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Abstract

Empirical time series are subject to observational noise. Naïve approaches that
estimate parameters in stochastic models for such time series are likely to fail due
to the error-in-variables challenge. State space models (SSM) explicitly include
observational noise. Applying the expectation maximization (EM) algorithm to-
gether with the Kalman filter constitute a robust iterative procedure to estimate
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model parameters in the SSM as well as an approach to denoise the signal. The
EM algorithm provides maximum likelihood parameter estimates at convergence.
The drawback of this approach is its high computational demand. Here, we present
an optimized implementation and demonstrate its superior performance to naïve
algorithms or implementations.

Keywords: Kalman filter, Expectation-maximization algorithm, Parameter estimation,
State-space model

1. Introduction
Empirical signals are often obscured by a significant amount of observational noise.
Observational noise is assumed to be white and Gaussian distributed, which is a justified
assumption given the central limit theorem; it is further often assumed to enter the
measurements as an additive effect. In contrast to dynamic noise, which adds to the
dynamics of the process, observational noise is not part of the dynamics. In stochastic
models both types of noise can be accounted for using the state space model (SSM). The
SSM consists of an equation describing the dynamics of a process, and an observation
equation, modeling the observation function and observational noise.

For linear stochastic models, vector autoregressive (VAR[p]) processes are often used as
a model for the dynamics. A VAR[p] is a versatile model which turns out to be powerful
in estimating spectral characteristics, interaction structures, or network topologies. For
example, the partial directed coherence [2, 13] in the frequency domain and the directed
partial correlation [4, 7] in time domain, both measures for Granger causality, are based
on parameters of vector autoregressive processes. Accurate parameter estimates are vital
to get reliable results using such measures.

Naïve estimators for parameters in the autoregressive model neglect observational
noise. This leads to strongly biased estimates. The expectation maximization (EM)
algorithm [3] provides an iterative maximum likelihood estimator [1] for the parameters
in the SSM [16]. This maximum likelihood approach explicitly accounts for observational
noise by relying on the state space model and therefore provides unbiased estimators.
The EM algorithm for state space models is based on the Kalman filter [5]. This filter is
used to get estimates of the hidden states. The state estimates are then used to improve
the estimates of the process parameters. Once the EM algorithm has converged, the
parameter estimates are asymptotically unbiased and have smallest possible variance.
Additionally, an estimate of the hidden state is obtained.

The EM algorithm is typically used in this setting as it turns out to be more robust
than direct application of the Newton-Raphson algorithm, quasi Newton or conjugate
gradient approaches [11]. Robustness here refers to more stable convergence, as the
EM algorithm ensures, for instance, stability of the VAR[p] at all times. For the afore
mentioned approaches this cannot be guaranteed such that they typically converge only
if initialized close to the optimal solution.
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Figure 1: Kalman filter in the expectation maximization algorithm. The Kalman filter
is deployed to obtain conditional means using parameters P (r) in every iteration r.
Maximization of the expected value of the likelihood function leads to new parameters
P (r + 1).

The usefulness of state space modeling together with the EM algorithm has already
been demonstrated [8, 9]. However, no comprehensive overview including a numerically
efficient implementation seems to exist. Given the relevance for many fields, especially in
the neuroscience, we here discuss such a robust and numerically efficient implementation
and provide a toolbox written in C++. Moreover, we prove that the update strategy of
the expectation maximization algorithm is optimal even for the general case in which
autoregressive processes of order p > 1 are used in the state space model.

The manuscript is organized as follows. In Sec. 2.1, the state space model is intro-
duced. Section 2.2 and 2.3 deal with the Kalman filter. The expectation maximization
(EM) algorithm is described in Sec. 2.4. Approaches to overcome its high computational
demand are discussed in Sec. 2.5. Results are presented in Sec. 3. A first simulation
study demonstrates the run-time improvement of the proposed optimization, Sec. 3.1.
In a second simulation study shown in Sec. 3.2, the optimized EM algorithm is shown to
properly estimate spectral properties. In Sec. 3.2.2, the estimation of absolute values of
process parameters and their uncertainties are concerned. Finally, a conclusion in drawn
in Sec. 4.
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2. Methods
This section introduces the expectation maximization (EM) algorithm [3], c.f. Fig. 1.
The iterative EM algorithm (dotted box) consists of two steps. In the expectation step
conditional expected values of the hidden states xt and its covariance Pt are obtained
using the Kalman filter and smoother. Based on those values, in the maximization
step, the expected value of the likelihood is maximized with respect to the parameters,
yielding a new set of parameters, which is used in the next iteration of the EM algorithm.
In the first iteration of the EM algorithm the parameters P (1) needs to be initialized.
Therefore, e.g. least squares parameter estimates can be used. The algorithm iterates
until a convergence criterion is reached.

