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Abstract

Dysregulated Toll-Like Receptor (TLR) signalling and genetic polymorphisms in these proteins are linked to many human
diseases. We investigated TLR4 functional variants D299G and T399I to assess the impact on LPS-induced responsiveness in
comparison to wild-type TLR4. The mechanism by which this occurs in unclear as these SNPs do not lie within the lipid A
binding domain or dimerisation sites of the LPS-TLR4/MD2 receptor complexes. Transfection of TLR4D299G, TLR4T399I or
TLR4D299G. T399I into HEK cells resulted in constitutive activation of an NF-kB reporter gene and a blunting of the LPS-
induced reporter activation compared to WT-TLR4. Unstimulated human monocyte/macrophages, from patients with the
D299G and T399I SNPs demonstrated a downregulation of many genes, particularly Tram/Trif signalling pathway
constitutents compared to the TLR4 wild-type subjects supporting the concept of basal receptor activity. Monocyte/
macrophages from carriers of the TLR4 D299G and T399I polymorphisms stimulated with LPS showed .6 fold lower levels
of NF-kB and ,12 fold higher IFN-b gene expression levels compared to wild-type subjects (P,0.05; MWU test) and
dramatically altered resultant cytokine profiles. We conclude that these TLR4 SNPs affect constitutive receptor activity which
impacts on the hosts ability to respond to LPS challenge leading to a dysregulated sub-optimal immune response to
infection.
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Introduction

Dysregulated Toll-Like Receptor (TLR) signalling and genetic

polymorphisms in these proteins are linked to many human

diseases [1,2]. A functional polymorphism that alters the amino

acid at position 299 in TLR4, the lipopolysaccharide (LPS)

receptor, (TLR4 Asp299Gly - rs4986790) [3,4] reduces carrier

responsiveness to LPS challenge [3]. The polymorphism is

associated with unfavourable clinical outcome in several clinically

important conditions including septic shock, inflammatory bowel

disease (IBD), childhood respiratory syncytial virus infection, and

both gastric and colon cancers [5–8].

Recognition of LPS occurs via a heterodimeric complex formed

between TLR4 and myeloid differentiation factor 2 (MD2). LPS

binds to the large hydrophobic pocket in MD2 to induce the

formation of an m-shaped receptor multimer comprising at least

two copies of the TLR4-MD2-LPS complex [9]. The TLR4

Asp299Gly polymorphism lies within the extracellular domain of

the receptor. Crystallography work shows that in the crystal

structure of LPS bound TLR4 Asp299Gly/MD2 forms receptor

dimers in the same way as wildtype TLR4 [10], but there are local

conformational changes. The effects of the Thr399Ile polymor-

phism on the LPS-TLR4/MD2 structure are minimal. Despite a

body of excellent crystallographic and functional studies precisely

how these SNPs alter TLR4 reactivity remains unclear.

Upon ligand binding the TLR4/MD2 receptor complex

ultimately recruits the adaptor proteins myeloid differentiation

primary-response protein 88 (MyD88) and TIR-domain-contain-

ing adaptor protein-inducing IFN-B (TRIF). MyD88 dependent

signalling activates IKK (IkB kinase) and mitogen-activated

protein kinase (MAPK) pathways. The IKK pathway, through

regulation of early phase NF-kB, controls expression of proin-

flammatory cytokines and other immune related genes [11].

MAPK pathway activation induces another transcription factor

AP-1 which also plays a role in proinflammatory cytokine

expression [12,13]. NF-kB activation with delayed kinetics also

occurs in the absence of MyD88 directed signalling [14] through

TRIF and TRIF-related adaptor molecule (TRAM). This pathway

also activates transcription factor interferon regulatory factor 3

(IRF3) to induce Type I interferons [15,16]. Factors which alter
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the balance between these signalling pathways will impact on the

immune response including appropriate adaptive immune cell

recruitment [17]. The effect of the TLR4 Asp299Gly polymor-

phism on adaptor protein recruitment is controversial. Analysis of

human genetic data has led to the hypothesis that the TLR4

Asp299Gly polymorphism may primarily signal through TRAM/

TRIF rather than MyD88 which would alter the cytokine profile

of patients with this SNP [18,19]. Recent work using TLR42/2

mouse macrophages expressing human TLR4 Asp299Gly poly-

morphism suggest there is a deficit in both MyD88 and TRIF

recruitment by the mutant receptor, although these experiments

were performed in the absence of human MD2, meaning that

complete receptor function was not permitted [20].

The cosegregating polymorphism, Thr399Ile (rs4986791), in

TLR4, affects the functional consequences of the Asp299Gly

polymorphism. Early studies by Arbour and Schwartz showed that

carriers of the Asp299Gly polymorphism had decreased NF-kB

activity compared with wildtype TLR4 [3,21]. Later work showed

that carrying the TLR4 Asp299Gly polymorphism alone was

associated with increased disease risk and increased TNF-alpha

production in comparison to having wildtype or the Thr399Ile

polymorphism [18]. The TLR4 Asp299Gly polymorphism there-

fore has important implications for disease outcome, yet the

precise mechanisms by which this SNP has its effects remain

undefined.

