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Abstract

The replication time of Saccharomyces cerevisiae telomeres responds to TG1–3 repeat length, with telomeres of normal
length replicating late during S phase and short telomeres replicating early. Here we show that Tel1 kinase, which is
recruited to short telomeres, specifies their early replication, because we find a tel1D mutant has short telomeres that
nonetheless replicate late. Consistent with a role for Tel1 in driving early telomere replication, initiation at a replication
origin close to an induced short telomere was reduced in tel1D cells, in an S phase blocked by hydroxyurea. The telomeric
chromatin component Rif1 mediates late replication of normal telomeres and is a potential substrate of Tel1
phosphorylation, so we tested whether Tel1 directs early replication of short telomeres by inactivating Rif1. A strain
lacking both Rif1 and Tel1 behaves like a rif1D mutant by replicating its telomeres early, implying that Tel1 can counteract
the delaying effect of Rif1 to control telomere replication time. Proteomic analyses reveals that in yku70D cells that have
short telomeres, Rif1 is phosphorylated at Tel1 consensus sequences (S/TQ sites), with phosphorylation of Serine-1308 being
completely dependent on Tel1. Replication timing analysis of a strain mutated at these phosphorylation sites, however,
suggested that Tel1-mediated phosphorylation of Rif1 is not the sole mechanism of replication timing control at telomeres.
Overall, our results reveal two new functions of Tel1 at shortened telomeres: phosphorylation of Rif1, and specification of
early replication by counteracting the Rif1-mediated delay in initiation at nearby replication origins.
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Introduction

Chromosomal DNA replication occurs according to a regulated

program, with some replication origins initiating early and others

late in S phase [1,2]. S. cerevisiae telomeres provide a good model

for understanding molecular controls over the temporal regulation

of DNA replication. The replication time of S. cerevisiae telomeric

regions is regulated by telomere length; chromosome regions close

to telomeres with a normal length terminal TG1–3 tract generally

replicate late, but those close to telomeres with a shortened TG1–3

tract replicate early [3,4]. This control is mediated through altered

initiation time of replication origins. Telomeres may be replicated

either by replication forks from an origin within the subtelomeric

repeat sequences (X or Y9 ARS elements), or by a fork arriving

from a nearby telomere-proximal origin (such as ARS522, close to

chromosome V-right; previously known as ARS501) [5–7].

Normal length telomeres can direct the late activation of such

origins, while telomeric and telomere-proximal origins activate

earlier if next to a shortened telomere—as demonstrated by

experiments using recombination-based excision of TG1–3 repeats

or the mutation yku70D that causes shortened telomeres [3,4,8].

Telomere repeat length can affect origins up to 40 kb from the

chromosome end [4]. Earlier replication is proposed to favor

telomerase recruitment and TG1–3 repeat lengthening [9–11].

However, how cells detect and respond to telomere length in order

to control the replication time of telomeres remains unclear.

The end-replication problem causes shortening of terminal

TG1–3 tracts in successive cell cycles, and a network of controls

detects critically short telomeres and ensures they are preferentially

elongated by telomerase enzyme [12]. The mechanisms that detect

TG1–3 tract length to control replication timing are likely to

overlap with mechanisms that ensure preferential elongation of

short telomeres. Indeed, the Rif1 protein is already implicated in

both pathways. S. cerevisiae Rif1 binds to the TG1–3 repeat

recognition factor Rap1 and with Rif2 regulates telomerase

recruitment in response to telomere length [13,14]. Rif1 and

Rif2 appear to ‘count’ the telomeric repeats and repress

telomerase recruitment if the TG1–3 tract does not require

extension. Cells lacking either Rif1 or Rif2 have abnormally long

telomeres due to uncontrolled lengthening by telomerase [13].

The molecular mechanism by which Rif1 represses telomerase

recruitment is still under investigation. Long and short telomeres

bind similar amounts of Rif1 [15]; one proposal is that molecular

modifications occurring selectively at short telomeres may relieve

the repressive effect of Rif1 on telomerase recruitment [16]. For

Rif2, number of molecules may determine the repressive effect on

telomerase, since more Rif2 molecules are present at long than

short telomeres [17].

As well as acting in the pathway that recognizes short telomeres

for lengthening, Rif1 is involved in controlling telomere replication

time in response to length [4]. Specifically, in cells lacking Rif1 the

link between telomere length and replication time is broken, since
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the telomeres of a rif1D mutant replicate early despite being

abnormally long. Recently, Rif1 has been implicated as a regulator

of replication timing more generally, having a repressive effect on

genome-wide DNA replication mediated through recruitment of

Protein Phosphatase 1 [18–23].

Tel1, a PIK (phosphatidylinositol 3-kinase)-related checkpoint

kinase, is involved in short telomere recognition. Tel1 binds to

short telomeres and contributes to their preferential recruitment of

telomerase [15,24–26]. Tel1 is recruited by interacting with the C-

terminus of Xrs2, a subunit of the MRX (Mre11-Rad50-Xrs2)

nuclease complex, which is also enriched at short telomeres. The

kinase activity of Tel1 is required for its role in telomere

maintenance [27]. Potential targets for Tel1 phosphorylation at

telomeres include Xrs2, Mre11 [28] and the telomeric single-

stranded binding protein Cdc13 [29], but it is unclear whether

phosphorylation of these targets is important for telomere

lengthening [30]; discussed in [16]. There is some overlap in

function between Tel1 and Mec1, the other yeast PIK checkpoint

kinase, but while telomeres in tel1D mutant cells are extremely

short, lack of Mec1 causes only a mild telomere length defect

[31,32]. In general, Tel1 seems to play the primary role in

regulating telomere function while Mec1 is the major checkpoint

kinase.

Since Tel1 is preferentially recruited to short telomeres, we

investigated whether Tel1 is also involved in the pathway that

detects short telomeres to specify early replication. We show here

that Tel1 is required to drive the early replication of short

telomeres, and that it acts upstream of Rif1 in the pathway that

controls telomere replication timing. We tested whether Tel1

phosphorylates Rif1, and identified two SQ (i.e. Tel1 consensus)

sites that are preferentially phosphorylated in a short telomere

mutant. Phosphorylation of one of the sites, Serine-1308, is

completely dependent on the presence of Tel1. Mutation of these

sites did not prevent the early replication of short telomeres,

suggesting that Rif1 phosphorylation is not the sole mechanism

through which Tel1 drives early replication. Our results are

consistent with a model in which Tel1 that is recruited to short

telomeres counteracts the repressive effect of Rif1 on replication

initiation at nearby origins, to promote early origin activation and

advance the replication time of short telomeres.