The observed data yt is a function of the hidden process xt and observational noise ηt.
The SSM links the observations to the hidden states. Hence, the EM algorithm returns
an estimate of the hidden states and an estimate of the parameters after convergence.

This section provides details of all components of the EM-Kalman framework, be-
ginning with the SSM (Sec. 2.1) followed by the Kalman filter (Sec. 2.2) and Kalman
smoother (Sec. 2.3). Based on those components, the EM algorithm is used for pa-
rameter estimation in the SSM (Sec. 2.4). For a numerically efficient implementation,
optimization of the EM algorithm is essential. In Sec. 2.5 we propose and test two
decisive optimization possibilities.

2.1. State Space Model

The state space model (SSM) is used in the Kalman filter to model the data. It consists
of two equations. The first equation models the dynamics of the process (Sec. 2.1.1),
comprising its parameters. The second equation models its observation (Sec. 2.1.2).
Therefore, it is possible to account for driving noise, which is part of the process, as well
as additive observational noise, which obfuscates the measurement. Moreover, every
channel of the observation can be a combination of different components of the process,
some of which might be unobserved. Since the process states can not be observed
directly, they are called hidden states, and the process itself the hidden process.

2.1.1. VAR[p] Processes

Here, the dynamics of the underlying process is modeled by a linear stochastic equation,
which is the vector autoregressive (VAR[p]) process of order p

xt =

p∑
τ=1

At(τ)xt−τ + εt , εt ∼ N (0,Q) . (1)

It assembles its current state vector xt from its past p state vectors and additive Gaussian
driving noise εt, with zero mean and covariance matrixQ. The dynamics of the process is
determined by the transition matrices At(τ), which, in general, can vary over time. The
state and noise vectors, xt and εt, are of dimension d while A and Q are d×d-matrices.
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Throughout this manuscript, only processes with time constant A(τ) are considered.
This implies, that the dynamics of the process does not change on the time scale of the
length of the measurement.

For the application in the EM algorithm it is useful to formulate a general VAR[p] as
a VAR[1] process. By embedding, e(·), transition matrix, state, and noise vector, Eq. (1)
translates to [16]

ext=



x1t
...
xdt
...

x1t−p+1
...

xdt−p+1


=



A(1)1,1 · · · A(1)1,d · · · A(p)1,1 · · · A(p)1,d

...
...

...
...

...
A(1)d,1 · · · A(1)d,d · · · A(p)d,1 · · · A(p)d,d

1 0 0 0 0 · · · 0

0
. . . 0 0 0 · · · 0

0 0
. . . 0 0 · · · 0

0 0 0 1 0 · · · 0


︸ ︷︷ ︸

eA



x1t−1
...

xdt−1
...

x1t−p
...

xdt−p


︸ ︷︷ ︸

ext−1

+



ε1t
...
εdt
0
...
...
0


.

︸ ︷︷ ︸
eεt

(2)

The sum of the past p states in Eq. (1) has been rewritten as the product of the pd×pd
matrix eA and the pd× 1 vector ext. The pd× pd covariance matrix of the driving noise
reads

eQ =



var(ε1, ε1) · · · cov(ε1, εd) 0 · · · 0
...

...
...

...
...

...
cov(εd, ε1) · · · var(εd, εd) 0 · · · 0

0 · · · 0 0 · · · 0
...

...
...

...
...

...
0 · · · 0 0 · · · 0


. (3)

Since the Kalman filter is build around a VAR[1] process, the embedded form is used in
the following.