Here we show, for the first time, that TLR4 carrying Asp299Gly

and Thr399Ile polymorphisms have blunted responses to LPS

compared to wild-type TLR4 as expected but, these constructs

also have high levels of constitutive activity in reconstituted

signalling assays. Unstimulated monocytes from patients carrying

these mutations, compared to patients with wild-type TLR4, have

downregulated expression of several genes in the TLR4 TRAM/

TRIF signalling pathway. LPS stimulation of monocytes from

patients carrying the TLR4 mutations biases TLR4 signalling

through the TRAM/TRIF pathway. Taken together these data

suggest that the Asp299Gly and Thr399Ile polymorphisms lead to

TLR4 having some level of basal activity altering the expression of

genes in the TRAM/TRIF signalling pathway partially explaining

why upon LPS stimulation there is a dysregulated inflammatory

response.

Results

Presence of the TLR4 Asp299Gly and Thr399Ile
polymorphisms drives altered basal TLR4 signalling

To study the impact of the polymorphisms on TLR4 signalling

two approaches were used. We first transiently transfected wild-

type human TLR4, TLR4 Asp299Gly, TLR4 Thr399Ile or TLR4

Asp299Gly/Thr399Ile along with human MD2 and CD14 into

HEK cells and determined the effects of these receptor constructs

on basal and LPS-induced NF-kB activation. We were surprised to

find that each TLR4 mutant, unlike native TLR4, elicited a level

of basal activity in unstimulated cells. This basal activity was

detected only in the presence of MD2 indicating that this

constitutive receptor activity required the complete TLR4/MD2

complex (Figure 1a). When stimulated with LPS the fold increase

in activity over control for each of the mutants was markedly

reduced compared to the increase in LPS-induced activation of

wild type TLR4 (Figure 1b). These results suggested that

unstimulated monocyte/macrophages from patients carrying the

TLR4 SNPs may have basally altered levels of pro-inflammatory

gene expression in comparison to cells from patients with wild-type

TLR4 if the results of our transient transfection analysis were

physiologically relevant. This could result in either increased or

decreased pro-inflammatory gene expression given that prolonged

stimulation of TLR4 can result in an ‘‘endotoxin tolerance’’ state

whereby pro-inflammatory gene expression is down-regulated.

To assess this we conducted a screen of one hundred and fifty

healthy volunteers from the North East of Scotland for the

presence of the Asp299Gly and Thr399Ile polymorphisms.

Fourteen individuals (9.3%) were heterozygous for the TLR4

Asp299Gly polymorphism of which 11 (7.3%) were also hetero-

zygous for the Thr399Ile polymorphism. No homozygous carriage

of either polymorphism was observed and only 3 individuals (2%)

carried the single Asp299Gly allele. This is in line with previous

observations relating to individuals of European descent [6,22]. A

cohort of 10 TLR4 polymorphic carriers (heterozygous carriage of

both Asp299Gly and Thr399Ile polymorphisms) was selected for

further analysis along with 10 roughly sex and age matched TLR4

Figure 1. Transient transfection of TLR4 Asp299Gly, TLR4
Thr399Ile or TLR4 Asp299Gly/Thr399Ile with MD2 into HEK
cells results in constitutive NF-kB activation but a reduced
relative increase compared to basal NF-kB activity. HEK cells
were transiently transfected with wild-type or mutant TLR4 +MD-2 +
CD14, together with the reporter constructs NF-kB-luc and Renilla
luciferase. After 48 h the cells were stimulated for 6 h with medium
alone (C) or medium +10 ng/ml LPS (LPS) and the luciferase activity was
determined in cell lysates. Data are from a representative experiment
(n = 3 experiments) and are shown as mean 6SEM for that experiment.
A) Relative luciferase activity of wild type TLR4, Asp299Gly TLR4,
Thr399Ile TLR4 or Asp299Gly/Thr399Ile TLR4 with or without stimulation
with 10 ng/ml LPS. B) Fold increase in luciferase activity compared to
basal activity induced by stimulation of wild type TLR4, Asp299Gly TLR4,
Thr399Ile TLR4 or Asp299Gly/Thr399Ile TLR4 with 10 ng/ml LPS. C MD2
= unstimulated cells in the presence of MD2; LPS MD2 = LPS
stimulated cells in the presence of MD2; C-MD2 = unstimulated cells
with MD2 absent; LPS-MD2 = LPS stimulated cells with MD2 absent.
doi:10.1371/journal.pone.0111460.g001
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wildtype volunteers (who did not carry the TLR4 Asp299Gly and

