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ON REALIZING HOMOLOGY CLASSES BY MAPS OF

RESTRICTED COMPLEXITY

MARK GRANT AND ANDRÁS SZŰCS

Abstract. We show that in every codimension greater than one there exists a
mod 2 homology class in some closed manifold (of sufficiently high dimension)
which cannot be realized by an immersion of closed manifolds. The proof gives
explicit obstructions (in terms of cohomology operations) for realizability of
mod 2 homology classes by immersions. We also prove the corresponding result
in which the word ‘immersion’ is replaced by ‘map with some restricted set of
multi-singularities’.

1. Introduction

Let f : Mn−k → Nn be a continuous map of codimension k between closed
manifolds (all manifolds and maps between them are assumed smooth, unless stated
otherwise). Then f is said to realize both the mod 2 singular homology class
z = f∗[M ] ∈ Hn−k(N ;Z2) (where [M ] ∈ Hn−k(M ;Z2) is the fundamental class
of the domain manifold) and its Poincaré dual cohomology class x ∈ Hk(N ;Z2).
This paper addresses the following questions. When can a (co)homology class be
realized by an immersion? When can a (co)homology class be realized by a map
whose complexity is restricted in some way (for instance, by prescribing some finite
set of allowed multi-singularity types)?

We first state our results, then put them in historical context. Recall that
an immersion is a smooth map f : Mn−k → Nn whose differential dfx : TMx →
TNf(x) is injective at each point x ∈ M .

Theorem 1.1. For any k > 1 there exists a closed manifold Nk and cohomology
class xk ∈ Hk(Nk;Z2) which cannot be realized by an immersion. The manifold Nk

can be chosen to have dimension 4k + 3 if k is even, and 4k + 15 if k is odd.

The proof of Theorem 1.1 makes use of the following explicit obstructions to
realizability by immersions, in terms of stable cohomology operations. (Recall that
a stable cohomology operation is a cohomology operation which commutes with the
suspension isomorphism. The definitions of admissible sequence and excess in the
context of the mod 2 Steenrod algebra A will be recalled in Section 2.)

Theorem 1.2. Let k > 1. Let I be an admissible sequence of excess e(I) = k, and
let SqI ∈ A be the corresponding monomial. If the cohomology class x ∈ Hk(N ;Z2)
is realizable by an immersion, then SqI(x) is the reduction mod 2 of an integral
class.
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In particular, if k is even and β(x2) is nonzero (where β is the Bockstein asso-
ciated to reduction mod 2) then x cannot be realized by an immersion.

The obstruction β(x2) in the case k even is very natural, in light of Proposition
4.2 below: it is the integer cohomology class realized by the singular set of any
stable1 map realizing x.

Let τ be a finite set of codimension k multi-singularities. A multi-singularity is
a finite multiset of stable local singularities; more details will be given in Section 5
below. Recall [12] that a stable map f : Mn−k → Nn is called a τ-map if at each
point y ∈ N the pre-image f−1(y) ⊆ M is finite and the local singularities of f at
the pre-image points, counted with multiplicity, form an element of τ .

Theorem 1.3. Let k > 1, and let τ be any finite set of multi-singularities in
codimension k. Then there exists a closed manifold Nk and cohomology class xk ∈
Hk(Nk;Z2) which cannot be realized by a τ-map.

Theorems 1.1 and 1.3 should be contrasted with the well known fact that any
one-dimensional cohomology class x ∈ H1(N ;Z2) in a closed manifold is realizable
by an embedding of a closed manifold (recall that an embedding is an immersion
that is a homeomorphism onto its image). This follows since x = w1(ξ) is the mod
2 Euler class of some line bundle ξ over N , and is therefore realized by the zero set
of a generic section of ξ.

It is somewhat surprising that a result such as Theorem 1.1 has not found its
way into the literature before now. Ever since Poincaré and the birth of homology,
basic questions concerning realization of homology classes by maps from closed
manifolds have had a profound effect on the development of Algebraic Topology.
Thom showed in his landmark paper [16] that every mod 2 homology class in a finite
polyhedron can be realized by a continuous map, thus giving an affirmative answer
to a problem posed by Steenrod. In its original formulation [7], Steenrod’s question
was about realizing integral homology classes by maps from oriented manifolds,
and Thom also gave negative results in this direction, by constructing examples of
non-realizable integral homology classes in dimensions 7 and above.

Thom’s method was to reduce Steenrod’s problem to the related question con-
cerning realizability of homology classes by embeddings. The key insight which
allowed him to solve this problem was that a homology class in the compact man-
ifold N can be realized by a codimension k embedding if and only if its Poincaré
dual cohomology class is induced from the Thom class by a map from N/∂N into
the Thom space of the universal k-dimensional bundle. In other words, the Thom
space of the universal k-dimensional bundle is the classifying space for codimension
k embeddings. One can use this result to find homology classes which cannot be
realized by embeddings, in two closely related ways.