2.1.2. Observation of the Process

The observation
yt = Cxt + ηt , ηt ∼ N (0,R) . (4)

is modeled by the b× pd observation matrix C and additive observational noise ηt. The
dimension of yt and ηt is b × 1. The observational noise is assumed to be Gaussian
distributed with zero mean and b× b covariance matrix R. In general, b 6= pd since not
all components of the underlying process are observed. This is especially the case when
reformulating a VAR[p] as a VAR[1] process, where only the first d hidden states are
observed. By setting off-diagonal entries of C to non-zero values, linear combinations
of components of the state vector are observed.

The linear state space model in its general form can be written as

xt = Atxt−1 + εt ,

yt = Cxt + ηt .
(5)
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2.1.3. Uniqueness of Parameters

Identical observations yt can be obtained from an infinite number of combinations of
matrices A, C, and Q, since the state space model is invariant under a transformation
with an invertible matrix. Due to this invariance, the components of the process, e.g.
the positions of entries in the state vector xt, can be reordered. Therefore, the entries
of the parameter matrix A are not uniquely defined. Reordering A leads to a new set of
parameters without changing the likelihood. Hence, contour lines exist in the likelihood
landscape which prevent the optimization from finishing. By fixing the observation
matrixC, e.g. to the identity 1, the order of components of the process is fixed, such that
parameters can be estimated. In consequence, the observation of linear combinations
of dimensions of the hidden state xt is excluded from the model. The important case
of instantaneous interaction is still covered however, since the covariance of the driving
noise Q is estimated without constraints, and instantaneous interaction can be realized
by correlated driving noise.

2.2. Kalman Filter

In the following, a measurement time series containing n observations is assumed. Time
t = 1, . . . , n is used to reference these observations. For conditional expectations [16]

xst = E[xt|y1, . . . ,ys] , (6)

P s
t1,t2

= E
{

(xt1 − xst1)(xt2 − x
s
t2

)T
}

a
= E

{
(xt1 − xst1)(xt2 − x

s
t2

)T|y1, . . . ,ys
}
,

(7)

the subscript denotes the estimation time point, the superscript up to which measure-
ment it is conditioned on. The expected value is denoted by E[·]. The relation a

= in
Eq. (7) only holds if the process underlying xt is Gaussian as assumed here.
The Kalman filter equations are [15]

xt−1
t = Axt−1

t−1 (8)
xtt = xt−1

t +Kt

(
yt −Cxt−1

t

)
(9)

P t−1
t = AP t−1

t−1A
T +Q (10)

P t
t = P t−1

t −KtCP
t−1
t (11)

Kt = P t−1
t CT(CP t−1

t CT +R
)−1

, (12)

with initial values x0
0 = E[xt] = µ, and P 0

0 = E[xt · xtT] = Σ.
The filter involves a time update and a measurement update step [17]. Time update,

Eq. (8) and (10), is a model driven step advancing from time t − 1 to t. It results in
the prior estimate xt−1

t and its covariance P t−1
t . The measurement update, Eq. (9) and

(11), corrects the prior estimates by taking into account the current prediction xt−1
t ,

measurement yt, and the Kalman gain, Eq. (12), leading to the posterior estimates.
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Equations (8)–(12) implement a forward recursion since only observations and esti-
mates from the past and the present are used. Hence, those equations are causal and
allow for online application. Moreover, equations (10)–(12) do not depend on the obser-
vations yt and can be calculated offline if the parameters of the model are known.

2.3. Kalman Smoother

In contrast to the Kalman filter, the smoother is a backward recursion [12]. Therefore,
one can take advantage of the smoother once the entire time series has been recorded.
Smoothed estimates are more accurate than filtered ones. The Kalman smoother equa-
tions for t = n, n− 1, . . . , 1 are [15]

Jt−1 = P t−1
t−1A

T(P t−1
t

)−1
, (13)

xnt−1 = xt−1
t−1 + Jt−1

(
xnt −Axt−1

t−1

)
, (14)

P n
t−1 = P t−1

t−1 + Jt−1

(
P n
t − P t−1

t

)
Jt−1

T . (15)

The matrix J is the smoothing gain, analogously to the Kalman gain K. The initial
values for the smoother are the final estimates of the filter, xnn and P n

n . The recursion [15]

P n
t−1,t−2 = P t−1

t−1 Jt−2
T + Jt−1

(
P n
t,t−1 −AP t−1

t−1

)
Jt−2

T , t = n, n− 1, . . . , 2 (16)

with initial value
P n
n,n−1 = (I −KnC)AnP

n−1
n−1 (17)

is the lag one covariance smoother. The lag one covariance P n
t,t−1 is required in the

expectation maximization algorithm, see Eq. (20).

