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Seasonal or photoperiodically sensitive animals respond to altered day length with changes in

physiology (growth, food intake and reproductive status) and behaviour to adapt to predictable

yearly changes in the climate. Typically, different species of hamsters, voles and sheep are the

most studied animal models of photoperiodism. Although laboratory rats are generally consid-

ered nonphotoperiodic, one rat strain, the inbred Fischer 344 (F344) rat, has been shown to be

sensitive to the length of daylight exposure by changing its physiological phenotype and repro-

ductive status according to the season. The present study aimed to better understand the nature

of the photoperiodic response in the F344 rat. We examined the effects of five different pho-

toperiods on the physiological and neuroendocrine responses. Young male F344 rats were held

under light schedules ranging from 8 h of light/day to 16 h of light/day, and then body weight,

including fat and lean mass, food intake, testes weights and hypothalamic gene expression were

compared. We found that rats held under photoperiods of ≥ 12 h of light/day showed increased

growth and food intake relative to rats held under photoperiods of ≤ 10 h of light/day. Mag-

netic resonance imaging analysis confirmed that these changes were mainly the result of a

change in lean body mass. The same pattern was evident for reproductive status, with higher

paired testes weight in photoperiods of ≥ 12 h of light/day. Accompanying the changes in phys-

iological status were major changes in hypothalamic thyroid hormone (Dio2 and Dio3), retinoic

acid (Crabp1 and Stra6) and Wnt/b-Catenin signalling genes (sFrp2 and Mfrp). Our data demon-

strate that a photoperiod schedule of 12 h of light/day is interpreted as a stimulatory photope-

riod by the neuroendocrine system of young male F344 rats.
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Seasonal or photoperiodically sensitive animals make profound

anticipatory changes in physiology (growth, food intake and repro-

ductive status) and behaviour to adapt to predictable yearly

changes in the climate. As such, they provide excellent model sys-

tems for studying neuroendocrinology, as well as long-term adap-

tive changes in the hypothalamus.

Over the past decade, studies of a variety of seasonal species,

including mammals and birds, have helped us to understand the

primary effects of photoperiod on the neuroendocrine hypothala-

mus. Initiated by work conducted in the Japanese quail, it has been

shown that the seasonal cycles in reproduction are critically depen-

dent upon the regulation of thyroid hormone metabolism in the

hypothalamus (1,2). These observations have been extended to

mammals, including hamsters, sheep and rats, and the results

suggest that, in addition to the traditional hypothalamo-pituitary

axes, an ‘inverse neuroendocrine axis’ exists, where the pituitary

controls the hypothalamus (3–5). It is now generally recognised

that, in mammals, photoperiod regulates thyroid-stimulating hor-

mone production in the pars tuberalis of the pituitary via nocturnal

melatonin secretion from the pineal gland. Thyroid-stimulating hor-

mone, in turn, regulates hypothalamic thyroid hormone activation

by controlling deiodinase enzymes (Dio2 and Dio3) in the ependy-

mal cells lining the third ventricle of the hypothalamus. The result-

ing switch in local thyroid hormone availability is assumed to

comprise the basis of long-term seasonal changes in growth,

food intake and reproductive status. Although this pathway is

highly conserved between vertebrates, unlike in mammals, these

mechanisms are independent of melatonin in birds (6,7). The



photoperiodic variations in thyroid hormone metabolism are not

exclusive to seasonal animals because Ono et al. (8) reported pho-

toperiod and melatonin-driven changes in Dio2 and Dio3 expression

in nonphotoperiodic strains of laboratory mice. In addition to thy-

roid hormone signalling, another important component of the

photoperiodic response is hypothalamic retinoic acid signalling,

which has also been associated with profound changes in growth

and energy balance (9).

Seasonal changes in physiology and reproduction are robust

innate processes that require long-term changes so that the ani-

mals can anticipate and adapt accordingly in advance of predict-

able yearly changes in the environment. Yet even small mammals

that do not display circannual rhythms, as a result of their short

life-span, show pronounced seasonal cycles in body mass, food

intake and reproduction (6). As such, typical animal models for

the study of photoperiodism often comprise long-day breeding

seasonal rodents because they show rapid and dramatic adapta-

tions in their morphology, physiology and behaviour to changes

in photoperiod. For example, different species of hamster and vole

suppress reproduction, food intake and somatic growth in inhibi-

tory short photoperiods and increase these parameters in stimula-

tory long photoperiods. The critical photoperiod for the switch

between inhibitory and stimulatory photoperiods is species-depen-

dent (10).

It is only comparatively recently that research has been directed

towards using laboratory rats for studying seasonal physiology and

reproduction. This is because laboratory rats are generally charac-

terised as nonseasonal animals in that they reproduce year-round

and have only little or no reproductive response to a short photo-

period. However, some strains of rats are photoresponsive but the

sensitivity and magnitude of the photoperiodic response varies

(11,12), although, after specific manipulations, such as olfactory

bulbectomy (13) or treatment with testosterone implants to

increase steroid negative-feedback (14,15), most laboratory strains

of rats have the potential to respond to photoperiod. Nevertheless,

the strong advantage of their use is the availability of a wealth of

genetic information in publicly available databases and in the litera-

ture, as well as the molecular probes and tools that are lacking for

the study of other seasonal species.

