

interaction represents a major mechanism of induced endocytosis,

other endocytic mechanisms exist, however, the specific mechan-

isms and receptors remain unknown.

Invasion potential is calculated based on the percentage of

invading cells which remain attached to the epithelium following

the differential staining procedure. However, the different

treatments and genetic backgrounds analyzed may also influence

the absolute number of cells which remain attached. We therefore

determined the percentage of C. albicans cells which remained

attached to the epithelium. Adhesion rates are summarized in

Supplementary Table S1. Compared to living C. albicans cells,

killed hyphae adhered poorly to both epithelial cell lines. Notably,

even viable als3D cells adhered poorly to epithelial monolayers,

indicating that the absolute (invasion events per inoculum)

invasion defect of this strain is even greater than the ‘‘specific’’

invasion potential of attached cells.

Host Factors Influence Adhesion, Invasion and Damage
Symptomatic stages of superficial C. albicans infections are

characterized by damage and destruction of epithelial layers.

Disruption of these barriers may result in increased exposure of

extracellular matrix (ECM) molecules and the release of blood

and blood components into the mucosal layer. Such extracellular

components can be used by pathogenic microorganisms to

facilitate infection or colonization of epithelial tissues by bridging

between adhesins of the pathogen and epithelial receptors [15].

To investigate whether C. albicans can utilise ECM proteins

during invasion, fungal cells were incubated with fibronectin,

vitronectin, collagen, laminin or E–cadherin and both adhesion

and induced endocytosis (invasion of thimerosal-killed hyphae)

were independently assessed. Pre-incubation of either epithelial

cells or C. albicans cells with fibronectin, vitronectin, laminin or

collagen did not influence adhesion or induced endocytosis of

C. albicans (not shown). On the other hand, pre-incubation of

C. albicans with E–cadherin prior to killing significantly reduced

fungal uptake by 48% (not shown), indicating that invasin

molecule(s) on the surface of hyphae may have been blocked,

thus preventing induced endocytosis.

Next, we tested the influence of serum on C. albicans adhesion,

invasion and damage. C. albicans was pre- and/or co-incubated

with serum during interaction with epithelial cells. Both native or

heat-treated (complement-inactivated) human or foetal bovine

serum were used. Interestingly, despite having a positive effect on

hyphal formation (not shown), treatment with either human or

bovine serum strongly reduced adhesion to epithelial cells (Fig. 4A).

Serum heat-treatment did not further affect adhesion, suggesting

that complement, or other heat-labile components were not

responsible for the observed serum-mediated inhibition of

adhesion.

C. albicans Epithelial Invasion
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Invasion of thimerosal inactivated hyphae (induced endocy-

tosis only) was not significantly affected by the presence of FBS

(Fig. 4B). In contrast, induced endocytosis was dramatically and

significantly reduced in the presence of human serum (Fig. 4C)

and this effect was also observed upon pre-treatment of fungal

cells. Heat-treatment of human serum did not further affect

epithelial invasion, indicating that complement or other heat-

labile components, do not influence the invasion process under

these conditions. Finally, epithelial cell damage was strongly and

significantly reduced when C. albicans was pre- and co-incubated

with human, but not bovine serum (Fig. 4C). Again, heat-

treatment did not influence the extent of epithelial damage. In

summary, these data show that both bovine and human serum

block C. albicans adhesion to epithelial cells, whilst human serum

strongly reduced both epithelial invasion and damage.

Discussion

Cellular Dissection of the Early Stages of C. Albicans-
epithelial Interaction
Microbial invasion of non-professional phagocytic host cells can

occur via two general mechanisms: active penetration or induced

Figure 3. Differential invasion of TR-146 or HeLa epithelial cells by C. albicans. (A) Oral TR-146 or HeLa epithelial cells were co-incubated
with 105 C. albicans cells (alive or thimerosal killed – Wt+Thim) for either 1, 2 or 3 h. (B) HeLa epithelial cells were co-incubated with 105 indicated C.
albicans strains (alive or thimerosal killed) for 3 h. Following fixation, samples were differentially stained and analyzed by fluorescence microscopy.
The experiment was performed at least two times in duplicates. */**, indicates significant difference between cell lines (A) or between mutant and
wild type (B) (p,0.05/p,0.01, respectively).
doi:10.1371/journal.pone.0036952.g003