2.4. Expectation Maximization Algorithm

Different approaches exist to fit model parameters to data, one of which is maximum
likelihood estimation (MLE). The likelihood is a function describing the probability of
the data recorded given the model parameters. Maximizing the likelihood leads to the
parameters of the model for which the observed time series is most likely.
Following [15], an iterative maximum likelihood estimator of the parameters of the

state space model is derived. For the complete data log-likelihood

logL =− 1

2
log |Σ| − 1

2
(x0 − µ)TΣ−1(x0 − µ)

− n

2
log |Q| − 1

2

n∑
t=1

(xt −Axt−1)
TQ−1(xt −Axt−1)

− n

2
log |R| − 1

2

n∑
t=1

(yt −Cxt)TR−1(yt −Cxt) .

(18)
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both xt and yt are taking into account. However, since the hidden states xt are unknown,
only the expected value

G(Θ) = E(logL|y1, . . . ,yn)

=− 1

2
log |Σ| − 1

2
tr
{

Σ−1
(
P n

0 + (xn0 − µ) (xn0 − µ)T
)}

− n

2
log |Q| − 1

2
tr
{
Q−1 (F −EAT −AET +ADAT)}

− n

2
log |R|

− 1

2
tr

{
R−1

n∑
t=1

[
(yt −Cxnt ) (yt −Cxnt )T +CP n

t C
T
]}

,

(19)

of the log-likelihood conditioned on y1, . . . ,yn is accessible. The abbreviations

D =
n∑
t=1

(
P n
t−1 + xnt−1x

n
t−1

T) , E =
n∑
t=1

(
P n
t,t−1 + xnt x

n
t−1

T) ,
F =

n∑
t=1

(
P n
t + xnt x

n
t
T) (20)

have been used in Eq. (19). The quantities required in Eq. (20) are the result of the
Kalman smoother of the r-th EM iteration, see Eqs. (14, 15).
To maximize G(Θ), its derivative is set to zero, leading to the update rules

A(r+1) = ED−1 , (21)

Q(r+1) =
1

n

(
F −ED−1ET) , (22)

R(r+1) =
1

n

n∑
t=1

[
(yt −Cxnt ) (yt −Cxnt )T +CP n

t C
T
]
. (23)

The update of µ is xn0 of the last EM iteration. If the measurement is corrected for the
mean, the initial value for the first EM iteration of µ is set to 0. The initial value of
the covariance of the process Σ can either be estimated or set to a reasonable baseline
value [15].
The update rules of the EM algorithm are guaranteed to always yield parameters of a

stationary process. Moreover, the likelihood never decreases. Therefore, no adjustment
of step size is needed [3]. However, the EM algorithm converges slower than quadratic
methods, but has more robust convergence properties [15].

2.4.1. VAR Parameter Constraints

A decisive step for parameter estimation in the EM-framework is that the expected value
of the log-likelihood (Eq. (19)) consists of variables, i.e. xnt , xnt−1, and P n

t,t−1, which can
be derived from the Kalman smoother, Sec. 2.3. The Kalman smoother is initialized by
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the output of the Kalman filter, Sec. 2.2, which is designed for VAR[1] processes. Hence,
to use the general VAR[p] model, it must be reformulated as a VAR[1], which is always
possible as described in Sec. 2.1.1. As also noted in Sec. 2.1.1, A and Q gain structure
by this reformulation (Eqs. (2, 3)) which are maintained by the update rules of the EM
algorithm, Eq. (21) and Eq. (22). This is proofed in the following, with more details
given in App. A.