One rat strain, the inbred Fisher (F) 344 rat, displays a strong

physiological and reproductive response to different photoperiods

(12). In young F344 rats, a long-day exposure (more than 14 h

light/day) induces a long-day phenotype, which is characterised by

body weight gain (in both lean and fat mass) and increased food

intake, as well as testes recrudescence (i.e. an increase in testis

weight and size indicating an increase in fertility). Under short-day

exposure, F344 rats show a reduction in body weight (both lean

and fat mass), a reduced voluntary food intake, and a reduction in

testis weight and size, indicating reproductive quiescence (12,16,17).

This strong innate response to changes in the light/dark cycle is

dependent on melatonin (17,18) and is also reflected by changes in

key hypothalamic genes for photoperiodic regulation (17,19). How-

ever, the magnitude of this response varies between the substrains

of F344 rats. Although F344/NHsd show a robust reduction in

growth and food intake, F344/NCr show only a comparatively small

(but still significant) reduction in growth and food intake when

exposed to short days (20).

Although a wealth of research data from the last 40 years exists

describing the responses of hamsters and voles to photoperiod,

there is only limited information available on the seasonal

responses of the F344 rat. To better understand the results obtained

using the F344 rat and to be able to compare these with other

photoperiodic model systems and nonseasonal animals, more infor-

mation is required on the consequences of photoperiodic history

and the response of this strain to different artificial photoperiods.

The present study therefore aimed to test whether there are critical

photoperiod conditions of light duration required for the full

photoperiodic response in F344 rats and also whether the magni-

tude of the response is related to these conditions. Comparing body

mass (including lean and fat mass), food intake, testes weights and

hypothalamic gene expression under five different photoperiods, we

found a general pattern emerged: photoperiods of ≤ 10 h of light/

day resulted in an inhibition of growth, food intake and reproduc-

tion, as well as hypothalamic gene expression, whereas all other

photoperiods resulted in a stimulatory response in these parame-

ters.

Materials and methods

Animals and tissue collection

All animal experiments were approved by the local ethics committee at the

Rowett Institute of Nutrition and Health, University of Aberdeen (approval

number SA11/02E) and licensed under the Animals (Scientific Procedures)

Act, 1986 (project licence number PPL60/3615).

Male Fischer 344/NHsd (from hereon referred to as F344) rats were

obtained from Harlan Sprague Dawley Inc. (Indianaplis, IN, USA) at 3–

4 weeks old. Rats were acclimatised for 10 days under an L12 (12 h light/

day) photocycle and then randomly divided into weight-matched groups of

eight rats each and transferred to different photoschedule rooms: L8 (8 h

light/day), L10 (10 h light/day), L12 (12 h light/day), L14 (14 h light/day) and

L16 (16 h light/day). In all rooms, the original lights-on time stayed the

same; therefore, photoperiods were changed by shortening or lengthening

the lights-off time. In their respective photoperiod room, rats were single

housed in standard rat cages (type RC2/f; NKP Cages, Coalville, UK) with a

plastic tunnel and shredded paper as enrichment and G6 woodchip bedding

(DBM, Scotland Ltd, Broxburn, UK). Food [CRM (P) Rat and Mouse Breeder

and Grower, standard pelleted diet; Special Diet Services, Witham, Essex, UK]

and water was provided ad lib. and, besides the light/dark schedule, all other

conditions were kept constant (temperature: 21 � 2 °C; humidity:

55 � 10%). As a result of room availability, the study was performed in two

parts. Animals were weight- and age-matched for both parts and each part

included a L12 group to ensure comparability (the first part included L8, L12

and L16; the second part included L10, L12 and L14). For all rats, body

weights were measured three times weekly and food intakes were recorded

daily at the beginning of the light phase. Whole body composition (total fat

and lean) of conscious rats was quantified by magnetic resonance imaging

(MRI) (EchoMRI, Houston, TX, USA) once a week, as described previously (21).

After 4 weeks in their respective photoperiods, rats were anaesthetised using

isoflurane inhalation and killed by decapitation at Zeitgeber time 3 (i.e. 3 h

after lights on). Before killing, animals were given random numbers to ensure

blind analyses for the photoperiodic conditions. Hypothalamic tissue was

immediately removed on wet ice, frozen on dry ice and stored at �80 °C.
Testes were dissected and paired testes weight was recorded.
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Isolation of RNA and quantitative real-time polymerase
chain reaction (PCR) analysis

Total RNA was isolated from 60 to 80 mg of hypothalamic tissue using an

RNeasy Mini Kit with on-column DNase treatment in accordance with the

manufacturer’s instructions (Qiagen, Valencia, CA, USA). The quantity and

quality of the resulting RNA was measured using a NanoDrop ND-1000

spectrophotometer (Thermo Scientific, Wilmington, DE, USA) and a Bioana-

lyzer 2100 (Agilent Technologies, Santa Clara, CA, USA). One microgram of

total RNA was copied into cDNA using a High-Capacity cDNA reverse tran-

scription kit (Applied Biosystems, Foster City, CA, USA). Five nanograms of

the resulting cDNA was then analysed by quantitative real-time PCR (qPCR)

using a QuantiFastTM SYBR Green PCR kit (Qiagen) with the Thermal Cycler

7500 Fast Real Time PCR System (Applied Biosystems). The primers used

were validated QuantiTect Primer Assay obtained from Qiagen: b-actin
(Rn_Actb_1_SG), Crabp1 (Rn_Crabp1_1_SG), Dio2 (Rn_Dio2_2_SG), Dio3

