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Introduction 

A common goal in implementation research is to compare alternative implementation strategies 

across a range of clinical conditions. Block designs can be used to obtain estimates of effect size 

while controlling for nuisance variables [1]. A nuisance variable is correlated with the outcome of 

interest but not of direct interest to the researcher; it might be a characteristic of the participants or 

institutions under study. In general blocks correspond to different values of the nuisance variables. 

Trietsch et al [2] discuss a particular form of block design―the balanced incomplete block 

(BIB)―and recommend against using it in implementation research. They also discuss a 2 by 2 block 

design which has been used in a number of implementation studies. They identify that this design is 

not a BIB and suggest describing it as a 2-arm trial. We suggest that “2 by 2 Latin square” is more 

appropriate. We describe the relationship between BIB and Latin square designs and show that 

contrary to the views expressed by Trietsch et al both have an important role in implementation 

research.  We discuss the analysis of the 2 by 2 Latin square. Technical details supporting our 

arguments are given in the statistical appendix [SA]. 
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The BIB design in relation to Latin squares  

The BIB design is used to evaluate v different treatments (implementation strategies) in b blocks 

(usually groups of patients or health care professionals) where each individual treatment appears in 

r blocks and within each block k different treatments are implemented. Additionally each pair of 

treatments appears in exactly  blocks. A set of criteria link the parameters v, b, r, k and . By 

relaxing the criterion that v should be greater than k to allow v to be greater than or equal to k we 

define a slightly more general family of designs that include both BIBs and Latin squares [SA]. 

Trietsch’s contention that BIB design is invalid in implementation research 

The utility of the BIB design depends upon several factors. The key issue is whether one can analyse 

the observed data to test the study hypothesis; can we specify a valid statistical model and then 

estimate the parameters of interest?  

In discussing the applicability of the BIB design, Trietsch et al comment: 

“According to Cochran and Cox the BIB design is suitable for situations in which repeated 

testing of varieties will lead to the same result, as can be expected when conditions can be 

well controlled as in agricultural or laboratory sciences. Unfortunately in most types of 

clinical research patients will be permanently influenced by the intervention that is being 

evaluated and therefore repeated testing cannot be expected to lead to the same result. As 

a consequence the BIB design cannot be used for patient-centred research.” 

This is their justification for their main proposition―that the BIB design is invalid in implementation 

research. It raises two questions: firstly, is it correct that repeated testing in patient-centred 

research cannot lead to the same result; secondly, if so can we fit an appropriate statistical model 

and answer our research questions? 

Repetition of an implementation strategy on the same set of patients or the same set of health care 

professionals is unlikely to have the same effect on outcome and we should not try to estimate a 
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single effect across replications. In the context of a BIB design it is more usual to consider the 

repeatability of results from different blocks testing the same pair of implementation strategies. 

How reasonable is it to assume that the expected effect size will be the same in different groups of 

health care professionals? In medical research one often assumes that repeated testing in different 

groups of patients will yield the same result. For example, this assumption underpins the use of the 

t-test to compare the arms of a randomised controlled trial.  

If repeated testing does not lead to the same result it is necessary to consider more complex 

statistical models [SA]. In some circumstances, by making assumptions about the distribution of 

treatment effects, we can obtain interval estimates of effect size using methods developed for the 

case where the residual errors distribution is a mixture of two different distributions.  

The 2 by 2 Latin square design 

Trietsch et al consider a 2 by 2 design used in several implementation studies to compare two 

alternative implementation strategies across four groups of patients (Table 1) and identify that it is 

not a BIB. Considered as two blocks of health care providers, the design is balanced but since both 

treatment strategies occur in each block it is not incomplete.  

As each treatment occurs once in each row and once in each column it can be considered as a two 

by two Latin square although because of the small number of degrees of freedom associated with 

this design it cannot be analysed using classical methods developed for larger Latin squares [3]. In 

practice the implementation studies that have used this design have involved multiple centres in 

each block; by modelling differences between centres as random effects rather than fixed effects it 

is possible to obtain interval estimates of treatment effects [SA]. 