By means of Lagrangian multipliers, the optimization underlying the update rules can
be carried out with constraints. The constraints for A are formulated by φij, the ones
for Q by ψij. The Lagrange multipliers λij and ωij are set to zero for the unconstrained
parts of A and Q respectively, c.f. Eqs. (2, 3). For the constrained part of A and Q, the
parameters φij and ψij are set to 0 or 1 corresponding to the target value. This adds
two additional term to the likelihood equation Eq. (19) yielding

Gc = G(µ,Σ,A,Q,R) +
∑
i,j

λij(Aij − φij) +
∑
i,j

ωij(Qij − ψij) . (24)

Maximization with respect to Q leads to

Q = Q̌+
2

n
QΩQ , (25)

where Q̌ denotes the unconstrained covariance from Eq. (22). The matrix

Ω =

(
0

Ω̌

)
. (26)

is composed of a d×d zero matrix located at the upper left, and the Lagrange multipliers,
Ω̌ij = ωij. The second term in Eq. (25) is zero due to the shape of the constrained Q
and Ω, and Q = Q̌ follows. A similar argument applies to A. Nevertheless, due to
numerical inaccuracy, it is advisable to set the constrained elements of A and Q to zero
or one, respectively.

2.4.2. Convergence Criterion

The EM algorithm is stopped when a convergence criterion is reached. Two approaches
are often used. The first criterion is based on the convergence of the incomplete data
likelihood [14]

logL =− 1

2

n∑
t=1

log
∣∣CP t−1

t CT +R
∣∣

− 1

2

n∑
t=1

(
yt −Cxt−1

t

)T(
CP t−1

t CT +R
)−1 (

yt −Cxt−1
t

)
.

(27)

The second approach uses convergence of the parameters A, Q, and R. For instance
for the parameter matrix A, the relative change

δA = max
i,j

{
(At

t)ij − (At−1
t−1)ij

(At
t)ij

}
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can be used as converge criterion. Both approaches suffer from the drawback that
vanishing changes of either the likelihood or the parameters do not necessarily imply
global optimality of the parameters. However, the primary aim of the EM algorithm is to
obtain parameter estimates. Therefore, it remains highly advisable to define convergence
by means of parameter changes.

2.5. Run-time Optimization

In this section we describe two run-time optimization approaches and their results. We
exploited the possibility of the EM algorithm for parallelization as well as fixed-point
equations for the filter and smoothing gains.

2.5.1. Parallelization

The EM algorithm allows for parallelization in case of multiple panels. Panels refer to
different time series which are recorded from the same process, e.g. repeated measure-
ments. A single recording might also be split up into shorter parts, leading to panels.
For each panel j the EM algorithm can be run independently, obtaining Dj, Ej, and Fj
in parallel. To update A, Q, and R, Eq. (21 – 23), the sums D =

∑
jDj, E =

∑
j Ej

and F =
∑

j = Fj have to be used. This can been shown by introducing the sum over
panels in the likelihood (Eq. (18)) and carrying out the maximization. On a multi-core
computer system, the runtime can be reduced by a factor of the minimum of number of
panels or number of cores.

2.5.2. Fixed Point Equations for the Gains

The Kalman filter and smoother gains

Kt = P t−1
t CT(CP t−1

t CT +R
)−1

, (28)

Jt−1 = P t−1
t−1A

T(P t−1
t

)−1 (29)

are computationally expensive due to matrix inversion, which scales with approx. O(d3),
where d is the dimension of the matrix. The constituents of the gains are C, R, P t−1

t ,
P t
t , and A. Only the covariances of states, P t−1

t and P t
t , vary with time t, but since

only stationary processes are considered P t−1
t and P t

t are both constant for the whole
time series. This implies constant values for Kt, Jt, P n

t and P n
t,t−1 also. Therefore,

the equations (10), (11) and (15), (16) are fixed point equations. Attempts to solve
the equation analytically lead to a quadratic equation in matrices, known as discrete
algebraic Riccati equation [6]. When the fixed points are reached, all remaining matrices,
Jt, P n

t , and P n
t,t−1, can be calculated analytically, leading to the following procedure.

• Iterate
P t−1
t = AP t−1

t−1A
T +Q ,

P t
t = P t−1

t −KtCP
t−1
t ,

Kt = P t−1
t CT(CP t−1

t CT +R
)−1

.

(30)
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up to certain accuracy. Start with P 0
0 = P n

0 from the last iterations.

