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Abstract

We investigated the differences in brain fMRI signal complexity in patients with schizophrenia while performing the
Cyberball social exclusion task, using measures of Sample entropy and Hurst exponent (H). 13 patients meeting diagnostic
and Statistical Manual of Mental Disorders, 4th Edition (DSM IV) criteria for schizophrenia and 16 healthy controls underwent
fMRI scanning at 1.5 T. The fMRI data of both groups of participants were pre-processed, the entropy characterized and the
Hurst exponent extracted. Whole brain entropy and H maps of the groups were generated and analysed. The results after
adjusting for age and sex differences together show that patients with schizophrenia exhibited higher complexity than
healthy controls, at mean whole brain and regional levels. Also, both Sample entropy and Hurst exponent agree that
patients with schizophrenia have more complex fMRI signals than healthy controls. These results suggest that schizophrenia
is associated with more complex signal patterns when compared to healthy controls, supporting the increase in complexity
hypothesis, where system complexity increases with age or disease, and also consistent with the notion that schizophrenia
is characterised by a dysregulation of the nonlinear dynamics of underlying neuronal systems.
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Introduction

Schizophrenia can be characterized as deficits in the interaction

between thought, emotion and behaviour resulting from inappro-

priate selection, ordering and sequencing of behavioural elements

[1]. Problems of social interaction are a central feature of

schizophrenia [2]. Positive symptoms of schizophrenia including

hallucinations and delusions have social components while

negative symptoms are exhibited as loss of motivation, social

withdrawal and self-neglect [3]. The social impairments in

schizophrenia have been linked to poor clinical outcomes [4]

but there is limited understanding of the underlying mechanisms

underpinning these impairments. Recently, a few studies have

investigated the neural mechanisms underlying social impairment

in schizophrenia using fMRI [2].

The fMRI paradigm that has most frequently been used to

study social exclusion is the ‘‘Cyberball’’ task [5]. In this task,

participants play a ball-passing game with two cartoon figures and

the participant is included and excluded from the game at different

times (Figure 1). Some brain regions have been found to show

responses to social exclusion. They are the ventral anterior

cingulate cortex (vACC) and the medial prefrontal cortex (mPFC)

[6]. Also, the ventrolateral PFC has been found to show responses

to social exclusion [7,8]. The discrimination of these brain regions

suggests that they are relevant for social information processing.

Information processing in biological systems such as the human

brain operates at multiple levels. At the cellular level, it occurs as a

result of the dynamic communicatory activities of the nervous

system which can be influenced by physical, chemical and

electrical stimuli [9]. It also operates at the network level,

especially in fMRI signals where high resolution voxels contain

many thousands of neuronal connections. Activities such as

information processing in biological systems are governed by

thresholds and saturation phenomena [9]. When these thresholds

are exceeded, saturation sets in giving rise to nonlinear effects.

Biological systems typically exhibit complex behaviour with

nonlinear dynamic properties [10]. Nonlinearity, a necessary

condition for chaotic behaviour is present in many dynamic

systems existing in nature, such as the human brain [9]. One

important manifestation of nonlinear effects at the network level is

what can be thought of in terms of hemodynamic ‘‘refractoriness’’

[11], in which a prior stimulus modulates the response to a

subsequent stimulus that is proximate in time. This means that

responses at high-stimulus presentation rates saturate and, in some

instances, show an inverted U behaviour. This modulation

represents an interaction, over time, between the response to

successive stimuli and results in reduced responsiveness at high-

stimulus frequencies. This behaviour appears to be specific to

BOLD effects [11]. Recent developments in the study of nonlinear
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dynamics have provided novel methods that may facilitate a better

understanding of complex systems in biology and medicine.

Investigators have argued that the pathway of change in the

behaviour and physiology of an organism with age and disease can

either result in a decrease or an increase in the complexity of the

system’s output. Complexity can be defined as the difficulties

arising when describing or predicting a signal [12]. Normal

physiology requires an intricate network to control function

effectively. These networks incorporate a mix of integrations,

differentiation, feedback loops, and other regulatory mechanisms

that enable an organism to perform multiple and varied activities.

Lipsitz and Goldberger [13,14] argued that with ageing and

disease, there is a loss of complexity in the dynamics of many

integrated physiological processes of an organism. Vaillancourt

and Newell postulate that the directional change in output

complexity of a physiological or behavioural system with ageing

or disease depends on the system having an underlying fixed point

or an oscillatory attractor determining output. An attractor is the

state to which a system returns to after perturbation [15]. The

fixed-point attractor system generates more complexity in the

output when it is healthy and optimal performance is maintained.

When the system is failing, output complexity is reduced and

optimal performance may not be maintained. An example of a

fixed point attractor system is blood pressure regulation which

occurs about a fixed-point intrinsic dynamic (homeostatic process).

In those systems where the attractor is oscillatory the opposite is

true. The system output increases in complexity when it is failing.

An example of an oscillatory attractor is the circadian rhythm.

The historical development of the concepts of complexity has

centred on measuring regularity using various metrics based on

nonlinear time series analysis techniques. One of these techniques

is the correlation dimension, which has been shown to be lower in

Alzheimer’s disease (AD) patients than control subjects [16–18].

Also, the first Lyapunov exponent has been used to characterize

nonlinear dynamics [19] where AD patients have significantly

lower first Lyapunov exponent values than controls [18,20]. The

shortcomings of these techniques are that they require a large data

set [21] and assume that the time series is stationary [22], which is

normally not true for biological data.