Thr399Ile polymorphisms). We performed gene expression

profiling analysis on RNA derived from unstimulated PBMCs to

identify target genes specifically affected by the presence of the

TLR4 genetic variants. We used the Oligo GEArray Human Toll-

Like Receptor Signaling Pathway Macroarrays which comprises

113 genes central to TLR-mediated signal transduction and innate

immunity. Using normalisation to housekeeping genes (GAPDH

and HSPCB) we performed functional linkage of gene expression

patterns using pathway analysis which showed that the majority of

genes were downregulated in the TLR4 polymorphic carriers

compared to the TLR4 wildtype subjects (92 out of 113;

Figure 2a). Although not all of these differences were statistically

significant, this is considerably more than the 6 genes that would

be expected purely due to chance. To reduce the number of false

positives we applied an additional foldchange cutoff of 2 (1 on the

log2-scale). Twenty one of the 113 genes investigated were

identified as having consistently altered gene expression (greater

than 2 fold increase or decrease) between wild type and TLR4

polymorphic carriers with a statistical significance level of P,0.05

including TLR5, 7, 8 and 9 (Table 1). In general higher levels of

gene expression were seen in TLR4 wildtype individuals with 20

genes showing increased expression and only CD14 gene

expression showing higher expression levels in TLR4 polymorphic

carriers (Figure 2a). These findings indicate that healthy individ-

uals carrying the TLR4 Asp299Gly and Thr399Ile genetic

variants have altered basal immune gene activity under normal

conditions compared to TLR4 wildtype subjects.

Carriers of the TLR4 Asp299Gly and Thr399Ile
polymorphisms have dysregulated LPS-induced TLR4
signalling

To determine the effects of the TLR4 Asp299Gly and

Thr399Ile genetic variants on induction of the TLR4 downstream

signalling response, we stimulated monocytes with LPS and

derived RNA from healthy wildtype volunteers and healthy TLR4

polymorphic carriers. We performed further gene expression

profiling to look for LPS induced gene expression differences

between wildtype and TLR4 genetic variant-carrying individuals.

We used hierarchical clustering of the array data and included

genes that were downregulated in TLR4 variant carriers. It was

evident that following 2 hr LPS stimulation, the presence of the

TLR4 Asp299Gly and Thr399Ile variants was associated with

decreased gene expression in many genes compared to wildtype

individuals (Figure 2b). The hierarchical analysis clustered the 12

subjects into two groups with four of the TLR4 wildtype subjects

clustering with one of the TLR4 polymorphic subjects in cluster

one. Cluster two contained two sub-clusters: a cluster of 4 TLR4

polymorphic subjects and a second mixed subject group cluster

comprising the remaining two TLR4 wildtype subjects and the

other TLR4 polymorphic subject. Although the hierarchical

analysis was not able to definitively cluster subjects based on

TLR4 genotype, there was clear evidence of gene expression

differences indicating that carriers of the TLR4 Asp299Gly and

Thr399Ile polymorphisms were responding differently to LPS

challenge compared to TLR4 wildtype subjects. Forty-five genes

were shown to have at least 2 fold difference in gene expression

between the wildtype and TLR4 Asp299Gly and Thr399Ile

polymorphism carriers with statistical significance level of P,0.05

(Table 2). All genes showed decreased expression in the TLR4

Asp299Gly and Thr399Ile polymorphism carriers.

The hierarchical clustering identified a number of cytokine

genes as differentially expressed which indicated that more

changes in the response to LPS were potentially occurring further

upstream and may have been missed at the 2 hr timepoint. To

examine this more fully, genes from both the MyD88 dependent

and independent signalling pathways were selected for further

study. Again using the monocyte/LPS challenge system, gene

expression was compared between the two groups, although

particularly focussing on the early phase response i.e. ,1 hr. This

demonstrated that NF-kB gene expression levels were increased in

all subjects following LPS stimulation, however consistent with the

transfection studies they were significantly higher in wildtype

individuals compared to TLR4 polymorphic carriers (Figure 3A).

Following E. coli LPS stimulation, the TLR4 wildtype group

demonstrated .6 fold higher levels of NF-kB gene expression

compared to TLR4 polymorphic carriers (P,0.05; MWU test).

This significant increase was also seen at 5 minutes although the

difference between TLR4 wildtype and polymorphic carriers was

reduced with equivalent levels detected by 30 minutes. This

altered NF-kB gene expression coincided with increased expres-

sion of IFN-b in TLR4 polymorphic carriers (Figure 3B). In

contrast to NF-kB gene expression, IFN-b levels were raised

following LPS stimulation in TLR4 polymorphic carriers whereas

no difference in IFN-b gene expression was detected in TLR4

wildtype carriers when LPS stimulated levels were compared to

unstimulated levels (Figure 3B). The TLR4 polymorphic carriers

showed significantly increased levels of IFN-b gene expression at

all time points studied compared to wildtype subjects, with the

maximal difference detected following LPS stimulation for 5 mins

where ,12 fold difference in IFN-b gene expression levels were

detected between TLR4 polymorphic and wildtype subjects.

