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Abstract—This article presents a topology for DC grids which 

enables very robust DC fault protection with moderate costs, good 

operating flexibility and simple controls. It is postulated that 

radial DC systems are best suited for limited-size local DC grids. 

Radial topology enables robust and fast protection selectivity 

using only local signals and exploiting the advantages of hybrid 

DC circuit breakers. To enable flexible expansion options to 

national/international systems, it is suggested to interconnect star 

points of radial systems using DC/DC converters. DC/DC 

converters enable inherent isolation of DC faults and provide 

firewall between radial DC grids. Each interconnecting cable is 

protected by a DC/DC at one end and a hybrid Circuit Breaker at 

the other end. The control options for DC/DC converter and the 

radial grids are analysed. A detailed simulation model of 6 

terminal DC grid with 2-star points is presented. The PSCAD 

simulation results confirm DC fault isolation and good control 

performance of the proposed topology for a range of DC fault 

contingencies.  

Index Terms— DC power systems, DC power transmission, 

DC-DC power conversion, HVDC converters, HVDC 

transmission, Wind Energy. 

I. INTRODUCTION 

The development of DC transmission grids is among the 

most significant technical challenges in power engineering. 

With the interest in offshore wind power and advances in 

modular multilevel VSC converters, there is growing demand 

for developing HVDC grids. The backbone of future European 

super grid will be constructed based on DC grid [1].  

Currently only point to point HVDC exist in many 

installations worldwide. The DC grids are built by 

interconnecting multiple DC transmission lines, however, the 

topologies, protection and operating methods are still uncertain. 

As DC cables have very small impedance without any 

reactance (f=0), the DC faults will cause widespread voltage 

collapse in the grid and the fault currents will be large. DC grid 

fault current interruption should happen on the rising slope i.e. 

before fault current reaches steady-state which gives only few 

ms for protection action [2]. 

Fast and low loss hybrid DC CBs (Circuit Breakers) have 

been developed recently [3]. The cost of these units will be of 

the order of 30% of VSC converter costs and the losses are 

negligible. However prototypes have been demonstrated as an 

isolated component only. As a single unit with a local current 

sensor these DC CBs can reliably clear DC faults within 
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2-5msassuming that interrupting current is not above 5-10kA. 

There is no realistic possibility for significantly increasing 

further the semiconductor interrupting current capability.  

A DC-grid wide protection system is the next unresolved and 

probably the most significant technical challenge. The main 

difficulty is the protection selectivity in large grids and within 

very short time period of 2-5ms. Some promising DC grid 

protection approaches have been reported [4]-[6]. The 

differential protection method in [4] is accurate but requires 

several milliseconds communication delay between DC CBs 

and perhaps more in case of long DC cables. Any delay in fault 

clearing implies that fault current continues to increase. The 

practical rating of DC CBs and costs will therefore limit the 

length of DC lines and the number of DC lines that can feed DC 

fault (i.e. DC fault level). The traveling wave detection method 

in [5] and the DC grid zoning in [6] do not require 

communication but may not be able to offer high accuracy 

considering low DC impedances and very short decision time.  

It will be very challenging to achieve high DC power transfer 

security (comparable to AC transmission) if meshed DC grid 

topologies are adopted and DC CBs are used solely as 

protection means.  

The use of DC/DC converter as a DC circuit breaker has 

been proposed [7]-[9]. DC/DC converters enable ideal isolation 

of two DC systems since they will not propagate DC faults. 

They can also connect DC systems of different DC voltage 

levels and with different DC technologies. However DC/DC 

converters have approximately 180-200% VSC converter costs 

and also the operating losses of around 2% should be 

considered. Clearly DC/DC converters cannot be used for 

isolation all cables in meshed DC grids.  

Reference [10] presents a comprehensive cost comparison of 

DC grid topologies. The conclusions are derived solely on the 

cost and operational basis but practical aspects of protection 

system are not evaluated in depth. Additional limitation of the 

study is that the size of considered systems is modest.  

With traditional AC transmission systems the grid topology 

is determined based on the costs and operational priorities, with 

the understanding that protection system can be developed later 

using standard approaches. In case of DC grids we may need to 

consider topology and protection system in parallel from the 

earliest stages. In the current study we focus on developing DC 

grid topology which will facilitate reliable protection system 

within the DC CB component constraints.   