The first is constructive, in that it gives specific obstructions to realizability.
Namely, one shows that some expression P involving cup products and cohomology
operations vanishes on the Thom class. If the dual of a cohomology class x is to
be realizable, that same expression must also vanish on x (this approach was taken
by Thom [16, Chapitre II], and more recently by the authors of [1] to exhibit new
examples of classes non-realizable by submanifolds of certain types).

1Recall that in singularity theory a smooth map f : M → N is called stable if for any sufficiently
close smooth map f ′ : M → N there exist diffeomorphisms g : M → M and h : N → N such that
h−1

◦ f ′
◦ g = f .
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The second approach is less constructive, but equally valid. One compares
the graded rank of the mod 2 cohomology of the Thom space of the universal
k-dimensional bundle with that of the corresponding Eilenberg-Mac Lane space. In
high degrees the latter is larger, and so this approach shows that in all dimensions
k > 1 there exists a mod 2 cohomology class in some closed manifold of sufficiently
high dimension which cannot be realized by an embedding (Thom says that this
argument, outlined on page 46 of [16], was patterned after a remark of J.P. Serre).

The current paper strengthens both of these approaches, by varying both the
choice of classifying space and the maps allowed. To prove our Theorem 1.1 about
non-realizability of classes by immersions, we use the fact (due to Wells [19]) that
immersions of codimension k are classified by stable2 maps to the universal Thom
space in dimension k (see Section 2). Thus any stable cohomology operation P
which vanishes on the universal Thom class must also vanish on any cohomology
class realized by an immersion. In Section 3 we apply a result of Browder [2] to
show that certain such operations P composed of Steenrod squares and Bockstein
operators are nonzero on the fundamental cohomology class. This allows us to
construct our smooth examples by ‘thickening’ these universal examples.

In Section 4, we show that the obstruction β(x2), for an even dimensional coho-
mology class x, is the integer cohomology class realized by the singular set of any
stable map realizing x. This section also contains a generalisation (Lemma 4.1)
of a result due to Thom [15] which gives a geometric construction of the Steenrod
squares (see also [6]).

In Section 5 we recall the construction of the classifying spaceXτ for τ -maps, due
to Rimányi and the second author [12]. In Section 6 we observe that the dimensions
of the cohomology groups of Xτ (viewed as vector spaces over Z2) grow not faster
than those of a finitely generated Z2-algebra, which leads to the proof of Theorem
1.3.

The authors wish to thank Alain Clément, for including in his thesis [4] appen-
dices listing the integral cohomology groups of some 2-local Eilenberg-Mac Lane
spaces, and for a timely and insightful email regarding the Bockstein spectral se-
quence for these spaces, both of which were vital to the proof of Theorem 1.1.

For the rest of the paper, all homology and cohomology groups are to be under-
stood with coefficients in Z2, the ring of integers mod 2, unless explicitly indicated
otherwise.

2. Immersions in cohomology classes

In this section we recall some known facts pertaining to the realization of coho-
mology classes by immersions, and give the proof of Theorem 1.2. We fix a closed
manifold Nn and a codimension k > 1.

If ζ is a vector bundle on N of rank k, we denote by I(N ; ζ) the bordism group
of immersions in N with ζ-structure. The elements of this group are equivalence
classes of triples (Mn−k, f, v) under a suitable bordism relation, whereM is a closed
manifold, f : Mn−k

# Nn is an immersion of codimension k, and v : νf → ζ is a
bundle map isomorphic on fibres. We refer the reader to [5] for more details.

Recall that the universal O(k)-bundle γk → BO(k) is a rank k vector bundle
with the property that the inclusion of the nonzero vectors into the total space is

2Here we use ‘stable’ in the sense of stable homotopy theory, to describe a map which exists
after sufficiently many suspensions. We trust that this homonymy will not cause confusion.
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homotopically equivalent to the standard inclusion i : BO(k − 1) → BO(k). We
denote by MO(k) the Thom space of γk, and by Uk ∈ Hk(BO(k), BO(k − 1)) ∼=
H̃k(MO(k)) the universal Thom class. Note that the Thom class is represented by
a pointed map Uk : MO(k) → K(Z2, k).

If X is a based space and ℓ ≥ 0, we denote by σℓ : H̃k(X)
∼=
→ H̃k+ℓ(ΣℓX) the ℓ-

fold reduced suspension isomorphism. We remark that σℓ(Uk) ∈ H̃k+ℓ(ΣℓMO(k))
is the Thom class of the direct sum γk ⊕ εℓ of the universal bundle with a trivial
bundle.

