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Abstract

Processes underlying mechanotransduction and its regulation are poorly understood. Inhibitors of Ca2+-activated K+

channels cause a dramatic increase in afferent output from stretched muscle spindles. We used immunocytochemistry to
test for the presence and location of small conductance Ca2+-activated K+ channels (SK1-3) in primary endings of muscle
spindles and lanceolate endings of hair follicles in the rat. Tissue sections were double immunolabelled with antibodies to
one of the SK channel isoforms and to either synaptophysin (SYN, as a marker of synaptic like vesicles (SLV), present in many
mechanosensitive endings) or S100 (a Ca2+-binding protein present in glial cells). SK channel immunoreactivity was also
compared to immunolabelling for the Na+ ion channel ASIC2, previously reported in both spindle primary and lanceolate
endings. SK1 was not detected in sensory terminals of either muscle spindles or lanceolate endings. SK2 was found in the
terminals of both muscle spindles and lanceolate endings, where it colocalised with the SLV marker SYN (spindles and
lanceolates) and the satellite glial cell (SGC) marker S100 (lanceolates). SK3 was not detected in muscle spindles; by contrast
it was present in hair follicle endings, expressed predominantly in SGCs but perhaps also in the SGC: terminal interface, as
judged by colocalisation statistical analysis of SYN and S100 immunoreactivity. The possibility that all three isoforms might
be expressed in pre-terminal axons, especially at heminodes, cannot be ruled out. Differential distribution of SK channels is
likely to be important in their function of responding to changes in intracellular [Ca2+] thereby modulating mechanosensory
transduction by regulating the excitability of the sensory terminals. In particular, the presence of SK2 throughout the
sensory terminals of both kinds of mechanoreceptor indicates an important role for an outward Ca2+-activated K+ current in
the formation of the receptor potential in both types of ending.
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Introduction

Ca2+-activated K+ channels (SK and BK channels, collectively

KCa) are known to play various roles that involve repolarisation of

cell membranes, including the regulation of firing rates in central

neurons, of smooth muscle tone, and of synaptic transmission [1].

They have been described in a variety of other cell types, including

dorsal-root ganglion cells [2,3], though there are conflicting

reports about the possible occurrence of KCa channels in sensory

terminals of low-threshold mechanoreceptors, in particular those

of the mammalian muscle spindle [4,5]. Our own interest in this

possibility arose from our work on the small (50 nm), clear vesicles

present in mammalian mechanosensory terminals [6,7]. Despite

wide variation in form, associated accessory cells, and function of

the terminals, all of them seem to possess a population of the

vesicles [8], indicating the existence of an important common

underlying mechanism. The vesicles share many properties with

those of presynaptic terminals, but as the sensory terminals are

emphatically not synaptic we refer to the vesicles as synaptic-like

(SLV). Using sensory endings of rat muscle spindles as a model of

the role of SLVs we have presented evidence that they are

involved in autogenic modulation of sensory-ending excitability,

mediated by glutamate released from SLVs during their recycling

[6]. This presynaptic similarity of mechanosensory endings

prompted us to investigate Ca-dependent mechanisms that might

regulate SLV recycling, and/or afferent firing.

As with the similar vesicles in presynaptic terminals, fusion of

SLVs with the sensory terminal membrane is Ca2+-dependent, and

blocking Ca2+ influx with inorganic ions (Co2+ or Ni2+/Cd2+)

severely inhibits or abolishes the sensory response in muscle

spindles [6]. More specific blocking of P/Q-type channels with v-
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agatoxin IVA or v-conotoxin MVIIC powerfully increased firing

rates (2–3 fold approximately) in response to stretch. A similar

effect was produced if either BK or SK channels were blocked

with charybdotoxin, iberiotoxin or apamin [9,10].

Here we investigate the expression of SK1-3 in sensory

terminals of muscle spindles and in lanceolate endings of hair

follicles using immunocytochemistry. The synaptic vesicle protein

synaptophysin (SYN) was used as a marker of sensory terminals,

which show strong immunoreactivity to SYN presumably because

of their SLV content. In addition, as a further marker of the

sensory terminals, we also examined the location of immunore-

activity to the candidate mechanotransducer channel component

ASIC2, also known as BNaC1. We have previously found

immunoreactivity to ASIC2 in the sensory endings of spindles,

where it colocalises with that to SYN [11]; and immunoreactivity

to the BNaC1a isoform has been reported in cutaneous

mechanoreceptor endings, including the lanceolate (or palisade)

ending of the hair follicle [12]. In the lanceolate ending, unlike the

spindle primary ending, individual terminals are closely invested

by satellite glial cells (SGCs) in an association so intimate that the

SGCs may usefully be considered to be a non-neural component

of the ending. We used immunoreactivity to the Ca2+-binding

protein S100, often regarded as a marker of glial cells [e.g. 13], to

identify SGCs.