Results

Tel1 is required for the early replication of shortened
telomeres

To investigate the mechanism linking telomere length with

replication timing, we examined the role of Tel1, since this kinase

is implicated in telomere length detection. tel1D cells have very

short telomeres as shown in Fig. 1A, due to defective telomerase

recruitment. If telomere replication time is still correctly coupled

to TG1–3 tract length in this mutant, we would expect the short

telomeres of a tel1D strain to replicate early—like the telomeres of

a yku70D mutant, which replicate earlier than normal because

they are short [4].

Replication time can be measured using the dense isotope

transfer method, in which cells blocked in G1 phase with a-factor

are transferred from isotopically dense to light medium. Upon

release into S phase the transition of specific sequences from

heavy:heavy to heavy:light DNA fractions on cesium gradient

centrifugation is then monitored. Replication kinetics of particular

sequences are plotted (Fig. 1B), and replication time assigned as

the time at which half the final level of replication has occurred.

Since kinetics of a-factor release show some variability between

experiments, the replication program can be usefully summarized

using ‘replication indices’ (Fig. 1C), with the various replication

times normalized to early and late-replicating marker sequences

(ARS305 and Chr XIV-int respectively) [33]. Replication times

plotted relative to ARS305 are shown in Fig. S1.

In wild-type cells, the subtelomeric Y9 repeat sequences

(indicative of average telomeric replication) replicate late in S

phase (Fig. 1B; top panel, solid line with filled circles, Fig. 1C&S1,

filled circle), 3.4 min later than the internal late replication origin

ARS1412 [33,34]. In the yku70D mutant that has shortened TG1–

3 repeat sequences, the Y9 sequences replicate much earlier, at a

similar time to early origin ARS305 (Fig. 1B,C&S1) [4,8].

Examining replication kinetics in a tel1D mutant strain revealed

that Y9 sequences replicated late, close to their normal replication

time (Fig. 1B; third panel from top & Fig. 1C). Telomere-proximal

sequences (ARS522 and proARS1202) show a similar trend (solid

curve with filled diamonds and solid curve with filled triangles,

respectively; Fig. 1B), so that overall the replication program of the

tel1D mutant resembles that of wild-type cells (Fig. 1C). Since the

tel1D mutant has very short telomeres (even shorter than those of

yku70D; Fig. 1A) this result suggests that in the absence of Tel1

kinase, the replication time of telomeric regions is uncoupled from

telomere length.

Telomeres of a yku70D mutant are short due to defects in

telomere capping and extension. yku70D cells can detect telomere

length status—since yku70D telomeres replicate early and Tel1 is

correctly recruited to the short telomeres of a yku70D strain [35].

Early telomere replication in a yku70D mutant appears to result

from telomere shortness, since restoring telomeres to wild-type

length in a yku70D background leads to recovery of normal, late

telomere replication [4]. The yku70D mutant therefore provides a

convenient tool to investigate the controls linking telomere length

to replication control. Note that the strength of the effect on

telomere length of the yku70D mutation differs in A364a (used for

Author Summary

The ends of chromosomes are protected by specialized
structures called telomeres, which prevent their recogni-
tion as DNA breaks and enable recruitment of telomerase,
the reverse transcriptase that maintains telomere length
by replacing terminal TG-repeat sequences lost during
successive rounds of DNA replication. Chromosomal DNA
is replicated from initiation sites called origins, which are
activated in a reproducible temporal sequence. Replication
origins close to telomeres are subject to specialized
temporal control that contributes to telomere stabilization:
origins close to normal-length telomeres initiate replica-
tion late, while those close to shortened telomeres initiate
early. Here we uncover the control mechanism that links
telomere length with replication timing. Rif1, one of the
components of telomeric chromatin, directs late replica-
tion of normal telomeres by delaying the activation of
nearby origins. Our experiments show that a kinase called
Tel1, which is recruited to shortened telomeres, neutralizes
the origin-delaying activity of Rif1. We also find that Tel1
phosphorylates Rif1 at short telomeres, although our
investigation shows this phosphorylation is not the sole
mechanism through which Tel1 prevents Rif1-mediated
replication delay. Since correct telomere replication timing
control is important for telomerase-mediated length
maintenance, this discovery represents an important step
towards understanding the molecular mechanisms that
ensure proper long-term stabilization of chromosome
ends, as well as the controls over the DNA replication
temporal program.

Tel1 Directs Telomere Replication and Phosphorylates Rif1

PLOS Genetics | www.plosgenetics.org 2 October 2014 | Volume 10 | Issue 10 | e1004691



Figure 1. Tel1 is required for early replication of short telomeres. (A) Telomere length analysis in wild-type (YKU70 TEL1), tel1D, yku70D, and
yku70D tel1D strains. Terminal chromosome fragments were detected by probing a Southern blot of XhoI-digested genomic DNA for TG1–3 sequence.
Smear represents average length of Y9 telomeres. (B) Replication kinetics of various genomic sequences in wild-type and short telomere mutants
yku70D, tel1D and yku70D tel1D. Telomere-proximal sequences shown are Y9 (solid line with filled circles), ARS522 (solid line with filled diamonds),
and proARS1202 (solid line with filled triangles). Non-telomeric marker sequences (dashed lines) are early origins ARS305 (open squares), late origin
ARS1412 (open circles), and Chr XIV-internal sequences (open diamonds). Strains were released from a-factor block at 30uC. (C) Replication indices (RI)
values from experiments in B, where replication times are normalized to early origin ARS305 (RI = 0) and Chr.XIV-int (RI = 1). Strains are BB14-3a (wild-
type), ASY5 (tel1D), AW99 (yku70D) and ASY13 (yku70D tel1D; corresponding to second isolate in part A); all are in A364a background as listed in
Table S1.
doi:10.1371/journal.pgen.1004691.g001
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timing replication in this study) and BY4741 yeast strain

backgrounds (Fig. S2). Strain dependence of the effect of yku70D
on telomere length was previously observed (compare [36,37] with

[38–40]). The reason for the strain dependence is not known, but

the effects of the yku70D mutation on replication timing appear

similar regardless of whether the effect on telomere length is weak

or strong [8,41,42].

To understand whether Tel1 is required to transmit the signal

for the early replication of short telomeres, we examined the

replication program of a yku70D tel1D double mutant. This

mutant has extremely short telomeres similar to a tel1D mutant

(Fig. 1A), but subtelomeric (Y9) and telomere-proximal (ARS522

and proARS1202) sequences replicated later than in yku70D
single mutant, with replication timing similar to that in wild-type

or tel1D cells (Fig. 1B,C&S1). While precise replication times and

order show some variability between experiments [33], repetition

of these experiments confirmed the general trends (Fig. S3).

Overall, these results suggest that in the absence of Tel1, yku70D
telomeres are no longer sensed as short and hence not replicated

early, implying that Tel1 is involved in specifying early replication

of short telomeres.