There is a natural transformation Θ: I(N ; γk) → Hk(N) which sends the bor-
dism class of an immersion f : Mn−k

# Nn to the cohomology class it realizes (see
[5, Section 3.2]). Representing these functors homotopically, we have the following
diagram

(1) I(N ; γk)
Θ //

∼=

��

Hk(N)

∼=

��
[ΣℓN+,Σ

ℓMO(k)]ℓ≫0
// [ΣℓN+,K(Z2, k + ℓ)],

where square brackets denote pointed homotopy classes of maps. The right hand
isomorphism comes from the isomorphism Hk(N) ∼= H̃k(N+), where N+ denotes
N with a disjoint base-point, composed with the suspension isomorphism and the
classification of reduced cohomology as maps into Eilenberg-Mac Lane spaces. The
left-hand isomorphism identifying I(N ; γk) with a stable homotopy group is the
Pontrjagin-Thom-Wells theorem [19]. The lower horizontal arrow is induced by the

map ΣℓMO(k) → K(Z2, k + ℓ) which represents σℓ(Uk) ∈ H̃k+ℓ(ΣℓMO(k)).
From these remarks it is trivial to deduce the following slight extension of

Thom’s fundamental result on realizability of cohomology classes by embeddings
[16, Théorème II.1].

Proposition 2.1. The cohomology class x ∈ Hk(N) is realizable by an immersion
if, and only if, there exists a map F : ΣℓN+ → ΣℓMO(k), where ℓ is large, such
that

(2) σℓ(x) = F ∗σℓ(Uk) ∈ H̃k+ℓ(ΣℓN+).

Corollary 2.2. Let P be a stable cohomology operation such that P (Uk) = 0. If
x ∈ Hk(N) is realizable by an immersion then P (x) = 0 also.

The stable operations in mod 2 cohomology make up the mod 2 Steenrod al-
gebra A, which consists of non-commuting polynomials in the Steenrod squares
Sqi : H∗(−) → H∗+i(−), subject to the Adem relations. We recall some standard
notation (as found for example in [9]). We denote by SqI = Sqi1Sqi2 · · ·Sqir the
Steenrod operation corresponding to the multi-index I = (i1, . . . , ir) of non-negative
integers. Such a sequence is called admissible if ij ≥ 2ij+1 for j = 1, . . . , r − 1. Its
dimension is |I| =

∑

j ij , and its excess is e(I) =
∑

j ij − 2ij+1 = 2i1 − |I|. The

significance of these definitions comes from Serre’s Theorem [13] describing the mod
2 cohomology of Eilenberg-Mac Lane spaces as a polynomial algebra

(3) H∗
(

K(Z2, k)
)

= Z2

[

SqI(ιk) | I admissible, e(I) < k
]

.

Here ιk ∈ Hk (K(Z2, k)) ∼= Hom(Z2,Z2) is the fundamental class corresponding
to the identity homomorphism. We remark that if x is any cohomology class in



ON REALIZING HOMOLOGY CLASSES 5

degree k and I = (i1, i2, . . . , ir) has excess k, then SqI(x) =
[

SqJ(x)
]2
, where

J = (i2, . . . , ir).
As it turns out, Steenrod operations alone are insufficient for finding obstructions

to realizability by immersions - we also have to consider the Bockstein coboundary
associated to the short exact coefficient sequence 0 → Z → Z → Z2 → 0. This
gives rise to the long exact sequence in cohomology
(4)

· · · → Hn(X,A;Z)
·2 // Hn(X,A;Z)

ρ // Hn(X,A)
β // Hn+1(X,A;Z) → · · ·

for any space pair (X,A), where ρ denotes reduction mod 2. Note that β is a stable
operation of degree one, with the property that y ∈ H∗(X,A) is the reduction
mod 2 of an integral class if and only if β(y) = 0. We also remark that ρ ◦ β =
Sq1 : H∗(X,A) → H∗+1(X,A).

Proof of Theorem 1.2. We aim to show that βSqI(Uk) = 0 whenever I has excess
k. Theorem 1.2 will then follow directly from Corollary 2.2 and the exact sequence
(4).

We first claim that the long exact sequence in integral cohomology of the pair
(BO(k), BO(k − 1)) splits into short exact sequences
(5)

0 → H∗(BO(k), BO(k − 1);Z)
j∗ // H∗(BO(k);Z)

i∗ // H∗(BO(k − 1);Z) → 0.

To see this, it suffices to check that i∗ is surjective in every positive dimension. This
follows from the description of the integer cohomology rings of the BO(k), given
by Brown in [3, Theorem 1.6]. Indeed, H∗(BO(k);Z) is a quotient of a polynomial
ring generated by the Pontrjagin classes pi(γk) and the Bockstein images of certain
monomials in the Stiefel-Whitney classes wi(γk). Since γk−1

∼= i∗γk, and i∗ is a
ring homomorphism commuting with the Bockstein operator, it follows that each
polynomial generator in H∗(BO(k − 1);Z) is the image under i∗ of a generator of
H∗(BO(k);Z), and the claim is proved.

