
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 139.133.148.18

This content was downloaded on 15/12/2014 at 13:23

Please note that terms and conditions apply.

Exact detection of direct links in networks of interacting dynamical units

View the table of contents for this issue, or go to the journal homepage for more

2014 New J. Phys. 16 093010

(http://iopscience.iop.org/1367-2630/16/9/093010)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/1367-2630/16/9
http://iopscience.iop.org/1367-2630
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


Exact detection of direct links in networks of
interacting dynamical units

Nicolás Rubido1,2, Arturo C Martí2, Ezequiel Bianco-Martínez1,
Celso Grebogi1, Murilo S Baptista1 and Cristina Masoller3
1 Institute for Complex Systems and Mathematical Biology, University of Aberdeen, Kingʼs
College, AB24 3UE Aberdeen, UK
2 Instituto de Física, Facultad de Ciencias, Universidad de la República, Iguá 4225, Montevideo,
11200, Uruguay
3Departament de Física i Enginyeria Nuclear, Universitat Politécnica de Catalunya, Colom 11,
E-08222 Terrassa, Barcelona, Spain
E-mail: n.rubido.obrer@abdn.ac.uk, arturomarti@gmail.com, ebiancomartinez@gmail.com,
grebogi@abdn.ac.uk, murilo.baptista@abdn.ac.uk and cristina.masoller@gmail.com

Received 4 March 2014, revised 2 July 2014
Accepted for publication 22 July 2014
Published 5 September 2014

New Journal of Physics 16 (2014) 093010

doi:10.1088/1367-2630/16/9/093010

Abstract
The inference of an underlying network topology from local observations of a
complex system composed of interacting units is usually attempted by using
statistical similarity measures, such as cross-correlation (CC) and mutual
information (MI). The possible existence of a direct link between different units
is, however, hindered within the time-series measurements. Here we show that,
for the class of systems studied, when an abrupt change in the ordered set of CC
or MI values exists, it is possible to infer, without errors, the underlying network
topology from the time-series measurements, even in the presence of observa-
tional noise, non-identical units, and coupling heterogeneity. We find that a
necessary condition for the discontinuity to occur is that the dynamics of the
coupled units is partially coherent, i.e., neither complete disorder nor globally
synchronous patterns are present. We critically compare the inference methods
based on CC and MI, in terms of how effective, robust, and reliable they are, and
conclude that, in general, MI outperforms CC in robustness and reliability. Our
findings could be relevant for the construction and interpretation of functional
networks, such as those constructed from brain or climate data.

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence.
Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal

citation and DOI.

New Journal of Physics 16 (2014) 093010
1367-2630/14/093010+11$33.00 © 2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft

mailto:n.rubido.obrer@abdn.ac.uk
mailto:arturomarti@gmail.com
mailto:ebiancomartinez@gmail.com
mailto:grebogi@abdn.ac.uk
mailto:murilo.baptista@abdn.ac.uk
mailto:cristina.masoller@gmail.com
http://dx.doi.org/10.1088/1367-2630/16/9/093010
http://creativecommons.org/licenses/by/3.0/


S Online supplementary data available from stacks.iop.org/njp/16/093010/
mmedia

Keywords: complex networks, coupled maps, similarity measures, cross-
correlation, mutual information, ordinal analysis, network inference

1. Introduction

Inferring the underlying topology of a complex system from observed data is currently the
object of intense research. However, the limits for the exact inference of direct links in real-
world systems composed by interacting dynamical units are still not fully understood.
Understanding this limitations is often crucial in many applications in social and natural
sciences. In order to infer the underlying network, usually, the observed data comes from time-
series recorded at the different units. Then, a direct link between units is assumed depending on
how interdependent these observations are. For example, by recording the activity of different
brain regions, one wishes to infer which are the relevant structural or functional brain
connections by comparing similarity patterns [1–3]. In general, the outcome is a complex
network [4, 5] that interconnects the individual units and allows for a better understanding of
the overall system behavior.