Tel1 stimulates the early initiation of a replication origin
next to an induced short telomere

We cannot exclude the possibility that effects shown above

result from mutant phenotypes unrelated to telomere length. For

example, the effect on replication timing of telomere uncapping in

yku70D has not been tested. We therefore examined whether Tel1

promotes early telomere replication using an alternative mode of

telomere shortening. We utilized a yeast strain in which a short

telomere can be created by induction of HO endonuclease in cells

blocked in G1 phase, as illustrated in Fig. 2A and similar to the

construct previously described [43]. In this system, an HO cut site

close to the left end of chromosome VII is flanked by short (80 bp)

and long (250 bp) TG1–3 tracts on its centromere- and telomere-

proximal sides respectively. Cutting with HO endonuclease in G1-

blocked cells creates a single shortened telomere which, following

release into S phase, stimulates earlier initiation at the neighbor-

ing, normally late-replicating origin ARS700.5. ARS700.5 is

located 18 kb from unmodified telomere VII-left and lies 5.3 kb

from the HO cut site in this construct [Cooley & Bianchi, personal

communication]. In a small-scale experiment we found that HO

cutting levels exceeded 67% 5.5 hr after galactose addition,

confirming that short telomere induction occurred in the majority

of cells (Fig. S4A).

When S. cerevisiae cells attempt S phase in the presence of the

replication inhibitor hydroxyurea (HU), early origins are activated

but late origin initiation is repressed by the Rad53-mediated S

phase checkpoint [44–46]. Two-dimensional gel analysis of origin

activation levels [47] after release into hydroxyurea therefore

provides a proxy for differences in origin initiation time.

The short telomere was induced by HO cutting and cells were

then released into HU-containing medium (during which cutting

levels reached 90%; Fig. 2B). At the control early-initiating

replication origin ARS305, 2-dimensional gel analysis revealed

strong bubble arcs in both TEL1 and tel1D strains (Fig. 2C, upper

panels). In contrast only low levels of replication intermediates

were observed at the control late origin ARS1412 (Fig. 2C, lower

panels), due to checkpoint-mediated late origin repression. At

ARS700.5 close to the induced short telomere, a strong bubble arc

was observed in the TEL1 strain, consistent with stimulation of

early ARS700.5 initiation as expected. Bubble arc intensity was

however substantially reduced in the tel1D mutant (Fig. 2C,

middle panels), revealing that Tel1 is needed to drive early,

checkpoint-resistant initiation of ARS700.5 following nearby short

telomere induction. Quantitation of the bubble arc signal (as

shown in Fig. S4B&C) revealed 4.8-fold-reduction in bubble arc

intensity at ARS700.5 in the tel1D strain. In a construct with

ARS700.5 placed proximal to a long telomere repeat a bubble arc

was almost undetectable (Fig. S5), confirming that early activation

of this origin depends on the nearby induced short telomere.

Our 2-dimensional gel analysis therefore confirmed that after

nearby short telomere induction, the absence of Tel1 changes the

character of ARS700.5 from that of an early-initiating origin to

that of a late replication origin. The results were therefore

consistent with the replication timing analyses in Figs. 1 & S3,

showing that Tel1 is required to specify early replication of

chromosomal regions in proximity to a short telomere.

We also attempted to use isotope labeling-based replication

timing analysis to examine ARS700.5 replication following short

telomere induction, but inefficient and variable HO cutting after

growth in the minimal medium required for this technique

prevented satisfactory analysis of replication timing.

Tel1 acts upstream of Rif1 in controlling telomere
replication timing

Rif1 is implicated in the control of replication timing in

response to telomere length, since in a rif1D mutant the link

between telomere length and replication time is uncoupled.

Specifically, in a rif1D mutant the TG1–3 tracts are over-

extended (Fig. 3A), but cells fail to detect the length of their

telomeres and replicate them inappropriately early (Fig. 3B,C &

Fig. S6A) [4]. Consistently, ARS700.5 initiates prior to the S

phase checkpoint in a rif1D mutant with an induced short

telomere (Fig. S6B). Early replication of the long rif1D telomeres

presents an interesting reversal of the effect in tel1D, where cells

fail to detect the shortness of their telomeres and replicate them

inappropriately late (Fig. 1). The opposite nature of these

phenotypes implies that Tel1 and Rif1 have opposing actions in

the pathway that controls telomere replication timing, with Rif1

enforcing the late replication of long or normal length telomeres,

while Tel1 signals early replication of telomeres that are

shortened. Loss of Rif1 impacts replication timing of many

genomic regions [48] with subtelomeric regions most strongly

affected [4], probably because telomeres are the main genomic

Rif1 binding locations [18].

To test the relationship of Tel1 and Rif1 in the telomere

replication timing control, we examined a rif1D tel1D double

mutant. Deleting RIF1 somewhat relieves the short telomere

phenotype of tel1D (Fig. 3A), presumably reflecting an effect of

Rif1 on the backup mechanisms that recognize critically short

telomeres in the absence of Tel1 [24]. We tested whether the rif1D
tel1D strain replicates its telomeres early (as in rif1D) or late (as in

tel1D). We found that in rif1D tel1D cells, both Y9 and telomere-

proximal sequences replicate very early, similar to their replication

time in a rif1D single mutant (Fig. 3B & C; replication times

shown in Fig. S6). The rif1D mutation is therefore epistatic to

tel1D in control of telomere replication—consistent with the idea

that Tel1 counteracts Rif1-mediated delay to telomere replication

timing.

Rif1 is phosphorylated at Tel1 consensus sites in a
mutant with short telomeres

Since Tel1 is actively recruited to shortened telomeres, we

hypothesized that Tel1 may act to prevent or ‘switch off’ the

delaying effect of Rif1 on nearby replication origins. The Rif1

protein sequence contains multiple S/TQ motifs, corresponding to

Tel1 Directs Telomere Replication and Phosphorylates Rif1
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the consensus sequence for Tel1-mediated phosphorylation

[27,29], so Rif1 is a potential target for Tel1 kinase activity. We

therefore tested by mass spectrometry whether Tel1 phosphory-

lates Rif1. Using Myc-tagged Rif1 that retains almost complete

protein functionality (as assayed by telomere length, Fig. 4A), we

devised an immunoprecipitation procedure to pull down the

majority of cellular Rif1 (Fig. 4B). Initial high-resolution mass

spectrometry identified multiple phosphorylated peptides in Rif1

from both YKU70 and yku70D strains, including two phosphor-

ylation sites corresponding to Tel1 consensus sequences, one at

Serine-1308 (within the sequence…KVDSQDIQ…) and the other

at Serine-1351 (…MNSSQQE…) (Fig. 4C). Rif1 S-1308 phos-

phorylation is not previously described; while S-1351 was

identified as phosphorylated in response to DNA damage by

MMS [49].