An alternative solution is to compute the entropy of the time

series. Entropy measures the randomness and predictability of a

stochastic process and in general increases with greater random-

ness. Sample entropy (SampEn) computes the negative logarithm

of the conditional probability that two similar sequences remain

similar at the next point, where self matches are not included in

calculating the probability [23]. A lower value of SampEn

indicates lower complexity of the time series, while a higher value

indicates higher complexity. Another alternative approach is to

compute the fractal complexity of the time series. The Hurst

exponent, H, is a measure of the fractal complexity (predictability)

or persistence of fractal processes such as fractional Gaussian noise

or Brownian motion [24]. The values of the Hurst exponent, H

range between 0 and 1. A time series can be classified into three

categories based on the value of H; (1) H = 0.5 indicates a random

white noise series; (2) 0,H,0.5 indicates a rough anticorrelated

series and; (3) 0.5,H,1 indicates a positively correlated series.

These estimates of complexity can be used to probe different

aspects of complex signals which may be affected by ageing and

disease, and can be applied to a range of physiological measures.

The application of nonlinear dynamic analysis techniques in

schizophrenia using fMRI has been very limited to date [25,26]

and to the best of our knowledge these techniques have not been

used to investigate social exclusion in schizophrenia. The present

study investigated the changes in complexity of brain fMRI signals

of patients with schizophrenia while performing a social exclusion

task (a modified version of the Cyberball paradigm that aimed to

minimise the confounding effect of expectation violation) [2], using

measures of Sample entropy and Hurst exponent. Brain signals

from patients with schizophrenia have been hypothesized to

constitute a complex dysregulation of neurobiological and

behavioural patterns rather than a simple up and down regulation

[27]. Therefore, we hypothesise that patients with schizophrenia

would exhibit higher complexity due to dysregulation in neural

responses when compared to healthy controls.

Materials and Methods

Participants
The Grampian Local Research Ethics Committee (now North

of Scotland Research Ethics Committee), National Health Service

(NHS) Grampian, Aberdeen approved the present study. The

ethics approved information sheet was given to all the patients and

healthy controls. It was suggested that participants discuss the

study with other people and take several days to decide on any

questions. The participants were then invited to a screening

interview where one of the researchers (DJS) had a discussion with

them to determine if they understood the study. At the interview

sessions, they were encouraged to ask any questions they might

have, which would then be answered. Only the participants that

understood the task, wished to participate in the study and met the

eligibility criteria were recruited to the study. All participants

provided written informed consent by signing the consent form

themselves. 13 patients (11 male) meeting Diagnostic and

Statistical Manual of Mental Disorders, 4th Edition (DSM IV)

criteria for schizophrenia (mean age; 41.23611.78) and 16 healthy

controls (7 male) (mean age; 41.56611.92) were recruited.

Exclusion criteria were any other neurological disorder (e.g.

epilepsy, gross structural brain abnormality), claustrophobia, or

other DSM IV Axis I or II diagnosis.

The patients antipsychotic medications at the time of scanning

were the following (dose/day): clozapine 250–900 mg, quetiapine

250–700 mg, olanzapine 20 mg, risperidone 6 mg and chlor-

promazine 500 mg, depot pipothiazine palmitate 50 mg, four

weekly and depot flupenthixol decanoate 200 mg, three weekly.

Two patients were also receiving long term antidepressant

medication because of previous episodes of depressive illness:

sertraline 50 mg and citalopram 20 mg.

Schizophrenia Syndrome Severity Scores
Immediately before the fMRI acquisition, all the patients were

assessed using the Positive and Negative Syndrome Scale (PANSS)

[28], which is used as an index of the schizophrenia syndrome

severity. The mean PANSS scores are shown in Table 1.

Figure 1. The Cyberball social exclusion task.
doi:10.1371/journal.pone.0095146.g001
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Antipsychotic Medication Equivalents
The different antipsychotic medication doses were placed on a

common dimension using the chlorpromazine equivalents (CPZE),

which is a numeric scale. Table 1 shows the mean chlorpromazine

equivalents.

Social Distress Behavioural Measures
Both patients and controls were assessed using a self-report

‘social distress’ rating questionnaire [5] after fMRI acquisition.

The average social distress score was estimated from four primary

social ‘needs’: belonging, self-esteem, meaningful existence and

control [5]. A 0 to 10 point question was used to assess each social

need, ranging from 0 (not at all) to 10 (very much). The ‘social

distress’ assessment followed those closely described by Gradin et

al [2]. The mean scores of the ‘social distress’ ratings are shown in

Table 1.

Brain Imaging Procedures
Functional MR images were acquired with a T2* weighted

gradient echo echo-planar imaging sequence (EPI) in the axial

plane using a GE Medical Systems Signa 1.5 T MRI scanner. A

total of 30 axially orientated 5 mm thick contiguous sequential

slices were obtained for each of 244 volumes using a TR of 2.5 s,

TE of 30 ms, flip angle of 90u, field of view of 240 mm and matrix

64664. A total of 240 volumes of fMRI data remained after

discarding the first four volumes to allow for signal conditioning.

To help maintain the subject’s attention, fMRI was done using a

standard head coil while performing the ‘‘Cyberball’’ social

exclusion task.

The ‘‘Cyberball’’ Social Exclusion Task
The ‘‘Cyberball’’ social exclusion task is shown in Figure 1. All

participants performed a version of the ‘‘Cyberball’’ task during

fMRI scanning. This task has already been described in detail by

Williams et al. [5] and Eisenberger et al. [7]. In Figure 1, the

participants represented by an animated hand, play a ball passing

game with two cartoon figures. The participants pressed one of

two buttons to pass the ball to each of the cartoon figures in turn.