The effect of the TLR4 polymorphisms on the nuclear retention

of NF-kB (p65) was also examined by immunocytochemistry.

Monocytes were stimulated with LPS for up to 30 minutes upon

which time they were fixed and double stained with anti-p65

antibody and DAPI. Fixed cells were observed under fluorescence

microscopy and the percentage of cells showing NF-kB translo-

cation was recorded. NF-kB translocation was significantly slower

in TLR4 polymorphic subjects (Figure 3C). There was no

significant difference in the level of NF-kB translocation across

all time points studied in the wildtype subjects (p = 0.693; Welchs

ANOVA). However there was a significant difference in NF-kB

translocation in TLR4 polymorphic subjects (p = 0.02; Welchs

ANOVA). The results suggest that NF-kB was less readily

activated with delayed kinetics in the presence of the polymor-

phisms (Figures 3A and 3C) consistent with additional signalling

occurring through the Tram/Trif pathway. This difference in NF-

kB translocation time was also accompanied by altered inflam-

matory cytokine production. Comparison was made between

basal/unstimulated cytokine production and following LPS

stimulation. The TLR4 polymorphic carriers showed a significant

increase in production of IL-1b, TNF-a, IL-6 and IL-10 and

significantly lower IL-8 levels after LPS stimulation compared to

wildtype subjects. These differences were not detectable at earlier

time points (Figure 3D: 24 hr data shown). In general, the

response of PBMCs from healthy volunteers that carried the

polymorphisms were significantly altered compared to the wild-

type subjects which ultimately resulted in significantly increased

cytokine levels following LPS stimulation.

Discussion

Our work shows, for the first time, that the TLR4 Asp299Gly

and Thr399Ile polymorphisms confer altered constitutive activity

upon the TLR4 receptor and this is associated with basal down-

regulation of many pro-inflammatory genes in unstimulated

monocytes from patients carrying these SNPs. Our data is

D299G.T399I TLR4 Activates TRIF Signalling
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consistent with a model whereby monocytes from patients carrying

the SNPs have an elevated level of constitutive TLR4 receptor

activity resulting in suppression of basal pro-inflammatory gene

expression similar to what is seen in endotoxin tolerance models.

The basal activity of the TLR4 Asp299Gly and Thr399Ile

particularly effects genes in the TRAM/TRIF, rather than the

MAL/MYD88, signalling pathway. This suggests that in mono-

cytes from patients carrying the SNPs the constitutive TLR4

activity is either not activating or switching off MYD88 signalling

whilst TRIF signalling is conserved. This is consistent with data

where TLR4 stimulation with monophosphoryl lipid A results in

less PI3K-dependent recruitment of MYD88 to the TIR therefore

reducing signalling through this pathway whilst leaving fully

functional TRAM/TRIF signalling [23]. Alternatively the poly-

morphisms may inhibit the formation of higher order complexes

such as the Myddosome that are required for MyD88 directed

signalling [24]. It is, however, unclear how the SNPs induce

constitutive TLR4 activity but presumably there is a conforma-

tional change which results in altered TLR4/MD2 dimerisation,

TIR dimerisation to recruit adaptor proteins and/or intracellular

trafficking to the endosome to facilitate TRIF signalling.

LPS stimulation of the TLR4 SNPs in HEKs resulted in small

increases in NF-kB activation over basal TLR4 activity in

comparison with wild-type TLR4. Data from transfection studies

are usually presented as fold increase in NF-kB activity over

unstimulated control thus an elevated baseline NF-kB activity

would blunt any fold increase of the LPS-induced response. This is

consistent with blunting of the LPS-induced response through

activation of TLR4 Asp299Gly and Thr399Ile polymorphisms

compared with wild type TLR4 seen previously [3]. In functional

Figure 2. Functional linkage of gene expression patterns. (A) Representation of gene expression patterns affected by the TLR4 Asp299Gly and
Thr399Ile polymorphisms in unstimulated PBMCs using Ingenuity pathway analysis. A log2 ratio cutoff of 1 was set to focus on genes with greater
than 2-fold differential regulation between the two groups. Intensity of colouring indicates the strength of the up-regulation (strong green, highly
up-regulated in TLR4 wildtype subjects; strong red, highly upregulated in TLR4 polymorphic subjects; no colour indicates genes included to provide
completeness of pathways). (B) Hierarchical clustering analysis of selected gene regulation by the TLR4 Asp299Gly and Thr399Ile polymorphisms in
PBMCs following 2 hr LPS stimulation. All genes (n = 41) that following normalisation to housekeeper gene showed down-regulation in polymorphic
samples compared to wildtype under LPS stimulation. The columns depict individual subjects (1–6), C = TLR4 wildtype subjects, M = TLR4
polymorphic (Asp299Gly and Thr399Ile) subjects. Each row represents a single gene, the key on LHS represents the range of expression level values
from the data displayed in the heatmap.
doi:10.1371/journal.pone.0111460.g002

Table 1. Log ratio values for TLR4 polymorphic/wild type gene expression of components of the TLR signalling pathway under
basal conditions.