Identification of these phosphorylated SQ sites suggests that

Rif1 may indeed be a target for Tel1 kinase, perhaps specifically at

shortened telomeres which recruit Tel1. We used the comparative

proteomic method of SILAC to compare phosphorylation levels in

wild-type cells with the short telomere yku70D mutant. Phosphor-

ylation at both sites were increased in the yku70D mutant, by

about 16-fold at S-1308, and about 4-fold at S-1351 (Fig. 4D–G;

Dataset S1). The corresponding unphosphorylated peptides were

not increased in the yku70D strain (Fig. S7; Dataset S1). These

results show that phosphorylation of these Rif1 SQ motifs is

increased in the shortened telomere context of yku70D.

Tel1 is required for phosphorylation of Rif1 Serine-1308
To address whether Tel1 kinase mediates phosphorylation of

Rif1 at S-1308 and S-1351, we used a similar SILAC strategy to

Figure 2. Tel1 stimulates activation of an origin neighboring an induced short telomere upon release into hydroxyurea. (A) Cartoon
showing HO endonuclease-inducible short telomere construct on the left arm of Chr. VII, with positions of HindIII (H) and XmnI (X) restriction sites.
Triangles represent TG repeat sequences and the filled circle, ARS700.5. Not to scale. (B) HO endonuclease cutting efficiency in the hydroxyurea-
arrested cultures used for 2D gel analysis in C. Cells were arrested with a-factor then galactose added to induce HO cutting, followed by release into
hydroxyurea. (C) 2D gel analysis of replication intermediates present at early origin ARS305 (upper panels), ARS700.5 (middle panels), and late origin
ARS1412 (lower panels), in TEL1 (left) and tel1D (right) strains. The same blot of HindIII-digested DNA was probed sequentially for the three origins.
Strains used are YAB1410, SMKY10 (TEL1) and SMKY13 (tel1D).
doi:10.1371/journal.pgen.1004691.g002
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test whether the phosphorylation levels are decreased when Tel1 is

unavailable. This experiment was carried out in the yku70D
background where peptides containing phosphorylated S-1308

and S-1351 residues are reliably detected. Peptides from heavy-

labeled yku70D tel1D cells were compared with those from light-

labeled yku70D cells. The S-1308 phosphorylated peptide was

abundant in the yku70D mutant, but was 10-fold reduced in the

yku70D tel1D strain (Fig. 5A; Dataset S2). A longer peptide

covering the same phosphorylated S-1308 residue was also greatly

reduced in yku70D tel1D (Fig. S8A; Dataset S2), while its

unphosphorylated equivalent showed no significant change (Fig.

S8C; Dataset S2). In contrast, levels of the S-1351 phosphorylated

peptide were largely unchanged in yku70D tel1D when compared

to yku70D (Fig. 5B). Based on this analysis, we propose that Tel1

directly phosphorylates S-1308. However, we cannot exclude the

possibility that Tel1 activates a different SQ-directed kinase that

phosphorylates Rif1 S-1308 at short telomeres. If Tel1 contributes

to phosphorylation at S-1351, its role can be substituted by a

different kinase (probably Mec1 since [49] showed S-1351

phosphorylation requires one or other of Mec1 and Tel1).

Alternatively, Mec1 may be solely responsible for S-1351

phosphorylation.

Fig. S9 provides a summary of the phosphorylation sites

identified on Rif1 in these proteomic analyses. This study

identified a cluster of phosphorylated DDK and CDK consensus

sites close to the Rif1 N-terminus, which in a separate investigation

were shown to regulate Protein Phosphatase 1 recruitment by Rif1

[21].

Mutation of the Rif1 phosphorylated S/TQ cluster does
not prevent the effect of telomere length on replication
timing

Our results suggest a model in which Tel1-mediated phosphor-

ylation of Rif1 antagonizes the delaying effect of Rif1 on telomeric

and telomere-proximal replication origins at short telomeres. We

constructed a Rif1 mutant where the relevant serine residues are

replaced by alanine, to test whether this non-phosphorylatable

construct constitutively delays replication, preventing early repli-

cation of short telomeres. We replaced the serine or threonine

residue with alanine at all seven of the potential Tel1 phosphor-

ylation sites (SQ and TQ motifs) between 1308 and 1569 in the

Rif1 amino acid sequence, to construct a rif1-7SRA allele. We

mutated the entire cluster of S/TQ motifs since it could contain

phosphorylation sites not detected proteomically and because

Figure 3. Rif1 acts downstream of Tel1 in regulating telomere replication time. (A) Telomere length analysis in wild-type, tel1D, rif1D and
rif1D tel1D strains. Southern blot analysis carried out as in Fig. 1A. (B) Replication kinetics of various genomic sequences in rif1D and rif1D tel1D
strains. Plots and symbols as in Fig. 1B. (C) Replication indices from experiments in B, along with values from wild-type and tel1D experiments from
Fig. 1. Strains are HYLS44 (rif1D) and ASY14 (rif1D tel1D; corresponding to first isolate in part A).
doi:10.1371/journal.pgen.1004691.g003

Tel1 Directs Telomere Replication and Phosphorylates Rif1

PLOS Genetics | www.plosgenetics.org 6 October 2014 | Volume 10 | Issue 10 | e1004691



Figure 4. Rif1 is phosphorylated at Tel1 consensus sites in the short telomere mutant yku70D. (A) Telomere length gel confirms Myc-
tagged Rif1 protein is functional. (B) Upper panel (i): Western blot analyzing Rif1-Myc protein in Whole Cell Extract (WCE), immunoprecipitated sample
(IP) and supernatant (Unbound). All lanes show equivalent cell loading. Lower panel (ii): SyproRUBY-stained gel showing Rif1-Myc isolated from
YKU70 and yku70D strains, and mock IP from untagged control sample. Rif1 was quantified based on SyproRUBY gel bands and equivalent quantities
mixed for SILAC mass spectrometry analysis. 260 kD marker position is indicated. The predicted size of Rif1-13Myc is 232 kD; Rif1-13Myc migration is
slightly retarded relative to its predicted mass. (C) Cartoon of Rif1p sequence, illustrating the position of the 14 S/TQ sites. In enlarged sequence
below S/TQ sequences are bold, and colored green are the two sites identified as phosphorylated in an initial mass spectrometry run (carried out
using Rif1-Myc from YKU70 and yku70D strains). Blue arrowheads indicate trypsin digestion sites. (D) Plot of SILAC ratio for phosphorylated peptide

Tel1 Directs Telomere Replication and Phosphorylates Rif1
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preventing phosphorylation of one of these residues might re-

direct kinase activity to a nearby consensus site. Telomere length

was hardly affected by this rif1-7SRA allele, or by an phospho-

mimetic equivalent rif1-7SRE glutamate substitution allele, in

either YKU70 or yku70D backgrounds (Fig. 6A)—confirming

that these substitutions do not ablate Rif1 protein function. We

examined the replication program of the rif1-7SRA mutant in

the short telomere (yku70D) background. We found that

telomeres still replicate early (Fig. 6B), with Y9 elements

replicating at a similar time to the early marker sequence

ARS305 (Fig. 6C & S10), equivalent to the yku70D mutant. The

non-phosphorylatable RIF1 allele therefore does not prevent the

early replication of short telomeres, implying that phosphoryla-

tion of the Rif1 S/TQ cluster is not essential for Tel1 to drive

early replication of short telomeres. The rif1-7SRA mutation

similarly caused minimal change to the replication timing

program in a YKU70 background (Fig. S11). We also tested

the replication program of the rif1-7SRE allele designed to

mimic a phosphorylated form of Rif1. In this rif1-7SRE mutant

telomeres still replicate at approximately the same time as late

origin ARS1412 (Fig. S12).