Each of the cartoon figures also pass the ball to either the

participant or the other cartoon figure in turn. Following the

approach taken by Gradin et al. [2], the ratio at which the

participant was excluded in the task was varied from 0% exclusion

to 100% exclusion. The ‘‘Cyberball’’ task was explicitly divided

into 17 blocks with the following percentage levels of exclusion: 0,

25, 50, 75, 100, 75, 50, 25, 0, 25, 50, 75, 100, 75, 50, 25 and 0 [2].

The time that the cartoon figures took to pass the ball was varied

randomly to give the impression that they represented ‘real’ people

making decisions. The task was executed in 10 minutes.

Image Pre-processing
The fMRI image pre-processing was performed using SPM8

software (The Wellcome Department of Imaging Neuroscience,

UCL, London, UK). The fMRI data were realigned to correct for

head movement distortion. Temporal high pass filtering was

performed (128 seconds) to reduce low frequency noise. Also,

spatial smoothing was performed to suppress noise and effects due

to residual differences in functional and gyral anatomy during

inter-subject averaging using the full-width at half maximum

(FWHM) of the Gaussian smoothing kernel [8 8 8]. Each voxel

time series was standardized to a mean of zero and standard

deviation of unity.

Table 1. Participants’ characteristics, SampEn, Hurst exponent, PANSS, CPZE and Social distress measures.

Control group Patients with schizophrenia Significance

Age (years)a 41.56611.920 41.22611.780 p = 0.941

Sex (M/F) 7/9 11/2

SampEnb 1.45660.030 1.59860.033 p = 0.004

SampEn after adjusting for only age differencesb 1.45660.031 1.59860.034 p = 0.004

SampEn after adjusting for only sex differencesb 1.47660.029 1.57460.033 p = 0.043

SampEn after adjusting for both age and sex differences togetherb 1.47660.030 1.57360.033 p = 0.048

Hurst exponentb 0.77960.013 0.68760.015 p = 0.000

Hurst exponent after adjusting for only age differencesb 0.77960.013 0.68860.014 p = 0.000

Hurst exponent after adjusting for only sex differencesb 0.76860.012 0.70160.013 p = 0.002

Hurst exponent after adjusting for both age and sex differences togetherb 0.76760.011 0.70260.013 p = 0.001

PANSS_positivea 13.23062.390

PANSS_negativea 12.31065.880

PANSS_generala 22.23066.860

PANSS_totala 47.770613.120

CPZEa 491.0006254.700

Social distress (Averaged score)a 3.77561.245 3.77662.597 p = 0.999

Belonginga 6.56961.449 4.73163.901 p = 0.092

Self-esteema 4.95961.775 5.00063.200 p = 0.965

Meaningful existencea 1.17161.961 1.74862.958 p = 0.540

Controla 2.40162.483 3.17563.606 p = 0.501

aValues are – Mean 6 Standard Deviation;
bValues are – Mean 6 Standard Error; SampEn - Sample entropy; PANSS – Positive and Negative Syndrome Scale; CPZE - chlorpromazine equivalents.
doi:10.1371/journal.pone.0095146.t001
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Calculation of SampEn
SampEn is a modification of the approximate entropy (ApEn)

algorithm [23]. It was proposed in order to reduce the bias of

ApEn, where self-matches were excluded from the ApEn

algorithm, (i ? j) and (1# i # N-m) i.e. vectors are not compared

to themselves. The ApEn algorithm counts each sequence as

matching itself to avoid the occurrence of ln(0). SampEn was

developed and characterized as a new family of measures. It has

the advantage of being less dependent on time series length, and is

able to demonstrate relative consistency over a broader range of

possible r, m, and N values under circumstances where ApEn does

not [23]. SampEn has been used to characterize the nonlinear

features of heart rate (HR) time series for three recumbent

positions [29]. It has also been used to study abnormal HR

characteristics of reduced variability early in the course of neonatal

sepsis, where it has been shown that SampEn of the neonatal HR

falls before the clinical diagnosis of sepsis [30], indicating its value

as an ‘‘early warning’’ of clinical deterioration. It was applied to

MEG signals from Alzheimer’s disease patients [31]. Also, it has

been applied to MEG signals from ADHD patients [32] and a

recent study of resting state fMRI signals from adult ADHD

patients [33]. SampEn can be applied to discriminate both

stochastic processes and noisy deterministic systems. The estima-

tion of SampEn for a time series of length N x1,x2,:::::,xNð Þ is

given as [33]:

SampEn(m,r,N)&{ ln
Umz1 rð Þ

Um rð Þ

� �

Um(r)&½N{mt�{1
XN{mt

i~1

Cm
i (r) ð1Þ

Where

Cm
i rð Þ& Bi

N{(mz1)t

Bi&number of j where dDXi,Xj Dƒr ð2Þ

Xi& xi,xizt,:::::,xiz(m{1)t

� �
ð3Þ

Xj& xj ,xjzt,:::::,xjz(m{1)t

� �
ð4Þ

1ƒjƒN{mt,j=i

N is the number of time points, m specifies the pattern length, r

defines the tolerance value and t is the time delay as shown in Eq.

(1). In Eq. (2), the two patterns i and j of m measurements of the

time series are similar if the difference, dDXi,Xj D between any pair

of corresponding measurements of Xi and Xj is less than or equal

to r. In Eq. (3) and (4), Xi and Xj are pattern vectors (length m)

whose components are time delayed versions of the elements in the

original time series with time delay, t.

