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Abstract

In the cerebellar cortex, interneurons of the molecular layer (stellate and basket cells) provide GABAergic input to Purkinje
cells, as well as to each other and possibly to other interneurons. GABAergic inhibition in the molecular layer has mainly
been investigated at the interneuron to Purkinje cell synapse. In this study, we used complementary subtractive strategies
to quantitatively assess the ratio of GABAergic synapses on Purkinje cell dendrites versus those on interneurons. We
generated a mouse model in which the GABAA receptor a1 subunit (GABAARa1) was selectively removed from Purkinje cells
using the Cre/loxP system. Deletion of the a1 subunit resulted in a complete loss of GABAAR aggregates from Purkinje cells,
allowing us to determine the density of GABAAR clusters in interneurons. In a complementary approach, we determined the
density of GABA synapses impinging on Purkinje cells using a-dystroglycan as a specific marker of inhibitory postsynaptic
sites. Combining these inverse approaches, we found that synapses received by interneurons represent approximately 40%
of all GABAergic synapses in the molecular layer. Notably, this proportion was stable during postnatal development,
indicating synchronized synaptogenesis. Based on the pure quantity of GABAergic synapses onto interneurons, we propose
that mutual inhibition must play an important, yet largely neglected, computational role in the cerebellar cortex.
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Introduction

The cerebellar cortex is one of the most regular and best

characterized structures in the mammalian brain [1–3]. Its

laminated structure, formed by a relatively small number of

neuronal types, and its delayed postnatal development, have

greatly facilitated experimental analyses aimed at understanding

the function and developmental assembly of neuronal networks

[4–11]. However, our comprehension of cerebellar microcircuits is

far from complete. In fact, although excitatory input pathways

have been investigated in detail [12], much less is known about the

organization of local circuits mediated by inhibitory interneurons.

In this study, we investigated inhibitory synaptic circuits in the

molecular layer (ML). Stellate and basket cells are the only ML

interneurons (MLIs) known to use GABA as a neurotransmitter

[13]. They are distinguished by their position in the upper and

lower ML and by their axonal distribution [1,3], although

intermediate forms have been described, raising the possibility

that MLIs represent a continuum that varies gradually [14,15].

Basket cell axons, in particular, surround the cell bodies of

Purkinje cells and also form a characteristic plexus around the

axon initial segment, whereas stellate cells make synapses

exclusively on the dendritic arbor. Collectively, MLIs provide

feed-forward and lateral inhibition to Purkinje cells, thus

controlling their firing rate, the precise timing of action potential

firing and the spread of activity [4,16,17]. In addition to targeting

Purkinje cells, MLIs make synapses with each other, and likely

with Golgi cell dendrites. The existence of such synapses is

supported by both electron microscopic analyses [3] and

electrophysiological recordings [16,18–20]. However, mutual

inhibition between interneurons is largely neglected in theoretical

considerations of cerebellar circuit function, based on the

assumption that Purkinje cells receive most of the inhibitory

synapses in the ML [5,6,21–25].

GABAA receptors (GABAARs) are heteropentameric chloride

channels assembled from a large family of homologous subunits

[26,27]. Although 13 different subunits have been found in

cerebellum [28], only a limited repertoire of receptor subtypes is

present in the ML, where the a1bxc2 subunit combination (with

bx indicating one of the three b subunit variants) is by far the most

abundant [28,29]. Receptors containing the a1 subunit have been

found in Purkinje cells and ML interneurons, but not in Golgi cells

[30,31]. Notably, GABAARa1 is the only a subunit expressed in

mature Purkinje cells, and deletion of this subunit results in a

complete loss of synaptic GABAARs [32,33]. a3bxc2 receptors are

also present in the ML. They account for ,8% of total GABAAR

clusters in the ML [33,34] and appear to be expressed

predominantly by Golgi cells [35].

The goal of the present study was to provide an accurate

estimate of the proportion of GABAergic synapses onto Purkinje
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cells versus those onto interneurons in the ML of the mouse

cerebellum. We used two complementary approaches: 1, we

generated conditional knockout mice in which GABAARs were

selectively removed from PCs by deletion of the a1 subunit and

analysed the density of residual GABAAR clusters in interneurons;

2, we used antibodies against a-dystroglycan to label selectively

GABAergic synapses on Purkinje cells [33]. The results indicate

that synapses between interneurons account for a large proportion

of GABAergic synapses in the ML.

Materials and Methods

All procedures involving experimental mice were approved by

the Italian Ministry of Health and by local authorities in

accordance with national (Legislative Decree 116/92 and law n.

413/1993) and international (Directive 86/609/EEC and the

recommendation 2007/526/EC from European community) laws

and policies.