• Calculate

J = P t
tA

T(P t−1
t )−1 ,

vecP n
t = (I − J ⊗ J)−1 vec(P t

t − JP t−1
t JT) ,

vecP n
t,t−1 = (I − J ⊗ J)−1 vec

(
(I − JA)P t

t J
T) . (31)

Here, vec denotes the vec-operation and ⊗ the Kronecker product [10]. Since
Eq. (30) and (31) do not depend on observations, these quantities can be used
for all panels. Note that the covariance matrices P t

t , P
t−1
t , P n

t and P n
t,t−1 do not

depend on time t anymore. Still, the superscripts remain to distinguish between
them.

• Filter the observations, possibly in parallel for all panels. Use xn0 from last iteration
as initial value for x0

0.

xtt = Kyt + (I −KC)Axt−1
t−1 , t = 1 . . . n , (32)

xnt−1 = (I − JA)xt−1
t−1 + Jxnt , t = n . . . 1 . (33)

• Calculate

D = nP n
t−1 +

n∑
t=1

(
xnt−1x

n
t−1

T) , (34)

E = nP n
t,t−1 +

n∑
t=1

(
xnt x

n
t−1

T) , (35)

F = nP n
t +

n∑
t=1

(
xnt x

n
t
T) , (36)

for each panel, and take the sum over panels to update A, Q, and R, Eq. (21 – 23).

3. Results and Discussion
In this section the results of the simulation studies are presented. The first demonstrates
the gain in run-time which is achieved with the proposed optimization, Sec. 3.1. The
second shows the ability of the EM algorithm to estimate spectral properties of the
process in the presence of strong observational noise, Sec. 3.2. In the third simulation,
Sec. 3.2.2 absolute values of the process parameters together with their uncertainties are
estimated from noisy data. The simulation studies demonstrate that the implementation
discussed here is fast and correct.
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Figure 2: Comparison of the mean run-time of one EM iteration. Naive implementation
MATLAB R© (M, green), Naive implementation C++ (C, blue), optimized implemen-
tation C++ (O, red). The shade of the color indicates the process order used for
fitting. Lower is better.

Mean run-time in seconds

VAR[2] VAR[5] VAR[10] Data points

naive MATLAB R©
0.44 0.55 0.96 1,000
2.18 2.74 4.18 5,000
12.90 16.36 25.70 30,000

naive C++
0.09 .46 2.51 1,000
0.44 2.21 12.32 5,000
2.64 13.41 72.87 30,000

optimized C++
0.002 0.014 0.602 1,000
0.006 0.022 0.54 5,000
0.031 0.080 0.67 30,000

Table 1: Results of the performance test: mean run-times of one EM iteration in seconds.
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3.1. Effect of Run-time Optimization

We compare three different implementations of the EM algorithm. The first and the
second are naïve implementations in MATLAB R© and C++, respectively. The third one
is also implemented in C++, but with run-time optimization.

The run-time test of different EM algorithm implementations is performed by fitting a
state space model of process order 3, 5, and 10 to data generated from a three dimensional
VAR[2]. All calculations were carried out on two 2.93 GHz Quad-Core Intel Xeon CPUs
with 32 GB of RAM in total. The results are shown in Fig. 2. The number of data
points included in the fit is shown on the x-axes. To rate the algorithms, the run-time
of single EM iterations were measured. On the y-axes, the mean of 100 EM iterations
is given in seconds. The order of the fitted process, 3, 5, 10, is indicated by the color
shade of the bars from light to dark.

As described in Fig. 2, the naïve MATLAB R© (green) and naïve C++ (blue) imple-
mentation perform comparable. The MATLAB R© implementation scales better with the
length of the time series. In contrast, the naïve C++ implementation is faster for shorter
time series. The result of the optimized C++ implementation is shown in red. Taking
the VAR[10] and 30,000 data points as example, the optimized implementation is faster
by a factor of 100 compared to both naïve implementations. The exact run-times are
given in Tab. 1.

3.2. Application to Simulated Data

Here we discuss two simulation studies which are concerned with the quality of the pa-
rameter estimates of the implementation discussed in this article. For the first study,
spectral properties represented by the power spectrum were of concern. In the second
study, the performance of the algorithm with respect to the absolute values of param-
eter estimates and their uncertainties were investigated. Since the true spectrum and
parameters are known, the estimated properties can be compared to the true ones.