Figure 4. Adhesion, invasion and damage of oral epithelial cells by C. albicans in the presence of serum. (A) Adhesion of viable C.
albicans cells to oral epithelial cells in cell culture medium supplemented with 10% human [hSerum] or fetal bovine serum [FBS]; (+) heat-treated; (2)
untreated; ctr, C. albicans without serum. (B) Induced endocytosis of thimerosal-inactivated C. albicans hyphae. Either oral epithelial cells were
supplemented with untreated and heat-treated 10% hSerum or FBS [EC] or C. albicans hyphae [Ca] were pre-incubated with untreated or heat-
treated 40% serum; ctr killed hyphae without serum. (C) Cell damage of epithelial monolayers caused by viable C. albicans cells after 24 h in cell
culture medium supplemented with untreated or heat-treated 10% hSerum or FBS compared to C. albicans infection with the addition of 1% serum
(ctr). **, significant difference compared to control adhesion, invasion or damage (p#0.01).
doi:10.1371/journal.pone.0036952.g004

C. albicans Epithelial Invasion
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endocytosis. Plant pathogenic fungi can actively penetrate plant

cell walls by producing specialized structures (appressoria),

hydrolases and high turgor pressures [22,23]. Parasites, such as

members of the apicomplexa group, can actively penetrate into

host cells using actin-mediated forces [24]. Bacteria, on the other

hand, cannot actively penetrate host cells, but have developed

several strategies to cause uptake by induced endocytosis [25,26].

Bridging molecules promote adhesion and can facilitate induced

endocytosis [27]. Therefore, pathogenic microbes have developed

different mechanisms for invading host cells.

C. albicans is capable of invading epithelial cells via both induced

endocytosis and active penetration [8,9,10].

Endocytosis of C. albicans is induced by binding of fungal cell

surface proteins such as Als3 and Ssa1 to host cadherins, followed

by host clathrin, dynamin and cortactin accumulation at the site of

internalization [11,28]. The mechanisms by which C. albicans

actively penetrates epithelial cells, on the other hand, has

remained rather speculative, but presumed to rely on a combina-

tion of physical pressure exerted by directed hyphal growth, the

extension of hypha and the secretion of hydrolytic enzymes [12].

The first aim of this study was to elucidate the relative

contributions of these two invasion routes. To do this we: used two

epithelial cell lines (TR-146, which express E–cadherin and HeLa,

which do not); treated epithelial cells with cytD (to selectively block

induced endocytosis); killed epithelial cells (to block all host

activity); used C. albicans wild type or strains lacking the fungal

invasins, Als3 and Ssa1; and killed the fungal cells with thimerosal

(to selectively block active penetration). Together our data support

a model whereby: C. albicans can invade via two distinct, yet

complementary, mechanisms (induced endocytosis and active

penetration); Als3-E–cadherin-mediated internalization represents

the dominant mechanism driving induced endocytosis, but that an

Als3- and E–cadherin- independent mechanism of induced

endocytosis exists; finally, active penetration represents the

dominant invasion route for C. albicans into epithelial cells.

Induced Endocytosis is Mediated by Als3-E-cadherin-
Dependent and Independent Mechanisms
Although Als3/Ssa1-E-cadherin binding on epithelial cells has

been shown to mediate induced endocytosis [10,11], we sought to

determine whether E–cadherin independent endocytic pathways

of epithelial cells exist. We therefore compared invasion rates of

viable and killed wild type, als3D and ssa1D cells into TR-146

epithelial cells (either untreated or treated with cytD) or into HeLa

cells. Our data confirmed that Als3 represents a major invasin of

C. albicans; however, we also provide compelling evidence that an

E–cadherin independent endocytic pathway exists.