Generation of PC-Da1 mice
Mice homozygous for a conditional GABAARa1 gene (a1lx;

exon 9 flanked by loxP sites; [36]) were crossed with mice

heterozygous for a1lx and hemizygous for an L7Cre transgene

[37]. Littermates of the following genotypes were used for the

experiments: a1lx/a1lx/L7Cre (PC-Da1) and a1lx/a1lx (litter-

mate controls). Mice were genotyped by PCR analysis of genomic

DNA from biopsies using the following primer pairs:

a1lx59_s (59-CAGCTCTATAAATATCTCTGAGTACC-39) plus

a1lx59 _as (59-GATTGTGATGGTGGAGTCAGAATATG-39)

to test for the a1lx allele (240 bp band for WT, 280 bp band for

a1lx), and:

Cre1 (59-GACCAGGTTCGTTCACTCATGG-39) plus

Cre2 (59-AGGCTAAGTGCCTTCTCTACAC-39)

to test for the Cre recombinase transgene (250 bp band for

L7Cre).

For quantification of GABAergic synapses using a-dystroglycan

immunoreactivity, experiments were also performed on WT mice

(C57BL/6 stain). For developmental analyses, mouse pups were

taken at different postnatal days, defining the day of birth as P0.

Antibody characterization
The primary antibodies used in the present study are listed in

the Supplementary Table S1. Polyclonal antibodies directed

against GABAAR subunits (a1, a3, c2) were kindly provided by

Dr. Jean-Marc Fritschy (University of Zurich, Zurich, Switzer-

land). They were raised in rabbits (a1 subunit) and guinea pigs (a1,

a3 and c2) using synthetic peptides derived from the correspond-

ing cDNAs and coupled to KLH. Each of these antibodies labels a

single band in Western blots of crude brain membrane fractions

(a1: 50 kDa; a3: 59–60 kDa; c2: 43–48 kDa), and labelling is

abolished by competition with the respective antigens [38,39].

Moreover, immunolabelling specificity has been verified in brain

sections of knockout mice lacking the corresponding GABAAR

subunit [35,40,41].

An antiserum against the synaptic adhesion molecule neuroli-

gin-2 (NL2) was kindly provided by Dr. Frédérique Varoqueaux

(Max-Planck Institute of Experimental Medicine, Göttingen,

Germany). This antibody has been raised in rabbits against a C-

terminal sequence corresponding to residues 750–767 of rat NL2,

coupled to KLH, and recognizes a single band of 105 kDa in

Western blots of rat and mouse brain homogenates. Immunola-

belling is abolished by preabsorption with the peptide antigen, and

no bands are visible in Western blots of NL2 knockout mouse

brain homogenates. Moreover, the antiserum recognizes NL2, but

not NL1 or NL3, in transfected cells [42]. We also used a

commercially available antiserum (Synaptic Systems, Göttingen;

catalog No. 129 203; generous gift of Dr. Henrik Martens), which

was raised in rabbits against the same sequence and affinity

purified with the immunogen. Both antisera produced similar

labelling patterns in mouse brain sections processed for immuno-

fluorescence as described below.

The monoclonal antibody against a-dystroglycan (clone VIA4-

1) was obtained from Upstate cell signaling solutions (Lake Placid,

NY). This antibody was raised against rabbit skeletal muscle

membrane preparations and recognizes a single band of

approximately 156 kDa in Western blots of skeletal muscle lysate

[43]. In neurons, mAbVIA4-1 gives a punctuate labelling that

colocalizes with GABAAR at postsynaptic specializations and is

abolished by genetic deletion of dystroglycan [33,44].

To localize GABA in postembedding experiments, we used an

affinity-purified antibody raised in rabbits against GABA conju-

gated to BSA (Sigma-Aldrich, St. Louis, MO; catalog No. A 2052).

This antibody showed positive binding to GABA and GABA-

KLH, but not to BSA, in a dot blot assay. Furthermore, the

antibody has been extensively characterized by immunogold

investigations, where it gives strong labelling of GABAergic

presynaptic profiles making symmetric synapses [32].

Antibodies against carbonic anhydrase 8 (Car8), a selective

marker of Purkinje cells [33], were produced in rabbit and guinea

pig against residues 33–61 of mouse Car8. These antibodies

recognize a single band of 35 kDa in mouse cerebellar homoge-

nates. Moreover when applied to immunofluorescence on parasag-

ittal brain sections, the antibodies strongly label Purkinje cells, and

the immunoreactivity is abolished by preabsorption with the

immunogen [33].

Mouse monoclonal anti-calbindin (Swant, Bellinzona, Switzer-

land; code No. 300) was raised against calbindin D-28k purified

from chicken gut. This antibody reacts specifically with calbindin

(28 kDa) in immunoblots of brain homogenates of different species,

and does not cross-react with calretinin or other known calcium-

binding proteins [45]. No labelling is visible in brain sections

obtained from calbindin D-28k knockout mice [46]. Rabbit anti-

parvalbumin (Immunostar, Stillwater, MN; catalog No. 24428) was

raised against parvalbumin purified from rat muscle. This antiserum

has been characterized extensively by immunohistochemistry. In

sections of the cerebellar cortex, it labels selectively neurons that are

known to contain parvalbumin, i.e. Purkinje cells and ML

interneurons. In addition, double labelling with other well-

characterized monoclonal antibodies against parvalbumin results

in precise colocalization (data not shown).