SK1 expression has recently been reported in the dorsal-root

ganglion cells and sensory receptor cells of the special sense organs

in zebrafish (Danio), though post-cranial sensory endings were not

described [14]. We did not detect SK1 in either muscle-spindle or

lanceolate endings, apart from some unidentified axon-like

structures, whereas immunoreactivity to SK2 was present in both

spindle terminals and lanceolate endings. Immunoreactivity to

SK3 was found in the lanceolate endings in a pattern consistent

with a predominantly, or exclusively, SGC expression.

Materials and Methods

Ethics Statement
All procedures were carried out in accordance with UK

legislation: Animals (Scientific Procedures) Act, 1986 and all

possible care was taken to ameliorate suffering. The study was

carried out under UK Home Office Project Licence no. PPL 60/

3963, with the approval of Durham University’s Life Sciences

Ethical Review Process Committee, granted 2010.

Tissue Preparation and Imaging
Adult rats (2) were deeply anaesthetized with sodium pentobar-

bitone (45 mg kg21, I.P.) and fixed by transcardial perfusion with

4% (w/v) formaldehyde (from paraformaldehyde) in 0.1 M

phosphate buffer, pH 7.4. Tissue samples, taken from the pinnae

and from a spindle-rich region of the deep masseter muscles of

each animal, were cryoprotected by immersion in 30% sucrose in

0.1 M phosphate buffer overnight, before being placed in moulds

containing Tissue-Tek and rapidly frozen in isopentane cooled to

2160uC with liquid N2. 10 mm thick cryosections were cut using a

Leica CM 1850 UV cryostat. Sections of skin from the inner

surfaces of the pinnae were double labelled with one of four groups

of antibody (Ab) combinations: 1) anti-SK channel (1.25–5 mg/ml,

goat or rabbit polyclonals, Santa Cruz Biotechnology/Alomone

Laboratories) + anti-SYN (1 mg/ml, mouse monoclonal, Milli-

pore); 2) anti-SK + anti-S100 (1:400, mouse monoclonal, Santa

Cruz Biotechnology); 3) anti-ASIC2 (5 mg/ml, goat polyclonal,

Santa Cruz Biotechnology) + anti-SYN; 4) anti-ASIC2+ anti-S100.

Sections were incubated with primary antibodies for 48 hrs at

4uC. Secondary antibodies were Alexa Fluor (AF) conjugated

antibodies (all at 1:250 dilution, AF 594 donkey anti-goat and AF

488 donkey anti-mouse or AF 594 goat anti-rabbit and AF 488

goat anti-mouse, Invitrogen). Incubations with secondary anti-

bodies were for 1 hr at ambient temperature (circa 20uC). Sections

of muscle were incubated only with combinations 1) and 3) as

there are no SGCs associated with spindle sensory endings.

Channel antibodies pre-incubated with the peptides to which they

had been raised were used as controls. Sections were viewed and

optically sectioned with a Leica SP5 Confocal Laser Scanning

Microscope, using a x63 NA 1.4 objective. Serial confocal planes

(Z-stacks) used for movies, animations and reconstructions were

0.5 mm apart. A diagrammatic survey of the key structural

components of the primary ending and the lanceolate ending in

relation to planes of imaging is given in Figure 1.

Colocalisation Statistical Analysis
To assess the colocalisation of SK and ASIC2 immunoreactivity

with either anti-S100 or anti-SYN labelling, we calculated

Manders’ correlation coefficients (Mx, My) [15], with automatic

thresholding, for pairs of images of single confocal planes, using

Volocity software (Perkin-Elmer, Cambridge, UK; automatic

thresholding is implemented according to the protocol of Costes

et al. [16], in Volocity). Regions of interest (ROIs) were drawn

freehand to include sensory endings or, where appropriate, SGC

bodies and to exclude most of the unlabelled background so that

thresholds were not unduly biased by pixels with 0, or close to 0,

intensity. In the present data, Mx is always the summed intensities

in the green channel (AF 488) for pixels above threshold in both

channels, as a proportion of the total intensities for all pixels in the

green channel; and My is the equivalent for the red channel (AF

594). To clarify the presentation of the quantitative data in the

subsequent results, Mx and My are further specified according to

the immunoreactivities being compared, e.g. Mx = MSK2/SYN

signifies the proportion of total intensities of thresholded pixels

immunopositive for SYN that are also immunopositive for SK2,

and the complementary My = MSYN/SK2 signifies the proportion of

total intensities of thresholded pixels immunopositive for SK2 that

are also immunopositive for SYN. Merged images were created

using ImageJ (http://imagej.nih.gov/ij National Institutes of

Health, Bethesda, MD). Calculation of Manders’ coefficients

effectively normalises fluorescent intensities, so reducing variability

arising from differences in absolute intensities from ending to

ending and preparation to preparation. The coefficients can take

values between 0 and 1, and are usually not distributed normally.