Gene symbol Protein name
Log2 mean ratio TLR4 polymorphic/Wild
type (respective fold change)

MyD88 dependent genes

IRAK4 Interleukin-1 receptor-associated kinase 4 (IRAK4) 21.13

MAP3K7IP1 TGF-beta-activated kinase 1 and MAP3K7-binding protein 2 (TAB1) 21.02

NFKBIL2 Tonsoku-like protein (IKBR) 21.00

PTGS2 Prostaglandin G/H synthase 2 (COX-2) 22.11

RELA/p65 NF-kB subunit p65 21.02

RIPK2 Receptor-interacting serine/threonine-protein kinase 2 (RIP2) 21.35

SITPEC Evolutionarily conserved signalling intermediate in Toll pathway (ECSIT) 21.00

Trif dependent genes

IRF1 Interferon regulatory factor 3 (IRF1) 21.10

IRF3 Interferon regulatory factor 3 (IRF3) 21.21

TBK1 Serine/threonine-protein kinase TBK1 21.03

TICAM2 TIR domain-containing adapter molecule 2 (TRAM) 21.06

Non pathway specific genes

CD14 Monocyte differentiation antigen (CD14) +1.02

CSF3 Granulocyte colony-stimulating factor (G-CSF) 22.97

IL-12B Interleukin 12B 21.07

IL2 Interleukin 2 21.2

PGLYRP3 Peptidoglycan recognition protein 3 21.05

TLR5 Toll like receptor 5 21.03

TLR7 Toll like receptor 7 21.11

TLR8 Toll like receptor 8 21.02

TLR9 Toll like receptor 9 21.04

UBE2N Ubiquitin-conjugating enzyme E2 21.03

A value of 21 is equivalent to a 2 fold increase in gene expression in wildtype subjects compared to TLR4 polymorphic subjects. A value of +1 is equivalent to a 2 fold
decrease in gene expression in TLR4 polymorphic subjects compared to wild type. All fold changes presented were statistically significant with p value ,0.05.
doi:10.1371/journal.pone.0111460.t001

D299G.T399I TLR4 Activates TRIF Signalling

PLOS ONE | www.plosone.org 5 November 2014 | Volume 9 | Issue 11 | e111460



Table 2. Log ratio values TLR4 polymorphic/wild type following stimulation with E. coli LPS.

Gene symbol Protein name
Log2 mean ratio TLR4 polymorphic/Wild
type (respective fold change)

MyD88 dependent genes

CHUK Inhibitor of nuclear factor kappa-B kinase subunit alpha (IKK-a) 21.14

IRAK2 Interleukin-1 receptor-associated kinase 2 (IRAK2) 21.17

IRAK4 Interleukin-1 receptor-associated kinase 4 (IRAK4) 21.21

MAP2K4 Mitogen-activated protein kinase kinase 4 21.22

MAP2K6 Dual specificity mitogen-activated protein kinase kinase 6 21.20

MAP3K1 Mitogen-activated protein kinase kinase kinase 1 21.08

MAP3K7IP1 TGF-beta-activated kinase 1 and MAP3K7-binding protein 2 (TAB1) 21.29

MAP3K7IP2 TGF-beta-activated kinase 1 and MAP3K7-binding protein 2 (TAB2) 21.10

MAP4K4 Mitogen-activated protein kinase kinase kinase kinase 4 21.11

MAPK10 Mitogen-activated protein kinase 10 21.09

MAPK12 Mitogen-activated protein kinase 12 21.13

MAPK14 Mitogen-activated protein kinase 14 21.19

NFKBIL2 Tonsoku-like protein (IKBR) 21.33

PTGS2 Prostaglandin G/H synthase 2 (COX-2) 21.37

RELA/p65 NF-kB subunit p65 21.10

SITPEC Evolutionarily conserved signalling intermediate in Toll pathway (ECSIT) 21.33