The phenotypic analyses of the yku70D rif1-7SRA and rif1-
7SRE mutant therefore suggest that Tel1-mediated phosphor-

ylation of the Rif1 S/TQ cluster is not necessary or sufficient to

drive early replication. They do not however exclude the

possibility that Tel1-mediated Rif1 S/TQ cluster phosphoryla-

tion could contribute to early replication of short telomeres.

Indeed a very slight advancement (3–4 min; Fig. S12 B&C) in

telomere replication time in the rif1-7SRE allele may be

consistent with this idea. One possibility is that phosphorylation

of Rif1 S-1308, S-1351 and nearby S/TQ sites is integrated with

other, redundant mechanisms to ensure that shortened telomeres

replicate early.

Discussion

In investigating controls over telomere replication timing, we

discovered that Tel1 specifies the early replication of short

telomeres, as assessed either using a short telomere mutant

(yku70D; Fig. 1) or by analyzing origin activation close to an

induced short telomere (Fig. 2). Rif1 specifies late replication of

normal telomeres, and epistatic analysis indicated that Tel1

counteracts the delaying effect of Rif1 on telomere replication

time. Phosphoproteomic analysis of endogenous S. cerevisiae Rif1

revealed at least two SQ motifs to be phosphorylated. Phosphor-

ylation at these sites is increased in a short telomere mutant, with

phosphorylation at Serine-1308 completely dependent on the

presence of Tel1. However, corresponding Rif1 alanine substitu-

tion mutants did not prevent early replication of telomeres in a

yku70D background, indicating that phosphorylation of Rif1 by

Tel1 at S-1308, S-1351, or nearby consensus sites within the Rif1

S/TQ cluster domain, cannot be the sole mechanism by which

Tel1 drives early replication at short telomeres. While Rif1

phosphorylation could potentially contribute, Tel1 must mediate

early replication of short telomeres through additional, possibly

redundant, pathways.

S. pombe, S. cerevisiae and human Rif1 proteins all negatively

regulate DNA replication genome-wide [18–21], and very recently

it was shown that Rif1 recruits Protein Phosphatase 1 to control

DNA replication [21–23]. The stimulatory effect of removing S.
cerevisiae Rif1 on the overall replication program is reflected by a

shortened S phase (Fig. 3B & S6A: S phase duration is 21.5 min in

wild-type but 15.3 min in rif1D). Within the generally shortened S

phase of the rif1D mutant telomeres are more dramatically

affected, with telomere-associated sequences shifting their replica-

tion time from the latter half to the early part of S phase (Fig. 3C).

Proximity of Rif1 binding sites has been suggested to determine

the susceptibility of replication origin initiation to Rif1-mediated

containing S-1308 in yku70D relative to YKU70 (16.46 increased). In this and similar plots relative values are normalized during processing to the
median H/L ratio of all Rif1 peptides. (E) MS spectrum showing raw results for the same S-1308 phosphorylated peptide [KVDS(ph)QDIQVPATQG-
M(ox)K], with light (R0K0) peptide from YKU70 on left and heavy (R10K8) peptide from yku70D on right. (F) & (G) show equivalent SILAC analysis for
the S-1351 phosphorylated peptide NTAIM(ox)NSS(ph)QQESHANR (4.16 increased in Dyku70 relative to YKU70). Strains (BY4741 strain background)
are SHY201 (untagged wild-type), ASY25 (YKU70 RIF1-13Myc), ASY30 (yku70D RIF1-13Myc), Y00870 (untagged yku70D) and HYLS44 (rif1D*; asterisk
indicating A364a strain background). An initial, non-SILAC, mass spectrometry analysis depicted in C used W303 Rad5+ strains YSM20 (YKU70 RIF1-
13Myc) and ASY17 (yku70D RIF1-13Myc).
doi:10.1371/journal.pgen.1004691.g004

Figure 5. Phosphorylation of Rif1 Serine-1308 depends on Tel1. (A) Plots shows relative levels of the S-1308 phosphorylated peptide
[KVDS(ph)QDIQVPATQGM(ox)K] in yku70D (Light-labeled R0K0) and yku70D tel1D (Heavy-labeled R10K8) strains. H/L ratio is 0.10. (B) Equivalent plot
for S-1351 phosphorylated peptide NTAIM(ox)NSSQQESHANR. H/L ratio is 0.97048. Strains used are ASY30 (yku70D RIF1-13Myc), and ASY46 (yku70D
tel1D RIF1-13Myc).
doi:10.1371/journal.pgen.1004691.g005

Tel1 Directs Telomere Replication and Phosphorylates Rif1

PLOS Genetics | www.plosgenetics.org 8 October 2014 | Volume 10 | Issue 10 | e1004691



repression [18], and the delaying effect of Rif1 on replication is

probably focused at chromosome ends by the preferential

association of Rif1 with telomeres, as illustrated in Fig. 7A,

explaining why telomere regions show the largest shift in

replication timing when Rif1 is removed (Fig. 3C). It is possible

that non-telomeric Rif1 also contributes to the late replication of

telomere regions.

Removing both Tel1 and Rif1 leads to a phenotype that is

essentially equivalent to a rif1D single mutant—that is, in the

absence of Rif1, it becomes largely irrelevant for telomere

replication timing whether Tel1 is present (Fig. 3C). For this

reason, our results support a model where Tel1 affects replication

timing by counteracting the delaying action of Rif1 on telomere

replication, as illustrated in Fig. 7A & B. If non-telomeric Rif1

contributes to late replication of subtelomeric regions, its effect is

presumably also neutralized by Tel1.