Viable als3D exhibited significantly reduced invasion of both

untreated TR-146 and HeLa cells. However, ALS3 deletion had

a greater negative impact on invasion into E-cadherin[+] TR-146

cells than into E-cadherin[2] HeLa cells, in agreement with

previous studies that Als3-E–cadherin interaction contributes to

epithelial induced endocytosis [10]. Moreover, blocking induced

endocytosis in the absence of Als3 (via cytD treatment) did not

further influence invasion, providing additional evidence that Als3

mediates host cytoskeleton reorganization. In addition, under

conditions, which permit induced endocytosis only (killing of

hyphae with thimerosal-treatment), uptake of als3D cells by TR-

146 was 65% lower than C. albicans wild type cells. Together this

confirms previous reports that Als3 represents a major C. albicans

invasin, but that other invasins also trigger induced endocytosis of

oral epithelial cells [10,11]. These must include as yet un-

discovered invasins, as deletion of the only other known C. albicans

invasin gene, SSA1 did not inhibit induced endocytosis by TR–146

or HeLa. It is possible that Ssa1-mediated endocytosis is cell type-

specific, as the ssa1D mutant has previously been shown to exhibit

impaired endocytosis of endothelial and FaDu epithelial cells [11].

Als3 would also appear to significantly contribute to invasion via

active penetration, because invasion of als3D into cytD treated

TR-146 cells (active penetration only) was significantly reduced

compared to the wild type under the same conditions. Together

with our data that als3D exhibited reduced invasion into HeLa

cells (which do not express E-cadherin), this would suggest that

Als3 contributes considerably to active penetration, possibly via its

adhesin function, by anchoring the fungal cell to the epithelium.

On the host side, E–cadherin is the only epithelial surface

receptor known to mediate endocytosis of C. albicans [10,11]. In

line with this, we observed virtually no internalization of

thimerosal killed C. albicans hyphae (induced endocytosis only)

into [E-cadherin2] HeLa cells within the first 2 h of co-incubation.

Strikingly though, by 3 h, HeLa cells had internalized similar

numbers of killed C. albicans hyphae as TR-146 cells. Because

HeLa cells do not express E–cadherin ([21] and this study) this

demonstrates that C. albicans can be endocytosed via an E-

cadherin-independent endocytic pathway. It is likely that Als3

either alone or as part of a multiprotein complex contributes to

this E-cadherin-independent endocytic mechanism, as killed als3D
were endocytosed by HeLa cells less efficiently than the wild type.

Active Penetration Represents the Dominant Invasion
Route
One of the major aims of this study was to dissect the relative

importance of induced endocytosis versus active penetration to

epithelial invasion. Living C. albicans on untreated TR-146

epithelial monolayers, capable of invading via either induced

endocytosis or active penetration, exhibited invasion rates of

32.7% and 69.4% at 2 h and 3 h, respectively. Selectively blocking

induced endocytosis reduced the invasion potential to 24.8 and

50.8% at 2 and 3 h, respectively. Selectively blocking active

penetration, on the other hand, reduced the invasion potential to

2.5 and 12.2% at 2 and 3 h, respectively. Therefore, within the

first 3 h of infection, active penetration accounts for approximately

70% of C. albicans invasion potential. This is supported by the fact

that killing epithelial cells resulted in a 30% reduction in invasion

potential. Similarly, C. albicans was able to invade HeLa cells

(which do not express E-cadherin) at a rate similar to invasion of

cytD treated TR-146 cells.

Therefore, we have demonstrated that C. albicans invades

epithelial cells predominantly via active penetration, whilst

induced endocytosis plays a lesser, albeit significant role, during

the early stages of epithelial interactions.

Human Serum Components Protect Epithelial Cells from
Invasion and Damage
Within the human host, C. albicans cells are permanently

exposed to host molecules, which may bind to the fungal surface.