(Rn_Dio3_1_SG), Mfrp (Rn_Mfrp_3_SG), sFrp2 (Rn_Sfrp2_1_SG) and Stra6

(Rn_Stra6_2_SG). The reaction conditions were: amplification 5 min at

95 °C, 40 cycles of 10 s at 95 °C, 30 s at 60 °C and melting curve analysis

15 s at 95 °C, 1 min at 65 °C, 15 s at 95 °C and 15 s at 60 °C. Each sam-

ple was run three times and each PCR plate included a negative control

reaction without template. The b-actin housekeeping gene was used as ref-

erence for the relative quantification of Crabp1, Dio2, Dio3, Mfrp2, sFrp2

and Stra6 calculated based on the 2�DCT method.

Statistical analysis

Data were analysed by one-way ANOVA or two-way repeated measures (RM)

ANOVA (photoperiod 9 time interaction) followed by Tukey’s honestly signifi-

cant difference post-hoc test for pairwise comparison as appropriate, using

SIGMAPLOT, version 12.0 (Systat Software Inc., Chicago, IL, USA). No significant

difference was found between L12 from the first and the second part of the

study (P = 0.884); therefore, L12 from the first part of the study was used

for the final data analysis. The results are presented as the mean � SEM or

fold change (� SEM) relative to L12 for physiological data and qPCR analy-

sis, respectively. P < 0.05 was considered statistically significant.

Results

Effect of photoperiod on physiology

Body weight, food intake and testes weights

Significant differences were found among photoperiod groups with

respect to body weight gain (two-way RM ANOVA, P < 0.001;

Fig. 1A), cumulative food intake (two-way RM ANOVA, P < 0.001;

Fig. 1B) and paired testes weight (one-way ANOVA, P < 0.001;

Fig. 1C). In all three measures, L8 and L10 were smaller than those

of L12, L14 and L16 after 4 weeks in a photoperiod. A pairwise

comparison of body weight gain showed that L8 and L10 were sig-

nificantly different from L12, L14 and L16, although no significant

difference could be found between L8 and L10 or L12, L14 and L16

after 4 weeks in a photoperiod. Initially, for the first 18 days, L12

followed the lower incline of L8 and L10 but, after 21 days in a

photoperiod, L12 rats increased their body weight to match. L14

and L16 rats (Tukey’s test, P < 0.05; Fig. 1A). No difference was

detectable in cumulative food intake between L8 and L10 or

between L12, L14 and L16. L8 and L10 rats ate significantly less
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Fig. 1. Effect of photoperiod on body weight, food intake and testes weight. (A) Body weight gain and (B) cumulative food intake was significantly lower in

L8 and L10 compared to L12, L14 and L16. (C) Paired testes weights of male F344 rats under different photoperiods. For each group, different lowercase letters
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than L12, L14 and L16 rats after 15 days in a photoperiod and this

trend continued until 30 days (Tukey’s test, P < 0.05; Fig. 1B). The

same pattern was evident with regard to testes weight (Fig. 1C). A

pairwise comparison showed that there was no significant differ-

ence between L8 and L10, nor between L12, L14 and L16 in paired

testes weight. In this case, no significant difference was found

between L10 and L12 (Tukey’s test, P = 0.087), although L10 was

significantly lower compared to L14 and L16 (Tukey’s test,

P = 0.022 and 0.006, respectively). Paired testes weight of L8 was

also significantly lower compared to L12, L14 and L16 (Tukey’s test,

P < 0.05; Fig. 1C). The effects on testes size were in proportion to

body weight because no difference was detectable between the

means of the photoperiod groups when assessing paired testes

weights as a percentage of body weight (one-way ANOVA, P = 0.306;

Fig. 1D).

Body composition

To investigate the body composition of F344 rats held under differ-

ent photoperiods, rats were subjected to weekly MRI scans (week 0

refers to the day before the rats were put into photoperiods; week

4 refers to the day before killing). As with body weight, rats on L8

and L10 gained less lean mass than rats on L12, L14 and L16 (two-

way RM ANOVA, P < 0.001; Fig. 2A). The effect in lean mass was in

proportion to body weight. With time, the percentage of lean mass

decreased from approximately 87% to 83% independent of photo-

period (Fig. 2B), whereas the percentage of fat mass increased from

approximately 2.5% to 6.1%, again independent of photoperiod

(Fig. 2D). Total fat mass increased with time (two-way RM ANOVA,

P < 0.001), although there was no detectable effect of photoperiod

(P = 0.512; Fig. 2C).

Effect of photoperiod on hypothalamic gene expression

A wide range of genes that are photoperiodically regulated in the

hypothalamus have been identified in F344 rats, including genes

involved in thyroid hormone signalling, retinoic acid signalling and

Wnt/b-Catenin signalling (17). In the present study, we selected

two representative examples of each of these pathways and investi-

gated their response to the five different photoperiods by qPCR.

Although there were some gene specific differences (described in

detail below), the general pattern for all genes investigated was

similar and comparable to the results of the physiological response.

L8 and L10 always appeared to form one group and, at the same

time, L12, L14 and L16 appeared to form one group.