It is well known that all torsion in H∗(BO(k);Z) is of order 2 (see [3, Lemma
2.4] for example), and it follows that the same is true of H∗(BO(k), BO(k− 1);Z).
It is also well known [3, Lemma 2.2], and easy to see using (4), that if all torsion
in Hn+1(X,A;Z) is of order 2 and y ∈ Hn(X,A), then β(y) = 0 if and only if
Sq1(y) = 0. Hence βSqI(Uk) = 0 if and only if Sq1SqI(Uk) = 0. The latter is true

since Sq1 is a derivation and SqI(Uk) =
[

SqJ(Uk)
]2
.

In particular, if I = (k) then βSqk(Uk) = β(U2
k ) = 0. Note that if k = 2m+ 1

is odd then the operation βSq2m+1 is identically zero, as follows from the relation
Sq2m+1 = Sq1Sq2m and the exact sequence (4). �

3. Cohomology of Eilenberg-Mac Lane spaces

Our aim in this section is to prove Theorem 1.1, by exhibiting cohomology classes
xk ∈ Hk(Nk) and operations SqI with e(I) = k such that βSqI(xk) 6= 0. If we are
to have any chance of success, we must be able to do this for the universal example
given by the fundamental class ιk ∈ Hk(K(Z2, k)). Hence we need to recall some
facts about the mod 2 Bockstein spectral sequence for the spaces K(Z2, k), all of
which can be found in the paper of Browder [2].
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The long exact sequence (4) (when A = ∅) rolls up into an exact couple

(6) H∗(X ;Z)
·2 // H∗(X ;Z)

ρ
yyrrr

rr
rr
rr
r

H∗(X)

β

ee▲▲▲▲▲▲▲▲▲▲

which gives rise to a spectral sequence in the usual way. This is the well known
mod 2 Bockstein spectral sequence [2], [9]. It has first page E∗

(1)(X) = H∗(X) and

first differential d(1) = ρ ◦ β = Sq1. The E∗

(2)(X) page is therefore the cohomology

of H∗(X) with respect to the derivation Sq1. Given an element y ∈ H∗(X) with
Sq1(y) = 0, we denote by {y} ∈ E∗

(2)(X) the class represented by y. The following

lemma is then obvious from the construction of the spectral sequence.

Lemma 3.1. Let y ∈ H∗(X) with Sq1(y) = 0. If d(2){y} ∈ E∗+1
(2) (X) is nonzero,

then so is β(y) ∈ H∗+1(X ;Z).

We wish to apply this lemma with y ∈ H∗
(

K(Z2, k)
)

. Browder gave a detailed
description of the mod p Bockstein spectral sequence of K(Zps , k) for all primes p
and s ≥ 1. Here we state only the small part of his results (in the case p = 2 and
s = 1) needed for our purpose.

Theorem 3.2 (Browder, [2, Theorem 5.5]). The second page of the mod 2 Bockstein
spectral sequence for K(Z2, k) is a polynomial algebra over Z2,

(7) E∗

(2)

(

K(Z2, k)
)

= Z2

[

{G2}, d{G2}
]

.

Here G runs over the even dimensional generators of H∗
(

K(Z2, k)
)

(excluding the

generator Sq1(ιk) in the case k odd), and d = d(2) is the second differential. Hence

G = SqJ (ιk) where J = (j1, . . . , js) is admissible of excess less than k such that
|J |+ k is even and j1 6= 1.

Proof of Theorem 1.1. Let J = (j1, . . . , js) be an admissible sequence of excess less
than k such that j1 6= 1 and |J |+k is even. Then the sequence I = (|J |+k, j1, . . . , js)
is admissible of excess k, and it follows from Theorem 3.2 and Lemma 3.1 that the
element

y = SqI(ιk) =
[

SqJ(ιk)
]2

is not the reduction of an integral class.
For example, if k is even we can set J = (0) and then SqI(ιk) = Sqk(ιk) = ι2k.
If k is odd we can set J = (2, 1) and then SqI(ιk) = Sqk+3Sq2Sq1(ιk).
Now we can construct smooth examples by the method of thickenings, as follows.