Interestingly, we found that human, as well as calf sera, can reduce

adhesion to oral cells. This effect may be host cell specific, as

bovine serum has previously been shown to enhance C. albicans

adhesion to endothelial cells [29]. One possible explanation for

our observations is that serum factors block fungal adhesin-host

ligand interactions, thereby inhibiting attachment. Since human

serum had a greater inhibitory effect on attachment than bovine

serum, we speculate that human serum molecules may bind to C.

albicans adhesins or host ligands more efficiently or with greater

specificity. Such interactions may also inhibit the interaction

between invasins and host cell receptors required to induce
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endocytosis. Thus, in agreement with the study of Phan et al.

(2005), which demonstrated inhibition of endocytosis by serum, it

would appear unlikely that serum components act as bridging

molecules during interactions with epithelial cells [30]. However,

we only observed reduced invasiveness upon treatment with

human serum, indicating that invasion-inhibitory factors are host

specific and not found in bovine serum. Such human serum-

specific effects have been previously reported: human but not

bovine serum can inhibit apoptosis, membrane permeabilization

and the release of chemokines in epithelial cells [31]; human, but

not bovine, serum stimulates the expression of fibronectin by

epithelial cells [32]. Therefore, it is possible that treatment with

human serum triggered an epithelial reaction, which protected

these cells from fungal invasion and damage. Since serum is

a complex mixture of many factors, we additionally tested the

influence of single extracellular host matrix (ECM) proteins on C.

albicans adhesion and invasion capacities. However, exogenous

addition of fibronectin, vitronectin, laminin or collagen did not

influence invasion into oral epithelial cells. ECM proteins are

highly diverse and fulfil several functions within the human host.

Depending on the anatomical niche, ECM proteins are either

soluble (within the plasma) or insoluble (in the extracellular

matrix). They can influence cell differentiation, migration,

adhesion as well as the phenotype and survival of human cells.

Furthermore, ECM proteins are present as homo-, di-, or trimeric

proteins and can form large protein complexes. Due to alternative

splicing events, several chain variants and isofoms of the proteins

are present in the host. It is possible, therefore, that the ECM

proteins used in the present study were not in the correct sterical

conformation, chain combination or isoform to act as bridging

molecules for C. albicans. In contrast, addition of the cell surface

protein E–cadherin led to significantly reduced fungal uptake. As

epithelial-associated E–cadherin acts as a receptor for fungal

invasins (Als3, Ssa1) and mediates induced endocytosis, it is

possible that the addition of exogenous soluble E–cadherin

saturates such fungal invasins and hence inhibits endocytosis.

This observation provides further evidence that E–cadherin-

binding is an important mechanism underlying induced endocy-

tosis of C. albicans. In summary, we have shown that induced

endocytosis and active penetration are clearly distinguishable

invasion mechanisms and that viable C. albicans hyphae invade oral

epithelial cells via both invasion routes. Active penetration

represents the dominant invasion mechanism, whereas Als3-

mediated induced endocytosis is critical at early time points of

invasion. Moreover, we have identified the existence of an E–

cadherin independent endocytic pathway. Finally, we provide

compelling evidence that human serum has protective properties,

inhibiting C. albicans adhesion to, invasion into and damage of oral

epithelial cells.

Materials and Methods

Strains and Media
Candida albicans strains SC5314 [33,34], CAI4 [33] carrying

CIp10 [35], als3D [36] and ssa1D [11] strains were used in this

study. All strains were maintained on YPD plates (1% peptone,

1% yeast extract, 2% glucose, 2% agar). For use in experiments,

C. albicans cells from an overnight YPD culture were either diluted

to OD600 = 0.2 in fresh liquid YPD medium and grown to log

phase for a further 4 h at 30uC or semisynchronized for a further

24 h in liquid YPD medium at 30uC [37]. C. albicans cells were

then harvested by centrifugation, counted with a hemacytometer

and adjusted to the desired concentration in serum-free DMEM

medium (containing 2 mM L-glutamine) immediately prior to the

experiment.