Thyroid hormone signalling

The expression level of Dio2 mRNA was lower in F344 rats exposed

to L8 and L10 than in rats exposed to L12, L14 and L16 (one-way

ANOVA, P < 0.001; Fig. 3A). A pairwise comparison also did not find a

significant difference between L8 and L12 or L10 and L12 in this

case (Tukey’s test, P = 0.460 and 0.983, respectively). By contrast to

Dio2, the expression of Dio3 was highest under L8 and L10 and

lowest under L12, L14 and L16 (one-way ANOVA, P = 0.013; Fig. 3B).

Here, a pairwise multiple comparison procedure (Tukey’s test) did
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not identify any significant difference between the individual pho-

toperiod groups.

Retinoic acid signalling

The levels of Crabp1 and Stra6 mRNA were similarly regulated by

photoperiod, with low levels expressed under L8 and L10 and high

levels under L12, L14 and L16 (one-way ANOVA, P < 0.001 for both;

Fig. 4). A pairwise comparison did not detect a significant differ-

ence between L8 and L10 (Tukey’s test, P = 0.472) or L12, 14 and

L16 (Tukey’s test, P = 0.134 and 0.909, respectively) in Crabp1

mRNA expression. No significant difference was found between

L10, L12 and L16, although L10 was significantly lower compared

to L14 (Tukey’s test, P = 0.009; Fig. 4A). Figure 4(B) shows Stra6

mRNA expression. Again, L8 and L10 were not significantly different

from each other (Tukey’s test, P = 0.472) and L12 and L14 were

not significantly different from each other (Tukey’s test, P = 0.134),

although L16 was higher than any other group, with a 2.3-fold

increase compared to L12 (Tukey’s test, P = 0.016).

Wnt/b-Catenin signalling

The Wnt/b-Catenin signalling genes sFrp2 and Mfrp were also

strongly influenced by photoperiod with similar expression patterns.

sFrp2 mRNA levels were approximately 1.8-fold lower under L8 and

L10 compared to L12, 14 and L16 (one-way ANOVA, P < 0.001;

Fig. 5A). The expression level of Mfrp was similarly affected by

photoperiod, although the effect was less dramatic (one-way ANOVA,

P = 0.006; Fig. 5B). A pairwise comparison only found a significant

difference between L8 and L16, as well as L10 and L16 (Tukey’s

t6est, P = 0.043 and 0.039, respectively). No significant difference

was found between the means of the other photoperiod groups.

Discussion

In the present study, we show that juvenile males of the F344

strain of laboratory rats display a robust but varied response to a

range of photoperiods with respect to their body weight, food

intake, gonadal growth and key genes for the photoperiodic regula-

tion. These results are consistent with previous reports on the pho-

toperiod sensitivity of young F344 rats (12,16,17,22) and extend

them to show that photoperiods of ≤ 10 h of light/day (L8 and

L10) result in a reduction of growth, food intake and an inhibitory

response in hypothalamic gene expression, whereas photoperiods of

≥ 12 h of light/day (L12, L14, L16) result in a stimulatory physio-

logical and gene expression response. Also, there was no increase

in response as the length of the light period was increased beyond

the threshold of 12 h of light.

F344 rats are increasingly used as a model for studying photore-

sponsiveness (17,23–25), although more information is required on

the consequences of photoperiodic history and the responses of

this strain to changing photoperiod to be able to compare the

results with those obtained from other well-studied photoperiodic

species. We aimed to design the present study to reflect the
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experimental design of a typical photoperiodic study (i.e. young

F344 rats were abruptly transferred to photoperiod rooms, a prac-

tise commonly used in laboratory settings). Moreover, in most pho-

toperiod studies, animals are tested either in short (≤ 10 h of light/

day) and/or long (≥ 14 h of light/day) photoperiods and thus no

inferences can be made on intermediate photoperiods (12 h light/

day; L12). Therefore, by designing the study to acclimatise rats

under L12 and transferring them from L12 to other photoperiods,

we were able to investigate the question whether L12 generates

inhibitory (short day) or stimulatory (long day) responses in terms

of seasonal physiology and hypothalamic gene expression. F344 rats

are the most widely used inbred strain of rats in research (26). In

general, laboratory rats are held and commonly tested under a L12

photoperiod; therefore, it is important to understand whether L12

is construed as an inhibitory or stimulatory photoperiod by the

neuroendocrine system because this will impact on the reproductive

axis, endocrine and metabolic state, which can affect most organ

systems.

Analysis of body weight gain in the five photoperiod groups in

young F344 rats showed that abrupt changes in photoperiod

resulted in the expected reduction of body mass for day lengths

< 12 h and also the expected increase of body mass for day

lengths > 12 h (16,22). After 4 weeks in a photoperiod, no differ-

ence was observed in body weight gain in L8 and L10 rats that fol-

lowed the slower rate in growth of short-day animals. On the other

hand, L12, L14 and L16 rats showed a faster rate of growth typi-

cally seen in long-day animals. This pattern was also evident with

respect to cumulative food intake, indicating that L12 rats followed

a long-day response with respect to these physiological parameters.

Notably, for the first third of the study, L12 rats had the lower

growth rate of L8 and L10 rats, but, after approximately 3 weeks in

a photoperiod, the body weight gain of L12 rats resembled that of

L14 and L16 rats.