We therefore made statistical comparisons using Mann-Whitney

U. Sample sizes (n values) refer to numbers of sensory endings.

Colocalisation Visualisation and 3D Surface Rendering
Interpretation of the results of immunolabelling in the

lanceolate endings of hair follicles is more complicated than in

the sensory endings of muscle spindles, due to the smaller size of

the lanceolate’s sensory terminals and their close, parallel

association with thin processes of SGCs, the distance between

the opposed membranes being well below the resolution of the

light microscope [17]. Care was needed, therefore, to avoid the

possibility of misinterpreting proximity for colocalisation, which is

a particular problem with longitudinal sections (Fig. 1F). In order

to minimise this problem, data used in the quantitative analysis of

Table 1 were taken only from image planes close to transverse

with respect to the sensory terminals. Longitudinal and oblique

sections were used exclusively for qualitative observations.

Qualitative interpretation was further facilitated in more complex

sections by viewing Z-stacks of images sequentially in a movie,

making it much easier to follow particular structures in 3
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dimensions. Some of these were subsequently converted to surface-

rendered 3D objects using Imaris software (Imaris 7.7 with

colocalisation; Bitplane, Belfast, UK) to investigate spatial

relationships between labels further and visualise the colocalisa-

tion. Examples of both these treatments are appended as

supplementary files. The validity of our interpretation of

colocalisation is illustrated by the lack of colocalisation volume

when sections were double labelled with anti-SYN (terminals) and

anti-S100 (glia), and 3D surface-rendering found no colocalisation

volumes present (Movies S1 and S2).

Results

SK2
We begin with SK2 as we found anti-SK2 immunoreactivity in

the terminals both of sensory endings of muscle spindles and

lanceolate endings of hair follicles. In addition, anti-SK2

immunoreactivity was present in lanceolate-ending SGCs. Control

sections incubated with anti-channel antibodies pretreated with

the respective antigenic peptides showed no immunofluorescence.

SK2 immunoreactivity in muscle spindles. SK2 immu-

noreactivity was detected in sensory terminals and other, less well

defined structures, probably inner capsule cells (Fig. 2A–C). Pre-

terminal axons are rarely included in 10 mm thick sections of

muscle spindles, owing to their very restricted distribution.

Nevertheless, in one section, SK2 immunoreactivity was present

in what had the structural characteristics of a pre-terminal axon

(Fig. 2D). Sensory terminals were identified by their size, shape

and positive immunoreactivity for SYN. Manders’ coefficients

(SYN, green channel; SK2, red channel) were both high (mean

Mx = MSK2/SYN = 0.74; mean My = MSYN/SK2 = 0.88, n = 8) for

ROIs drawn as single envelopes enclosing all recognisable sensory

terminals in each section, indicating strong colocalisation of SK2

and SYN in the terminals. For comparison, we also carried out

double labelling with antibodies against SYN (green channel) and

ASIC2 (red channel). We have previously described ASIC2

immunoreactivity in the spindle sensory terminals, as a putative

component of the mechanotransduction channel [11]. The SYN/

SK2 immunoreactivity colocalisation of ROIs enclosing sensory

terminals was at least as strong as that for SYN/ASIC2 (mean

Mx = MASIC2/SYN = 0.64; mean My = MSYN/ASIC2 = 0.78, n = 10).

SK2 immunoreactivity associated with hair follicle

sensory innervation. Examination of pairs of images taken in

the red (SK2) and green (SYN or S100) channels, as well as

corresponding merged images, showed at least partial colocalisa-

tion of SK2 immunoreactivity with both SYN and S100

immunoreactivity in sections passing through the palisade-like

ring of sensory terminals and SGC processes of lanceolate endings

(Fig. 3). Manders’ coefficients were: for SYN/SK2 (mean

Mx = MSK2/SYN = 0.90; mean My = MSYN/SK2 = 0.81, n = 15);

and for S100/SK2 (mean Mx = MSK2/S100 = 0.81; mean

My = MS100/SK2 = 0.96, n = 16). Corresponding pairs of coeffi-

cients differed significantly (Mx) or highly significantly (My)

(Table 1). Collectively, these results indicate that SK2 is expressed

in both the sensory terminals and the SGCs. Confirmation was

provided by sections passing through the bulb regions of hair

follicles, where SGCs and their initial processes could be seen,

prior to their association with sensory terminals or axons. Thus,

SK2 immunoreactivity was present in the cell bodies (cytoplasm)

and processes of SGCs as well as in axons and their terminals,

whereas SYN immunoreactivity was present only in the axons and

terminals (Fig. 4 and Movies S3,S4).