We envisage two modes through which Tel1 could counteract

the delaying effect of Rif1 on origin initiation. First, phosphory-

lation of Rif1 by Tel1 at SQ sites might ‘switch off’ the Rif1

repressive effect. We identified Rif1 as a target of Tel1

phosphorylation at shortened telomeres, but mutating the sites

identified, along with neighboring potential phosphorylation sites,

did not dramatically impact telomere replication timing. This

observation argues that Rif1 phosphorylation cannot be solely

responsible for Tel1-driven early telomere replication, while

leaving open the possibility that Rif1 phosphorylation acts

redundantly with other control mechanisms. It is possible that

Rif1 contains additional functionally critical Tel1 phosphorylation

sites not identified by our proteomic analysis. It is also conceivable

that phosphorylation of Rif1 by Tel1 at non-consensus (i.e. non-S/

TQ) sites might contribute to replication timing control. A

previous study [28] showed that a Dun1 substrate lacking any

SQ consensus was still phosphorylated by Tel1 kinase, and noted

that ATM (the mammalian homolog of Tel1) phosphorylates non-

canonical sites in the tumor suppressor BRCA1 [50]. Intriguingly,

in the yku70D mutant we observed a 2 to 4-fold increase in

phosphorylation levels of five serine or threonine residues that are

not followed by glutamine (Rif1 S-1338, S-1355, S-1362, T-1367,

and S-1694; Fig. S9 & Dataset S1).

Second, Tel1 could prevent the Rif1-mediated replication delay

by phosphorylating a different telomeric protein. A number of

telomeric proteins have been identified as likely or possible targets

of Tel1 phosphorylation, including Cdc13 [29], Xrs2, and

Mre11 [28]. While they cannot be formally excluded, none of

these proteins is directly implicated in controlling replication

Figure 6. Non-phosphorylatable rif1-7SRA does not delay early
replication of short yku70D telomeres. (A) Telomere length analysis
of Rif1 phospho-site mutants. Genomic DNA was extracted from the
indicated strains and telomere length analyses performed as described.
Smear indicates average length of Y9 telomeres. rif1Dscd represents an
internal deletion within the RIF1 C-terminal region made as a strain
construction intermediate (see Supplementary Materials & Methods).
RIF1-7SRS represents a RIF1 reconstruction, where wild-type sequence
was re-inserted into rif1Dscd to control for telomere length recovery. (B)
Replication program of yku70D rif1-7SRA, released from an a-factor
block at 30uC. Sequences analyzed are as in Fig. 1. (C) Replication
indices from yku70D rif1-7SRA experiment shown in B, along with
values from wild-type and yku70D experiments from Fig. 1B&C. Strains
in part A are BB14-3a (wild-type), HYLS44 (rif1D), ASY5 (tel1D), AW99
(yku70D), ASY51 (rif1Dscd); ASY81 (RIF1-7SRS). For rif1-7SRA asterisk
indicates ASY69, used for replication timing in Fig. S11; for rif1-7SRE
asterisk indicates ASY73, used for replication timing in Fig. S12; for
yku70D rif1-7SRA asterisk indicates ASY76, used for replication timing
in Fig. 6 B&C and S10; for yku70D rif1-7SRE asterisk indicates ASY78.
doi:10.1371/journal.pgen.1004691.g006
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origin activation. It seems more likely that Tel1 counteracts the Rif1-

mediated delay by phosphorylating an unidentified component of the

molecular pathway through which Rif1 restrains origin activation.

Such a mechanism could act redundantly with Tel1-mediated Rif1

phosphorylation to neutralize the Rif1 replication-delaying signal.

Tel1 appears to have multiple targets at telomeres [28,29], which

may act in concert to produce biological function, so that ablating any

particular phosphorylation event has rather mild effects.

A third possibility is that telomere replication timing control

depends on multiple mechanisms some of which do not involve

Rif1, although the strong effect of Rif1 loss on telomere

replication (Fig. 3) does suggest it is the most central controller

of telomere replication time. H2A-S129 phosphorylation depends

on Tel1 in telomere-proximal regions [51], and a non-

phosphorylatable (H2A-S129A) allele caused a slight delay to

telomere replication in a yku70D background (unpublished

observations); however, H2A-S129 phosphorylation is not

elevated at shortened telomeres [51], inconsistent with H2A-

S129 phosphorylation being a critical mediator of the early

replication of short telomeres.

Phosphorylation of Rif1 may contribute to other telomeric

functions. One possibility is that Tel1-mediated Rif1 phosphorylation

counteracts repression of telomerase recruitment, favoring TG1–

3 tract extension. Telomere length is not greatly altered by the

rif1-7SRA or rif1-7SRE mutants (Fig. 6A)—although very

slight telomere lengthening in some rif1-7SRE isolates hints

that Rif1 phosphorylation might contribute to telomerase

recruitment. As with replication timing, Rif1 phosphorylation

may be one of a series of redundant mechanisms through which

Tel1 regulates telomerase recruitment—another potential path-

way being phosphorylation of Cdc13 [16]. A further role for

Rif1 phosphorylation might involve regulation of anti-checkpoint

function at telomeric DNA damage sites [43,52].

To summarize, we have identified an important new function

for Tel1—namely, driving the early replication of shortened

telomeres. Our results suggest that Tel1 exerts this function by

neutralizing the delaying effect of telomeric Rif1 on nearby

replication origins. Tel1 also directs phosphorylation of Rif1,

which may contribute to replication timing control along with

other mechanisms that impact on origin initiation time. Since Rif1

and Tel1 are conserved and play similar roles in replication timing

control and coordination of DNA repair in higher eukaryotes as in

yeast, our discoveries are likely to illuminate general functions of

these proteins.

Figure 7. Model of replication timing control by Tel1 and Rif1. (A) In wild-type cells, terminal TG1–3 tract is bound by Rap1 (open triangles)
which recruits Rif1 (grey hexagons) and Rif2 (small grey triangles). If the telomere is normal in length, Rif1 signals to nearby origins (such as telomere-
proximal Y9 or ARS522 origins) specifying their late replication time (filled circle). (B) If telomeres are short (as in a yku70D mutant) Tel1 kinase is
recruited and neutralizes the Rif1 delaying signal, so that nearby origins initiate early (white circle). (C) In tel1D mutant cells, the delaying effect of Rif1
cannot be neutralized so that nearby origins initiate late despite the short telomeres. (D) A rif1D mutant lacks the delaying signal, with the result that
nearby origins initiate replication early despite their extended TG1–3 repeat length.
doi:10.1371/journal.pgen.1004691.g007
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Materials and Methods

Yeast strains
Yeast strains are listed in Supplemental Table S1. Gene

knockouts and tagging used standard PCR-based insertion

methods, confirmed by PCR analysis; see Supplemental material

(Text S1) for details of specific strain constructions. Primer

sequences are available on request.

Analysis of replication time
The replication time of specific sequences was measured using

the dense isotope transfer procedure [53,54] in cells released from

a-factor at 30uC, probing for genomic EcoRI fragments as

described previously [8].