Previously, Shoemaker et al. (22) reported an inhibitory effect of

body weight on F344 rats held under L12 similar to that of rats

held under L8 until approximately 8–10 weeks after weaning. How-

ever, when comparing body weight as a percentage of L16 rats,

8-week-old rats (comparable to the age of the rats in the present

study) held under L12 have a higher body weight than rats held

under L8. Unfortunately, no statistical differences between L8 and

L12 were reported and therefore no direct comparison can be made

with the present study. Importantly, the present study also differed

in respect of F344 rats being born and raised under an L12 photo-

period, whereas, in the study by Shoemaker et al. (22), rats were

kept under L16 from gestation (22). Somatic growth in Siberian

hamsters is strongly influenced by the photoperiodic history experi-

enced during gestation and after birth (27,28), although it remains

to be determined whether this is also the case in F344 rats.

A closer analysis of body composition revealed that the differen-

tial gain in body weight between F344 rats on L8 and L10 com-

pared to those on L12, 14 and L16 was mainly the result of

changes in lean body mass. Absolute lean tissue mass resembled

that of body weight gain in such a way that there were two dis-

tinct responses: a short-day response of L8 and L10 rats and a

long-day response of L12, L14 and L16 rats. However, photoperiodic

exposure showed no significant difference in total fat tissue mass.

Thus, the voluntary increases in food consumption by the F344 rats

under longer photoperiod conditions lead to an increase in somatic

growth rather than a gain in adiposity (20). In other seasonal

rodents, the change in body weight is predominantly the result of a

change in fat mass (10), although more recent studies indicate that

Siberian hamsters kept under short-day photoperiods may not only

reduce fat mass, but also reduce the amount of lean mass (29–31).

This includes a reduction in liver, kidney (30), spleen and muscle

mass (31), although no photoperiodic change in bone morphology

has been observed (32).

When analysing the body composition of the F344 rats relative

to body weight, no difference in the photoperiod groups was

evident with respect to lean and fat mass, whereas, over time, lean

mass decreased at the same time as fat mass increased indicating

that, in the growing rat, a greater portion of body mass was being

deposited as fat mass.

To assess photoperiodic changes in reproduction, we recorded

paired testes weight at the time of killing and found that, concor-

dant with previous studies, young male F344 rats are reproductively

sensitive to photoperiod (12,16). After 4 weeks in a photoperiod,

rats held under L8 and L10 showed a lower testicular growth than

rats held under L12, L14 and L16 photoperiods. The photoperiodic

effects on testicular growth were in proportion to body weight

because no difference was detectable between the photoperiod

groups when assessing paired testes weights relative to body

weight.
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Fig. 5. Effect of photoperiod on hypothalamic Wnt/b-Catenin signalling. (A) sFrp2 and (B) Mfrp mRNA expression under five different photoperiods. For each

group, different lowercase letters above bars indicate significant differences (P < 0.05) between photoperiod groups. Data are shown as fold changes relative

to L12 (� SEM).
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Next, we investigated the relative expression levels of key genes

involved in thyroid hormone signalling, retinoic acid signalling and

Wnt/b-Catenin signalling in the five different photoperiods in the

hypothalamus of young male F344 rats. Genes from these path-

ways are known to exhibit robust responses to photoperiod

(5,17,33) and, because photoperiodic differences in the expression

of these genes change in direct proportion to the time spent in

photoperiod (17), we hypothesised that the photoperiodic response

in body composition and reproduction would also be reflected in

hypothalamic gene expression.

From the local thyroid hormone pathway, by far the best charac-

terised in the hypothalamus of seasonal species (6), we investigated

Dio2 and Dio3, genes encoding key enzymes in photoperiodic regu-

lation. Dio2, which catalyses the conversion of the prohormone thy-

roxine into the bioactive thyroid hormone triiodothyronine,

increased with increasing light duration in photoperiods, with the

highest levels of Dio2 under L14 and L16. These findings are in

accordance with previous findings in F344 rats (17,19), as well as

with those from other photoperiodic rodents (34–38). From these,

only one study looked at photoperiods other than short day (L8 in

the present study) and long day (L16 in the present study). In the

common vole, an intermediate photoperiod (L12 in the present

study) resulted in a reduced expression of Dio2 similar to short-day

levels (38), whereas, in F344 rats, Dio2 expression in L12 was more

similar to long day. However, no significant difference was observed

between L8 or L10 and L12, and no significant difference was

found between L14 or L16 and L12 indicating that Dio2 in the

hypothalamus of F344 rats held under L12 exhibits an intermediate

state rather than a clear short-day or long-day profile. The other

thyroid hormone metabolising enzyme shown to be under photope-

riodic control in seasonal rodents is Dio3, a gene encoding an

enzyme that regulates triiodothyronine inactivation (3,34,39,40). As

reported previously in F344 rats, the expression of Dio3 was higher

with shorter day-length (17), although the fold change differences

in general were less pronounced than was the case for Dio2

expression. In the common vole, the Dio3 expression level in L12

was intermediate compared to short and long days (38). The results

reported for the regulation of hypothalamic thyroid hormone

metabolism in seasonal animals indicate how important these are

in seasonal physiology, although much of the data presented in-

dentify species-specific variability (6). Although there is a reciprocal

regulation of Dio2 and Dio3 in the F344 rats triggered by pars tub-

eralis-derived thyroid-stimulating hormone (5), in the common vole,

the deiodinase enzymes are not expressed at the same time (38),

which could account for the differing expression profiles reported

in the present study. Additionally, the voles were bred under a light

L14 schedule and, as noted previously, the photoperiodic history of

the animals will likely influence the photoperiodic response (27,28).