The aim of the study is to develop building principle for DC 

grids of any complexity (any number of terminals and 

geographical size) and with highly reliable protection. The 

proposed DC grids will be tested on a 6-terminal DC grid test 

system using a detailed PSCAD simulation model.  
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II. RADIAL DC GRIDS 

A. Protection method 

The main purpose of a DC grid (connecting numerous VSC 

terminals) is to provide opportunity for each terminal to trade 

power with any other terminal. Depending on the topology the 

costs, losses, operating flexibility and power security will vary. 

The main purpose of the grid protection system is to rapidly 

isolate the smallest grid segment in case of a DC fault, in order 

to enable uninterrupted operation of the remaining part of the 

grid. Depending on the topology there will be more or less loss 

in capacity in the post-fault topology. 

A radial DC grid has a single star point connecting VSC 

terminals with radial DC cables as shown in Fig. 1. There is no 

terminal to terminal connection. This topology is not normally 

used with AC transmission but they are common in distribution 

systems and it has other operational and cost advantages and 

disadvantages which are studied in [10].  

The main disadvantage is the loss of capacity (one VSC 

terminal) for a DC cable fault. This problem can be limited by 

restricting the size of VSC converter within the maximum 

power loss criterion according to national grid codes (1800MW 

in UK). The redundancy can be achieved by adding a new 

radial cable with a VSC (not just a cable as with meshed AC 

grids), connecting to the star point. 

This topology has a very important advantage since it 

enables development of a simple, accurate and robust grid 

protection system. Each DC cable can be isolated from the grid 

using a single DC CB located at the star point DC bus.  

Fig. 1 shows the radial DC line protection system, where the 

given numerical values are used in the model in section IV. The 

protection consists of a DC CB, a current sensor and a 

controller. A trip decision is made if the local current sensor 

detects current over a threshold (set at 4kA in the test system) 

and in positive direction. Only the local sensor is used to make 

trip decision. The selectivity is therefore very simple and 

robust. For any DC fault only one DC CB sees a positive 

current (all other DC CBs see negative current, as shown by red 

lines). This is significant advantage over meshed DC grids.  

Since there is no communication with any other component, 

the protection can operate as fast as hardware dynamics and 

processing speed will allow. The studies in [2] indicate that 

hybrid DC CBs could be operated within 2ms.  

At the other end, the cable is isolated using a conventional 

AC CB as with any HVDC system. The mechanical AC CB 

will have operating time one order of magnitude slower 

(20-50ms), but this has no implication for DC grid.  

The radial DC lines can be of any length since there is no 

need for communication along DC lines.   

Any number of DC cables (terminals) can be connected to 

the star point, but the steady-state fault level is dependent on the 

number of DC lines. Nevertheless the steady-state fault level 

may not be limiting factor since fast DC CBs will interrupt the 

current on a rising slope. Consider the worst case of infinitely 

strong 320kV DC system which gives infinite steady-state fault 

current. The DC fault current rise equation is: 
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whereLCB is the series reactor inside DC CB, Δt is the operating 

time and ΔI is the fault current increase from the load current. 

Assuming Δt=3ms and ΔI=7kA we get the requirement for 

LCB=137mH. This is a reasonable inductor size which is in 

agreement with [2] indicating that there is no practical limit on 

the number of DC lines inside the radial DC grid.  

The above protection strategy is applicable only to radial 

topologies with a single star point, and clearly cannot be used 

with meshed DC grid. The selectivity becomes an issue if any 

additional DC CB sees positive current during DC faults. 

B. Back up protection options 

 Fig. 2 shows the radial system with a back up protection. A 

split bus is introduced with two bus-bar DC CBs (DC CB B1_A 

and DC CB B1_B). Note that DC CBs are unidirectional, and a 

bidirectional component can have a common inductor only. In 

case that DC CB1 fails to operate for a preset time interval, then 

DC CB B1_B and AC CB2 would open with a larger loss in 

capacity, i.e. loss of terminals 1 and 2.  

The failure modes of hybrid DC CB are not yet clear, but it is 

known that all semiconductor switches have a driver-level 

hard-wired overcurrent protection.This internal switch 

self-protection is inaccurate and inaccessible to control but it is 

very robust and reliable since the complete logic including the 

sensor is at the valve assembly. It is proposed that this switch 

self-protection can also be used as last-defense option for DC 

grid back up protection. Fig. 3 shows the topology of hybrid 

DC CB [8]. The normal load current path is through the 

mechanical CB and the auxiliary valve. In case of protection 

system failure, there will be very large current through this 

path. This large current will activate the driver-level hard-wired 

overcurrent protection in the auxiliary valve of DC CB1. The 

auxiliary valve IGBT will open immediately interrupting thus 

the fault current. Nevertheless the auxiliary valve will see large 

open circuit voltage (full DC voltage) which is much larger 

than its blocking forward capability. The overvoltage will 

destroy IGBTs which are configured to fail in open circuit. This 

back-up protection method therefore does not require any 

additional DC CBs and the loss of capacity is minimal. On the 

downside, this implies destruction of a DC CB. Note that all 

other DC CBs will see large negative which will be conveyed 

by their diodes and which have better overcurrent capability.  