The main statistical tools used to determine the interdependence of the units have been the
cross-correlation (CC) and the mutual information (MI) between their dynamical trajectories
[6–16]. Depending on the field of application, the choice of similarity estimators is wider and
includes partial correlations, graphical models, and adapted estimators, such as event
synchronization [17] (recently used to analyze the summer monsoon rainfall over the Indian
peninsula [18]) or response dynamics [19, 20]. However, any similarity measure used to
compare two time-series usually results in a non-zero value [21–25]. A reason for this is that, in
finite data sets, the presence of persistent trends and/or deterministic recurrent oscillations
results in spurious correlations [26–28]. Therefore, network reconstruction methods use fixed
link densities (where only the strongest similarity estimates are retained as links, e.g. in
[29–31]), link weights (where links are weighted based on the similarity [32]) or pairwise
significance tests [33] to ensure the link representativeness. Another reason, which is the focus
of our work, is the network connectivity. In particular, the existence of teleconnections [33]
(name given in paleoecology to the long-range connections) in systems with multiple/
continuous coupling structures result in high similarity estimates between distant nodes.
Moreover, even after detrending a data set, the connectivity of the underlying network topology
still plays a major role in the non-zero values of the similarity measures between nodes if the
network is connected.

Indeed, in undirected connected complex networks, which are the focus of this work, every
pair of units is joined by some path. Consequently, any pair of units will exchange some level of
correlation or information due to the overall connecting topology. Therefore, the ability to
detect a direct link between any two units is hindered within the similarity measured value.
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Nevertheless, when the links are homogeneous, one expects that directly connected units
have larger values of the similarity measure than indirectly connected ones4. Then, the existence
of a certain threshold, τ, that can split the similarity values into two sets can be expected. If a
similarity value between two units is larger than τ, it is considered to be significant and
a consequence of a direct link between the two units. Otherwise, it is less significant and a
consequence of the lack of a direct link between the two units. A similar method is used in
paleoecology to select good modern analog samples for climate and environmental
reconstruction [34, 35]. When the strengths of the links are heterogeneous, the weak links
are further hindered within the similarity measure values and a bivariate analysis can be
insufficient [3]. Moreover, in the presence of strong coupling, global patterns in the systemʼs
behavior emerge, creating an effective topology which makes the underlying network inference
process unfeasible. Similarly, inference fails for very weak couplings, where the system is hard
to distinguish from being composed of uncoupled units. We find that avoiding such fully
coherent (large coupling strengths) or incoherent (small coupling strengths) behavior is critical
for the detection of the direct links (as it was also found in [20]).

Since different topologies are inferred for different τ values, the problem of finding the
optimal τ value which recovers the largest portion of the underlying network is far from trivial.
For example, in [12] the presence of dynamical noise in the individual units was shown to
enable the identification of an optimal threshold giving an accurate prediction of a network
topology, based solely on the measurement of dynamical correlations. However, the method
requires computing the inverse matrix of the dynamical correlation matrix, which can be
computationally demanding, and also the influence of non-additive noise and/or observational
noise remains an open question. Other methods for link identification are based on perturbing
the individual units. For example, the method proposed in [36] requires performing
independent, simultaneous, and random phase resettings in all the units, which can be
impractical in many real-world systems (such as in [29–33, 37]).

In this work, we show that, when the ordered values of CC (computed in absolute value,
i.e., the Pearson coefficient) and/or MI (computed via ordinal pattern analysis [38–41]) exhibit a
discontinuous curve, an adequate τ value permits inference of underlying topologies without
errors. The exact link detection is demonstrated by considering various discrete-time dynamical
units (logistic maps, circle maps, etc) that mutually interact in different coupling topologies,
including random networks (RN). This means that, when the discontinuity is observed, both
methods are able to infer the exact underlying network topology that interconnects the units
from the local time-series measurements. As a result, the topology of the interacting system is
directly related to its function. We find that the existence of this τ occurs even when
observational noise and heterogeneities (in the links and/or in the units) are present.