In addition we sometimes found SK2 immunoreactivity

associated with hair follicles, but outside the lanceolate endings

themselves (as defined by the sensory terminals and SGCs). In

individual sections it was usually not possible to tell whether this

was associated with pre-terminal axons of the lanceolate endings,

though in some cases the structures involved appeared to be

portions of circumferential endings (Fig. 5). SK2 immunoreactivity

was also shown by cells of the sebaceous glands and non-neural

cells at the base of the follicles, whereas the inner and outer sheath

cells did not show reactivity.

Figure 1. Key structural elements of primary endings in muscle
spindles and lanceolate endings on hair follicles. Schematic
diagrams of a muscle spindle primary ending, annulo-spiral in form (A,
C) and of a lanceolate ending forming a palisade-like structure around a
hair follicle (E, K). Representative planes of section of subsequent figures
and of the remaining parts of this figure are shown on the diagrams.
Immunoreactivity for synaptophysin is apparently restricted to the
sensory terminals of both spindle primary (B) and lanceolate (arrows in
G) endings. In the muscle spindle, the very large sensory terminals
(arrowheads in D) are wound around specialised intrafusal muscle
fibres. Surrounding, but not in contact with the sensory ending are
inner capsule cells (arrows in D). In the lanceolate ending, the much
smaller individual terminals (arrowheads in L) are sandwiched closely
between processes of accessory glial cells (asterisks in L). The glial cells,
both processes (arrows in H) and cell bodies (arrowheads in H) are
immunoreactive for S100. Glial cell processes and lanceolate terminals
are so small that in longitudinal section anti-synaptophysin and anti-
S100 antibodies can appear to colocalise in a single confocal plane (G
and H merged in F). Imaging techniques: B, single plane confocal laser
scanning image, scale 50 mm; D, transmission electron micrograph,
scale 10 mm; F–H, single plane confocal laser scanning images, scale
20 mm; L, transmission electron micrograph, scale 1 mm.
doi:10.1371/journal.pone.0107073.g001
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SK3
SK3 in muscle spindles. We did not detect immunoreac-

tivity to SK3 in the terminals of muscle spindle sensory endings.

However, we cannot rule out the possibility that SK3 is present in

the pre-terminal axonal branches, in view of the difficulty of

finding them in our sections, as described above.

SK3 associated with hair follicle sensory

innervation. Although we found no evidence for SK3 in

spindles, immunoreactivity to SK3 was found in restricted

locations in lanceolate endings. Double labelling demonstrated

that SK3 immunoreactivity occurred in association with both SYN

and S100 immunoreactivities, but that it was only partiallycolo-

calised with either. Rather, it seemed to be localised at or near the

interface between terminals (represented by SYN) and SGC

processes (represented by S100) (Fig. 6 and Movie S5). Manders’

coefficients were: for SYN/SK3 (mean Mx = MSK3/SYN = 0.33;

mean My = MSYN/SK3 = 0.63, n = 11); and for S100/SK3 (mean

Mx = MSK3/S100 = 0.42; mean My = MS100/SK3 = 0.88, n = 15).

There was no significant difference in a statistical comparison of

MSK3/SYN and MSK3/S100, whereas MSYN/SK3 and MS100/SK3

differed highly significantly (Table 1). SK3 immunoreactivity was

detectable in the cell bodies and processes of some SGCs;

however, not all S100 immunoreactive profiles also showed SK3

reactivity, even when closely adjacent in the same section (Fig. 7

and Movie S6). These results are consistent with a restricted

expression of SK3 in SGCs, especially where their processes are

closely adjacent to sensory terminals. It is also possible that not all

SGCs express SK3, and we cannot exclude the possibility, on the

present evidence, of limited expression in the sensory terminals.

ASIC2 colocalisation pattern for comparison with SK

channels. ASIC2 immunoreactivity showed a similarly very

restricted distribution in lanceolate endings to that of SK3, and

also relatively low colocalisation with both SYN and S100

immunoreactivities (Fig. 8 and Movie S7). Manders’ coefficients

were: for SYN/ASIC2 (mean Mx = MASIC2/SYN = 0.66; mean

My = MSYN/ASIC2 = 0.67, n = 20); and for S100/ASIC2 (mean

Mx = MASIC2/S100 = 0.48; mean My = MS100/ASIC2 = 0.79, n = 15).