If k is even, take the (2k+2)-skeleton K = K(2k+2) ⊆ K(Z2, k), whose cohomology
is isomorphic to that of K(Z2, k) up to degree 2k + 1, and choose an embedding
K →֒ R

n+1 in some high-dimensional euclidean space. This embedding has a
regular neighbourhood W ⊃ K, homotopy equivalent to K, whose boundary ∂W
is a closed smooth n-manifold. By an easy argument involving Lefschetz duality,
one sees that the map

(8) H2k+1(K;Z) ∼= H2k+1(W ;Z) → H2k+1(∂W ;Z)

is injective as long as n ≥ 4k + 3. Thus the image xk of ιk in Hk(∂W ) has the
property that β(x2

k) 6= 0, and so cannot be realized by an immersion. The smallest
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dimensional example obtained by this method is a 2-dimensional class in a closed
11-manifold.

If k is odd, the same technique produces a class xk in a (4k + 15)-dimensional
manifold such that βSqk+3Sq2Sq1(xk) is nonzero, and hence xk cannot be realized
by an immersion. The smallest dimensional example obtained by this method is a
3-dimensional class in a closed 27-manifold. �

4. Interpretation of the obstruction β(x2)

When k is even, the obstruction β(x2) ∈ H2k+1(N ;Z) to a class x ∈ Hk(N)
being realizable by an immersion has a very natural interpretation: it is the integer
class realized by the singular set of any stable map realizing x. In order to make
this precise, we need several preliminaries.

Let f : (M,∂M) → (N, ∂N) be a codimension k map between compact mani-
folds, where ∂M and f(M) ∩ ∂N are assumed empty. Denote the virtual normal
bundle by νf = f∗TN − TM . It is well-known that, for any local system L of
abelian groups on N , the map f induces a Gysin homomorphism

(9) f! : H∗(M ; f∗
L ⊗ Zf ) → H∗+k(N, ∂N ;L ),

where Zf denotes the local system of integers twisted by w1(νf ) (for details, see
[10]). In particular, when L is the trivial system with group Z or Z2, we get Gysin
homomorphisms
(10)

f! : H∗(M ;Zf ) → H∗+k(N, ∂N ;Z) and f! : H∗(M) → H∗+k(N, ∂N).

With these notations, the mod 2 cohomology class x ∈ Hk(N, ∂N) realized by f is
just f!(1), where 1 ∈ H0(M) is the unit class.

A well-known result of Thom [15] (see also [6]) states that f!
(

wi(νf )
)

= Sqi
(

f!(1)
)

when f : M # N is an immersion with M closed. The following Lemma generalises
Thom’s result to singular maps and integer coefficients.

Lemma 4.1. Let x ∈ Hk(N) be a cohomology class realized by a map of closed
manifolds f : Mn−k → Nn. Let Wr(νf ) denote the r-th Stiefel-Whitney class of the
virtual normal bundle of f (with coefficents in Z2 for r even, and twisted coefficients
in Zf for r odd). Then

(11) f!
(

W2i(νf )
)

= Sq2i(x) and f!
(

W2i+1(νf )
)

= βSq2i(x).

Proof. We use stabilisation to reduce to the embedded case. Let e : (N, ∅) →
(N ×Dq, N × Sq−1) be the standard embedding, where Dq is a large dimensional
disk with boundary Sq−1. It is well known that e! can be identified with the q-fold
suspension isomorphism, for any coefficients, and in particular e! commutes with
stable cohomology operations. The composition e◦f is homotopic to an embedding
g : (M, ∅) →֒ (N ×Dq, N × Sq−1) with image in the interior of N ×Dq and such
that W (νg) = W (νf ). Since e! ◦ f! = g! the claimed equalities are equivalent to

(12) g!
(

W2i(νg)
)

= Sq2i
(

g!(1)
)

and g!
(

W2i+1(νg)
)

= βSq2i
(

g!(1)
)

.

We will obtain these equalities by showing that they hold for the universal em-
bedding gu : BO(k+q) → MO(k+q) of codimension k+q, then applying naturality
arguments. (Here we are abusing notation slightly, since the universal embedding
is really a map gu : (BO(k + q), ∅) → (Dγk+q, Sγk+q) which is obtained as a limit
of codimension k + q embeddings of finite dimensional manifolds.)
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Let W2i+1 = W2i+1(γk+q) be the universal Stiefel-Whitney class. We wish to
show that

(13) gu!(W2i+1) = βSq2i(Uk+q) ∈ H̃k+q+2i+1
(

MO(k + q);Z
)

.

By the results stated in the proof of Theorem 1.2 at the end of Section 2, we have
that H̃∗(MO(k+ q);Z) ⊆ H∗(BO(k+ q);Z), and the latter group is 2-torsion in all
dimensions not divisible by 4. Hence by choosing q so that k+q+2i+1 6≡ 0(mod4)
we can ensure that the mod 2 reduction

(14) ρ : H̃k+q+2i+1
(

MO(k + q);Z
)

→ H̃k+q+2i+1
(

MO(k + q)
)

is injective. Using that the reduction mod 2 of gu! can be identified with the
universal Thom isomorphism, and the identities ρ◦β = Sq1 and Sq1Sq2i = Sq2i+1,
we see that the mod 2 reduction of equality (13) becomes the well-known identity
w2i+1 · Uk+q = Sq2i+1(Uk+q). Hence equality (13) holds.