Immunofluorescence and confocal microscopy
In most cases we used a brief-fixation protocol that has been

optimized for in situ detection of postsynaptic molecules [34].

Briefly, the cerebellar vermis was cut manually in sagittal slices

(,1 mm) that were fixed by immersion in 4% formaldehyde for 30

minutes (for details, see ref. [47]). The sections were then

cryoprotected in sucrose (10%, 20% and 30%), and sectioned

with a cryostat. For detection of calbindin and parvalbumin, mice

were perfused with 4% formaldehyde, and their cerebellum was

postfixed in the same fixative solution for 4 hours. After

cryoprotection, the cerebellum was cut with a cryostat into sagittal

sections that were collected on gelatin-coated slides.

For immunofluorescence, the sections were first blocked with

normal goat (or donkey) serum (3% in phosphate buffered saline,

PBS), and then incubated overnight with combinations of two or

three primary antibodies raised in different species [34]. After

rinsing in PBS, the sections were incubated with the appropriate

GABA Synapses in Cerebellum
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secondary antibodies, raised either in goat or in donkey and

conjugated to one of the following fluorophores: Alexa 488, Alexa

568 (Molecular Probes, Eugene, Oregon), or the cyanine-derived

Cy3 and Cy5 (Jackson Immunoresearch, West Grove, PA).

Finally, the sections were rinsed and coverslipped with Dako

fluorescence mounting medium (Dako Italia, Italy).

Confocal images were acquired with a laser scanning confocal

microscope (Zeiss LSM5 Pascal), using the multi-track mode.

Quantification of postsynaptic clusters was done in confocal

images (5126512 pixels) acquired with a 6100 oil-immersion

objective (1.4 NA) at a magnification of 8.161023 mm2/pixel and

the pinhole set at 1 Airy unit. Clusters were quantified manually or

with the NIH Image J program, as described previously [34].

Colocalization between two different molecules was analyzed in

segmented images with the Imaris software (release 4.2; Bitplane,

Zurich, Switzerland; for details, see ref. [34]).

The numerical density of postsynaptic GABAAR clusters was

estimated using the disector method [48] applied to z-stacks of

confocal sections spaced 0.2 mm. We first counted all clusters

contained within an individual volume but not touching the

exclusion sides (top and right side of each optical section). Clusters

were counted in a 3D region of neuropil comprised between the

fourth and fourteenth section (edge planes) of a stack of 15

sections, using the sections immediately above or below to

facilitate the identification of clusters intersecting the edge planes.

Both edge planes were defined alternatively as inclusion or

exclusion planes, thus the number of clusters intersecting both

edge planes was divided by half and the resulting value was

subtracted from the total number of clusters. This was done to

minimize differences in labelling intensity due to uneven

penetration of the antibodies throughout the reconstructed

volume. Finally, the number of clusters was divided by the volume

of the neuropil examined, resulting in synapse density.

Electron microscopy
Mice were perfused with a fixative containing 1% formaldehyde

and 1% glutaraldehyde in PB. The cerebellum was dissected,

postfixed in the same fixative overnight, and the vermis was cut

into sagittal sections with a scalpel. The sections were postfixed in

osmium tetroxide (1% in 0.1 M cacodylate buffer), dehydrated in

ethanol and embedded in Epon-Araldite. Ultrathin sections were

collected on nickel mesh grids and processed for immunogold

labelling for GABA as described in ref. [49], using as secondary

antibodies goat Fab fragments coupled to 10 nm gold particles

(British BioCell International, Cardiff, UK). Sections were

analyzed with a JEM-1010 electron microscope (Jeol, Japan)

equipped with a side-mounted CCD camera (Mega View III,

Olympus Soft Imaging Solutions, Germany).

Results

Purkinje cell-selective ablation of GABAA receptors
To determine the contribution of interneuron-interneuron

connections to the total number of GABAergic synapses in the

ML, we selectively removed the a1 subunit and thus GABAARs

from Purkinje cells using the Cre/loxP system (see Materials and

Methods). PC-Da1 mice appeared healthy and showed no obvious

neurological abnormalities (data not shown). We analyzed the

organization of inhibitory synapses in adult (.P35) PC-Da1 and

control mice, using antibodies against GABAARDa1 and GA-

BAARc2. In control animals, these subunits colocalized in the

large majority of GABAergic synapses in the ML, and clearly

outlined the cell body and major dendritic segments of Purkinje

cells (Fig. 1A1,B1). Only a few puncta were positive for

GABAARc2 but not GABAARa1. Such puncta were not

associated with Purkinje cells and likely represent synapses onto

Golgi cells expressing the a3 subunit. In contrast, in PC-Da1 mice

no punctuate immunolabelling for either GABAARa1 or GA-

BAARc2 was visible in Purkinje cells (Fig. 1A2), as also shown by

double labelling for the Purkinje cell-specific Car8 (Fig. 1B2,B3),

indicating that ablation of the a1 subunit resulted in a complete

loss of postsynaptic GABAAR aggregates. However, numerous

GABAAR clusters were visible in the neuropil, demonstrating the

presence of inhibitory synapses onto interneurons (Fig. 1A2,B2,B3).