Our results are based on a critical comparison of the CC and MI inference methods
effectiveness (what is the portion of the underlying topology that is reconstructed correctly),
robustness (how the effectiveness is affected when parameters are changed, namely, the
heterogeneity in the mapʼs dynamics or network weights, the coupling strength between maps,
and the network size or connectivity), and reliability (results yield consistent inferred networks,
even when including observational noise and reducing the time-series lengths). We conclude
that MI outperforms CC as the most robust, in particular, is the least sensitive to the choice of τ

4 This conjecture, which constitutes the fundamental cornerstone for the inference methodology of many scientific
papers [2], is shown to be true in the supplementary data for the connected part of the CC.
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value, and reliable measure. To the best of our knowledge, such reliable reconstruction of
network topologies without errors, i.e., the most effective scenario, from time-series
measurements of discrete-time dynamical units has not been previously obtained.

2. Model and methods

We consider logistic maps, tent maps, circle maps, and novel maps recently proposed [42] for
representing nonlinear optical elements (in the following, referred to as optical maps). We
observe that our method of network inference is not restricted to maps, but it is demonstrated
with maps mainly because of two reasons. First, maps are computationally cost-efficient,
allowing long time-series simulations, performing robust statistical analysis, and have been
widely used to study complex networks of coupled units [43–45]. Second, continuous systems
can be represented by maps (for example, there are many maps that represent various types of
neurons [45, 46]) or transformed into maps by means of a Poincaré section or a stroboscopic
sampling (time-Poincaré). Here, we let the units have a degree of heterogeneity by using non-
identical parameters. For the underlying topology, we use RN [47] and small-world networks
[48] with homogeneous and heterogeneous weights. These networks are characterized by the
number of nodes, N, the connectivity parameter, p, and the weights heterogeneity degree, g
(details are provided in the supplementary data5).

The behavior of each map is governed by the equation
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where, = −f r x r x x( , ) (1 ), for the logistic map, and π= + −f r x x r x( , ) 1.1 sin(2 ) mod 1,
for the circle map (for other maps, see supplementary data. ri is the ith map parameter, ϵ is the
coupling strength, Wij accounts for the weight of the link ( ξ= + =( )W A g W1ij ij ij ji, where

=A Aij ji is the adjacency matrix of the underlying topology, ξ ∈ −[ 1, 1]ij is an uncorrelated
zero-mean uniformly distributed random number, and g is the degree of coupling
heterogeneity), and = ∑ =d Wi j

N
ij1 is the weighted degree of node i.

N time-series are obtained from the trajectories of the N maps, generated from random
initial conditions. Unless otherwise stated, the length of the time-series is = ×T 5 104. The
similarity measures are computed from these time-series. In particular, the MI is computed from
symbolic sequences of ordinal patterns of length D = 4 [38–41] (see supplementary data for
details).

The threshold, τ, used to split the similarity values, is a control parameter that allows to
define the inferred adjacency matrix, τA : =τA 1ij, if the similarity measure between maps i and
j is larger than τ, and =τA 0ij, otherwise. The error, Δ, between the inferred and the true
adjacency matrices, is defined by

5 See supplementary data (available from stacks.iop.org/njp/16/093010/mmedia) for details on the creation of the
underlying networks, the dynamics of the discrete maps, the definition of the CC and MI similarity measures, and
further results on the inference of networks.
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Δ =
∑ −
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The minimum value of Δ is 0, which corresponds to an exact detection of the true underlying
topology. The maximum value of Δ is 1, and occurs only if all the links are inferred incorrectly.