Whole brain SampEn maps for each participant of both groups

were generated on a voxel by voxel basis using the same approach

as Sokunbi et al [34] on a MATLAB and C platform. SampEn was

estimated with the following parameters; N = 240 of fMRI time

series, m = 2, t = 1 and r = 0.32 (see Appendix S1) multiplied by

the SD of the fMRI time series. SampEn was computed for the

whole brain at a threshold of 0.1 times the maximum signal to

exclude voxels being calculated outside the brain. The mean whole

brain SampEn value for each participant was calculated.

Estimation of Hurst Exponent
Hurst exponent provides a measure of long-range correlations

of a time series. Several methods for estimating the Hurst

exponents are available, including Hurst rescaled range analysis,

which is the oldest and most common [35], autocorrelation

analysis [36], Fourier analysis [36,37] and maximum likelihood

estimators [38]. Each of the above methods suffers from biases and

slow convergence, a large dataset is required to reduce the bias.

However, two methods have performed consistently better,

requiring smaller datasets and producing less bias [39]. These

are dispersional analysis and Detrended Fluctuation analysis.

Dispersion analysis entails the measurement of the variance or

standard deviation of a signal at a succession of different levels of

resolution [39]. The different levels are obtained by grouping data

points and replacing each with the group average, taking

successively larger groups, which is equivalent to reducing the

resolution. Dispersional analysis can be regarded as a strong

method for characterizing biological or natural time series, which

generally show long-range positive correlation [39]. Biological

signals may be combinations of fractal and periodic components

[40]. Not many such signals have been examined for their fractal

nature. Dispersional analysis has been fairly applied to examine

the regional flow distribution in the heart [41], the lung [42] and

the kidney [43]. In the present study, we apply it to fMRI data of

patients with schizophrenia during social exclusion.

The dispersional relationship of a given signal of length N

x1,x2,:::::,xNð Þ is given as:

SDm&SDn
m

n

� �H{1

H&
log SDm=SDn

� �
log m=n
� � ð5Þ

In Eq. (5), H denotes the Hurst exponent, SD is the variance or the

standard deviation, m specifies the element size used to calculate

SD, and n is the arbitrarily chosen reference size, which is the

length over which an average is obtained. Here, N = 240 volumes

of fMRI time series, m = 2 and n = 1. A linear regression on the

log-log plot was performed and the calculated slope is the best

estimate of H. Whole brain H maps were produced from these

estimates of H. The estimates of H were obtained using

MATLAB.

Statistical Analysis
Conventional statistical analysis was performed on the mean

whole brain SampEn and H values of each subject in both groups

using the Statistical Package for Social Sciences (SPSS 18.0;

Chicago, IL, USA) software. Independent t-tests and General

Linear Model analyses with correction for only age, only sex and

both age and sex differences were performed.

The SampEn and H maps of each subject were normalised to a

standard echo planar imaging (EPI) template, and regional

analyses performed using the two- sample t-test in SPM8,
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comparing the control and schizophrenic groups after correcting

for both age and sex differences together at a family-wise error

(FWE) corrected cluster level significance [44] of p,0.05 and

threshold p = 0.005.

We performed the receiver operating characteristic (ROC)

analyses [45] for the mean whole brain SampEn and H values in

SPSS.

Correlations between the PANSS (positive, negative, general

and total) scores and the estimates of signal complexity (SampEn

and Hurst exponent) at whole brain and regional levels were

tested. Also, correlations between the CPZE equivalents and the

estimates of signal complexity (SampEn and Hurst exponent) at

whole brain and regional levels were tested. Furthermore,

correlations between the average social distress scores and the

estimates of signal complexity (SampEn and Hurst exponent) at

whole brain and regional levels were tested. These whole brain

correlations were performed using Pearson correlation analyses,

while a multiple regression approach in SPM8 was used for the

regional correlations, after correcting for both age and sex

differences together.

Results

Table 1 show the participants characteristics, SampEn, Hurst

exponent, PANSS, CPZE and self-report behavioural (social

distress) measures. Figure 2 (A) and (B) depicts the distribution

of the mean whole brain sample entropy and mean whole brain

Hurst exponent respectively, of individual participants with

increasing age. The control group’s age ranges from 22 to 64

years and patients with schizophrenia from 27 to 58 years. Table 1

shows that when the General Linear Model analyses in SPSS were

repeated with correction for only age differences (p = 0.004 and

p = 0.000), only sex differences (p = 0.043 and p = 0.002) and both

age and sex differences together (p = 0.048 and p = 0.001), the

mean whole brain SampEn and mean whole brain Hurst

exponent of both groups respectively, remained significantly

different. Figure 3 (A) and (B) show the mean whole brain

SampEn and mean whole Hurst exponent difference between the

two groups respectively.

There were no significant differences in individual need scores

(belonging, self-esteem, meaningful existence and control) or in the

overall average social distress score between the control and

patient groups (see Table 1). This shows that patients and controls

were engaged with the Cyberball task and perceived the varying

inclusion and exclusion effect in a similar manner.