Figure 1. Loss of GABAARs from Purkinje cells of PC-Da1 mice. (A1,A2) Confocal images showing the distribution of GABAARa1 (green) and
GABAARc2 (red) in the cerebellar cortex of control (A1) and PC-Da1 mice (A2). Note that in both conditions most GABAARc2-positive clusters
colocalize with the a1 subunit. A few clusters labelled for GABAARc2 but not for GABAARa1 likely represent synapses containing a3-GABAARs. No
surface labelling is visible in Purkinje cells (Pc) of PC-Da1 mice, whereas MLIs (asterisks) are recognized by extrasynaptic labelling of the a1 subunit
(A2). Double-labelled clusters (yellow) identify postsynaptic GABAAR aggregates on the cell body and the dendrites of MLIs (A2). (B1) Clustered
distribution of GABAARa1 (green) in control Purkinje cells labelled for Car8 (red). (B2,B3) GABAAR clusters (B2: GABAARa1; B3: GABAARc2) are not
visible in Purkinje cells of PC-Da1 mice. Scale bars: 15 mm.
doi:10.1371/journal.pone.0012119.g001
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To further validate the efficacy of the Cre-mediated deletion of

GABAARs, we performed double labelling for GABAARc2 and

the synaptic adhesion molecule NL2, that clusters at inhibitory

synapses independently of GABAARs [33]. Indeed, Purkinje cells

of PC-Da1 mice were decorated by numerous NL2 clusters, that

were unlabelled for GABAARs (Fig. 2A2). However, the density of

NL2 clusters in both the internal and external parts of the ML was

significantly reduced compared to control animals (iML: mean 6

SEM/1.000 mm2 = 88.262.6 in control and 69.261.3 in PC-Da1,

n = 3; P,0.0001, unpaired t-test; eML: mean 6 SEM/

1.000 mm2 = 86.863.6 in control and 52.661.2 in PC-Da1,

n = 3; P,0.0001, unpaired t-test), suggesting a reduced density

of inhibitory synapses. Using electron microscopy, we confirmed

that GABA-immunopositive axons made symmetric synapses with

the cell body and the dendrites of mutant Purkinje cells (Fig. 2B).

We also found many heterologous contacts between GABA-

immunopositive boutons and dendritic spines containing asym-

metric synaptic specializations (Fig. 2C). Together, these data

reveal similarities in the synaptic organization of PC-Da1 mice

and global GABAARa1 KO mice [32,33], and indicate that in

both mouse models the selective loss of GABAARs from Purkinje

cells reduces GABAergic innervation and causes the appearance of

heterologous synapses with spines.

Ablation of the a1 subunit in global GABAARa1 KO mice

triggers a dramatic increase in the density of postsynaptic sites

expressing GABAARa3 in the ML, which has been interpreted as

a reorganization of cerebellar networks [35]. In contrast, the

density of GABAARa3-immunopositive clusters (Fig. 2D1,D2) was

comparable in control (mean 6 SEM/1000 mm2 = 7.260.6,

representing ,8% of the total population of GABAAR aggregates)

and PC-Da1 mice (6.260.5, n = 3; p.0.1, unpaired t-test),

revealing that the selective loss of GABAARs from Purkinje cells

did not affect the expression of GABAAR subunits in cerebellar

interneurons (see Discussion). In a separate set of experiments with

antibodies against calbindin and parvalbumin, we did not find any

obvious defect in the number of ML interneurons (mean 6 SEM/

10.000 mm2 = 9.460.1 in control and 9.660.4 in PC-Da1, n = 3;

P.0.1, unpaired t-test) and Purkinje cells (mean 6 SEM/

100 mm = 4.160.09 in control and 460.1 in PC-Da1; P.0.1,

unpaired t-test), as well as in the organization of parallel fibers and

climbing fibers (data not shown). Therefore, apart from the

reduced GABAergic innervation of Purkinje cells and the presence

Figure 2. Synaptic organization in the cerebellum of PC-Da1 mice. (A1,A2) Double labelling for GABAARc2 (green) and NL2 (red) in control
(A1) and PC-Da1 mice (A2). NL2 colocalizes extensively with the c2 subunit and also clusters at postsynaptic sites lacking GABAARs in Purkinje cells of
PC-Da1 mice. (B,C) Electron micrographs of the ML of a PC-Da1 mouse showing that GABA-immunopositive axon terminals (Ax) make both
conventional, symmetric synapses (B, arrowheads) with Purkinje cell dendrites (Pc) and heterologous synapses (C) with spines (Sp). (D1,D2) Similar
distribution of a3-GABAARs in the ML of control (D1) and PC-Da1 mice (D2). PCL, Purkinje cell layer. Scale bars: A = 15 mm. B,C = 200 nm. D = 20 mm.
doi:10.1371/journal.pone.0012119.g002
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of heterologous synapses, there were no obvious alterations of

GABAergic circuits in the ML of PC-Da1 mice.