Neither corresponding pair of coefficients differed significantly (Mx

nor My) (Table 1). In this case, however, there was no evidence of

ASIC2 expression in SGC cell bodies or their processes, except

where sensory terminals were also likely to be present. Conversely,

there is clear evidence that ASIC2 (BNaC1a) is expressed in the

sensory axons and terminals [12] and the restricted distribution in

relation to SYN immunoreactivity in our own results is consistent

with ASIC2 being localised especially at the sensory terminal

membrane, in particular, the regions where it is known to be

exposed. That is, at the edges of the long axis of the lanceolate

Figure 2. Evidence for the expression of SK2 in muscle spindle
sensory endings. Muscle-spindle sensory endings double labelled
with anti-synaptophysin (SYN, green channel) and anti-SK2 (red
channel) antibodies. In one ending the green and red channels are
shown separately (A and B), as well as merged (C). In a second ending
only the merged channels are shown (D). Partial colocalisation of SYN
and SK2 immunoreactivity is evident in the sensory terminals
(arrowheads), and in what are probably unmyelinated preterminal
branches of the parent sensory nerve fibre (arrows). SK2 immunoreac-
tivity can also be detected in inner capsule cells (ic). Scale = 10 mm.
doi:10.1371/journal.pone.0107073.g002

Figure 3. Evidence for the expression of SK2 in sensory
terminals and glial cells of lanceolate endings. Lanceolate
endings double labelled with anti-synaptophysin (SYN, green channel)
and anti-SK2 (red channel) antibodies (A–C) and with anti-S100 (green
channel) and anti-SK2 (red channel) antibodies (D–F). In each case the
green (A, D) and red (B, E) channels are shown separately, as well as
merged (C, F). Partial colocalisation of both SYN and S100 with SK2
immunoreactivity indicates that SK2 is present in sensory terminals and
satellite glial cells (SGCs). Scale (in A, D) = 10 mm.
doi:10.1371/journal.pone.0107073.g003
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terminal blade closest to, and furthest from, the hair shaft where

there are gaps between the SGC processes [17].

SK1
We did not detect immunoreactivity to SK1 in the terminals

either of sensory endings in muscle spindles or of lanceolate

endings; however, there was some specific labelling with anti-SK1

antibody in unidentified axon-like structures, apparently located

immediately beneath the lanceolate endings around some hair

follicles (Fig. 9).

Discussion

Opening the black box – low-threshold sensory
mechanotransduction in mammals

Despite their different locations, structural organisations and

associations with very different accessory cells, the sensory endings

of muscle spindles and the lanceolate endings of hair follicles share

some fundamentally important properties in common, together

with other cutaneous, joint and muscle afferents, and some visceral

afferents such as baroreceptors [18]. Thus, all of these are low-

threshold mechanoreceptors, responding to low force stimuli, often

of minute amplitude; and all are formed of the peripheral sensory

terminals of primary afferent axons whose cell bodies are located

in the dorsal-root or cranial nerve ganglia. They also share in

common the fact that the molecular basis of their mechanosensi-

tivity is unknown. In some cases, such as the muscle spindle,

classical neurophysiology has provided us with very detailed

input:output (I/O) properties where the inputs are well-defined

and precisely controlled mechanical stimuli, and the outputs are

the resulting spike trains in the afferent axons (see, for example,

[19]). In such experiments the overall process of mechanosensory

transduction is treated as a black box, whose transfer function can,

at least in principle, be determined from the I/O properties alone

(see, for example, [20]). This treatment is very useful in

bioengineering, but it is clearly unsatisfactory for our understand-

ing of a fundamentally important biophysical process. For that we

need to see inside the ‘black box’.

Much of our recent work has centred on the role of a

glutamatergic system mediated by SLVs in mechanosensory

terminals [6,7]. The rate of SLV turnover is activity dependent,

and experimental manipulation of the system alters the sensory

ending’s I/O properties, at least of the muscle spindle, so it is

feasible that the system is part of an automatic gain control of the

mechanosensory black box, operating with a time course of

seconds to minutes. We encountered the importance of Ca2+-

activated K+ channels, both SK and BK, in the course of

investigating the possible role of voltage-gated Ca2+ channels in

SLV recycling in muscle spindles [9]. SLV recycling is a Ca2+-

dependent process, so we were surprised initially to find that

blocking P/Q Ca2+ channels enhanced rather than inhibited

muscle-spindle sensory responses to stretch; however, as P/Q

channels are frequently associated with KCa channels, we also tried

blocking SK and BK channels and found that blocking either or

both types produced similar effects to P/Q blockage [10]. It might

be thought likely that these channels would be localised especially

at sites in the sensory endings where action potentials are

generated and where they could be particularly effective in

regulating the firing rate. Heminodes, of which there may be

several in any one sensory ending and which are located in

preterminal branches, are thought to be the most important such

sites, but they were not amenable to study in the present work

where we have concentrated on the sensory terminals and

associated accessory cells. We have carried out preliminary

observations on the immunohistochemistry of BK, which indicate

Figure 4. Further evidence for the expression of SK2 in
lanceolate sensory terminals and glial cells. An oblique section
of a lanceolate ending double labelled with anti-synaptophysin (SYN,
green channel) and anti-SK2 (red channel) antibodies in a merged
image. Note especially the satellite glial cell (SGC) body labelled only
with anti-SK2 antibody (arrow), and the double labelled branched axon
and terminals (arrowheads), confirming the expression of SK2 in both
sensory terminals and SGCs. Scale = 10 mm.
doi:10.1371/journal.pone.0107073.g004