In accordance with our previous findings, both retinoic acid sig-

nalling related genes showed strong photoperiodic control (33).

Stra6, a gene encoding the retinol receptor, and Crabp1, which is

involved in RA catabolism (9), increased with an increasing day

light duration. Similar to Dio2, for both genes, L8 and L10 formed a

mutual group. L12 appears to have escaped again, revealing a

clearly defined short-day or long-day response and was neither

significantly different to L8 and L10 or L14 and L16. Comparable

photoperiodic differences in retinoic acid-related genes have been

shown in Siberian hamster (41–43), although none of those studies

investigated photoperiods other than short or long days.

So far, photoperiodic regulation of the Wnt/b-Catenin pathway

has only been studied in F344 rats (5,33). Of the Wnt-related sig-

nalling genes, we investigated two regulators of the canonical Wnt

pathway (44). sFrp2 expression was low in L8 and L10 and high in

L12, L14 and L16. The differences in fold change of Mfrp mRNA

levels were less distinct than for the other genes studied; however,

the general pattern was maintained. L8 and L10 formed a mutual

group with low expression and L12, L14 and L16 formed a mutual

group exhibiting a higher expression, although no significant differ-

ence could be found in L8, L10, L12 and L14.

Although the data presented for hypothalamic gene expression

in F344 rats do not show a clearly defined intermediate or long-

day response in L12 in all the genes investigated, we only found

slight differences and a trend of L12 gene expression towards a

long-day profile was evident. Hence, in combination with the

observed physiological changes, the gene expression findings infer

that young male F344 rats born and raised under L12 will interpret

L12 as a long day, and thus a stimulatory day length.

F344 rats provide great potential to complement the information

gained from more typical common model species, such as the ham-

ster and vole, used in the study of photoperiodism. Given that

growth, reproductive physiology and neuroendocrinology have been

well studied in laboratory rats, and given also that rats are more

accessible via a range of molecular techniques (e.g. validated qPCR

primers as used in the present study) than other photoperiodic spe-

cies, the use of rats simplifies both the experimental design and

the laboratory work. In addition, one strong advantage to using

F344 rats as an experimental model of photoperiodism is that they

provide a good system for comparing the results with nonseasonal

rodents, as seen in recent studies on the hypothalamic-pituitary-

adrenal axis (24) and circadian rhythms (23), as well as on food

selection and the mechanisms underlying energy metabolism (45).

Acknowledgements

The authors thank the British Society for Neuroendocrinology (BSN) for pro-

viding the Student Laboratory Experience Grant to FMT. This work was fur-

ther supported by the Scottish Government (LMT, AWR and PJM) and the

Biotechnology and Biological Science Research Council (BBSRC) grant num-

ber BB/G014272/1 (GH, AWR and PJM). We also thank Donna Wallace and

the animal house staff for their excellent help with the animal studies. The

authors have no conflicts of interest to declare.

Received 6 October 2014,

revised 14 November 2014,

accepted 25 November 2014

References

1 Yoshimura T, Yasuo S, Watanabe M, Iigo M, Yamamura T, Hirunagi K,

Ebihara S. Light-induced hormone conversion of T4 to T3 regulates

photoperiodic response of gonads in birds. Nature 2003; 426: 178–181.

© 2014 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd
on behalf of British Society for Neuroendocrinology

Journal of Neuroendocrinology, 2015, 27, 79–87

Photoperiodic effects on physiology in F344 rats 85



2 Nakao N, Ono H, Yamamura T, Anraku T, Takagi T, Higashi K, Yasuo S,

Katou Y, Kageyama S, Uno Y, Kasukawa T, Iigo M, Sharp PJ, Iwasawa A,

Suzuki Y, Sugano S, Niimi T, Mizutani M, Namikawa T, Ebihara S, Ueda

HR, Yoshimura T. Thyrotrophin in the pars tuberalis triggers photoperi-

odic response. Nature 2008; 452: 317–322.

3 Barrett P, Ebling FJP, Schuhler S, Wilson D, Ross AW, Warner A, Jethwa

P, Boelen A, Visser TJ, Ozanne DM, Archer ZA, Mercer JG, Morgan PJ.

Hypothalamic thyroid hormone catabolism acts as a gatekeeper for the

seasonal control of body weight and reproduction. Endocrinology 2007;

148: 3608–3617.

4 Hanon EA, Lincoln GA, Fustin J-M, Dardente H, Masson-P�evet M, Mor-

gan PJ, Hazlerigg DG. Ancestral TSH mechanism signals summer in a

photoperiodic mammal. Curr Biol 2008; 18: 1147–1152.

5 Helfer G, Ross AW, Morgan PJ. Neuromedin U partly mimics thyroid-

stimulating hormone and triggers Wnt/b-catenin signalling in the

photoperiodic response of F344 rats. J Neuroendocrinol 2013; 25:

1264–1272.

6 Dardente H, Hazlerigg DG, Ebling FJ. Thyroid hormone and seasonal

rhythmicity. Front Endocrinol (Lausanne) 2014Feb 26; 5: 19. doi: 10.

3389/fendo.2014.00019. eCollection 2014.