Figure 4(A) shows the linear regression curve estimation

between the mean whole brain sample entropy and mean whole

brain Hurst exponent for the whole population. The curve shows

that both estimates of complexity are significantly negatively

correlated (p = 0.001, r = 20.606) after correcting for both age and

sex differences together. Also, we evaluated the ability of SampEn

and Hurst exponent to discriminate patients with schizophrenia

from controls at mean whole brain using the ROC analysis (Zweig

and Campbell 1993). For Sample entropy we obtained the value

for the area under the ROC curve as 0.856, sensitivity as 76.90%,

specificity as 87.50% and accuracy as 82.20% at a threshold of

1.5742. The Hurst exponent produced an ROC area of 0.875,

sensitivity of 68.80%, specificity of 84.60% and accuracy of

76.70% at a threshold of 0.7421. A guide to classifying the

precision of a diagnostic test is related to the area under the ROC

curve. For values of the area between 0.90 and 1, the precision of

the diagnostic test is considered to be excellent, good for values

between 0.80 and 0.89, fair for area between 0.70 and 0.79, poor

when the area is between 0.60 and 0.69 and bad for values

between 0.50 and 0.59. Hence, the results obtained can be

considered good for both Sample entropy and Hurst exponent.

Figure 4(B) and (C) show the ROC curves for the mean whole

brain sample entropy and Hurst exponent respectively.

When the data were tested regionally with a family-wise error

(FWE) corrected cluster level significance of p,0.05, the results of

the two-sample t-tests (p = 0.005) after correcting for both age and

sex differences together are shown in figure 5. The discriminated

regions in magenta and green in the images show significant

differences in SampEn and Hurst exponent between the two

groups. Notably, patients with schizophrenia have higher SampEn

values (higher complexity) and lower H values (higher fractal

complexity) compared to controls. The scatter plots of the brain

areas show complete separation between the groups, as shown in

figure 5. Furthermore, the group differences of both estimates of

complexity intersect at the left Inferior Frontal Gyrus. Table 2

shows the anatomical location of the SampEn and Hurst exponent

differences between both groups, after adjusting for age and sex

differences together.

There were no significant (p.0.05) correlations between each

PANSS (positive, negative, general and total) scores and each

estimate of signal complexity (SampEn and Hurst exponent) at

whole brain and regional analyses levels respectively. Also, no

significant (p.0.05) correlations were found between antipsychotic

dose (calculated as chlorpromazine equivalent) and each estimate

of signal complexity (SampEn and Hurst exponent) at whole brain

and regional levels respectively. Furthermore, there were no

Figure 2. Plots of mean whole brain complexity of the individual participants with increasing age. (A) Mean whole brain Sample
entropy. (B) Mean whole brain Hurst exponent. Error bars denote the standard error of the mean.
doi:10.1371/journal.pone.0095146.g002
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significant (p.0.05) correlations between the average social

distress scores and the estimates of signal complexity (SampEn

and Hurst exponent) at whole brain and regional analyses levels

respectively.

Discussion

This study reports global and regional differences in SampEn

and Hurst exponent between patients with schizophrenia and

controls while performing a social exclusion task. After adjusting

for age and sex differences together, the results show that there

were differences in SampEn and Hurst exponent values at whole

brain and regional levels. In the SampEn analysis, patients with

schizophrenia exhibited significantly higher SampEn values

(higher complexity) than controls while in the Hurst exponent

analysis patients exhibited significantly lower H values (higher

fractal complexity) than controls. These significant differences

indicate that patients with schizophrenia exhibited more complex

fMRI signal than the healthy controls. Also, the significant

negative correlation (p = 0.001, r = 20.606) between the two

estimates shows that as the SampEn values increases (higher

complexity), the H values decreases (higher fractal complexity).

This confirms that both SampEn and H agree that patients with

schizophrenia have more complex fMRI signal than healthy

controls and that the difference between the control and the

patient population is actually due to real differences and not the

measure employed.

From our results, both SampEn and Hurst exponent results

upheld our hypothesis of a higher complexity and are consistent

with the hypothesis that brain signals from schizophrenia

constitute a complex dysregulation of neurobiological and

behavioural patterns rather than a simple up and down regulation

[27]. These findings seem to support the increase in complexity

hypothesis of Vaillancourt and Newell [15] which states that there

is an increase in the output complexity of a physiological or

behavioural system with ageing or disease when the system is

governed by an oscillatory attractor. Increases in complexity have

been previously shown to be associated with schizophrenia.

Takahashi et al [46] measured the dynamic EEG signal

complexity in schizophrenia subjects using multiscale entropy

and found that they showed significantly higher complexity at

higher time scales than in healthy controls in fronto-centro-

temporal, but not in parieto-occipital regions. Post-treatment, this

higher complexity decreased to healthy control subject levels

selectively in fronto-central regions, while the increased complexity

in temporal sites remained higher. In a study of bimanual finger

movements of schizophrenia patients, it was observed that

rhythmic bimanual coordination is more complex in schizophrenic

patients [47]. These findings suggest that patients with schizo-

phrenia consistently demonstrate complex behavioural and

physiological output, consistent with our fMRI complexity results.

If these system theory postulates are true, this would imply that

there is an underlying oscillatory mechanism determining, at least

in part, brain function and that this mechanism is compromised in

schizophrenia.

The abnormally higher complexity may be brought about by a

putative abnormal neurochemical mechanism in schizophrenia. It

has been suggested that a disturbance in dopamine signalling to

the prefrontal cortex may underlie abnormalities observed in this

region in social cognition studies of schizophrenia [48]. Dopamine

is a catecholamine neurotransmitter produced in several areas of

the brain, including the substantia nigra and the ventral tegmental

area of the midbrain. The higher signal complexity observed in

this study may be a consequence of a failure in the feedback

mechanism of the dopamine system responsible for keeping the

system(s) stable.