3.2.1. Estimating spectral properties

The process underlying the data is a VAR[3] with d = 2 and transition matrices

A(1) =

(
0.9 0
0.35 0.7

)
, A(2) =

(
−0.5 0.1
0.2 −0.3

)
, (37)

A(3) =

(
0 0.15

−0.25 −0.4

)
, Q =

(
1 0
0 1

)
. (38)

From this process, a realization with 30,000 data points was obtained. Observational
noise was added, such that the resulting signal-to-noise ratio is 1:8. The signal-to-noise
ratio is defined as the variance of the process divided by the variance of the noise.

The EM algorithm was applied with three different thresholds for the relative changes
ofA, 10−3, 10−4, 10−7 (Eq. (2.4.2)). By lowering the threshold, the fit gets more accurate.
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Figure 3: Comparison of estimated power spectra. In blue, the smoothed periodogram
and in red the spectrum calculated from least squares fitted VAR model is shown.
Both are dominated by observational noise only. Calculated from the parameters of
the fit with the EM algorithm are the spectra in turquoise, violet, and yellow. All
of them show the shape of the true spectrum. Decreasing the convergence threshold
leads to a better reconstruction of the true spectrum shown in green.

The run-time was 23 sec for 10−3, 4.5min for 10−4, and about 22.5 h for 10−7. The actual
parameter values are only given for the lowest threshold of 10−7,

Â(1) =

(
0.8727 0.0904
0.1258 0.5724

)
, Â(2) =

(
−0.5151 −0.0168
0.4910 −0.1966

)
, (39)

Â(3) =

(
0.0039 0.2501
−0.3371 −0.4041

)
, Q̂ =

(
1.1090 0.1222
0.1222 1.6585

)
. (40)

The initial values for this fit were set to the true value. The deviation can therefore be
seen as the limit of accuracy of the algorithm.

Another approach to compare the estimated and true parameter values is the power
spectrum s(ω), which is the power per frequency of a signal. This spectrum can be
estimated by smoothing the periodogram. It can also be derived from VAR[p] parameters

s(ω)cc =
σ2

2π

1

‖1−
∑p

τ=1 acc(τ)e−iωτ‖2
, (41)

with acc(τ) a diagonal entry of A(τ). Since observational noise is assumed to be white,
it manifests as a constant offset over all frequencies in the power spectrum. Removing
it, the resulting power spectrum is expected to be of the same shape as the one with ob-
servational noise, but lower in amplitude. If the signal-to-noise ratio is too low however,
only a flat spectrum characterizing the noise can be obtained.

In Fig. 3, power spectra from simulated data estimated using different approaches are
compared. The results of the first dimension of the process are shown on the left, those
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Figure 4: Parameter estimates of the AR process obtained using the EM algorithm
plotted in black. The coupling of the two dimensions of the process c is increased
from 0 to 0.5 in steps of 0.05. The 1σ confidence interval is denoted by the gray lines.
The parameters and their true values are denoted on the right.

for the second dimension on the right. The blue line is the smoothed periodogram of
the signal. The smoothing window spanned over 0.01 phase/π. It does not resemble the
hidden process’ frequency content, since it is dominated by observational noise. The
green line is the true spectrum calculated from the true parameter values, and is termed
“Target”. The red line is the spectrum which has been calculated from least-squares
fitted parameters. It follows mainly the smoothed periodogram and no useful spectral
information of the true process can be inferred from this estimate.
The turquoise, purple, and yellow lines are the power spectra which are based on the

parameter estimates of the EM algorithm for the three convergence thresholds. Even
for the lowest (10−3) which is associated with the least accuracy, the peak frequency,
in shape and position, was recovered. The area around the peak is the most important
part of the spectrum, since it defines the main characteristics of the process. When the
convergence criterion became more strict, the estimated power spectrum approached the
true one. Even at a signal-to-noise ratio of 1:8, the power spectrum could be reliably
estimated using the EM algorithm and Kalman filter with the proposed optimization.
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3.2.2. Estimating parameters

To investigate the accuracy by means of absolute values of parameters, we used a d =
p = 2 autoregressive process with parameter matrices

A(1) =

(
1.3 c
0 1.7

)
, A(2) =

(
−0.8 0

0 −0.8

)
. (42)

The coupling of the two dimensions of the process can be adjusted by the parameter c.
This coupling parameter was varied from 0 to 0.5 in steps of 0.005. For every value of
c, a time series of 5000 data points was obtained, and observational noise was added to
get a signal to noise ration of 2:1.