7 Nakane Y, Yoshimura T. Universality and diversity in the signal trans-

duction pathway that regulates seasonal reproduction in vertebrates.

Front Neurosci 2014; 8: 115.

8 Ono H, Hoshino Y, Yasuo S, Watanabe M, Nakane Y, Murai A, Ebihara S,

Korf H-W, Yoshimura T. Involvement of thyrotropin in photoperiodic

signal transduction in mice. Proc Natl Acad Sci USA 2008; 105: 18238–

18242.

9 Shearer KD, Stoney PN, Morgan PJ, McCaffery PJ. A vitamin for the

brain. Trends Neurosci 2012; 35: 733–741.

10 Scherbarth F, Steinlechner S. Endocrine mechanisms of seasonal adapta-

tion in small mammals: from early results to present understanding. J

Comp Physiol B 2010; 180: 935–952.

11 Francisco NR, Raymond CM, Heideman PD. Short photoperiod inhibition

of growth in body mass and reproduction in ACI, BUF, and PVG inbred

rats. Reproduction 2004; 128: 857–862.

12 Heideman PD, Sylvester CJ. Reproductive photoresponsiveness in

unmanipulated male Fischer 344 laboratory rats. Biol Reprod 1997; 57:

134–138.

13 Nelson RJ, Zucker I. Photoperiodic control of reproduction in olfactory-

bulbectomized rats. Neuroendocrinology 1981; 32: 266–271.

14 Wallen EP, DeRosch MA, Thebert A, Losee-Olson S, Turek FW. Photoperi-

odic response in the male laboratory rat. Biol Reprod 1987; 37: 22–27.

15 Wallen EP, Turek FW. Photoperiodicity in the male albino laboratory rat.

Nature 1981; 289: 402–404.

16 Heideman PD, Bierl CK, Galvez ME. Inhibition of reproductive maturation

and somatic growth of Fischer 344 rats by photoperiods shorter than

L14: D10 and by gradually decreasing photoperiod. Biol Reprod 2000;

63: 1525–1530.

17 Ross AW, Helfer G, Russell L, Darras VM, Morgan PJ. Thyroid hormone

signalling genes are regulated by photoperiod in the hypothalamus of

F344 rats. PLoS One 2011; 6: e21351.

18 Heideman PD, Bierl CK, Sylvester CJ. Photoresponsive Fischer 344 rats

are reproductively inhibited by melatonin and differ in 2-[I-125] iodom-

elatonin binding from nonphotoresponsive Sprague–Dawley rats. J Neu-

roendocrinol 2001; 13: 223–232.

19 Yasuo S, Watanabe M, Iigo M, Nakamura TJ, Watanabe T, Takagi T, Ono

H, Ebihara S, Yoshimura T. Differential response of type 2 deiodinase

gene expression to photoperiod between photoperiodic Fischer 344 and

nonphotoperiodic Wistar rats. Am J Physiol Regul Integr Comp Physiol

2007; 292: R1315–R1319.

20 Ross AW, Johnson CE, Bell LM, Reilly L, Duncan JS, Barrett P, Heideman

PD, Morgan PJ. Divergent regulation of hypothalamic neuropeptide Y

and agouti-related protein by photoperiod in F344 rats with differential

food intake and growth. J Neuroendocrinol 2009; 21: 610–619.

21 Lobley GE, Bremner DM, Holtrop G, Johnstone AM, Maloney C. Impact

of high-protein diets with either moderate or low carbohydrate on

weight loss, body composition, blood pressure and glucose tolerance in

rats. Br J Nutr 2007; 97: 1099–1108.

22 Shoemaker MB, Heideman P. Reduced body mass, food intake, and testis

size in response to short photoperiod in adult F344 rats. BMC Physiol

2002; 2: 11.

23 Seroka CD, Johnson CE, Heideman PD. Variation in nocturnality and cir-

cadian activity rhythms between photoresponsive F344 and nonphotore-

sponsive Sprague Dawley rats. J Circadian Rhythms 2008; 6: http://dx.

doi.org/10.1186/1740-3391-6-8.

24 Otsuka T, Goto M, Kawai M, Togo Y, Sato K, Katoh K, Furuse M, Yasuo

S. Photoperiod regulates corticosterone rhythms by altered adrenal

sensitivity via melatonin-independent mechanisms in Fischer 344 Rats

and C57BL/6J Mice. PLoS One 2012; 7: e39090.

25 Tsai L-L, Tsai Y-C, Heang K, Huang Y-W, Tzeng J-E. Repeated light-dark

shifts speed up body weight gain in male F344 rats. Am J Physiol Endo-

crinol Metab 2005; 289: E212–E217.

26 Hau J, Schapiro SJ. Handbook of Laboratory Animal Science. Volume 1:

Essential Principles and Practices. Boca Raton, FL: Taylor & Francis

Group: CRC Press, 2011.

27 Hoffmann K. Effects of short photoperiods on puberty, growth and

moult in the Djungarian hamster (Phodopus sungorus). J Reprod Fertil

1978; 54: 29–35.

28 Shaw D, Goldman BD. Developmental changes in male Siberian hamsters

(Phodopus sungorus) exposed to different gestational and postnatal

photoperiods. J Pineal Res 2007; 43: 25–34.

29 Klingenspor M, Niggemann H, Heldmaier G. Modulation of leptin sensi-

tivity by short photoperiod acclimation in the Djungarian hamster,

Phodopus sungorus. J Comp Physiol B 2000; 170: 37–43.