The effectiveness of a similarity measure (CC or MI) is quantified by the error Δ between
the true topology and the inferred topology, which is a function of the particular threshold τ
chosen. We also consider the receiver operating characteristic (ROC) curve, which quantifies
the true positive rate (TPR) and false positive rate (FPR), each measure being a function of τ
[25] 6. We consider that a measure is effective when Δ ≃ 0, the TPR is maximum, and the FPR
is minimum. The robustness of the CC or MI is quantified in terms of how sensitive Δ is to
changes in the systemʼs parameters (mapʼs parameter, network topology, and heterogeneity
degree) and choice of τ value. We also analyze how Δ depends on the length of the time-series,
the level of observational noise, and the size of the network. We consider that a measure is
robust, when small changes to the systemʼs parameters or optimal τ value keep Δ ≃ 0. The
reliability of a method is the ability to give consistently similar results from similar
observations; hence, a measureʼs reliability gives an estimation of the reproducibility of the
results.

Figure 1. (a), (b) shows the normalized CC (MI) values, ordered from smaller to larger
values, for all pair of nodes in a weighted (g = 0.1) random network (p = 0.3) of N = 16
identical chaotic ( = ∀r i4.0i ) logistic maps. The dashed curves (gray online)
correspond to the uncoupled situation (ϵ = 0), where no discontinuity is observed.
The circles (squares) correspond to a coupling strength of ϵ = 0.06 (ϵ = 0.5), where the
values for direct links are signaled by dark—black online—circles (squares) and the
values for indirect links are signaled by light—red (green) online—circles (squares).
The discontinuity is again absent for ϵ = 0.5 due to the coherent dynamical behavior
(synchronous orbits) that the system exhibits at this stage.

6 The TPR is defined as the ratio between the number of links that are correctly inferred and the number of links
that actually exist in the network. The FPR is defined as the ratio between the number of links that are incorrectly
inferred and the actual number of non-existing links in the network. More details are presented in the
supplementary data.
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3. Results

In the following we present results for chaotic logistic maps (r = 4) and circle maps (r = 0.35)
coupled in RNs with N = 16 and g = 0.1. Results for other maps, coupled with other network
topologies and heterogeneity degrees, are found in the supplementary data.

Figure 1 shows the ordered values of the normalized CC (figure 1(a)) and MI (figure 1(b))
measures for a particular RN (p = 0.3) of identical (δ =r 0) logistic maps coupled with ϵ = 0.06
(circles) and ϵ = 0.5 (squares). Discontinuous curves are found for both, CC and MI, for
ϵ = 0.06, though, the gap for MI is larger than the one for CC. We observe that in this case the
direct connections (indicated by darker—black online—symbols) are found to have large
similarity values, while the indirect connections (indicated by lighter—green online—symbols)
have lower values. For comparison, the CC/MI values for ϵ = 0 are shown in light—gray
online—dashed lines.

As a general result, we note that the effectiveness of a similarity measure to infer the
underlying topology relies on the existence of a discontinuous jump in its ordered values. The
abrupt change corresponds to a difference between the values of the similarity measure for
direct connections and the values for indirect connections. Specifically, we find that if a gap in

Figure 2. (a), (b) shows the CC (MI) inference error, Δ, as a function of the different
threshold, τ, values for the curves and systems of figure 1 (light—gray online—dashed
line for ϵ = 0, dark—red online—circles for ϵ = 0.06, and dark—green online—
squares for ϵ = 0.5). The corresponding ROC curves are shown in panel (c), (d), where
the arrows indicate the direction in which τ increases. The insets in these panels are a
zoomed view of the upper left corner of the ROC diagram, showing that for ϵ = 0.06,
both similarity measures achieve a perfect inference.
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the ordered sequence of CC or MI values exists, any value of τ within this gap infers the
underlying topology without errors. When the gap is missing (as for ϵ = 0.5), the direct and
indirect connection values are mixed within a continuous curve (represented by squares in
figure 1), hence, the error Δ > 0 for any τ value. We find that a necessary condition for the
appearance of the gap is to avoid the fully coherent (large coupling strengths) or incoherent
(small coupling strengths) behaviors.