Epithelial Cells
The squamous carcinoma of buccal mucosa derived epithelial

cell line TR-146 was obtained from Cancer Research Technology,

London [38]. The HeLa cell line was commercially obtained from

the Deutsche Sammlung von Mikroorganismen und Zellkulturen

GmbH (DMSZ) (ACC 57) [39]. These cells were routinely

cultured (passages 4 to 20) in DMEM medium supplemented with

10% FCS, 1 mM pyruvic acid and 2 mM L-glutamine (all media

from Biochrom AG, Berlin, Germany), without antibiotics or

antifungal agents. All cell types were maintained in a humidified

incubator at 37uC in 5% CO2. For standard experiments, 16105

of TR-146 or HeLa cells were seeded onto acetic acid treated

15 mm diameter glass coverslips previously placed in 24-well

plates and cultured for 2–3 days post-seeding.

Invasion Assay
The number of C. albicans cells that invaded epithelial cells was

determined using a differential staining protocol derived from Park

et al. (2005) [40]. Briefly, epithelial cells were grown on 15 mm

diameter glass coverslips for 2 days (monolayers of TR-146 and

HeLa cells). To block induced endocytosis, epithelial cells were

pre-treated with 0.5 mM of the microfilament inhibitor cytocha-

lasin D (cytD) for 30 min and co-incubated throughout the whole

experiment. At 0.5 mM, cytD inhibits rearrangement of the host

cell actin cytoskeleton, but does not influence fungal viability,

morphology or growth [9,40]. Since cytD-treated host cells cannot

endocytose killed hyphae at 3 h, we concluded that cytD blocks

endocytosis over a period of at least 3 h. The monolayers were

infected with 105 log phase yeast cells of C. albicans. For

determining induced endocytosis, C. albicans yeast cells were either

grown to log phase or grown for 3 h on a plastic surface in DMEM

without serum at 37uC, 5% CO2 and 95% humidity. Next, cells

were inactivated with 100 mM thimerosal for 45 min (which kills

100% of all treated cells (data not shown)), extensively washed with

water and PBS, scraped off and added to the epithelial cells. After

2 or 3 h incubation, the medium covering the cells was aspirated

and monolayers were rinsed three times with PBS to remove

fungal cells, which were not associated with epithelial cells. For

epithelial membrane staining, the cells were incubated with

Vybrant DiI cell-labeling solution (Molecular Probes, USA) 1:20

in DMEM for 5 min in a humidified incubator at 37uC. Next, the

epithelial cells were fixed with 4% paraformaldehyde. All fungal

cells remaining adherent to the surface of the epithelial cells were

stained for 1 h with green-fluorescent Alexa Fluor 488 conjugate

of succinylated concanavalin A (Con A) (Invitrogen) (note: ConA

stains only the extracellular, non-invaded fungal elements). After

rinsing with PBS, epithelial cells were permeabilized in 0.5%

Triton X-100 in PBS for 5–10 min. Next, entire fungal cells (i.e.

invaded and non-invaded) were stained with calcofluor white. The

coverslips were then rinsed with water, mounted inverted onto

slides, and the stained cells were visualized with epifluorescence

(Leica DM5500B, Leica DFC360 FX) using filter sets to detect

Alexa Fluor 488, 568 and calcofluor. The percentage of invading

C. albicans cells was determined by dividing the number of

[partially] internalized cells by the total number of adherent cells.

At least 50 fungal cells were counted on each coverslip and all

experiments were performed in duplicates on at least two separate

occasions. In the case of thimerosal-killed cells, on some occasions,

fewer cells were counted as fewer dead cells remained adhered to

the epithelium. To score adhesion, 25 random high powered fields
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per coverslip were analyzed. Images were taken with a Leica

Digital Camera DFC360 FX.

To test whether invasion requires viable host cells, TR-146 cells

were killed with 4% paraformaldehyde per well before infection

with C. albicans.