Ablation of the a1 subunit does not occur synchronously
in Purkinje cells

To map the time window in which GABAAR loss occurs in

Purkinje cells, we performed a developmental analysis. We found

that GABAARa1 immunoreactivity was gradually lost during the

second and third postnatal weeks. Thus, in P7 mice virtually all

Purkinje cells were immunolabelled for GABAARa1 (Fig. 3A),

whereas at later stages (P14–P16) labelling of Purkinje cells had a

mosaic-like pattern, characterized by immunopositive and im-

munonegative cells, which were often located side-by-side (Fig. 3B).

By P23, essentially all Purkinje cells had lost immunoreactivity for

GABAARs, as determined by visual inspection of their cell bodies

(Fig. 3C). A quantitative evaluation of the sequential GABAARa1

loss was performed in lobule V by comparing immunolabelling for

GABAARa1 with that of NL2 at perisomatic synapses of Purkinje

cells. At P7, all NL2-positive Purkinje cells (n = 30 cells) were also

labelled for GABAARa1. The percentage of Purkinje cells

expressing both NL2 clusters and GABAARa1 dropped to

48.3% at P16 (14 out of 29 cells), and no Purkinje cell was found

labelled for the a1 subunit at P23 (n = 27 cells). This sequence was

accompanied by a progressive increase in the density of ‘‘silent’’

synapses expressing NL2 but no GABAARs in the ML (Fig. 3B,C).

The temporal profile of GABAARa1 removal is in good agreement

with the protracted appearance of Cre recombinase activity in

Purkinje cells of the original L7Cre transgenic mouse line (see ref.

[37]).

Quantification of GABAergic synapses between
interneurons in PC-Da1 mice

We next calculated the density of residual GABAAR clusters in

the ML of adult PC-Da1 mice, using immunolabelling for

GABAARc2. This subunit is present in all postsynaptic GABAARs

and thus accounts for both GABAARa1 and GABAARa3-positive

synapses [29,34]. Because the density of inhibitory synapses along

Purkinje cell dendrites is different in the iML and eML [33], we

performed our analysis in confocal fields (46.1646.1 mm2) just

above the Purkinje cell layer or below the pial surface. All

experiments were on vermal lobule V, but qualitative observations

suggested limited variability among different lobules.

In PC-Da1 mice, the density of GABAARc2-immunopositive

clusters was reduced to ,40% in both the iML (mean 6 SEM/

1.000 mm2 = 85.761.9 in control and 33.960.8 in PC-Da1, n = 3;

P,0.0001, unpaired t-test) and eML (mean 6 SEM/

1.000 mm2 = 85.164.4 in control and 33.261.2 in PC-Da1, n = 3;

P,0.0001, unpaired t-test). Therefore, by comparing GABAAR cluster

density in PC-Da1 and control mice, we infer that approximately 60%

of ML GABAergic synapses are on Purkinje cell dendrites.

Figure 3. Ablation of GABAARs is protracted during postnatal development and is asynchronous among different Purkinje cells.
Double labelling for GABAARa1 (red) and NL2 (green) in the cerebellar cortex of P7 (A), P16 (B) and P23 (C) PC-Da1 mice. All P7 Purkinje cells express
postsynaptic GABAAR clusters, colocalized with NL2 (A). Purkinje cells labelled for NL2 but not GABAARs (asterisks) are visible at P16 (B). By P23,
practically all Purkinje cells are immunonegative for GABAARs (C). Scale bar: 20 mm.
doi:10.1371/journal.pone.0012119.g003
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Quantification of GABAergic synapses onto Purkinje cells
using a-dystroglycan immunoreactivity

Although many Purkinje cells retain GABAARs during an

extended period of postnatal development (Fig. 3), we cannot

exclude compensatory changes in PC-Da1 cerebellar circuits that

could alter the number of inhibitory synapses. We therefore used

an alternative approach to estimate the relative amount of

GABAergic synapses onto Purkinje cells and interneurons.

Purkinje cells are the only cerebellar neurons that express

dystrophin and dystroglycan at inhibitory postsynaptic specializa-

tions [33,50,51]. Notably, in GABAARa1 KO mice these

molecules colocalize with NL2 at silent synapses lacking

GABAARs [33]. Similarly, in PC-Da1 mice a-dystroglycan was

found exclusively at NL2-positive synapses without GABAARs,

confirming that it does not occur at synapses on interneurons

(Fig. 4B,D). Moreover, all NL2-positive/GABAAR-negative syn-

apses were positive for a-dystroglycan (Fig. 4B2), suggesting that

this molecule is a reliable marker of GABAergic synapses on

Purkinje cells.