The equality gu!(W2i) = Sq2i(Uk+q) is immediate, sinceW2i·Uk+q = Sq2i(Uk+q).
Let T denote a closed tubular neighbourhood of g in the interior of N ×Dq. By

universality we obtain a transversal pullback square

(15) (M, ∅)

g

��

νg //
(

BO(k + q), ∅
)

gu

��
(T, ∂T )

j // (Dγk+q , Sγk+q)

from which it follows that in H∗(T, ∂T ;Z) we have

g!
(

W2i+1(νg)
)

= g! ◦ ν
∗

g (W2i+1)

= j∗ ◦ gu!(W2i+1)

= j∗βSq2i(Uk+q)

= βSq2i
(

j∗(Uk+q)
)

= βSq2i
(

g!(1)
)

.

Applying the excision isomorphism H∗(T, ∂T ;Z) ∼= H∗(N ×Dq, N ×Dq \ int(T ))
composed with the restrictionH∗(N×Dq, N×Dq\int(T )) → H∗(N×Dq, N×Sq−1)
yields the desired equality in the odd case. An analogous argument applies to the
even case also. �

Now let x ∈ Hk(N), with k even. Suppose that x can be realized by a stable
map f : Mn−k → Nn of closed manifolds. The singular set of f is defined as

(16) Σ = {x ∈ M | rank(dfx : TMx → TNf(x)) < n− k} ⊆ M.

It is the closure in M of the simplest singularity stratum Σ̃ = Σ1,0 ⊆ M of Whit-
ney umbrella points. This top stratum Σ̃ is an open dense subset of Σ, and has
codimension k+ 1 in M . All other strata have codimension at least k+ 4 in M . It
is well known that Σ carries a fundamental class

(17) [Σ] ∈ Hn−2k−1(Σ;ZΣ̃)

(the coefficients are twisted according to the tangent bundle of Σ̃; the other strata
do not affect the orientability). Denote by ı : Σ → M the inclusion, and by f̄ =
f ◦ ı : Σ → N the restriction of f to its singular set.
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Proposition 4.2. Let x ∈ Hk(N) be realized by a stable map f : Mn−k → Nn of
closed manifolds, where k is even. Then β(x2) ∈ H2k+1(N ;Z) is the cohomology
class in N realized by the singular set of f . In other words, β(x2) is the Poincaré
dual of

(18) f̄∗[Σ] ∈ Hn−2k−1(N ;ZN ).

Proof. Let  : Σ̃ → M be the inclusion of the set of Whitney umbrella points, and
denote by f̃ = f ◦  the restriction of f to Σ̃. Hence f̃ is an immersion, whose
normal bundle νf̃

∼= ν ⊕ ∗νf we claim is oriented, regardless of the orientablility

of M , N and νf . This follows from arguments in [14] (see also [12] for a more
sophisticated approach). The umbrella points have normal form

(19) (x, y) 7→ (u, v, w) = (x2, y, xy), (x, u ∈ R
1, y, v, w ∈ R

k).

In a tubular neighbourhood of Σ̃, the normal co-ordinates can be chosen so that
the transition maps have the form

(20) (x, y) 7→ (εx,A · y), ε = ±1, A ∈ GL(k,R).

The corresponding transition maps in the target will be

(21) (u, v, w) 7→ (u,A · v, εA · w).

Since k is even, it is clear that the transition matrices in the target all have positive
determinant.

It follows that w1(ν) = ∗w1(νf ), and hence that w1(Σ̃) = ∗(w1(M) +w1(νf )).
Hence our fundamental class [Σ] ∈ Hn−2k−1(Σ;ZΣ̃) can be viewed as an element in
the group in the upper-left of the commutative diagram,
(22)

Hn−2k−1(Σ; ı
∗(Zf ⊗ ZM ))

ı∗ // Hn−2k−1(M ;Zf ⊗ ZM )
f∗ // Hn−2k−1(N ;ZN )

Hk+1(M ;Zf )

∩[M ]

OO

f! // H2k+1(N ;Z),

∩[N ]

OO

in which the vertical arrows are Poincaré duality isomorphisms. Together with
Lemma 4.1, diagram (22) reduces the proof of the Proposition to the statement
that Wk+1(νf ) ∩ [M ] = ı∗[Σ]. That is, the Poincaré dual in M of the homology
class realized Σ is the (k + 1)-st Stiefel-Whitney class of the virtual normal bundle
of f .