TOLLIP Toll interacting protein 21.27

Trif dependent genes

PELI1 E3 ubiquitin-protein ligase pellino homolog 1 21.08

SARM1 Sterile alpha and TIR motif-containing protein 1 21.23

TBK1 Serine/threonine-protein kinase TBK1 21.34

TICAM2 TIR domain-containing adapter molecule 2 (TRAM) 21.32

TRIF TIR domain-containing adapter molecule 1 21.16

Non pathway specific genes

CLECSF9 C-type lectin domain family 4 member E 21.24

CSF3 Granulocyte colony-stimulating factor (G-CSF) 22.50

CXCL10 C-X-C motif chemokine 10 21.03

HRAS GTPase HRas (p21) 21.17

IFNG Interferon-c 21.24

IL2 Interleukin 2 21.19

IL10 Interleukin 10 21.00

LY86 Lymphocyte antigen 86 21.13

NR2C2 Nuclear receptor subfamily 2 group C member 2 21.19

PGLYRP1 Peptidoglycan recognition protein 1 21.11

PGLYRP2 Peptidoglycan recognition protein 2 21.17

PGLYRP3 Peptidoglycan recognition protein 3 21.30

PGLYRP4 Peptidoglycan recognition protein 4 21.18

PPARA Peroxisome proliferator-activated receptor alpha 21.17

PRKRA Interferon-inducible double stranded RNA-dependent protein kinase activator A 21.29

TLR1 Toll like receptor 1 21.15

TLR3 Toll like receptor 3 21.29

TLR5 Toll like receptor 5 21.35

TLR6 Toll like receptor 6 21.23

TLR8 Toll like receptor 8 21.29

TLR9 Toll like receptor 9 21.07

TLR10 Toll like receptor 10 21.09

UBE2N Ubiquitin-conjugating enzyme E2 21.30

A value of 21 is equivalent to a 2 fold increase in gene expression in wildtype subjects compared to TLR4 polymorphic subjects. All fold changes presented were
statistically significant with p value ,0.05.
doi:10.1371/journal.pone.0111460.t002
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studies on monocytes the TLR4 Asp299Gly and Thr399Ile

polymorphisms have a significant impact on TLR4 downstream

signalling. In these cells LPS induces less NF-kB activation and

biases downstream signalling in favour of the TRAM/TRIF

pathway in comparison to wild-type TLR4. Several studies have

reported the effects of polymorphism carriage, usually by reporting

cytokine levels, but our work suggests a molecular explanation for

the differences detected. We suggest it is not the magnitude of the

immune response that is affected but more that the polymorphisms

are changing the pattern of TLR4 adaptor protein recruitment.

Recent work where the human TLR4 SNPs were expressed in

murine macrophages showed reduced recruitment of both

MYD88 and TRIF to the mutant TLR4 signalling complex

[20]. The work is partially, but not completely, consistent with our

results. The differences between this work and our own may well

be because we are studying patient cells heterozygote for mutant

and wild-type TLR4 where the receptor is endogenously expressed

in the presence of human MD2. Understanding the differences in

heterozygote carriers is of most clinical relevance as the

polymorphisms are present in around 8–10% of the Caucasian

population with the majority of carriers being heterozygote. The

other main difference stems from the fact that the Figueroa study

did not include human MD2 in their murine macrophage

experimental setup. Mouse MD2 does not confer fully signalling

capacity to human TLR4 and results in less efficient signalling

such that subtle differences in how human TLR4 behaves maybe

lost [25].

Previous studies have presented conflicting data when perform-

ing functional studies on cells from patients with the TLR4

polymorphisms. Several in vitro experiments have failed to show

differences in response between TLR4 Asp299Gly and Thr399Ile

polymorphism carriers and wild type subjects [26–28]. Many of

the studies that failed to show differences in cytokine levels,

however, only conducted studies over a short timeframe i.e. ,

6 hours. Our study showed that cytokine production from cells

carrying the TLR4 SNPs was not different from wild-type TLR4

cells in the first 8 hours of LPS stimulation, but differences are

seen at later time points, presumably because of the impact of

these mutations on the TRAM/TRIF signalling pathway which

induces delayed NF-kB signalling. An in vivo study by Marsik

demonstrated significantly reduced IL-1B levels after 24 hours

accompanied by a slight increase in IL-6 levels in TLR4

Asp299Gly polymorphism carriers. It is unclear in this study as

to what the TLR4 Thr399Ile status of the polymorphic carriers

was. A further PBMC study, in contrast, reported significantly

decreased cytokine levels in TLR4 polymorphism carriers [29]. In

this study a combined polymorphic group containing individuals

with either or both of the Asp299Gly or Thr399Ile polymorphisms

were used making it difficult to directly compare their data to our

own. Our work considered the response of heterozygous carriage

of both TLR4 polymorphisms which is the most common

haplotype in Caucasian populations and demonstrated that a

number of pro-inflammatory cytokines, including IL-1B, TNF-a
and IL-6 were expressed at higher levels in TLR4 polymorphism

carriers, when assessed after 24 hrs. In our study population,

almost all polymorphic individuals (11 out of 14) had both the

Asp299Gly and Thr399Ile polymorphisms. Three individuals

carried only the Asp299Gly polymorphism and no-one was

polymorphic only for Thr399Ile. Homozygous carriage of either

polymorphic variant was not detected in our cohort and only

individuals that had heterozygous carriage of both functional

variants were included in the study.