Figure 5. SK2 may be expressed in circumferential as well as
lanceolate endings. A lanceolate ending double labelled with anti-
S100 (green channel) and anti-SK2 (red channel) antibodies in a merged
image. The structure indicated by an arrow may be part of a
circumferential ending. Scale = 5 mm.
doi:10.1371/journal.pone.0107073.g005
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that it is not present in the sensory terminals of either muscle

spindles or lanceolate endings (FCS,RWB), but we have yet to

investigate whether immunoreactivity to BK or SK can be

detected at heminodes.

SK2 in sensory terminals
In the light of the previous consideration, our clear evidence for

SK2 expression throughout the sensory terminals of both muscle

spindles and lanceolate endings is all the more remarkable. In the

very large terminals of muscle spindles much of the immunore-

activity was found within the terminals, though it was not

completely colocalised with SYN, the SLV marker. Any SK2

localised internally is presumably sequestered in a reserve pool, as

its functional site must surely be the sensory terminal membrane.

The much smaller terminals of the lanceolate endings do not allow

us to decide whether or not SK2 is similarly localised in part

within the terminals as well as in their membranes, but the higher

value of Manders’ coefficient Mx = MSK2/SYN in lanceolate (0.90)

as compared to muscle spindle endings (0.74) is at least consistent

with this. Conversely, My = MSYN/SK2 is somewhat higher for

muscle spindles (0.88) than for lanceolate endings (0.81), which

Figure 6. Evidence for the expression of SK3 in satellite glial
cells of lanceolate endings. Lanceolate endings double labelled with
anti-synaptophysin (SYN, green channel) and anti-SK3 (red channel)
antibodies (A–C) and with anti-S100 (green channel) and anti-SK3 (red
channel) antibodies (D–F). In each case the green (A, D) and red (B, E)
channels are shown separately, as well as merged (C, F). Partial
colocalisation of S100 with SK3 immunoreactivity, but only close
association of SYN with SK3 antibodies, indicates that SK3 is present in
satellite glial cells (SGCs), especially where they adjoin sensory
terminals. Scale (in A, D) = 10 mm.
doi:10.1371/journal.pone.0107073.g006

Figure 7. SK3 may be absent from some satellite glial cells in
lanceolate endings. Lanceolate ending double labelled with anti-
S100 (green channel) and anti-SK3 (red channel) antibodies shown
separately and merged (A–C, respectively). SK3 immunoreactivity is
clearly present in some satellite glial cells (SGC)s and their processes
(arrows), whereas it is not apparent in others (arrowheads). Scale (in
A) = 10 mm.
doi:10.1371/journal.pone.0107073.g007
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might reflect the additional expression of SK2 in the SGCs that

are a prominent feature of lanceolate endings, but are absent from

muscle spindles.

The sensory terminals are, of course, thought to be the sites

where receptor potentials are produced in response to the

mechanical deformation of the terminals resulting in gating of

stretch-activated channels in their membranes. Hunt et al. (1978)

[4] succeeded in recording muscle-spindle receptor potentials from

the parent axons, rather than the inaccessible terminals, by

blocking action potentials with tetrodotoxin. They were able to

attribute certain features of the receptor potential to K+ influx, but

they also showed that removal of external Ca2+ had no effect on

these features and presumably, therefore, the K+ currents

responsible were not due to Ca2+-activated channels. This is a

very important observation in the context of our results, as it

suggests that the SK2 channels of the sensory terminals may

require much greater, transient, depolarisations to invade the

terminals by backfiring action potentials in order to activate P/Q

channels associated with them, and that the role of the P/Q-SK2

channel complex within the terminals may therefore concern

registration of the fact of action potential firing rather than

modulation of the receptor potential itself. In contrast to the results

of Hunt et al. (1978), Kruse and Poppele (1991) [5] found very

clear evidence for a role for KCa channels in the mid-frequency

dynamics of the muscle-spindle primary ending’s response to

small-amplitude sinusoidal stretch, which they modelled as a

negative feedback pathway within the process of receptor potential

generation. What is perhaps particularly significant is that Kruse

and Poppele (1991) had not blocked impulse activity and were, in

fact, recording the responses as impulse activity from the parent

afferent nerve fibre. Our finding of SK2 immunoreactivity in the

sensory terminals may therefore be seen as providing further

support to the idea of such a feedback pathway.