In experiments designed to test the effect of extracellular matrix

proteins or human serum on the endocytosis of C. albicans by

epithelial cells, invasion assays were performed as described above

except that either TR-146 cells were pre-treated with FBS-free

culture medium containing 20 mg fibronectin, 500 ng vitronectin,

1 mg E-cadherin, 20 mg laminin, or 5 mg collagen per well before

infection with C. albicans or fungal cells were pre-treated with

ECMs or 40% serum 1 h before killing with thimerosal. Similar

concentrations of ECM have previously been shown to interact

with microbes and epithelial cells [14,41,42,43,44,45]. The assay

for TR-146 treatment was performed in DMEM with 10% serum

or the indicated amount of ECMs throughout the whole

experiment. Serum from at least 5 donors were pooled prior to

use in experiments. Control cells were treated with water.

For the concentrations selected, none of the ECM components

used affected fungal viability as determined by plating a fraction of

the medium containing C. albicans cells and counting CFUs or by

determination of hyphal length with or without inhibitor.

Damage Assay
Epithelial cell damage caused by C. albicans during interaction

with monolayers of TR-146 cells was determined by the release of

lactate dehydrogenase (LDH) into the surrounding medium. TR-

146 monolayers were grown to 95% confluency in 96 well culture

plates and infected with 26104 cells in DMEM with 1% FCS. For

control samples, TR-146 cells were incubated with DMEM

medium only or DMEM containing 0.5% Trion X-100;

additionally, C. albicans cells were seeded without epithelial cells.

To test the influence of serum on damage, C. albicans cells were

treated with 40% heat-inactivated or untreated human (hSerum)

or fetal bovine serum (FBS). After rinsing, the fungal cells were

added to monolayers of epithelial cells or untreated wild type cells

were incubated with monolayers of epithelial cells in DMEM

medium supplemented with 10% heat-treated or untreated

hSerum or FBS. After 24 h extracellular LDH release into the

medium was measured spectrophotometrically at 492 nm using

the Cytotoxicity Detection Kit (LDH) from Roche Applied

Science according to the manufacturer’s instructions. The

percentage cytotoxicity of epithelial cells infected with C. albicans

cells was calculated as follows: experimental LDH release minus

(background cells plus background Candida)/mean maximal LDH

release minus background cells and compared to 100% ctr. All

experiments were performed in triplicates for each condition and

repeated three times. For statistical analysis, p-values ,0.05 were

considered as significant.

Transmission Electron Microscopy
For TEM, oral epithelial cells (TR-146) were grown on

polystyrene plastic in DMEM with 10% FBS. After formation of

a confluent layer, epithelial cells were treated for 15 min with

paraformaldehyde to kill the cells or were left untreated and either

thimerosal killed or viable C. albicans SC5314 in DMEM were

added. For blocking induced endocytosis, oral epithelial cells were

treated with 0.5 mM cytochalasin D as described above. After 3 h

incubation non-adherent cells were removed by rinsing three times

with PBS and fixed with Karnovsky fixative (7.5% Paraformalde-

hyde, 3.6% Glutaraldehyde, pH 7.2). Post-fixed samples (1%

OsO4, 1 h) were rinsed with distilled water, block-stained with

uranyl acetate (2% in distilled water), dehydrated in alcohol

(stepwise 30–96%), immersed in propylenoxide and embedded in

Epon (polymerized 48 h at 60 C, Serva, Heidelberg). Ultra-thin

sections were stained with uranyl acetate (2% in distilled water)

and lead citrate, stabilized by carbon evaporation (BAE 250, BAL

TEC; Vaduz, Liechtenstein) and examined with a TEM 902 (Carl

Zeiss SMT AG, Oberkochen) at 80 kV. Images were digitized

using a 1K slow scan CCD – camera (Proscan, Scheuring).

Statistical Analyses
The data were analyzed using Student’s tests to compare means.

For these analyzes, p values of ,0.05 were considered to be

significant. For some experiments we chose to set the level of

significance for tests at p,0.01.

Supporting Information

Table S1 Adhesion rates of C. albicans strains to
epithelial cells. Values represent the average percentage (with

standard deviation) of adhesion at 3 h of indicated C. albicans

strains (either viable or thimerosal-inactivated) to HeLa or TR-146

epithelial cells (either untreated, Ctrl, or treated with cytochalasin

D).
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