Accordingly, we used double-immunofluorescence for a-dystro-

glycan and GABAARc2 in WT cerebellar sections (Fig. 4A,C) to

calculate the ratio of dystroglycan-positive synapses over the total

density of GABAergic synapses. In the iML, dystroglycan-positive

synapses accounted for 62.8% of the total population of

Figure 4. Dystroglycan is present at GABAergic synapses in Purkinje cells but not in cerebellar interneurons. (A1–A3) Double labelling
for a-dystroglycan (green) and GABAARc2 (red) in the cerebellar cortex of a WT mouse. Labelling for a-dystroglycan outlines the cell bodies and major
dendrites of Purkinje cells and colocalizes precisely with GABAARc2. Labelling for the c2 subunit is weaker at perisomatic synapses, scarcely visible in
these low magnification images. (B1,B2) Triple labelling for a-dystroglycan (green), GABAARc2 (red) and NL2 (blue) in the cerebellar cortex of a PC-
Da1 mouse. Dystroglycan colocalizes with NL2 exclusively at silent synapses that lack GABAARs (B2, cyan). NL2 associates with GABAARs at
interneuron-interneuron synapses, where immunolabelling for a-dystroglycan is not visible (B2, magenta). (C,D) High-magnification images of the ML
showing that in WT mice a subset of GABAergic synapses contain a-dystroglycan (yellow clusters), whereas in PC-Da1 mice a-dystroglycan never
colocalizes with GABAARc2-positive clusters. Scale bars: A,B = 30 mm. C,D = 10 mm.
doi:10.1371/journal.pone.0012119.g004
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GABAergic synapses (Table 1). This value is almost identical to the

percentage of Purkinje cell synapses estimated by comparing PC-

Da1 and control mice. In the eML, we found a lower density of

dystroglycan-positive puncta, accounting for 46.5% of GABAergic

synapses. This value is even lower than the previous estimate from

PC-Da1 mice (see Discussion). These two sets of experiments

reveal that more than one third of GABAergic synapses in the ML

occur between interneurons.

We then analyzed how stable the ratio of GABAergic synapses is

during postnatal development. We found that a-dystroglycan

concentrates at postsynaptic sites at early postnatal stages. In fact,

practically all perisomatic synapses of Purkinje cells were labelled

for this molecule already at P7 (Fig. 5A), and this labelling became

more robust at P10. Figure 5 shows examples of double labelling

for a-dystroglycan and GABAARc2 in cerebellar sections taken at

different postnatal stages. Immunoreactivity for these molecules

was punctuate, and based on previous analyses [33,34] we

assumed that the large majority of such puncta represented

postsynaptic aggregates. Synapse density was calculated in the

iML, because this part of the ML was already present at P10 and

could be followed throughout development. We found that the

density of GABAergic synapses (immunopositive for GABAARc2)

increased gradually from P10 to adult, as previously reported [33].

Notably, dystroglycan-positive synapses accounted for approxi-

mately 60% of total GABAergic synapses at all developmental

stages (Fig. 5D). These data confirm previous findings that

synaptogenesis in the ML extends beyond the second postnatal

week [33,34]. The constant ratio of inhibitory synapses onto

Purkinje cells and interneurons may help to maintain activity

patterns and minimize unbalanced activity in the developing

cerebellum.

Table 1. Evaluation of GABAergic synapses on Purkinje cell
dendrites by immunolabelling with antibodies against a-
dystroglycan.

GABAARc2 a-dystroglycan

eML 8461.3 3962.7 (46.5%)

iML 91.562.8 57.561.8 (62.8%)

Density values are means 6 s.e.m. of four different mice and are expressed as
number of puncta per 1000 mm2. The percentage of synapses immunolabelled
for both GABAARc2 and a-dystroglycan is given in parenthesis.
doi:10.1371/journal.pone.0012119.t001

Figure 5. Early synaptic localization of a-dystroglycan and postnatal development of GABAergic synapses in the ML. (A) Double
labelling for a-dystroglycan and GABAARc2 in the cerebellar cortex of a P7 wild-type mouse showing that a-dystroglycan clusters at developing
GABAergic synapses onto Purkinje cells (Pc). (B,C) Representative images showing that a-dystroglycan associates with a subset of GABAARc2-positive
synapses in the ML of P10 (B) and P21 (C) mice. (D) Synapses were quantified in the iML by counting clusters immunopositive for GABAARc2 (black
bars) and a-dystroglycan (grey bars). Percentage values express the ratio of a-dystroglycan-positive clusters over the entire population of GABA
synapses labelled for GABAARc2 (n = 3 mice for each developmental stage). Note that the values vary little during postnatal development. Scale bars:
A = 15 mm. B,C = 6 mm.
doi:10.1371/journal.pone.0012119.g005
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Unbiased estimate of GABAergic synapse density in the
molecular layer

We finally aimed to determine the density (number per unit

volume) of GABAergic synapses in the ML. This cannot be

accurately estimated from the previous findings, in which

fluorescent clusters were counted in individual confocal sections

with no exclusion boundaries. While this analysis is effective in

determining the ratio of clusters immunopositive for different

postsynaptic molecules (e.g. GABAARc2 and a-dystroglycan), or

the relative abundance of the same population of clusters in the

ML of different mouse strains, it may result in a systematic

oversampling of larger clusters, given that cluster size (range: 0.4–

1.8 mm along the Z axis) exceeds the thickness of confocal sections

[48]. We therefore used a stereological approach with an optical

disector (see Materials and Methods) to estimate the density of

postsynaptic sites immunopositive for the GABAARc2 subunit in

the iML of wild-type mice. This analysis revealed that postsynaptic

GABAergic specializations occur at a density of 10466.2/

1000 mm3 (mean 6 SEM of four optical disectors). In the same

analysis, dystroglycan-immunopositive clusters reached a density

of 66.365.4/1000 mm3, corresponding to 63% of GABAergic

synapses impinging onto Purkinje cells.