SK2 and SK3 in satellite glial cells
In lanceolate endings spatial resolution with immunofluores-

cence was rarely sufficient to separate clearly the immunoreactivity

of the sensory terminals and their associated SGC processes, even

in single confocal planes. The quantitative data analysis must

therefore be interpreted using additional qualitative information,

provided by examination of SGC bodies and sensory axons in the

region of the hair follicles deep to the palisade endings. At this

level, at least, we could be sure that immunoreactivity to both SK2

and SK3 was present in SGCs, but in sensory axons only that to

SK2 was present. Consistent with such a pattern of expression, at

the level of the sensory terminals, we found Manders’ coefficients

to be generally high for SK2 colocalisation with both SYN and

S100 (all 4 values of Mx and My ranged between 0.81 and 0.96),

but only My = MS100/SK3 was high (0.88) for SK3 colocalising with

Figure 8. Partial colocalisation of ASIC2 and S100 reflects close
association between sensory terminals and glial cells. Lanceo-
late endings double labelled with anti-synaptophysin (SYN, green
channel) and anti-ASIC2 (red channel) antibodies (A–C) and with anti-
S100 (green channel) and anti-ASIC2 (red channel) antibodies (D–F). In
each case the green (A, D) and red (B, E) channels are shown separately,
as well as merged (C, F). Since ASIC2 is not expressed in satellite glial
cell (SGC) bodies, partial colocalisation, or close association, of both SYN
and S100 with ASIC2 immunoreactivity indicates that ASIC2 is present in
sensory terminals at, or close to their interface with SGCs. Scale (in A,
D) = 10 mm.
doi:10.1371/journal.pone.0107073.g008

Figure 9. Example of SK1 expression in unidentified structure
close to lanceolate ending. Lanceolate ending double labelled with
anti-S100 (green channel) and anti-SK1 (red channel) antibodies.
Immunoreactivity to S100 is present in processes of satellite glial cells
(SGCs), and to SK1 in unidentified structures. Although the latter
resemble axons it seems unlikely that is what they are, as there are no
associated glial cell processes close to them. Scale = 10 mm.
doi:10.1371/journal.pone.0107073.g009
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S100, implying that almost all the SK3 immunoreactivity

colocalised with that of S100. The converse, however, was not

true (Mx = MSK3/S100 = 0.42). Together with the low, quantitative,

colocalisation of SK3 with SYN (Mx = MSK3/SYN = 0.33, My = M-

SYN/SK3 = 0.63), this reflects the very restricted expression of SK3

apparently close to the interface between the sensory terminals and

the SGC processes.

Individual sensory terminals of the lanceolate ending are very

closely invested by processes of SGCs, and are otherwise exposed

only on their inner and outer edges at narrow gaps between pairs

of SGC processes. The SGCs are therefore well placed to influence

the flow of any receptor current generated by the sensory

terminals, in addition to perhaps playing a role in transmission

of mechanical stimuli to the terminals. Our demonstration of the

presence of SK2 and SK3 in SGCs, in particular their processes,

suggests that one possible contribution they may make is the

regulation of [K+] in the extraterminal space.

Our findings concerning the expression of SK3 in SGCs are

consistent with previous reports of its presence in other types of

glia, both centrally in astrocytes of the rat supraoptic nucleus [21],

and peripherally in SGCs of the trigeminal ganglion [22].

Increases in intracellular [Ca2+] in other types of glia have been

shown to regulate neuronal activity [23], but the signal for

activation of SK channels in SGCs of the hair follicle are

unknown. In lanceolate endings of rat vibrissae, however,

Takahashi-Iwanaga et al. (2008) [24] have described a dual

system of intercellular Ca2+ signalling in SGCs that could

conceivably activate SK channels, in response to direct mechanical

stimulation of the SGC processes themselves. Mechanical stimu-

lation results in local elevation of intracellular [Ca2+], the signal

then being propagated intercellularly by purine- and gap-junction-

mediated pathways, effectively coupling the SGCs into a

functional network [24].

Supporting Information

Mpg-format movies created using Imaris software (Bitplane ,

Zurich, Swizerland) from z-stacks of confocal images.

Movie S1 3D surface rendering of image stacks showing
the distinct cellular localisations of anti-SYN and anti-
S100 labelling. The original en face raw anti-SYN image stack

(green) of the hair follicle palisade is followed by addition of the

anti-S100 (red) of the glial cell, then any colocalisation volume is

rendered in yellow. This composite is then rotated to alternative

viewing aspects. Note the absence of any colocalisation volume

(yellow), indicating complete cellular segregation, with no

synaptophysin labelling in the S100-positive glial cell, or vice versa.

(ZIP)

Movie S2 3D surface rendering of image stacks showing
the distinct cellular localisations of anti-SYN and anti-
S100 labelling. The original en face raw anti-SYN image stack

(green) of the hair follicle palisade is followed by addition of the

anti-S100 (red) of the glial cell, then any colocalisation volume is

rendered in yellow. This composite is then rotated to alternative

viewing aspects. Note the absence of any colocalisation volume

(yellow), indicating complete cellular segregation, with no

synaptophysin labelling in the S100-positive glial cell, or vice versa.