We can see this as follows. Let ξ = hom(TM, f∗TN) be the vector bundle over
M whose fibre over a point x ∈ M is the space of linear maps TMx → TNf(x). Let
Sx ∈ ξx be the subspace consisting of those maps with non-trivial kernel, and let
S =

⋃

x∈M Sx. Note that S ⊆ E(ξ) is a stratified subset of the total space of ξ, and

that by restricting to its complement we obtain a fibration ζ :
(

E(ξ) \ S
)

→ M ,
with fibre Vn−k(R

n) the Stiefel manifold of (n − k)-frames in R
n, associated to ξ.

The obstruction class of this ζ is precisely the twisted integer Stiefel-Whitney class
Wk+1(νf ).

On the other hand, the differential of f defines a generic section df : M → E(ξ)
of ξ, and it is clear that Σ = df−1(S). Hence the homology class realized by Σ is
dual to the obstruction class of ζ, by standard obstruction theoretic arguments. �
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5. Classifying space for τ-maps

In this section we recall some details of the classifying space Xτ for τ -maps,
constructed in [12], which will be needed for the proof of Theorem 1.3 in the next
section.

We first recall some terminology from singularity theory. Fix a codimension
k > 1. A multi-singularity of codimension k is defined to be a multiset of stable
local singularities of codimension k. Here a local singularity of codimension k is
an equivalence class of map germs η : (Rn−k,0) → (Rn,0), under the relations
generated by suspension and A-equivalence. We refer the reader to [12] for more
details. By abuse of notation, we will denote the local singularity [η] by η.

Let τ be a finite set of multi-singularities of codimension k. Recall that a τ-map
is a stable map f : Mn−k → Nn such that at each point y ∈ N the pre-image
f−1(y) ⊆ M is finite, and the multiset of local singularities of f at the points in the
pre-image is an element of τ . In [12] the authors construct a classifying space Xτ

for τ -maps. This is a pointed space with the property that the cobordism classes
of τ -maps f : Mn−k → Nn, with M closed, are in one-to-one correspondence with
the set of pointed homotopy classes [N+, Xτ ] when N is a closed manifold.

The space Xτ is (k − 1)-connected, and its lowest dimensional nonzero co-
homology group has a single generator Uτ ∈ Hk(Xτ ), represented by a map
Uτ : Xτ → K(Z2, k), which plays the role of the Thom class in the following sense.
Whenever f : Mn−k → Nn is a τ -map, and F : N+ → Xτ is the corresponding map
into the classifying space, then F ∗(Uτ ) ∈ Hk(N) is the cohomology class realized
by f . Thus we have the following result, analogous to Proposition 2.1.

Proposition 5.1. The cohomology class x ∈ Hk(N) is realizable by a τ-map if,
and only if, there exists a map F : N+ → Xτ such that x = F ∗(Uτ ).

We omit the details of the proof. The result can be deduced from Proposition
2.1 and the fact that the singularity set of a codimension k map has codimension
(k + 1) in the source and (2k + 1) in the target.

The space Xτ is constructed by inductively glueing together disc bundles of
vector bundles, one for each multi-singularity in τ . This requires a well-ordering
on τ , which is obtained by extension of the following partial ordering on the set
of codimension k multi-singularities. We can denote a typical multi-singularity by
θ = m1η1+· · ·+msηs wherem1, . . . ,ms are natural numbers and η1, . . . , ηs are local
singularities. Let f : Mn−k → Nn be a stable mapping. A point y ∈ N is called a
θ-point if the pre-image f−1(y) is finite, and the multiset of local singularities of f
at the points in the pre-image is precisely θ. We then say that θ < θ′, where θ′ is
some other multi-singularity, if in any neighbourhood of a θ′-point there is always
to be found a θ-point.

Example 5.2. Using the Thom-Boardman classification of singularities, a regular
r-tuple point would be a rΣ0-point, and a Whitney umbrella would be a Σ1,0-point.
We then have 2Σ0 < 3Σ0 and 2Σ0 < Σ1,0, but 3Σ0 is not comparable with Σ1,0.

We next describe the vector bundle associated to a given multi-singularity θ =
m1η1 + · · ·+msηs in τ . Each local singularity ηi has an associated vector bundle
ξ̃i, which is the universal normal bundle of the (simple) ηi stratum in the target.

The base space of ξ̃i is the classifying space BGi, where Gi is a compact Lie group.
In fact, Gi is the maximal compact subgroup (in the sense of Jänich [8] and Wall
[18]) of the group of symmetries of ηi.
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Let r be a natural number, and let Sr be the symmetric group on r letters. If
ξ → B is a vector bundle, the r-th extended power of ξ is the bundle

(23) Sr(ξ) = ESr ×Sr
(ξ × · · · × ξ)

which is the Borel construction applied to the r-fold Cartesian power of ξ, with
Sr-action given by permutation of the factors (here ESr denotes a free contractible
Sr-space). It has Thom space DrTξ, where, for a pointed space X and r ≥ 1, the
notation DrX refers to the r-adic construction

(24) DrX = (ESr)+ ∧Sr
X ∧ · · · ∧X.