Our analyses identified abnormalities in the frontal region of the

brain previously identified in a variety of studies using different

techniques. In a volumetric study in first-episode schizophrenia

using tensor-based morphometry, Whitford et al [49] found that

41 first-episode schizophrenia patients showed reduced white

matter volume in a number of regions at baseline relative to

healthy controls. This study concluded that ‘‘Given the role that

white matter plays in neural communication, the authors suggest

that these white matter abnormalities may be a cause of the

dysfunctional neural connectivity that has been proposed to

underlie the symptoms of schizophrenia’’. It may well be that the

increased complexity observed in this study is a result of such

dysfunctional neural connectivity. Using resting-state fMRI to

measure functional connectivity and functional network topology

in schizophrenia [25] the strength of functional connectivity was

found to be significantly decreased, whereas the diversity of

functional connections was increased. They concluded that people

with schizophrenia tend to have a less strongly integrated, more

diverse profile of brain functional connectivity, associated with a

less hub-dominated configuration of complex brain functional

networks. Frontal brain connectivity has been shown to be

abnormal in patients with schizophrenia [50]. Also, Gradin et al.

[2] found abnormalities in the mPFC of patients with schizophre-

nia.

Examining the locations in figure 5 and table 2, the results

showed that both SampEn (magenta) and Hurst exponent (green)

discriminated the left inferior frontal gyrus and also intersected at

this location. In the frontal lobe, SampEn also discriminated the

Figure 3. Group mean complexity differences after correcting for age and sex differences together in the GLM. (A) Group mean
Sample entropy. (B) Group mean Hurst exponent.
doi:10.1371/journal.pone.0095146.g003
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left BA 47 while Hurst exponent detected the right inferior frontal

gyrus. The inferior frontal gyrus consists of Brodmann areas 44, 45

and 47, which also make up the ventrolateral Prefrontal Cortex

(vPFC). The ventrolateral PFC has been reported in fMRI studies

to be active in responses to social exclusion [7,8]. We suggest that

the discrimination of these regions in the frontal lobe may be a

response to the Cyberball social exclusion task performed by the

participants. The Hurst exponent analysis also discriminated other

brain regions not detected by SampEn: the left extra-nuclear (sub-

lobar region) and left middle temporal gyrus were detected in

addition.

Noise is a signal of irregular frequency; it oscillates at irregular

intervals with time and is the signal with the most complex

dynamics and highest measured entropy [12]. It has been

hypothesized that increased noise corruption in the dopamine

system in schizophrenia could interfere with normal phasic

responses to events [51–53]. The findings of higher complexity

in patients with schizophrenia in this study support this hypothesis.

In the ROC analyses, the area under the ROC curve for

Sample entropy (0.856) and Hurst exponent (0.875) shows that the

results obtained can be considered good for both analyses.

Although, Hurst exponent had a higher ROC area and

discriminated more regions in the regional analysis, Sample

entropy had a higher sensitivity (SampEn = 76.90% and

H = 68.80%), specificity (SampEn = 87.50% and H = 84.60%)

and accuracy (SampEn = 82.20% and H = 76.70%) than Hurst

exponent. This suggests that Sample entropy was a more accurate

discriminator and hence a better diagnostic tool in this regard.

Figure 4. Correlation between sample entropy and Hurst exponent, and ROC curves. (A) Linear regression curve estimation between the
mean whole brain sample entropy and mean whole brain Hurst exponent for the whole population. (B) ROC curve for Sample entropy. (C) ROC curve
for Hurst exponent.
doi:10.1371/journal.pone.0095146.g004
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Figure 5. Scatter plots and rendered images showing differences between control and patients with schizophrenia after correcting
for age and sex differences together. Scatter plots depict the mean SampEn and H values at different brain ROI. Rendered images show the
difference in SampEn and H between the control and patients with schizophrenia. Regions shown have higher complexity in patients with
schizophrenia. See table 2 for a complete list of these regions (threshold p = 0.005 and corrected cluster p,0.05).
doi:10.1371/journal.pone.0095146.g005

Table 2. Anatomical location of the regions discriminated in SampEn and Hurst exponent differences between Controls and
patients with schizophrenia after adjusting for both age and sex differences together.

Estimate of signal
complexity Brain region

Talairach
coordinate (XYZ) Brain label Tissue type

Cluster p value
(FWE corrected) Voxel t value

Sample entropy (SampEn) Frontal Lobe 256 24 10 Left Inferior Frontal Gyrus White Matter 0.041 4.17

252 38 0 Left Brodmann Area 47 Gray Matter 0.041 4.02

Hurst exponent (H) Frontal Lobe 38 30 16 Right Inferior Frontal Gyrus White Matter 0.000 6.24