Discussion

Understanding neural computation requires detailed knowledge

of the intrinsic properties of individual neurons, as well as their

connectivity pattern. This can only be achieved by a convergence

of anatomical and electrophysiological data. The goal of this study

was to acquire quantitative data on the organization of inhibitory

synapses in the ML of the mouse cerebellar cortex. While the

majority of GABAergic synapses were situated on the dendrites of

Purkinje cells, synapses between interneurons occurred at an

unexpectedly high density, accounting for approximately 40% of

inhibitory synapses in the ML.

The results of our study originate from two distinct sets of

experiments. First, we determined the proportion of synapses onto

interneurons by specifically eliminating postsynaptic GABAARs

from Purkinje cells in PC-Da1 mice (Fig. 1). Using this approach

we found that synapses between interneurons account for 35–40%

of total GABAergic synapses in both the iML and eML. However,

previous studies have reported a reorganization of the cerebellar

circuitry in GABAARa1 KO mice [32,35]. We thus used a second

independent approach to confirm our findings: we performed

immunohistochemistry in WT mice with antibodies against a-

dystroglycan, a Purkinje cell-selective marker of GABAergic

synapses (Fig. 4). The results that we obtained with these two

complementary approaches were similar. The only notable

difference was the lower density of GABAergic synapses onto

Purkinje cells in the eML when judged by a-dystroglycan labelling.

It is possible that we underestimated dystroglycan-positive

synapses in the eML, where synaptic clusters are usually smaller

and less intensely labelled. Alternatively, this discrepancy could

reflect slight changes in synapse density in the eML of PC-Da1

mice. This is plausible, as Purkinje cells lose the a1 subunit mostly

during the third postnatal week (Fig. 3), largely matching the

development of the most superficial part of the ML. Despite these

minor differences, and in view of the above considerations, the

combined analysis of WT and PC-Da1 mice indicates that the

selective loss of GABAA receptors from Purkinje has little effect on

inhibitory synapses between interneurons.

Our findings are based on a sensitive immunofluorescence

protocol that allows the detection of individual postsynaptic

GABAAR clusters with high accuracy [34,47]. GABAARs have

also been found presynaptically in parallel fiber terminals [52].

However, practically all GABAAR clusters visible after immuno-

labelling with antibodies colocalize with NL2 and gephyrin, which

are genuine postsynaptic proteins (Fig. 2; see also refs. [29,33]). It

is likely that presynaptic GABAARs occur at a low density, as also

supported by the weak intensity of immunogold labelling for the

a1 subunit [52].

While our findings demonstrate that interneuron-interneuron

synapses represent approximately 40% of inhibitory synapses in

the ML, the identity of pre- and postsynapic partners remains

unclear. All major types of cerebellar interneurons extending their

dendrites in the ML (basket, stellate, and Golgi cells) receive

inhibitory inputs from other interneurons. However, Golgi cells

and MLIs can be distinguished by the differential expression of a1

and a3-GABAARs. In fact, Golgi cells do not express GABAARa1

[30,31], whereas stellate and basket cells express mainly, if not

exclusively, GABAARs with the a1 subunit (ref. [53] and our

unpublished observations). As a3-GABAARs are present in about

8% of GABAergic contacts in the ML (see Results), it follows that

synapses onto basket/stellate cells account for ,30% of GABAer-

gic synapses in the same layer. It should be noted that, while

synapses containing a1-GABAARs are evenly distributed, those

containing the a3 subunit have an irregular pattern, consistent

with the parasagittal organization of Golgi cell dendrites [54,55].

Concerning presynaptic structures, it is likely that Purkinje cell

recurrent collaterals have only a modest contribution to synapses

on interneurons, as their contacts onto basket cells are rare [3].

Lugaro cells make inhibitory synapses with both Golgi [56,57] and

Purkinje cells [58]. In addition, Lugaro cells have been reported to

make contacts with stellate/basket cells [59], however numerical

estimates of these synapses are not available. While the

contribution of synapses made by Lugaro cells remains to be

determined, it is likely that the main source of GABAergic

synapses onto MLIs are other MLIs, as also supported by electron

microscopic analyses [3] and by the high level of connectivity

found in electrophysiological studies [19].