Therefore considering the cost of additional DC CBs it is not 

clear if grid operators will demand full additional back up 

protection systems. Back up protection is not considered further 

in this study.   

 
Fig.1. Radial DC system protection 
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Fig.2. Radial DC system with back up protection based on split bus. 

 
Fig.3. Hybrid DC Circuit Breaker. 

III. INTERCONNECTING RADIAL DC SYSTEMS INTO A LARGE 

DC GRID 

A. Topology and protection 

A single radial DC grid will not be adequate as the 

geographical area increases. Even in smaller geographical area, 

increasing number of terminals will call for another star point 

because of reliability reasons.    

It is proposed in this study to interconnect the star-points of 

different radial systems using DC/DC converters. Each 

interconnecting cable has a DC/DC converter at one end and a 

DC CB at the other end, as shown for a 21-terminal DC grid in 

Fig. 4. The main reasons for using DC/DC converters are: 

 They inherently prevent DC fault propagation. A fault at 

one radial system will be seen as open circuit at the other 

system. No communication or fast control is required.  

 They enable different DC voltages at the two radial 

systems. 

 They facilitate power control in the interconnecting cable.  

 The two radial systems become decoupled and therefore 

different technologies, control and protection (different 

vendors) can be used.  

On the downside, DC/DC converters have high costs and the 

on-state losses. Fig. 5 shows high power DC/DC converter 

from [8] but other topologies can also be used.  

In a DC grid of nt terminals, the costs and operational 

priorities will determine the number of star points ns. Then, the 

number of DC/DC converters will be ns, while the total number 

of DC CBs will be nt+ns. Expansion of DC grid is simple. A 

new VSC terminal requires a radial cable with DC CB 

connecting to the nearest star point. A new interconnecting 

cable requires additional DC/DC converter and one DC CB.  

Although individual DC/DC cost is high, the total cost of a 

DC grid is comparable with other topologies, as shown in the 

following example. Table 1 shows the total DC grid component 

rating for the 21-terminal test system in Fig. 4, where base is the 

VSC converter rating (all VSC have the same rating). Also, 

each DC CB has 0.3pu rating corresponding to the VSC on the 

same DC line [7]. Considering very fast operation in radial 

systems, DC CB rating is not sensitive to fault level. A DC/DC  
 

 
Fig.4. 21 (12 offshore +9 onshore) terminal DC grid with 3 radial DC systems. 
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converter consists of two VSCs and therefore the rating is 2pu. 

As a comparison, using a ring DC grid topology we would need 

2 DC CBs at each DC cable and the total cost becomes similar 

as shown in Table 1. Note also that the ring topology would 

require much larger rating for many cables and probably for DC 

CBs because of the protection delays. The operational and cost 

comparisons between topologies are given in depth in [10] and 

are not elaborated further. 

 
TABLE 1 COMPONENTS FOR 21 TERMINAL DC GRID 

 Interconnected Radial Grid Ring Grid 

DC CB 24×0.3pu=7.2pu 42×0.3pu=12.6pu 

DC/DC 3×2pu=6pu 0 

total 13.2pu 12.6pu 

 

 
Fig.5. 4-phase DC/DC converter 

B. Grid control 

Each radial DC grid is considered as a separate system for 

control development. This simplifies controls and provides 

safeguard against spreading of instabilities and blackouts. Each 

DC terminal controls local power with additional DC voltage 

droop feedback as it is common practice in DC grids [11].  

The proposed controller for DC/DC converter is shown in 

Fig. 6. At the inner most control level there is current d and q 

components control which prevent semiconductor overcurrents. 

The middle control layer regulates active and reactive power at 

each port. The port 2 balances power by keeping coordinate 

frame aligned with the capacitor voltage (Vcq=0), where an 

in-depth analysis of DC/DC converter design and modeling is 

given in [8]. The DC/DC converter regulates the power in the 

interconnecting cable at the value Pdcdcref0 which is determined 

by the DC grid dispatcher.  