A key feature of this design is that information on the effectiveness of each implementation strategy 

comes potentially from two sources: the performance of centres randomised to strategy A 

compared with the performance of centres randomised to strategy B within each condition and the 
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performance of strategy A against strategy B within centres (but across different conditions). 

Analysing the two conditions separately estimates effectiveness only through the first of these 

comparisons; analysing conditions simultaneously utilises more of the available information but 

requires a more restrictive set of assumptions about the observed data [4,SA]. 

If using a common measure of outcome across both conditions (for example a generic measure of 

quality of life such as the SF-36 measure [5]) then it may be reasonable to assume that the error 

variance is the same for each condition. Conversely, if one uses separate condition-specific measures 

of outcome for each condition, it is less likely that the errors will be identically distributed across 

conditions. Then one option is to transform each measure to a standard normal distribution. 

Alternatively one can analyse data from the rows separately; in the case of the 2 by 2 design each 

row functions as a cluster randomized trial with two arms. 

Increased applicability of block designs in implementation research 

BIB and Latin square designs have been used to evaluate alternative implementation strategies while 

controlling for one or more nuisance variables [6-14]. Historically these designs were particularly 

useful when observations were independent and normally distributed. Advances in statistical theory 

and computer processing power have led to increased flexibility. 

Generalized linear models (GLM) [15,16] enable us to consider response variables with other error 

structures including binary, multinomial or Poisson distributions. Further developments allow for 

correlated observations. Generalized linear mixed models (GLMMs), also called multilevel or mixed 

models, include random effects in linear predictors yielding explicit probability models that explain 

the correlation [17]. One consequence is that we can randomize blocks of health care professionals 

between alternative strategies rather than individuals thereby ameliorating any contamination 

arising from communication between professionals. 

An extension of GLMMs permits more complex variance component structures in which the 

observed errors follow a mixture of distributions [18]; potentially we can now address the issue of 
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measurement error in outcome variables. Interval estimates of the effect of treatment strategies 

corresponding to a very wide range of assumptions that may reflect more realistic scenarios are now 

possible. 

Block designs can be particularly useful in the environment faced by the implementation researcher 

where limited resources restrict both the number of strategies that can be investigated and the 

number of settings where each is implemented. In this context the 2 by 2 Latin square offers a basic 

design in which nuisance variables are balanced across study sites and, because both strategies are 

implemented in each site, there is less threat to the motivation of principals to participate in such 

research. However the design does have limitations: to what extent can we generalize results from 

two clinical conditions per study to the entire range?  

Simultaneous analysis of both conditions yields a pooled estimate of the difference between 

implementation strategies; however this is rare in practice. Future research should assess the merit 

of this approach compared with the usual practice of analysing each condition separately. In either 

case the choice of conditions needs careful consideration. Implementation of a particular strategy 

for one condition should not influence (or ‘contaminate’) the outcome for patients with the other. 

For example the implementation of guidelines for diabetes may affect the treatment of patients with 

coronary heart disease if they advocate monitoring of blood pressure. 

Conclusion 

Both Latin square and balanced incomplete block designs can be used to evaluate alternative 

implementation strategies while controlling for nuisance variables such as differences between 

individuals or institutions. Advances in statistical theory and processing power mean that these 

designs are even more applicable than when the theory relating to their use was first developed.  
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Table 1: The ‘2 by 2 Latin square’ design 

Clinical 
Condition 

Blocks of 
health 
care 

providers 

1 2 

C1 A B 

C2 B A 
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Statistical appendix 