224 –42 36 Left Sub-Gyral White Matter 0.000 4.97

36 –26 36 Right Sub-Gyral White Matter 0.000 4.95

236 32 –4 Left Inferior Frontal Gyrus White Matter 0.000 5.44

Sub-lobar 228 26 4 Left Extra-Nuclear White Matter 0.000 4.52

230 0 20 Left Extra-Nuclear White Matter 0.000 3.85

Temporal Lobe 224 –52 12 Left Sub-Gyral White Matter 0.002 4.50

234 –58 0 Left Sub-Gyral White Matter 0.002 4.09

246 –44 4 Left Middle Temporal Gyrus White Matter 0.002 3.96

The location coordinates are those of the peak significance in each region (threshold p = 0.005, FWE corrected cluster p,0.05).
doi:10.1371/journal.pone.0095146.t002
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A weakness of our study is that patients with schizophrenia were

not drug naive. All patients with schizophrenia were taking some

form of anti-psychotic medication, reflecting standard psychiatric

practice. We found no evidence of an association between

antipsychotic equivalent medication doses and the estimates of

complexity (SampEn and Hurst exponent). This would suggest

that dose does not have a proportional influence on complexity but

does not exclude a systemic one. Another limitation was that

patients with schizophrenia had a higher male to female ratio than

the healthy controls. We therefore corrected for the sex differences

in the GLM analysis using sex as a covariate. The lack of

significance in social distress between both groups suggests that the

differences in complexity between patients and controls (as

estimated by SampEn and Hurst exponent) are due to schizo-

phrenia rather than one group paying more attention to the

Cyberball task than the other. These relationships suggest that our

findings are associated with schizophrenia syndrome severity,

independent of medication and sex differences. Other limitations

of the study were a limited sample size and possibly the limited

number of time points of fMRI data. Also, it is unclear whether

segmenting the white matter and cerebrospinal fluid (CSF) from

our complexity analyses would influence our results. This step is a

subject of future evaluation. Finally, it would be interesting to

replicate the analysis in future studies with a larger sample size and

balanced sex ratio.

Conclusions

To the best of our knowledge this is the first study investigating

the complexity of brain fMRI signals in patients with schizophre-

nia while performing a social exclusion task. The results showed

that patients with schizophrenia have a higher signal complexity

when compared to healthy control subjects. These results are

consistent with the hypothesis that schizophrenia may be brought

about by an underlying dysregulation of more complex functional

networks and support the increase in complexity hypothesis

(second postulate) of Vaillancourt and Newell [15] where system

complexity increases with age or disease.
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9. Abasolo D, Hornero R, Espino P, Álvarez D, Poza J (2006) Entropy analysis of

the EEG background activity in Alzheimer’s disease patients. Physiological

Measurement 27(3): 241–253.

10. Bertolaccini M, Bussolati C, Padovini G (1978) A nonlinear filtering technique

for the identification of biological signals. IEEE Transactions on Biomedical

Engineering 25(2): 159–165.

11. Friston KJ, Josephs O, Rees G, Turner R (1998) Nonlinear event-related

responses in fMRI. MRM 39: 41–52.

12. Lu S, Chen X, Kanters JK, Solomon IC, Chon KH (2008) Automatic selection

of the threshold value r for approximate entropy. IEEE Transactions on

Biomedical Engineering 55(8): 1966–1972.

13. Lipsitz LA, Goldberger AL (1992) Loss of ‘complexity’ and aging. Potential

applications of fractals and chaos theory to senescence. JAMA 267(13): 1806–9.

14. Lipsitz LA (2004) Physiological complexity, aging, and the path to frailty,

Science of aging knowledge environment [electronic resource]: SAGE KE

2004(16)

15. Vaillancourt DE, Newell KM (2002) Changing complexity in human behavior

and physiology through aging and disease. Neurobiology of aging 23(1): 1–11.

16. Pritchard WS, Duke DW, Coburn KL, Moore NC, Tucker KA, et al. (1994)

EEG-based neural-net predictive classification of Alzheimer’s disease versus

control subjects is augmented by non-linear EEG measures. Electroenceph Clin

Neurophysiol 91: 118–30.

17. Stam CJ, Jelles B, Achtereekte HAM, Rombouts SARB, Slaets JPJ, et al. (1995)

Investigation of EEG nonlinearity in dementia and Parkinson’s disease.

Electroenceph clin Neurophysiol 95: 309–17.

18. Jeong J, Chae JH, Kim SY, Han SH (2001) Nonlinear dynamic analysis of the

EEG in patients with Alzheimer’s disease and vascular dementia, J Clin

Neurophysiol 18: 58–67.

19. Wolf A, Swift JB, Swinney HL, Vastano JA (1985) Determining Lyapunov

exponents from a time series. Physica D 16: 285–317.

20. Jeong J, Kim SJ, Han SH (1998) Non-linear dynamical analysis of the EEG in

Alzheimer’s disease with optimal embedding dimension. Electroenceph Clin

Neurophysiol 106: 220–8.

21. Eckmann JP, Ruelle D (1992) Fundamental limitations for estimating

dimensions and Lyapunov exponents in dynamical systems. Physica D 56: 1

85–7.

22. Grassberger P, Procaccia I (1983) Characterization of strange attractors, Phys

Rev Lett 50: 346–9.

23. Richman JS, Moorman JR (2000) Physiological time-series analysis using

approximate and sample entropy. American Journal of Physiology - Heart and

Circulatory Physiology 278(6): 47–6.

24. Beran J (1994) Statistics for long memory processes. London: Chapman & Hall.

25. Lynall M, Bassett DS, Kerwin R, McKenna PJ, Kitzbichler M, et al. (2010)

Functional Connectivity and Brain Networks in Schizophrenia. Journal of

Neuroscience 30(28): 9477–9487.

26. Basset DS, Nelson BG, Mueller BA, Camchong J, Lim KO (2012) Altered

resting state complexity in schizophrenia. NeuroImage 59: 2196–2207.

27. Hoffman RE, McGlashan TH (1993) Parallel distributed processing and the

emergence of schizophrenic symptoms. Schizophrenia bulletin 19(1): 119–140.

28. Kay SR, Fiszbein A, Opler LA (1987) The positive and negative syndrome scale

(PANSS) forschizophrenia. Schizophr Bull 13: 261–276.