It is proposed that the power reference is moderated with DC 

voltage droop feedback from both DC grids (Vdc1 and Vdc2). The 

two grids are practically decoupled and disturbances normally 

occur on only one radial grid at a time. The DC/DC converter in 

this way draws power from a healthy grid in order to stabilize a 

grid under disturbance. The radial DC grid will see DC/DC 

converter as any other VSC terminal.  

An alternative control method is to use DC voltage control 

for DC/DC converter. In case of small grids this method will 

imply significant coupling between the two DC grids and 

possible frequent DC/DC converter saturation. However in 

case of large systems with many terminals such control method 

may become attractive as a stand-alone control for an 

embedded DC/DC converter. 

 

 
Fig.6. DC/DC converter controller. 

IV. SIMULATION VERIFICATION 

A. Test system 

The test system is shown in Fig. 7. It consists of two, 

3-terminal radial grids. Each radial grid has two on-shore 1GW 

VSC terminals and one offshore 1GW wind farm. Such star 

topology resembles the UK East HVDC Interconnector and 

other first-stage European DC grid projects (COBRA cable) 

which are being studied. All the component ratings and 

steady-state power flows are shown in Fig. 7. The DC voltage 

levels at the two star systems are purposely selected to be 

different in order to demonstrate the flexibility of the topology.  

The DC/DC converter test system data are shown in table 2 

in the Appendix. Although 2-phase converter is studied as least 

cost option in [8], the high power converters will require more 

phases because of semiconductor rating limitations. A four 

phase topology is therefore selected to eliminate ground 

harmonics currents and also to improve reliability (tripping a 

phase enables ¾ power transfer).  

The 1GW wind farms are modeled in detail as a single 

equivalent variable speed machine by scaling up detailed 5MW 

Permanent Magnet Synchronous Generator machine model as 

presented in [12]. The VSC converters and controls use 

standard representation according to [11] or [12]. All the 

controls are modeled in full detail (including all PLLs) but 

converters use average non-linear models. The converter and 

AC system data are given in the Appendix, in Tables 2 and 3. 

The AC systems have short circuit ratio of 30 with X/R=10. 
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Fig.7. Test system: 2+4 terminal DC grid with 2 radial DC systems.  

 

One terminal in each star-grid (VSC1 and VSC5) is set to 

control DC voltage, as it would be normal practice with small 

DC grids. The remaining onshore VSCs (VSC2 and VSC4) 

control local power with DC voltage droop feedback. The wind 

farm VSC converters inject all the available wind power and 

have no contribution to DC grid control (no droop feedback). 

The DC cables are modeled in detail using frequency 

dependent distributed parameter model from PSCAD library. 

The complete model is built on PSCAD platform.  

The protection system model is developed for each DC cable 

as shown in Fig. 1. Each DC CB is modeled as an ideal switch 

with 90mH series reactors.  

Fig. 7 indicates all the DC fault locations that are studied. In 

all cases the system operates in steady-state shown in Fig. 7, 

and at 3s a pole-pole zero-impedance DC fault is applied. Also 

small signal disturbances are tested but they give less control 

challenges and for lack of space they will not be shown. 

B. DC Fault on a radial cable 

Fig. 8, 9 and 10 show system response following a 

permanent pole-pole fault at DC terminals of VSC 4. In Fig. 9 

we can see that DC CB4 interrupting current is 8kA. The 

remaining two DC CBs on the same star grid (DC CB5 and DC 

CB6) see negative current and therefore selectivity is very 

simple. On the terminal side the faulted cable is isolated by AC 

CB4 according to standard practice with HVDC DC fault 

management (not shown for brevity).  

The top 3 graphs in Fig. 9 confirm that circuit breakers on 

grid 2 do not see any notable current disturbance. Fig. 10 shows 

actual DC CB current around the fault instant and illustrates the 

operating delays. The finally selected 90mH reactor gives 

acceptable peak current of around 8kA. A reactor of 40mH 

gives around 15kA peak current which would be beyond the 

switch turn off capability.    

Fig. 8 illustrates that terminal 5 rapidly increases power in 

order to maintain local DC voltage at 1pu. A particular concern 

with radial grids is the star point voltage which cannot be 

directly controlled. The simulations however show that the star 

point DC bus 1 voltage (Vdcb1) is well bounded even for most 

series contingencies. In Fig. 8 it settles at slightly higher value 

since cable 4 has different resistance from cable 5. It is seen that 

DC/DC converter reacts to Vdcb1 increase by reducing the power 

transfer. The top graph in Fig. 8 confirms that grid 2 is not 

affected by this significant outage on grid 1. VSC2 converter 

gradually increases power transfer to compensate for the 

DC/DC converter power reduction.   
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Fig.8. Fault on VSC 4 DC cable. Terminal powers and DC voltages. 