(ZIP)

Movie S3 3D surface rendering of image stack showing
the relationship between anti-SK2 and anti-SYN label-
ling. The original en face raw SK2 image stack (red) of the almost

complete circle of the hair follicle palisade is followed by addition

of the lanceolate terminal (synaptophysin, green) and colocalisa-

tion volumes (yellow), which is then rotated to alternative viewing

aspects. Note the extensive fragment of glial cell body (bottom

centre) labelled for SK2, and the circumferential and longitudinal

labelling (in the z-axis) in the rest of the follicle. The white

framework indicates the total volume of the section that was

imaged. Solid surface rendering is then applied to the SYN, SK2

then colocalisation volumes. The original image volume and the

frame are then removed. Zooming in on the lanceolate terminals

(green) shows they are predominantly enclosed by a larger (glial)

volume labelled for SK2. However, transparency of the red and

green channels allows the extensive labelling of SK2 within the

terminals (yellow) to be seen. A lower power view then confirms

the SK2 labelling is within the terminals, not just overlapping

labels directly in line sight from a single view point, as the non-

colocalised SK2 and SYN labels are progressively peeled away,

leaving only the surface rendered colocalisation volume, before

being reinstated.

(ZIP)

Movie S4 3D surface rendering of image stack showing
another example of colocalisation of anti-SK2 with anti-
SYN labelling in lanceolate terminals. As for movie S1, but

in an oblique section deeper within the follicle that contains much

more extensive glial cell, and less nerve terminal, material.

(ZIP)

Movie S5 3D surface rendering of image stack showing
anti-SK3 (red) labelling is very predominantly in the
glial cell processes, and only colocalises (yellow) with
the terminal anti-SYN (green) labelling at the interface
between the lanceolate endings and their enclosing glial
cell processes. Note in this follicle, sectioned at a more

superficial level of the skin, there are no cell bodies but the glial cell

processes are clearly interpolated between the lanceolate termi-

nals.

(ZIP)

Movie S6 Confocal optical section stack close to the
base of a lanceolate ending, double-labelled with anti-
SK3 (red channel) and anti-S100 (green channel) anti-
bodies. Colocalisation of the immunoreactivities may be seen in

some SGCs and their processes, but not others, and may be

followed in the 3 dimensions of the image stack. Compare with the

endings shown in Figure 7D–F and Figure 8, labelled in the same

way. (Avi-format movie created using Windows Moviemaker from

z-stack of confocal images.).

(ZIP)

Movie S7 3D surface rendering of an image stack to
contrast the relationship of anti-ASIC2 and anti-SYN
labelling with that for the SK channels above. Note the

extensive ASIC2 labelling (red) in both longitudinal and

circumferential elements. While there is substantial anti-ASIC2

labelling in the glial cell processes, it is also found extensively

within most of the lanceolate terminals, colocalising with anti-SYN

labeling.

(ZIP)
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17. Andres K H (1966) Über die feinstruktur des rezeptoren an sinushaaren. Zeit

Zellforsch mikroskop Anat 75: 339–365.
18. Delmas P, Hao J, Rodat-Despoix L (2011) Molecular mechanisms of

mechanotransduction in mammalian sensory neurons. Nat Rev Neurosci 12:
139–153.

19. Hulliger M, Banks RW (2009) A method for the study of the effects of combining

multiple pseudorandom fusimotor stimulation on the responses of muscle-spindle
primary-ending afferents. J Neurosci Meth 178: 103–115.

20. Poppele RE (1981) An analysis of muscle spindle behaviour using randomly
applied stretches. Neurosci 6: 1157–1165.

21. Armstrong WE, Rubrum A, Teruyama R, Bond CT, Adelman JP (2005)

Immunocytochemical localization of small-conductance, calcium-dependent
potassium channels in astrocytes of the rat supraoptic nucleus. J Comp Neurol

491: 175–185.
22. Vit JP, Jasmin L, Bhargava A, Ohara PT (2006) Satellite glial cells in the

trigeminal ganglion as a determinant of orofacial neuropathic pain. Neuron Glia

Biol 2: 247–257.
23. Rousse I, Robitaille R (2006) Calcium signaling in Schwann cells at synaptic and

extra-synaptic sites: Active glial modulation of neuronal activity. Glia 54: 691–
699.

24. Takahashi-Iwanaga H, Nio-Kobayashi J, Habara Y, Furuya K (2008) A dual
system of intercellular calcium signaling in glial nets associated with lanceolate

sensory endings in rat vibrissae. J Comp Neurol 510: 68–78.

The Expression of SK Channels in Mechanosensitive Endings in the Rat

PLOS ONE | www.plosone.org 10 September 2014 | Volume 9 | Issue 9 | e107073