Two-dimensional gel analysis of replication
intermediates

Inducible HO cut strains were initially grown in YP medium

containing 2% raffinose with 0.01% glucose (to allow adaptation

to raffinose), and then grown for 24–48 hours in 2% raffinose at

30uC before blocking with 200 nM a-factor. Then galactose was

added to obtain a final concentration of 4%, to induce HO

endonuclease. After 5.5–6 hr, the cells were then released by the

addition of pronase with simultaneous addition of 200 mM

hydroxyurea, and harvested 2 h later. DNA was prepared using

the NIB-n-grab method [55] digested with HindIII followed by 2-

dimensional gel electrophoresis under standard conditions [47].

HO cutting efficiency was confirmed by Southern blot analysis of

XmnI-digested DNA.

Immunoprecipitation of Rif1-Myc
Immunoprecipitation of Rif1 was carried out as described [56]

with modifications as described in Supplementary Material (Text

S1). Protein concentrations were estimated using the RCDC kit

(Bio-rad).

Western blotting and SyproRUBY staining
Immunoprecipitated proteins were eluted in 16 SDS sample

buffer (Invitrogen) with 5% 2-Mercaptoethanol. Cellular equiva-

lent protein samples were separated by SDS PAGE (Novex 8–16%

Tris-Glycine gels, Precast; Invitrogen) and wet blotted using 16
Towbin buffer with 10% Methanol onto PVDF membrane

(Hybond-P, GE Healthcare). Rabbit anti-Myc (ab9106, Abcam)

was used to detect epitope-tagged RIF1, with secondary antibody

AP-conjugated anti-Rabbit IgG (S3731, Promega). Detection

substrate was CDP-Star (Perkin Elmer) using Medical X-ray (Fuji)

film. For quantification of amount of Rif1 protein, a similar gel

was stained overnight using SyproRUBY total protein staining

solution (Bio-rad) and quantified with a Fuji Phosphorimager

(FLA3000) at 473 nm with O580 filter and FujiFILM Image-

Gauge (software V4.21).

SILAC sample preparation and mass spectrometry
analysis

SILAC samples were prepared based on the procedure

described [57]. To compare yku70D with wild-type (Fig. 4), yeast

strain AYS30 was labeled with heavy L-ARGININE:HCL (U-

13C6: U-15N4; CNLM-539-H; Cambridge Isotope Laboratory)

and L-LYSINE:2HCL (U-13C6; U-15N2, CNLM-291-H; Cam-

bridge Isotope Laboratory) [R10K8] and ASY25 was labeled with

light alternatives [R0K0] for at least ten generations. To compare

yku70D tel1D with yku70D (Fig. 5), ASY46 was labeled with heavy

Lysine and Arginine [R10K8] and ASY30 was labeled with light

alternatives [R0K0] for at least ten generations, and subjected to

immunoprecipitation as described above. Immunoprecipitated

Rif1 was quantified by SYPRORuby staining. Equal masses of

Rif1 were then mixed and run on a Novex 8–16% Tris-Glycine

gel, and the Rif1 band was excised for analysis by high-resolution

mass spectrometry (FingerPrints Proteomics, University of Dun-

dee) as described in Supplementary Information (Text S1).

Telomere length analysis
Genomic DNA was digested with XhoI, separated on a 1.5%

agarose gel and transferred to neutral membrane (MP Biomed-

icals) by Southern blotting. Terminal restriction fragments were

detected using a probe directed against the TG repeats.

Supporting Information

Dataset S1 List of peptides identified in the SILAC analysis of

wild-type (YKU70) versus yku70D with H/L ratios and peptide

identification details. First worksheet explains each column in

subsequent sheets; second worksheet lists the most significant

identified phospho-peptides; third worksheet lists all Rif1 peptides

identified, both modified and unmodified, with corresponding

evidence basis.

(XLS)

Dataset S2 List of peptides identified in the SILAC analysis of

yku70D versus yku70D tel1D with H/L ratios and peptide

identification details. First worksheet explains each column in

subsequent sheets; second worksheet lists the most significant

identified phospho-peptides; third worksheet lists all Rif1 peptides

identified, both modified and unmodified, with corresponding

evidence basis.

(XLS)

Figure S1 Replication times show Tel1 is required for early

replication of short yku70D telomeres. Replication times (from

experiments in Fig. 1B) plotted relative to the replication time of

early origin ARS305 (set to time = 0 min). Strains are BB14-3a

(wild-type), ASY5 (tel1D), AW99 (yku70D) and ASY13 (yku70D
tel1D; corresponding to second isolate in part A); all are in A364a

background as listed in Table S1.

(PDF)

Figure S2 Strain-dependent effects of yku70D mutation in

A364a and BY4741 backgrounds. Telomere length analysis shows

that in A364a background, telomeres in a yku70D mutant are

longer than in a tel1D mutant. In the BY4741 strain background,

yku70D and tel1D have similarly very short telomeres. Strain-

dependence of the effect of the yku70D mutation on telomere

length has been observed previously (compare references [36,37]

and [38–40] in main reference list). Strains used in the A364a

strain background are BB14-3a (wild-type), ASY5 (tel1D), AW99

(yku70D) and ASY13 (yku70D tel1D); and in the BY4741 strain

background are Y0000 (wild-type), Y03114 (tel1D) and Y00870

(yku70D).

(PDF)

Figure S3 Confirmation that Tel1 is required for early

replication of short telomeres. (A) Replication kinetics of various

genomic sequences in wild-type and short telomere mutants

yku70D, tel1D and yku70D tel1D. Plots and symbols as in Fig. 1B,

in these repeats of experiments in Fig. 1 & S1. (B) Replication

indices from experiments in A. (C) Replication times from

experiments in A, plotted relative to the replication time of early

origin ARS305 (set to time = 0 min). Strains are BB14-3a (wild-

type), ASY5 (tel1D), AW99 (yku70D) and ASY13 (yku70D tel1D;
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corresponding to second isolate in part A); all are in A364a

background as listed in Table S1.

(PDF)

Figure S4 Tel1 is required for efficient activation in hydroxy-

urea of the ARS700.5 origin neighboring an induced short

telomere. (A) Evaluating the efficiency of HO cutting used to

generate a single short telomere. Cartoon of inducible short

telomere construct is shown in main Fig. 2A. Cells were grown in

2% Raffinose (Asynchronous), arrested with a factor in 4%

Galactose (lanes 2–4 and 10–12) and released into S phase in the

presence of HU (lanes 5–8 and 13–16). XmnI-digested DNA

samples were probed for the 59 part of ADE2 (see Fig. 2A).