An interesting observation of the present study is that the

density of GABAARa3-positive synapses was unchanged in

conditional PC-Da1 mice (Fig. 2D2). This contrasts with the

situation in global GABAARa1 KOs, in which the density of

GABAARa3-positive clusters increased dramatically in the ML

[33,35]. The most likely explanation for this discrepancy is that in

global GABAARa1 KOs the a3 subunit is up-regulated in ML

interneurons deprived of the a1 subunit. However, this compen-

sation does not take place in PC-Da1 mice, where MLIs retain the

a1 subunit. If this interpretation is correct, the massive increase in

the density of GABAARa3-positive synapses in global GABAARa1

KO mice can be explained mainly by a switch in GABAARa
subunit expression in MLIs, rather than a structural reorganiza-

tion of the cerebellar network as proposed by Kralic et al. (ref.

[35]). Interestingly, no compensation by a3-GABAARs occurs in

Purkinje cells of adult GABAARa1 KO mice, although these

neurons express higher-than-normal levels of GABAARa3 during

early stages of postnatal development [33]. Therefore, the genetic

program that regulates the expression of GABAARa3 differs in

Purkinje cells and MLIs.

In previous simulations of ML microcircuits, the number of

inhibitory synapses made by stellate cells on a Purkinje cell has

been estimated at ,1500 [21]. This value comes from previous

studies in rat, according to which the ratio of stellate cells to

Purkinje cells is approximately 10:1 [60], with an individual

stellate cell forming on average 149 synapses [14]. This estimation

is based on the assumption that the large majority if not all of MLI

output synapses are on principal neurons [5]. However, our results
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indicate that synapses on Purkinje cells account for only ,60% of

ML GABAergic synapses. On the other hand, our study was based

on a quantification of postsynaptic clusters representing individual

synaptic specializations, whereas in the studies quoted above the

number of output synapses of stellate cells was derived from the

number of axonal varicosities [14]. Because a single axonal bouton

can make multiple synapses, potentially with different neurons,

quantification of varicosities may result in an underestimation of

the actual number of synapses. In fact, assuming that the dendritic

arborization of a Purkinje cell occupies an area of 20000 mm2 [61],

and that its thickness is 6 mm [6], the volume covered by a

Purkinje cell dendrite in the mouse cerebellum should be roughly

120000 mm3. Given an estimated density of GABAergic inputs at

66 per 1000 mm3, each Purkinje cells should receive approximately

7920 GABAergic synapses. This estimate must be verified after a

rigorous calculation of the Purkinje cell dendritic volume in the

mouse cerebellum. By extending this reasoning, it should be

possible to predict the number of inhibitory synapses received by

MLIs. In fact, given the 10:1 ratio in the number of MLIs and

Purkinje cells [60], and assuming that about 60% of GABAergic

synapses are on Purkinje cells and about 30% on MLIs (after

subtraction of inhibitory synapses onto Golgi cells), a MLI would

receive approximately 20 times less GABAergic synapses than a

Purkinje cell. Interestingly, this ratio is roughly reflected in the

frequency of spontaneous IPSCs recorded in stellate and Purkinje

cells [18,62].

In recent years some progress has been made in understanding

the role of stellate and basket cells in cerebellar function. MLIs

tightly control the input-output relations of Purkinje cells via feed-

forward and lateral inhibition and are required for cerebellum-

dependent behaviour and learning [16,17,63–67]. In this context,

the absence of major neurological defects in PC-Da1 mice is

surprising. However, in a highly similar mouse model with a

Purkinje cell-selective deletion of GABAARs (PC-Dc2 mice with a

Purkinje cell-specific deletion of the GABAARc2subunit gene), we

found a significant decrease in AMPA receptor-mediated current

charge transfer after parallel fiber stimulation [17]. This, and

possibly other compensatory mechanisms, may help to maintain

Purkinje cell excitability in a normal operational range even in the

absence of fast synaptic inhibition and account for the absence of

gross neurological deficits. On a more subtle level, loss of

GABAAR-mediated synaptic inhibition in Purkinje cells of PC-

Dc2 mice caused abnormal patterns of simple spikes, strongly

compromising cerebellar learning [17].

Our study shows that inhibitory interneurons of the ML are

interconnected much stronger than previously anticipated. Such

reciprocal connections between inhibitory interneurons are a

common motive throughout the CNS from invertebrates to

vertebrates [68]. In the cerebellar cortex, reciprocal connections

between MLIs have been hypothesized to induce fast (100–

250 Hz) oscillations [69], which may aid the encoding of

cerebellar information. Alternatively, reciprocal connections

between MLIs have been suggested to curtail inhibition during

high levels of parallel fiber activity to rapidly return the network to

a baseline mode, in which it can process newly arriving parallel

fiber inputs [19]. In an extension of this idea, mutual inhibition

between interneurons has been proposed to stabilize the firing rate

in the interneuron network, as GABAergic transmission between

these neurons can be both inhibitory and excitatory depending on

the state of the postsynaptic cell. Thus mutual GABAergic

innervation may allow the interneuron network to maintain its

activity in an optimal operational range to respond to external

inputs [20]. Future experiments will have to determine how the

strong synaptic coupling between inhibitory interneurons of the

ML aids cerebellar information processing.
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