1 The balanced incomplete block (BIB) design in relation to Latin 

squares  
The basic specification of the BIB design is mathematical. Given a finite set X of elements called 

points (e.g. strategies in implementation research) and a collection of non-empty subsets of X called 

blocks (e.g. groups of patients or professionals in implementation research), we define five integers:  

 v = number of points in X 

 b = number of blocks 

 r = number of blocks containing a given point 

 k = number of points in each block 

  = the number of blocks in which each pair of points is present 

Two equations connect these parameters: 

bk = vr   (1) 

(v-1) = r(k – 1)   (2) 

 

A design is a BIB if it meets the following conditions: 

r > 0  (3) 

 > 0  (4) 

v > k > 0 (5) 

Equation (5) states that k, the number of implementation strategies in each block, is less than v, the 

total number of such strategies under evaluation; that is why those blocks are ‘incomplete’. 

In this paper we consider a more general set of designs that relax this condition thus: 

v ≥ k > 0  (5a) 

This family includes both Latin square and balanced incomplete block designs. 

A good example of the use of these designs in practice is the North of England study of standards 

and performance in general practice. The aim of the North of England Study of Standards and 

Performance in General Practice was to evaluate five implementation strategies in British primary 

care [ref A1]. The study design comprised two replications of a five by five Latin square (Table A1). 
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Table A1: The replicated Latin square design of the North of England study of standards 
and performance in general practice and balanced incomplete block design of the postal 
outcome dataset 

Symptomatic childhood 
condition 

Blocks within replication 1  Blocks within replication 2 

1 2 3 4 5 
 

6 7 8 9 10 

Acute cough A B C D E 
 

A E D C B 

Itchy rash E A B C D 
 

B A E D C 

Acute vomiting D E A B C 
 

C B A E D 

Wheezy chest C D E A B 
 

D C B A E 

Bedwetting B C D E A 
 

E D C B A 

The letters A to E correspond to five different implementation strategies under investigation 

 

Each replication evaluated five implementation strategies A, B, C, D and E in five blocks of practices. 

Each block evaluated a different implementation strategy for each of five clinical conditions. Within 

each replication, each strategy appears once in each row and once in each column, thus forming a 

Latin square [ref A2]. Combining both replicates, one possible formulation of this design is 5 

implementation strategies (v = 5) evaluated in ten blocks of practices (b = 10) with each 

implementation strategy appearing in each block (k = 5, r = 10, = 10). This meets the criteria in 

equations (1) to (4), and that in (5a) since v = k, but not that in equation (5). Hence the design is not 

incomplete. 

In the postal outcome one row was missing; not postal outcomes were collected for one of the 

conditions [ref A3]. The resulting data set can be considered as a design with parameters b = 10, v = 

5, k = 4, r = 8 and  = 6 which satisfy the criteria set out for a BIB design:          

 bk = vr = 40   

 (v-1) = r(k – 1) = 24   

 r = 8 > 0   

  > 0   

 v = 5 > k = 4 > 0  

2 Repeatability across multiple implementations of an 

implementation strategy 
Consider the case where we wish to compare two implementation strategies. If the results are 

repeatable if one compares these strategies over several instances, i, the expected value of the 

mean difference D between them should be the same for each instance.  We can model this scenario 

thus: 

E[Di] =    

where Di is the observed difference between the two strategies specifically for instance i.   

For each instance i the observed value of Di differs from this expected value  by a random error ei.  

Di =  + ei  (7) 
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The standard method of analysis would then make assumptions about the distribution of these 

random errors so as to formulate a statistical model for the observed data and an appropriate 

estimation procedure is then used to generate an interval estimate of . 

If the results are not repeatable equation (6) does not; the expected mean difference will not be the 

same for each comparison.  Hence we specify a separate mean i for each instance:  

E[Di] = I  (8) 

The observed difference differs from this mean by a random amount: 

Di = i + ei  (9) 

In general a model that yields a different estimate of effect size for every instance is not useful. 