In figures 2(a) and (b) we indeed observe that the optimal choice of τ, namely, when
Δ = 0, is achieved for values of τ falling within the discontinuity gap of figures 1(a) and (b),
respectively. Hence, figure 2 shows the effectiveness and τ-robustness of the two inference
measures (in normalized units) for the same network of coupled maps as in figure 1. The
underlying network (N = 16 node RN with p = 0.3) has M = 50 links, out of a total of

= − =M N N( 1) 2 120t possible links. For τ = 0, the inferred network has a global all-to-all
coupling topology (as all normalized CC/MI values are ⩾0), therefore, the error is the relative
number of extra links detected (the false positives), Δ = − = ≃τ= M M M( ) 70 120 0.580 t t .
For τ = 1, the error is the number of true links missed (the false negatives), and these are all the

Figure 3. Minimal error ( Δmin ( ), in color code) values that are obtained from CC
(panels (a) and (c)) and MI (panels (b) and (d)) measures of identically (δ =r 0) chaotic
logistic maps (top row) and circle maps (bottom row), averaged over five RN
realizations (each with equal network characteristics: p = 0.3, N = 16, and g = 0.1), as a
function of the observational noise intensity (Γ) added to the times-series and its length
(T). We set ϵ = 0.06 for the logistic maps (as in figures 1 and 2) and ϵ = 0.12 for the
circle maps. The white dots indicate where an exact detection of all the underlying links
is possible in all network realizations, i.e., Δ =min ( ) 0.
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links, because the inferred topology is a fully disconnected graph (as all normalized CC/MI
values are ⩽1), therefore, Δ = = ≃τ= M M 50 120 0.421 t .

Most importantly, we found that, in general, MI is more robust than CC, in the sense that it
is able to recover the underlying topology without errors for more threshold values. This is seen
by comparing the lengths of the intervals where Δ = 0 for ϵ = 0.06 between figure 2(a) for CC
and figure 2(b) for MI. The wider interval is explained by the existence of a larger gap in the
values that the MI curve of circles has in figure 1(b), in contrast to the smaller gap in figure 1(a)
(however, for some parameters, CC can be more robust than MI in other aspects, as will be
shown in figure 3(c)).

Next, we consider the ROC curves, which quantify the TPR and FPR that each measure
has as a function of τ [25]. The ROC curves, shown in figures 2(c) and (d), provide further
information about the type of errors made as a function of the threshold. When ϵ = 0, as the
threshold increases from τ = 0 to τ = 1, both the TPR and FPR decrease (links are not inferred,
regardless if they exist or not). On the contrary, when ϵ > 0, as τ increases, only the FPR
decreases, while all the existing links are correctly inferred (the TPR remains constant). When τ
is increased above the optimal range of values, then the TPR starts to decrease, as existing links
are not inferred (the FPR remains constant).

In situations where the knowledge of the underlying topology is missing, the error Δ
(equation (2)), TPR, and FPR, cannot be computed. However, if the ordered values of the CC or
MI exhibit a discontinuity gap, as in figure 1, the links can still be divided into two sets. The
links at the left of the discontinuity (lower than the threshold value) correspond to indirect
connections, while any value at the right reveals a direct link (higher than the threshold value).
Every value of CC or MI inside the gap can be chosen as a possible threshold value τ and the
width of the gap determines the sensitivity of the method. If the gap in the ordered CC or MI
values is absent, the method is not capable to infer the correct topology.

For practical applications in real-world data, it is important to analyze how the measures
depend on the length of the data set, and on how noisy the data is. In the following,
observational noise is considered by adding uncorrelated zero-mean uniformly distributed noise
η ∈ −[ 1, 1]i( ) of strength Γ to each data set.

Figure 3 displays (in color code) how the minimal error (i.e., Δmin ( ), the minimum value
of Δ corresponding to an optimal τ) depends on the level of observational noise (Γ) and data
availability (T) for the network parameters of figures 1 and 2 for identical (δ =r 0) logistic maps
(figures 3(a) and (b)) and circle maps (figures 3(c) and (d)). Furthermore, to make the results
reliable, we average the Δmin ( ) value that is found for each Γ and T among five RN realizations
with equal statistical characteristics. For the sake of clarity, the white dots in the darker regions
indicate where Δ =min ( ) 0, i.e., the perfect reconstruction of all the RNs.