A study by Ferwerda demonstrated that individuals with the

Asp299Gly but not the Thr399Ile polymorphism had a stronger

proinflammatory cytokine response reporting increased TNF-a
levels following LPS stimulation of blood compared to wild type

TLR4 individuals [18]. The study also assessed carriers of both the

Asp299Gly and Thr399Ile polymorphisms but did not detect

differences compared to the wild-type TLR4 subjects however, the

numbers in the polymorphic group were small (N = 4). The

conflicting results between the various studies raises the question as

to whether the genetic background of a study population can

influence the response.

In conclusion TLR4 Asp299Gly and Thr399Ile polymorphisms

induce a decreased level of constitutive immune activation which

appears to impact on subsequent responses to LPS challenge.

Initial blunted responses appear to be followed by exaggerated

immune responses suggesting that these variants act in combina-

tion with other immune processes to influence the outcome in

infectious diseases.

Materials and Methods

Research Ethics Statement
The study was approved by North of Scotland Research Ethics

Service (05/S0801/128), and written informed consent was

obtained from all subjects.

Plasmid constructs and construction
Wild-type pCDNA3-TLR4 expression vector was provided by

Prof E. Latz (University of Bonn, Germany). Point mutations

encoding an aspartic acid (Asp) to glycine (Gly) substitution at the

amino acid position 299 (Asp299Gly) and a threonine (Thr) to

isoleucine (Ile) substitution at amino acid position 399 (Thr399Ile)

in human TLR4 protein were created by site-directed mutagenesis

using a QuikChange mutagenesis kit (Stratagene) according to the

manufacturer’s instructions using the following primer pairs:

Asp299Gly mutation (Asp299Gly) (nucleotide change, A896RG):

forward primer: 59-cttagactactacctcgatgGtattattgacttatttaattg-39;

reverse primer: 59-caattaaataagtcaataataCcatcgaggtagtagtctaag-

39; Thr399Ile mutation (Thr399Ile) (CRT, nucleotide change,

C1196RT): forward primer: 59- caaagtgattttgggacaaTcagcctaaag-

tatttagatc-39; reverse primer: 59-gatctaaatactttaggctgAttgtcccaaaat-

cactttgagaacag-39 (nucleotide changes are shown in upper case

bold). Complete sequence confirmation of each construct was

performed to ascertain effective point mutagenesis had occurred

and that no random mutations had been introduced.

Cells and transfection analysis
HEK293 cells were maintained in Dulbecco’s modified Eagle’s

medium (DMEM) supplemented with 10% fetal calf serum, 2 mM

L-glutamine, 100 U.ml21 penicillin and 100 mg.ml21 streptomy-

cin. HEK293 cells were transfected as previously described [30].

Briefly cells were seeded at 36104/well of a 96 well plate and

transiently transfected 2 days later. Expression vectors containing

cDNA encoding TLR4 (wildtype and variant forms), MD-2 and

CD14 (1 ng/well of each), a NF-kB transcription reporter vector

encoding firefly luciferase (5 ng/well pNF-kB-luc, Clontech), and

a constitutively active reporter vector encoding Renilla luciferase

(5 ng/well phRG-TK, Promega), together with empty vector to

ensure an optimal amount of DNA were mixed with JetPEI

(Polyplus transfection) according to the manufacturer’s instruc-

tions. After 48 hours cells were stimulated with KDO2-lipidA

diluted in DMEM supplemented with 0.1% fetal calf serum. The

cells were washed with PBS and then lysed, and luciferase activity

was quantified using the Dual Luciferase kit (Promega) according

to the manufacturer’s instructions. Luciferase data was analysed

using One-Way Analysis of Variance (ANOVA) within SPSS.
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Figure 3. TLR4 Asp299Gly and Thr399Ile polymorphisms have dysregulated LPS-induced TLR4 signalling. (A and B) TLR4
polymorphisms affect gene expression in both the MyD88 dependent and independent signalling pathways. NF-kB and IFN-B gene expression
following E. coli LPS stimulation (1 mg/ml) depicted as fold change after normalisation to unstimulated values. Graphical representation reflects fold
change difference between median values from wildtype and TLR4 polymorphic carriers. Error bars = Standard error. (C) TLR4 polymorphisms inhibit
p65-phosphorylation Human PBMCs were incubated with or without E. coli LPS (1 mg/ml) upto 30 mins (15 min LPS stimulation depicted) and then
analysed for the distribution of p65 by immunofluorescence. Red stain indicates the localization of p65, and blue stain indicates the nucleus
(magnification, 200x). Mean percentage of NF-kB translocation in peripheral blood derived monocytes from wildtype individuals and carriers of the
TLR4 Asp299Gly polymorphism. Data generated from 3 individuals per group tested in 3 separate experiments. *T-test statistic for comparison at
each time point between wildtype and TLR4 variant carriers. (D) TLR4 polymorphisms affect downstream cytokine production. Box-and-whisker plots
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Volunteer recruitment and genotyping of TLR4
Asp299Gly and Thr399Ile polymorphisms