The vector bundle associated to θ = m1η1 + · · ·+msηs is

(25) ξ̃θ = Sm1
(ξ̃1)× · · · × Sms

(ξ̃s).

Note that the Thom space of this bundle is the smash product

(26) T ξ̃θ =

s
∧

i=1

Dmi
T ξ̃i.

To construct the space Xτ one starts with a point, then at each stage glues the
disc bundle Dξ̃θ of the next multi-singularity θ appearing in τ to the space obtained
at the previous stage, by a map defined on the sphere bundle Sξ̃θ.

6. Proof of Theorem 1.3

Let τ be a finite set of multi-singularities. By the construction outlined in the
previous section, the classifying space Xτ comes with a natural filtration, and an
associated spectral sequence converging to the cohomology ring H∗(Xτ ). In this
section, by examining the E2-term of this spectral sequence, we prove the following.

Proposition 6.1. The dimensions of the cohomology groups of Xτ (viewed as
vector spaces over Z2) grow not faster than those of a finitely generated Z2-algebra.

Assuming Proposition 6.1 for a moment, we now give the proof of Theorem 1.3.

Proof of Theorem 1.3. The cohomology of the Eilenberg-Mac Lane space K(Z2, k)
(where k > 1) is a polynomial ring on infinitely many generators, by Serre’s The-
orem [13]. Hence by Proposition 6.1, the finite group HN(K(Z2, k)) has more
elements than the finite group HN (Xτ ), for some N sufficiently large. It follows
that there does not exist a pointed map F : K(Z2, k) → Xτ with F ∗(Uτ ) = ιk ∈
Hk(K(Z2, k)), where Uτ ∈ Hk(Xτ ) is the Thom class. Indeed, such a map would
have Uτ ◦ F : K(Z2, k) → K(Z2, k) homotopic to the identity, which would imply
injectivity of the induced map U∗

τ : HN (K(Z2, k)) → HN (Xτ ).
By embedding a suitable skeleton of K(Z2, k) in some Euclidean space, and

taking the boundary of a regular neighbourhood (as in the proof of Theorem 1.2),
we obtain a closed manifold Nk and a cohomology class xk ∈ Hk(Nk;Z2) which
is not a pullback of the Thom class Uτ , and hence by Proposition 5.1 cannot be
realized by a τ -map. �

Proof of Proposition 6.1. The cohomology groups of Xτ have dimensions bounded
above by those of the E2-term of the spectral sequence converging to H∗(Xτ ). From
the construction of Xτ (attaching successive disc bundles of the vector bundles
associated to the multi-singularities in τ , along maps defined on their boundary
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sphere bundles) it follows that the sum of the entries in the E2-term is the sum of
the cohomologies of the Thom spaces associated to multi-singularities in τ ,

(27)
⊕

θ∈τ

H̃∗(T ξ̃θ).

Since τ is finite, there are finitely many natural numbers α1, . . . , αs and local sin-
gularities η1, . . . , ηs such that every multi-singularity θ ∈ τ can be written in the
form θ = m1η1 + · · ·+msηs, where the mi are non-negative integers with mi ≤ αi.
By the description (26) and the Künneth Theorem, it follows that the dimensions
of the E2-term are bounded above by those of

(28)

s
⊗

i=1

αi
⊕

mi=1

H̃∗(Dmi
T ξ̃i).

Since a finite tensor product or finite direct sum of finitely generated algebras
is again finitely generated, the proof will be complete if we can show that the
dimensions of H̃∗(DrT ξ̃i) grow not faster than those of a finitely generated algebra,
for any natural number r and i = 1, . . . , s.

Recall that if ξ → B is a vector bundle, then DrTξ is the Thom space of the
r-th extended power Sr(ξ) of ξ (defined at (23) above). Hence there is a Thom
isomorphism

(29) H̃∗(DrT ξ̃i) ∼= H∗−d (Sr(BGi)) ,

where d = dimSr(ξ̃i) and Gi is the maximal compact subgroup of the local singu-
larity ηi.

The space Sr(BGi) is the classifying space of the wreath product Sr

∫

Gi, which
is itself a compact Lie group. To finish the proof, we quote a result of Venkov [17]
(see also Quillen [11, Corollary 2.2]), which states that if G is a compact Lie group,
then the cohomology algebra H∗(BG) is finitely generated. Thus it follows that

(up to a shift in degrees) the growth of the cohomology groups H̃∗(DrT ξ̃i) is as
claimed. �
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