30 Petri I, Dumbell R, Scherbarth F, Steinlechner S, Barrett P. Effect of

exercise on photoperiod-regulated hypothalamic gene expression and

peripheral hormones in the seasonal Dwarf hamster Phodopus sungorus.

PLoS One 2014; 9: e90253.

31 Braulke LJ, Heldmaier G, Berriel Diaz M, Rozman J, Exner C. Seasonal

changes of myostatin expression and its relation to body mass acclima-

tion in the Djungarian hamster, Phodopus sungorus. J Exp Zool Part A

Ecol Genet Physiol 2010; 313A: 548–556.

32 Rousseau K, Atcha Z, Denton J, Cagampang FRA, Ennos AR, Freemont

AJ, Loudon ASI. Skeletal bone morphology is resistant to the high ampli-

tude seasonal leptin cycle in the Siberian hamster. J Endocrinol 2005;

186: 475–479.

33 Helfer G, Ross AW, Russell L, Thomson LM, Shearer KD, Goodman TH,

McCaffery PJ, Morgan PJ. Photoperiod regulates vitamin A and

Wnt/b-catenin signaling in F344 rats. Endocrinology 2012; 153: 815–824.
34 Hanon EA, Routledge K, Dardente H, Masson-Pevet M, Morgan PJ,

Hazlerigg DG. Effect of photoperiod on the thyroid-stimulating hormone

neuroendocrine system in the European hamster (Cricetus cricetus).

J Neuroendocrinol 2010; 22: 51–55.

35 Revel FG, Saboureau M, Pevet P, Mikkelsen JD, Simonneaux V. Melatonin

regulates type 2 deiodinase gene expression in the Syrian hamster.

Endocrinology 2006; 147: 4680–4687.

36 Watanabe M, Yasuo S, Watanabe T, Yamamura T, Nakao N, Ebihara S,

Yoshimura T. Photoperiodic regulation of type 2 deiodinase gene in

Djungarian hamster: possible homologies between avian and mamma-

lian photoperiodic regulation of reproduction. Endocrinology 2004; 145:

1546–1549.

37 Herwig A, Wilson D, Logie TJ, Boelen A, Morgan PJ, Mercer JG, Barrett P.

Photoperiod and acute energy deficits interact on components of the

thyroid hormone system in hypothalamic tanycytes of the Siberian

© 2014 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd
on behalf of British Society for Neuroendocrinology

Journal of Neuroendocrinology, 2015, 27, 79–87

86 F. M. Tavolaro et al.



hamster. Am J Physiol Regul Integr Comp Physiol 2009; 296: R1307–

R1315.

38 Krol E, Douglas A, Dardente H, Birnie MJ, Vinne VVD, Eijer WG, Gerkema

MP, Hazlerigg DG, Hut RA. Strong pituitary and hypothalamic responses

to photoperiod but not to 6-methoxy-2-benzoxazolinone in female com-

mon voles (Microtus arvalis). Gen Comp Endocrinol 2012; 179: 289–295.

39 Herwig A, Petri I, Barrett P. Hypothalamic gene expression rapidly

changes in response to photoperiod in juvenile Siberian hamsters (Phod-

opus sungorus). J Neuroendocrinol 2012; 24: 991–998.

40 Prendergast BJ, Pyter LM, Kampf-Lassin A, Patel PN, Stevenson TJ. Rapid

induction of hypothalamic iodothyronine deiodinase expression by

photoperiod and melatonin in juvenile Siberian hamsters (Phodopus

sungorus). Endocrinology 2013; 154: 831–841.

41 Ross AW, Webster CA, Mercer JG, Moar KM, Ebling FJ, Schuhler S,

Barrett P, Morgan PJ. Photoperiodic regulation of hypothalamic retinoid

signaling: association of retinoid X receptor c with body weight. Endo-

crinology 2004; 145: 13–20.

42 Barrett P, Ivanova E, Graham ES, Ross AW, Wilson D, Ple H, Mercer JG,

Ebling FJ, Schuhler S, Dupre SM, Loudon A, Morgan PJ. Photoperiodic

regulation of cellular retinol binding protein 1, CRBP1 [corrected] and

nestin in tanycytes of the third ventricle ependymal layer of the

Siberian hamster. J Endocrinol 2006; 191: 687–698.

43 Ross AW, Bell LM, Littlewood PA, Mercer JG, Barrett P, Morgan PJ.

Temporal changes in gene expression in the arcuate nucleus precede

seasonal responses in adiposity and reproduction. Endocrinology 2005;

146: 1940–1947.

44 Inestrosa NC, Arenas E. Emerging roles of Wnts in the adult nervous

system. Nat Rev Neurosci 2010; 11: 77–86.

45 Togo Y, Otsuka T, Goto M, Furuse M, Yau K-W. Photoperiod regulates

dietary preferences and energy metabolism in young developing Fischer

344 rats but not in same-age Wistar rats. Am J Physiol Endocrinol

Metabol 2012; 303: E777–E786.

© 2014 The Authors. Journal of Neuroendocrinology published by John Wiley & Sons Ltd
on behalf of British Society for Neuroendocrinology

Journal of Neuroendocrinology, 2015, 27, 79–87

Photoperiodic effects on physiology in F344 rats 87