When implementing a strategy across a range of conditions, it is typical to assume that expected 

mean differences vary randomly about some overall mean : 

i =  + fi  (10) 

Replacing i in equation (9) by  + fi gives 

Di = o + ei+ fi  (11) 

which can be written as  

Di = 0 + gi  (12) 

where gi = ei + fi. This resembles equation (7) except that the observed error distribution is a mixture 

of two distributions. Methods have now been developed for calculating standard errors for the 

estimates of 0 (for example the approach described by Aitkin 1999 [ref A4]). 

3 The analysis of the 2 x 2 Latin square 
The standard statistical model used to analyse a Latin square is to assume orthogonal row, column 

and treatment effects with no interactions (see for example Armitage and Berry ref A5). Applying 

this to the two by two Latin square gives 

Yij =  + Ri + Cj + Tij + eij (13) 

where 

 Yij is the observation in row i and column j 

 Ri is 0 in row 1 and 1 in row 2 

 Cj is 0 in column 1 and 1 in column 2 

 Tij is 1 if the treatment in cell ij is strategy A and 0 otherwise 

 eij is a random error 

 , ,  and  are parameters to be estimated 

In fitting this fixed effects model, each of the row and column effects takes one degree of freedom 

and the treatment effect takes a third degree of freedom, thus leaving no degrees of freedom for 
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error. Hence the model is not well defined and it is not possible to estimate the treatment effect 

while adjusting for row and column effects. 

For this reason the smallest Latin squares considered in most statistical text books are three by three 

designs. In practice, however, the implementation studies using this design include many centres in 

each block. We can then represent the design as in Table A2 where each of the n1+ n2 columns 

represents a centre. 

Table A2: The 2 by 2 Latin square design with multiple centres within each column  

 

Study centres in block 1  Study centres in block 2 

1 2 … n1  n1+1 n1+2 … n1+ n2 

Condition 1  A A … A  B B … B 

Condition 2 B B … B  A A … A 

The letters A and B correspond to two different implementation strategies; there are n1 practices randomised 
to block 1 and n2 practices to block 2. 

 

In equation (13) we replace Cj by ∑ 𝛾𝑗𝐶𝑗
n1+ n2
𝑗=2  where the Cjs are a set of n1+ n2 -1 dummy variables 

such that Cj is 1 in column j and zero otherwise and the js are the corresponding model coefficients: 

Yij =  + Ri + ∑ 𝛾𝑗𝐶𝑗
n1+ n2
𝑗=2 + Tij + eij  (14) 

We can now fit this statistical model using classical methods assuming that the eij are independently 

and identically distributed (typically in a normal distribution) and using least squares or maximum 

likelihood estimation. 

But before fitting this model it is important to consider whether the underlying assumptions hold. 

For example the model assumes that the difference between implementation strategies A and B is 

the same for conditions 1 and 2. In many practical situations this assumption is unrealistic. It is then 

necessary to fit an interaction between the row effect and the treatment effect:  

Yij =  + Ri + ∑ 𝛾𝑗𝐶𝑗
n1+ n2
𝑗=2 + Tij + RiTij + eij (15) 

Unfortunately in this design with fixed row and column effects the interaction term is confounded 

with the main effects; it is not possible to estimate separate effects of the implementation strategies 

for each condition. To resolve this issue we can treat the centres as a random sample from all 

possible centres. Rather than fitting a separate effect j for each centre we assume that the centre 

effects vary randomly about some general mean 0; each column mean is equal to 0 plus a random 

error uj. The resulting model now has two fixed effects, their interaction and two random errors: 

Yij = * + Ri + Tij +  RiTij + ui + eij  (16) 

where we have absorbed0 into the new constant *. This type of model is commonly called a 

mixed model as it includes both fixed and random effects. 

Making appropriate assumptions about the characteristics of the random errors terms leads to 

methods for estimating the parameters. For example, if we assume a normal distribution for both 
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errors, we can estimate the parameters by iterative generalized least squares as described by 

Goldstein [ref A6].  
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