 
Fig.9. Fault on VSC 4 DC cable. Currents in 7 DC CBs. 

 
Fig.10. Fault on VSC 4 DC cable. Current in DC CB4. 

C. DC Fault on the interconnecting cable  

Fig. 11, 12 and 13 show the system responses for a 

permanent pole-pole DC fault at DC bus 2 terminals of the 

interconnecting dcdc cable.  

It is observed in Fig. 12 that DC CB dcdc has interrupting 

current of around 8.5kA. This is slightly higher current than in 

case of fault on DC cable 4 since there is now fault current 

infeed from 3 VSC converters. It is also seen in the lower 3 

graphs of Fig. 12 that DC Cbs in grid 1 do not see large 

currents.  

Fig. 11 shows that VSC1 and VSC2 are able to establish a 

stable post-fault power flow and that grid 2 DC voltage 

deviations are limited. It is also seen that grid 1 only sees 

gradual loss of DC/DC infeed which confirms that DC/DC 

converter will not transfer DC fault.  

Fig. 13 shows the internal DC/DC converter variables which 

is of interest since this is worst-case fault at high-voltage 

DC/DC terminals. It is seen that:  

 Before the fault DC/DC converter operate satisfactory with 

power at reference point, Vcq=0, and reactive powers at 

each port equal to zero.  

 

 
Fig.11. Fault on DCDC cable. Terminal powers and DC voltages. 
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 During the fault (3s–3.27s) the converter naturally 

responds by reducing currents and there are no transient 

overcurrents. No special controls are required. 

The permanent fault is detected by low DC voltage for a 

preset time interval (around 250ms) and DC/DC converter is 

tripped by blocking IGBT pulses (at 3.27s). This permanently 

isolates dcdc cable from the DC grid 1. 

All the DC CBs employ 90mH reactor which introduce lags 

and slows the system dynamics, comparing with conventional 

VSC HVDC. The authors did not see need for special controls 

in the test system, however in case of very large systems further 

dynamic studies will be required.  

 

 
Fig.12. Fault on DCDC cable. Currents in 7 DC CBs. 

 

 

 
Fig.13. Fault on DCDC cable. Internal DC/DC converter variables. 

V. CONCLUSION 

This article presents a DC grid building methodology which 

ensures robust and accurate protection with moderate costs and 

simple controls. It is concluded that radial DC systems are well 

suited for limited-size local DC grids. Radial topologies fully 

exploit the advantages of fast hybrid DC circuit breakers. On 

the downside a DC cable fault will imply loss of one VSC 

converter. The back up protection is also simple with radial 

systems.  

It is proposed to interconnect radial local system using DC 

cables with DC/DC converters. DC/DC converters enable 

inherent isolation of DC faults and provide firewall between 

radial DC grids. It is essential to keep the number of DC/DC 

converters to minimum.   

A full simulation model of 2+4 terminal DC grid with 2-star 

points is presented. The PSCAD simulation results confirm 

advantages of the proposed topology for a range of DC faults. 

In particular the robustness of protection system is 

demonstrated for worst case DC faults. The proposed grid 

control is found to respond excellent to grid contingencies.   
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VI. APPENDIX 

TABLE 2 DC/DC CONVERTER DATA 

Power Pdcdc 1000MW 

DC Voltage Vdc1 ±250kV 

DC Voltage Vdc2 ±320kV 

Operating frequency f 1.0kHz 

Number of phases 4 

Filter capacitance Cdc1, Cdc2 10µF 

Rated Power per phase (1100MW design) 275MW 

Rated capacitor voltage Vc [RMS] 380kV 

Capacitance C 67.29μF 

Inductance L1 39.94mH 

Inductance L2 41.4mH 

 
TABLE 3 VSC CONVERTER DATA 

 VSC 1-3 VSC 4-6 

Power Pvsc 1000MW 1000MW 

DC Voltage Vdc1 ±320kV ±250kV 

DC Capacitance 68µF 112µF 

Series resistance   0.235Ω 0.235Ω 

Transformer  1400MVA 1400MVA 

Transformer Xt 0.15pu 0.15pu 

Series reactor 0.1pu 0.1pu 

 
TABLE 4 AC SYSTEM DATA  

 AC 1-2 AC 4-5 

Voltage  400kV 400kV 

Rac 0.399Ω 0.399Ω 

Xac 3.99Ω 3.99Ω 
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