Percentage cutting is indicated, prior to release and 120 min after

release into HU. Asterisk indicates ARS1412 fragment, also

probed in this experiment. (B) Quantification of the bubble arc in

ARS700.5 relative to loading as assessed by the intensity of the ‘1N

spot’ of non-replicating DNA. Boxes illustrate the area used for

intensity quantification. (C) Table showing relative intensity values

of the bubble arc and 1N spots for ARS700.5, ARS305 and

ARS1412. Bubble arc values were extracted from long 2D gel

exposures and 1N spot values extracted from short 2D gel

exposures, to maintain phosphorimager signal linearity. After

normalization for loading, the reduction in origin activation of

ARS700.5 was 4.8-fold in the tel1D strain relative to TEL1. Origin

activation levels were in contrast hardly affected for early origin

ARS305 and late origin ARS1412. Gels used for quantification

shown in Fig. 2C. Strains used are SMKY10 (TEL1) and

SMKY13 (tel1D).

(PDF)

Figure S5 Activation of ARS700.5 depends on the length of

nearby telomeric repeats. 2D gel analysis of replication interme-

diates present at ARS700.5 in strains with either long (TG250) or

short (TG80) telomeric TG repeats adjacent to the HO cut site.

Strains used are YAB1356 (TG250) and SMKY10 (TG80).

(PDF)

Figure S6 Telomeres replicate early in a rif1D mutant. (A)

Replication times (from experiments in Fig. 3B), plotted relative to

the replication time of early origin ARS305 (set to time = 0 min),

along with values from wild-type and tel1D experiments from

Fig. 1 and S1). Strains are HYLS44 (rif1D) and ASY14 (rif1D
tel1D; corresponding to first isolate in Fig. 3A). (B) 2D gel analysis

of replication intermediates present at ARS700.5 in RIF1 (left)

and rif1D (right) strains following short telomere induction with

HO endonuclease. Cells were analyzed following release into HU

as described for Fig. 2. Strains are SMKY10 (RIF1) and SMKY15

(rif1D).

(PDF)

Figure S7 Abundance of non-phosphorylated Rif1 peptides is

not increased in yku70D. (A) MS spectrum showing non-

phosphorylated peptide KVDSQDIQVPATQGM(ox)K, with

light (unlabeled) peptide from wild-type (R0K0) and heavy-labeled

peptide from yku70D (R10K8). This peptide represents the

unphosphorylated form of the S-1308 phosphorylated peptide

shown in Fig. 4E. (B) MS spectrum showing the non-phosphor-

ylated peptide NTAIM(ox)NSSQQESHANR, with light (unla-

beled) peptide from wild-type (R0K0) and heavy-labeled peptide

from yku70D (R10K8). This peptide represents the unpho-

sphorylated form of the S-1351 phosphorylated peptide shown

in Fig. 4G.

(PDF)

Figure S8 Abundance of a longer Rif1 peptide, phosphorylated

at Serine-1308, is decreased in the absence of Tel1. (A)

Plots shows relative levels of S-1308 phosphorylated peptide

[KVDS(ph)QDIQVPATQGM(ox)KEPPSSIQISSQISAK] in

yku70D (Light-labeled) and yku70D tel1D (Heavy-labeled) strains.

This is a longer peptide encompassing the same sequence as the

peptide in Fig. 5A, containing a lysine not cleaved during the

trypsin digestion. (B) MS spectrum of the same peptide

[KVDS(ph)QDIQVPATQGM(ox)KEPPSSIQISSQISAK] com-

paring relative abundance in yku70D (R0K0-labeled) and

yku70Dtel1D (R10K8-labeled). (C) MS spectrum comparing

abundance of the non-phosphorylated form of the peptide

KVDSQDIQVPATQGM(ox)KEPPSSIQISSQISAK in yku70D
(R0K0-labeled) and yku70D tel1D (R10K8-labeled).

(PDF)

Figure S9 Summary of phosphorylation sites identified in Rif1.

Rif1 amino acid sequence with phosphorylation sites identified

and changes observed in the experiments shown in Figures 4

and 5. Potential Tel1/Mec1 phosphorylation consensus (S/TQ)

sequences are underlined, while green bars above indicate PP1

interaction motifs. Identified phosphorylation sites with probabil-

ity.0.7 are shown in red. ‘Linked’ phosphorylation sites (identified

only on di- or tri- phosphorylated peptides) with probability.0.7

are shown in blue. Arrows represent fold change observed in

phosphorylated peptides in SILAC experiments indicated. In most

cases, there were comparable fold-changes where peptides were

identified in mono- and di-phosphorylated forms. An exception

was the di-phosphorylated peptide LHNGNIFT(ph)S(ph)PYK

(indicated with blue asterisk), where the di-phosphorylated form

was 10-fold increased in yku70D tel1D, relative to yku70D single

mutant. A third Mec1/Tel1 phosphorylation consensus sequence

was assigned as phosphorylated at Threonine-1569, but close

inspection of the fragmentation profile revealed ambiguity of the

assignment between S-1567 and T-1569. No arrows shown where

fold change was ,1.86.

(PDF)

Figure S10 Replication times show that the non-phosphor-

ylatable Rif1 does not delay the early replication of yku70D
short telomeres. Replication times (from experiments in

Fig. 6B), plotted relative to the replication time of early origin

ARS305 (set to time = 0 min), along with values from wild-type

and yku70D experiments from Fig. 1 and S1). Strains used are

ASY76 (rif1-7SRA yku70D), BB14-3a (wild-type) and AW99

(yku70D).

(PDF)

Figure S11 Non-phosphorylatable Rif1 does not affect telomeric

replication times in YKU70 strain background. (A) Replication

program of rif1-7SRA, released from an a-factor block at 30uC.

Sequences analyzed are as in Fig. 1. (B) Replication indices from

rif1-7SRA experiment shown in A, along with values from wild-

type experiment from Fig. 1B&C. (C) Replication times (from

experiments in A) plotted relative to the replication time of early

origin ARS305 (set to time = 0 min). Strains used are ASY69 (rif1-
7SRA) and BB14-3a (wild-type).

(PDF)

Figure S12 In the rif1-7SRE mutant telomere replication time

is not advanced relative to ARS1412. (A) Replication program of

rif1-7SRE, released from an a-factor block at 30uC. Sequences

analyzed are as in Fig. 1. (B) Replication indices from rif1-7SRE
experiment shown in A, along with values from wild-type

experiment from Fig. 1B&C. (C) Replication times (from exper-

iments in A) plotted relative to the replication time of early origin
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ARS305 (set to time = 0 min). Strains used are ASY73 (rif1-
7SRE) and BB14-3a (wild-type).

(PDF)

Table S1 Yeast strains. Yeast strains used in this study are listed

along with their source and the figures where used.

(DOC)

Text S1 Supplementary experimental procedures. Text file with

in-detail procedures for strain construction, Rif1 immunoprecip-

itation, and mass spectrometry and data analyses.

(DOC)
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