We can see that MI infers exactly all the network realizations for moderate noise strengths
(Γ < 0.1) and orbits with ⩾ ×T 3 104 for the logistic maps (white dots in figure 3(b)) and

⩾ ×T 5 104 for the circle maps (figure 3(d)). However, we find that CC fails to provide
reliable results for the logistic maps, as it only infers the underlying topology for some RN
realizations (dark color in figure 3(a)). On the other hand, CC outperforms MI for circle maps
(white dots in figure 3(c)). In general, we note that both methods are effective for moderate Γ
and g when sufficient data is available.

Next we show that the exact detection of direct links is also possible when the individual
units are heterogeneous (δ =r 0.1), for a wide range of RN parameters and coupling strengths.
This can be seen in figure 4, that displays the Δmin ( ) (in color code) as a function of the
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connectivity (p) and the coupling strength (ϵ). Each value of Δmin ( ) is averaged over five
network realizations. Results for such parameter space for other maps and topologies are
presented in the supplementary data.

Specifically, in figure 4 we see how the region where Δ =min ( ) 0 for fixed N in the ϵ p( , )
space changes depending on the units dynamical behavior. In particular, we note that with the
exception of a robust window located for ϵ ∈ (0.02, 0.10) and <p 0.5 where fully incoherent
behavior is found (dark region in figures 4(a) and (b)), coupled chaotic logistic maps have
periodic windows (light region in figure 4(b)) and synchronized behavior (triangular region in
the upper corner of figures 4(a) and (b)) which make the inference impossible. On the other
hand, no coherent behavior is found for the circle maps in the same ϵ p( , ) space (figures 4(c)
and (d)). Thus, the region where perfect inference is possible (white circles), is mainly limited
by the amount of data available (disregarding ϵ ∼ 0). The ϵ-robustness of the CC or MI results,
depends on the dynamic of the units composing the system and the topology p( ). Although,
these results are reliable and the methods are effective if dynamical coherence is avoided and
sufficient data is available. In order to retrieve similar regions of perfect inference for larger (N)
networks, we find that larger data sets are needed (see supplementary data).

Figure 4. ΔMin ( ) values averaged (color code) over five unweighed (g = 0) RN
realizations with equal characteristics obtained from CC (panels (a) and (c)) and MI
(panels (b) and (d)) measures for N = 16 non-identical (δ =r 0.1) chaotic logistic (top
row) and circle (bottom row) maps as a function of the networkʼs connectivity
parameter p and coupling strength ϵ. White dots indicate where Δ =min ( ) 0 in all
networks.
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A similar conclusion is drawn when analyzing the effect of increasing the networks size N
but keeping the time-series length T fixed. Namely, we note that the region in the ϵ p( , ) space
that perfect inference is possible diminishes as N is increased if T is kept fixed (see
supplementary data). Thus, it is expected that an analysis which uses αN T constant, with α > 1
as the control parameter, maintains the regions of perfect inference in the ϵ p( , ) invariant.

4. Conclusions

To conclude, we have shown that the CC coefficient (calculated in absolute value) and the MI
(calculated from ordinal patterns) are able to infer, without errors, the underlying topology of
different coupled discrete maps when there is an abrupt change in the ordered set of their
magnitudes. We showed that, while both methods require weakly coupled units (avoiding the
presence of global patterns, or strong desynchronization) for the abrupt change to exist, the MI
is in general more robust and reliable. To the best of our knowledge, reliable reconstruction of
network topologies without errors from time-series measurements of discrete-time dynamical
units has not been previously obtained.

Various fields where complex networks of interactions are often inferred via a CC or MI
statistical similarity analysis of observed time-series can benefit from our results. A careful
consideration of the shape of the distribution of similarity values could allow for selecting
optimal thresholds for the inference of direct links, as opposite to the often employed methods
based on quantiles or on deviations from surrogate data.
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