29. Kim W, Yoon Y, Bae J, Soh K (2005) Nonlinear characteristics of heart rate

time series: Influence of three recumbent positions in patients with mild or severe

coronary artery disease. Physiological Measurement 26(4): 517–529.

30. Lake DE, Richman JS, Pamela Griffin M, Randall Moorman J (2002) Sample

entropy analysis of neonatal heart rate variability. American Journal of

Physiology - Regulatory Integrative and Comparative Physiology 283(3): 52–3.

31. Gomez C, Hornero R, Abásolo D, Fernández A, Escudero J (2009) Analysis of

MEG background activity in Alzheimer’s disease using non-linear methods and

ANFIS, Ann. Biomed. Eng 37: 586–594.

32. Gomez C, Poza J, Garcia M, Fernandez A, Hornero R (2011) Regularity

analysis of spontaneous MEG activity in Attention-Deficit/Hyperactivity

Disorder, 33rd Annual International Conference of the IEEE EMBS, August –

September: 1765–1768.

Nonlinear Analysis in Psychiatric Disorders

PLOS ONE | www.plosone.org 9 May 2014 | Volume 9 | Issue 5 | e95146



33. Sokunbi M, Fung W, Sawlani V, Choppin S, Linden D, et al. (2013) Resting

state fMRI entropy probes complexity of brain activity in adults with ADHD.
Psychiatry Research: Neuroimaging 214: 341–348.

34. Sokunbi MO, Staff RT, Waiter GD, Ahearn TS, Fox HC, et al. (2011) Inter-

individual Differences in fMRI Entropy Measurements in Old Age, IEEE
transactions on bio-medical engineering 58(11): 3206–14.

35. Hurst HE (1951) Long-term storage of reservoirs: an experimental study.
Transactions of the American society of civil engineers 116: 770–799.

36. Schepers HE, Van Beek JH, Bassingthwaighte JB (1992) Four methods to

estimate the fractal dimension from self-affine signals. IEEE Engineering in
Medicine and Biology 71(11): 57–64.

37. Pilgram B, Kaplan DT (1998) A comparison of estimators for 1/f noise.
Physica D 114: 108–122.

38. Fadili J, Bullmore ET (2002) Wavelet-generalized least squares: a new BLU
estimator of linear regression models with 1/f errors. NeuroImage 15: 217–32.

39. Bassingthwaighte JB, Raymond GM (1995) Evaluation of the dispersional

analysis method for fractal time series. Ann Biomed Eng. 23(4): 491–505.
40. Yamamoto Y, Hughson RL (1991) Coarse-graining spectral analysis: new

method for studying heart rate variability. J Appl Physiol 71: 1143–1150.
41. Bassingthwaighte JB, King RB, Roger SA (1989) Fractal nature of regional

myocardial blood flow heterogeneity. Circ Res 65: 578–590.

42. Glenny R, Robertson HT, Yamashiro S, Bassingthwaighte JB (1991)
Applications of fractal analysis to physiology. J Appl Physiol 70: 2351–2367.

43. Grant PE, Lumsden CJ (1994) Fractal analysis of renal cortical perfusion. Invest
Radiol 29: 16–23.

44. Nichols T, Hayasaka S (2003) Controlling the familywise error rate in functional
neuroimaging: A comparative review. Statistical methods in medical research

12(5): 419–446.

45. Zweig MH, Campbell G (1993) Receiver-operating characteristic (ROC) plots: a

fundamental evaluation tool in clinical medicine. Clin Chem 39: 561–77.

46. Takahashi T, Cho RY, Mizuno T, Kikuchi M, Murata T, et al. (2010)

Antipsychotics reverse abnormal EEG complexity in drug-naive schizophrenia:

A multiscale entropy analysis. NeuroImage 51(1): 173–182.

47. Keil A, Elbert T, Rockstroh B, Ray WJ (1998) Dynamical aspects of motor and

perceptual processes in schizophrenic patients and healthy controls. Schizo-

phrenia research 33(3): 169–178.

48. Brunet-Gouet E, Decety J (2006) Social brain dysfunctions in schizophrenia: A

review of neuroimaging studies. Psychiatry Research - Neuroimaging 148(2–3):

75–92.

49. Whitford TJ, Grieve SM, Farrow TFD, Gomes L, Brennan J, et al. (2007)

Volumetric white matter abnormalities in first-episode schizophrenia: A

longitudinal, tensor-based morphometry study. American Journal of Psychiatry

164(7): 1082–1089.

50. Fletcher P, McKenna PJ, Friston KJ, Frith CD, Dolan RJ (1999) Abnormal

cingulate modulation of fronto-temporal connectivity in schizophrenia. Neuro-

Image 9(3): 337–342.

51. Juckel G, Schlagenhauf F, Koslowski M, Wustenberg T, Villringer A, et al.

(2006) Dysfunction of ventral striatal reward prediction in schizophrenia.

Neuroimage 29: 409–16.

52. Corlett PR, Murray GK, Honey GD, Aitken MR, Shanks DR, et al. (2007)

Disrupted prediction-error signal in psychosis: evidence for an associative

account of delusions. Brain 130: 2387–400.

53. Roiser JP, Stephan KE, den Ouden HE, Barnes TR, Friston KJ, et al. (2009) Do

patients with schizophrenia exhibit aberrant salience? Psychol Med 39: 199–209.

Nonlinear Analysis in Psychiatric Disorders

PLOS ONE | www.plosone.org 10 May 2014 | Volume 9 | Issue 5 | e95146