One hundred and fifty healthy male and female volunteers aged

between 20 and 55 years of age were recruited from the North

East of Scotland to participate in the study. The study was

approved by North of Scotland Research Ethics Service (05/

S0801/128), and written informed consent was obtained from all

subjects. Genotyping of the TLR4 Asp299Gly and Thr399Ile

polymorphisms was performed on genomic DNA extracted from

leucocytes using pre-designed Applied Biosystems 59 nuclease SNP

genotyping assays, using minor groove binding (MGB) probes 59-

labelled with VIC or FAM (6-carboxyfluoresceine) fluorochromes

to detect the wildtype and variant alleles respectively. Allelic

discrimination analyses were prepared using standard reactions

conditions as described previously [6]. Representatives of the

required genotypes were sequenced for definitive confirmation and

then taken forward and used for functional studies.

PBMC studies
PBMCs were isolated by density gradient centrifugation as

described previously [31]. PBMCs (.95% viability) were prepared

from 10 TLR4 Asp299Gly/Thr399Ile variant carriers and 10

TLR4 wildtype individuals. PBMCs were seeded at 16106 cells in

tissue culture plates. Cells were allowed to adhere for 1.5 h at 37uC
in 5% CO2. Non-adherent cells were removed by twice washing

with PBS. Adherent cells (predominantly monocytes) were stimu-

lated for up to 48 h with medium alone or E. coli LPS (1 mg/ml).

Culture supernatants were harvested and stored at 280uC until

analyzed for cytokine protein levels (TNF-a, IL-1b, IL-6, IL-8 and

IL-10) by cytometric bead array (CBA: BD Biosciences). Cells were

either fixed for NF-kB translocation as described previously [32] or

harvested for total RNA. Immunofluorescence microscopy images

for NF-kB translocation studies were taken using a 10061.4 NA

lens on a microscope (IM200; Carl Zeiss MicroImaging, Inc.).

Contrast and brightness of individual channels were adjusted

linearly in Photoshop (Adobe). Data analysis was undertaken using

Welch version of ANOVA.

Total RNA extraction and gene expression studies
Total RNA was extracted from monocytes using the QIAGEN

RNeasy mini RNA extraction kit (QIAGEN, Sussex, UK)

according to manufacturer’s instructions. First-strand cDNA

synthesis was performed in one of 2 ways: for assessment of

Toll-like receptor downstream signaling, Oligo GEArray Human

Toll-Like Receptor Signaling Pathway Macroarrays (SABios-

ciences, France) were utilised. cDNA synthesis used 500 ng of

total RNA, with 5 mg of the resulting cRNA used for chip

hybridisation. Image analysis was performed using a Fuji LAS1000

chemiluminescent detection system and AIDA Image Analyser

software (Raytest Isotopenmessgeräte GmBH, Germany). Raw

intensities were log-transformed with base 2 and normalised with

respect to HSPCB as a housekeeping gene. TLR4 wildtype and

TLR4 polymorphic groups were compared with or without E. coli
LPS stimulation. The comparisons were made using a so-called

moderated F-test which was available in the Bioconductor library

limma for testing for differentially expressed genes in macroarray

experiments. TLR4 group (wildtype or polymorphic) and subject

were used as factors in the linear model, so that the test was a

moderated version of a paired t-test, and provided us with a p-

value and average log2-ratio to assess the difference between

wildtype and polymorphic groups. Applied Biosystem gene

expression assays were used to validate the macroarray findings.

cDNA synthesis was performed using AB High capacity RNA-to-

cDNA synthesis kit with between 50 and 100 ng of total RNA used

for cDNA synthesis (volunteer dependent). Custom plates were

designed which contained the following genes: AP-1, BTK, CD14,
IFNB1, IRAK1, IRAK4, IRF3, LBP, MAP3K7, MAP3K7IP1,
MAPK14, MAPK8, MD-2, MYD88, NFKB1, NFKB1A,
NFKB1B, REL, RELA, RIPK2, TBK1, TICAM1, TICAM2,
TIRAP, TLR2, TLR4, TOLLIP, TRAF3 and TRAF6. Gene

expression was performed using an Applied Biosystems 7900HT

real-time PCR system (Applied Biosystems, Warrington, UK).

Relative gene expression of E. coli LPS stimulated samples was

compared to unstimulated control samples. The comparative

cycling threshold method (DDCT) was used for relative quantifi-

cation after normalisation with GAPDH and HSPCB expression.

Statistical analysis was performed using the Mann Whitney U test

(MWU test), P values of ,0.05 were considered significant.
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