The results are presented in Fig. 4. The black lines are the parameter values as es-
timated for the corresponding value of c. In gray the 1σ confidence intervals of the
estimates are given. The confidence interval was calculated from the Hessian of the
log-likelihood. In Fig. 4, the entries of the transition matrices are labeled aij(τ), where
τ denotes the time lag. As can be seen, the true parameters are within the error bounds
of the estimated parameters almost all the times. This demonstrates the correctness of
the implemented algorithm.

4. Conclusion
This manuscript draws attention to the expectation maximization (EM) algorithm. The
major drawback of this approach for everyday use is its high computational demand. As
shown in this manuscript, the run-time can be optimized in the range of magnitudes.
Tests fitting a VAR[10] to 3 dimensional time series with 30,000 data points show a gain
in run-time of the factor 100 compared to naïve implementations.

Using simulated data we showed that spectral properties of a process as well as ab-
solute values of process parameters and their errors can be estimated reliably with the
implementation of the EM algorithm discussed here.

Whenever measurements are covered in observational noise, or different components
of the process of interest can only be observed as combinations of each other, the state
space model is worth considering. The implementation discussed in this article uses the
identity matrix for observations, disallowing the observation of linear combinations of
the hidden states. Still, instantaneous interactions are covered by the model by corre-
lated driving noise corresponding to non-zero off-diagonal entries in the driving noise
covariance matrix Q. The EM algorithm using the Kalman filter offers a maximum like-
lihood estimator for the parameters of the state space model. Therefore, EM algorithm,
Kalman filter, and state space model are highly effective tools in data analysis. A fast
and easy to use implementation of this tool is available upon request form the authors.
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A. Constraints of parameter matrices within
EM-framework

Here, we show that the block-structure of A and Q of a VAR[p], which is formulated as
a VAR[1], is maintained in the update rules of the EM-framework.

In order to update theA andQ, the expected value of the likelihood G Eq. (19), has to
be maximized. To proof that the update maintains the structure, Lagrange multipliers
λij and ωij were introduced into the likelihood, yielding Eq. (24). Only the derivative
with respect to Q is shown. For A, the same argument applies. The constrained update
step is found by setting the derivative with respect to Q to zero.

∂Gc

∂Q
=

∂

∂Q

(
− n

2
logQ− 1

2
tr
{
Q−1 (F −EAT −AET +ADAT)}

+
∑
i,j

ωij(Qij − ψij)
) (43)

= −n
2
Q−1∂Q

∂Q
− 1

2

∂

∂Q
tr
{
Q−1F −Q−1EAT −Q−1AET

+Q−1ADAT}+
∂

∂Q

∑
i,j

ωij(Qij − ψij)

(44)

= −n
2
Q−1∂Q

∂Q
− 1

2

∂

∂Q
tr
{
Q−1F −Q−1EAT −Q−1AET

+Q−1ADAT}+
∑
i,j

ωijêij︸ ︷︷ ︸
Ω

(45)

!
= 0 . (46)

Multiplication by a factor 2/n as well as by Q from the left and the right yields

0 = Q+
1

n

{
−F T +AET +EAT −ADTAT}− 2

n
QΩQ (47)

The term in curly brackets is the parameter matrix obtained in the unconstrained case,
i.e. without Lagrangian multipliers. Hence, the update Q with constraints is the same
as the unconstrained update, if

2

n
QΩQ = 0 . (48)
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This is ensured, however, by the structure of Q and Ω

Q =

(
(d× d)=P 0

0 0

)
, Ω =

(
(d× d)=0 P

P P

)
. (49)

Here, P denotes parameter entries in the respective matrix, while 0 denotes zero-
entries. �
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